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Abstract. In this paper, we present two triangulation algorithms which combined produce

an algorithm for computing Delaunay triangulations for comet-shaped polygons. The first algo-

rithm constructs in linear time a triangulation for a comet-shaped polygon. The second algorithm

constructs a Delaunay triangulation for a polygon from any triangulation for the polygon. The algo-

rithms can be used for deleting vertices in a Delaunay triangulation and for computing constrained

Delaunay triangulations.
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1. Introduction

Given S, a finite set of points in the plane, a triangulation for S is any collection of triangles

in the plane having pair-wise disjoint interiors, each of which intersects S exactly at its

vertices, and the union of which is the convex hull of S. Given T, a triangulation for 5, we
say that T is a Delaunay triangulation for S if for each triangle in T there does not exist a

point of 5 inside the circumcircle of the triangle. Delaunay triangulations have been studied

and algorithms for computing them have been presented in [1, 4, 5, 6
, 7, 8 ].

Let R be a polygon in the plane. By a triangulation for R we mean a collection of triangles

in the plane having pair-wise disjoint interiors, the vertices of which are the vertices of P,

and the union of which is R. Given T, a triangulation for P, we say that T is a Delaunay

triangulation for R if for each triangle t in T there does not exist a vertex P of P inside the

circumcircle of t such that the boundary of R does not intersect the interior of the convex

hull of t U {P}. The problem of computing Delaunay triangulations for polygons has been

addressed in [3].

Let R be a simple polygon. Here and in the sequel, we denote by 7(72), D (72), and V(P),

respectively, the interior of 72, the boundary of 72, and the set of vertices of R. In addition,

given points P and Q in the plane, P 7^ Q, we denote by [P, Q

}

and (P, Q), respectively, the

closed and open line segments having P and Q as end-points.

Given a simple polygon P, we say that R is star-shaped, if there exists a point Q in 7(7?),

such that for each point P in 72, P Q, (P, Q) is contained in 7(72). An example of a

star-shaped polygon is the union of the triangles in a triangulation having a given vertex in

common.

Given a simple polygon P, and points P and Q in V(R) and P(P), respectively, P / Q,

such that (P, Q) is contained in P \ V(R), we say that P is comet-shaped relative to [P, Q] if

for each point U in P \ [P, Q], there exists a point W in (P, Q) such that (U, W) is contained

in 7(P). We say that P is comet-shaped if there exist points P and Q in V(P) and P(P),

respectively, P 7^ Q, such that P is comet-shaped relative to [P, Q\. Clearly, star-shaped

polygons are comet-shaped. Figure 1 illustrates several comet-shaped polygons.

In this paper, we present two algorithms that can be combined to produce an algorithm

for computing a Delaunay triangulation for a comet-shaped polygon. The first algorithm,

which we call CMTTRI, constructs in linear time a triangulation for a comet-shaped polygon.

The second algorithm, which we call OPTTRI, constructs a Delaunay triangulation for a

polygon from any triangulation for the polygon.

Algorithm CMTTRI makes use of a modified version of an algorithm in [2], called

EDGSTR, that was designed for computing a Delaunay triangulation for a polygon that
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Figure 1: Several comet-shaped polygons. Each polygon is comet-shaped relative to [P, Q\.
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is comet-shaped relative to a linear component of its boundary. This special type of comet-

shaped polygon was called edge star-shaped in [2], and was used there in the context of

Delaunay triangulations constrained by line segments. Let R be one such polygon. With
r defined as the number of vertices of R

,
assume P

x and Pr are vertices of R such that

R is comet-shaped relative to [Px,Pr ],
and let Pi,..

. ,
Pr be the vertices of R in the order

in which they appear in B(R) in a counterclockwise direction around R. Given integers

i, k, 1 < i < k < r, we define the convex realization in R of P,, ...
,
P*., as the subset of R

which is the union of line segments of the form [P, Q] where P £ [P/, a+i], <?€[pm ,pm+1 ]

for integers l, m, i < l,m < k — 1, and [P, Q ]
C R. In addition, by letting R& be the convex

realization in R of P,, . .
.

,

P^, we define the convex envelope in R of p, . .
.

,

P*, as the subset

of Rik that contains a point U if and only if either U £ [Pi,Pr ], or for some point W in

(Pi, Pr ), (P, W) is contained in I(R \ R t k). We notice, by letting E,k be the convex envelope

in R of P,, . .
.

,

Pk

i

that for some integer s, 2 < s < k — i + 1, points Q x , . .
.

,

Q s exist such

that Q i equals P,, Q s equals P^, Etk equals UfLj [Qi, Q/+i], and Q x , . .
.

,

Q s are the points in

{P,-, . .
. , Pk} fl Eik in the order in which they appear in B(R) in a counterclockwise direction

around R. Figure 2 illustrates a polygon that is comet-shaped relative to a linear component

of its boundary, and the convex realization and convex envelope in the polygon of a subset

of the set of its vertices.

Let R and Pi, . .
.

,

Pr be as above. Given integers z, k, 1 < i < k — l < r, a close analysis

of algorithm EDGSTR in [2] reveals that by undergoing some minor modifications it can

also be used for computing a representation for E,k and a triangulation for each component

of non-empty interior of Rik. The modified version of algorithm EDGSTR of which algo-

rithm CMTTRI makes use, does exactly this and is essentially EDGSTR without the step

that enforces the Delaunay requirement. This modified version of EDGSTR, which we call

EDGTRI, is also presented in this paper.

Let R be a comet-shaped polygon, and let P and Q be points in V(R) and P(P),

respectively, P / Q, such that R is comet-shaped relative to [P, Q\. In addition, without any

loss of generality, assume that [P, Q] is parallel to the x-axis of the 2-dimensional Cartesian

coordinate system and that it partitions R into two regions of non-empty interior. Under

these assumptions, we let Ri represent the polygon which is the portion of R on or below

[P, Q], and Ru the polygon which is the portion of R on or above [P, Q}. Also, for some

positive integer j’l, we let P^, j — 1, . .
.

,

ji, represent the points that are vertices for both R
and Ri in the order in which they appear in B{Ri) in a counterclockwise direction around

Ri with Pf equal to P; and for some positive integer ju ,
we let P|'

, j — 1, ... ,ju, represent

the points that are vertices for both R and Ru in the order in which they appear in B(Ru)
in a counterclockwise direction around Ru with PF equal to P. Clearly, [P, Q

}

is a linear

component of the boundaries of Ri and Ru ; Rl and Ru are comet-shaped polygons relative

4



Pi

Figure 2: Above, a polygon R with vertices Pi, .... Pw R is comet-shaped relative to

Pi,Pi 2 j. Below, from left to right, the convex realization i?
4i i 0 and the convex envelope

p4,io in R of P\, • • , P\o-
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to [P,Q
] ;

and the concepts of convex realization and convex envelope make sense in

for Pf, j = 1 ,
• • • , J l i

and in Ru for Pj7
, j = 1 ,...,jy. Algorithm CMTTRI computes a

triangulation for R by essentially first partitioning R into three regions that have pair-wise

disjoint interiors, and then triangulating each component of nonempty interior of each region.

The first and second regions correspond to the convex realizations in Ri of P 7
', j = 1, . .

.

,

j L ,

and in Ry of Pj7
, j = 1 ,

respectively. Thus, algorithm EDGTRI is applicable for

computing representations for the convex envelopes in Ri of Pj, j = 1 and in Ry
of Pj7

, j — 1
, ,jy, and for computing a triangulation for each component of non-empty

interior of the convex realizations in Rl of Pj, j — 1, . .
.

,

jy, and in Ry of Pj7
, j = 1, . .

.

,

jy.

Finally, the third region corresponds to the closure of the complement in R of the union of

the first two regions. This region is empty if Q is a vertex of R. Otherwise, it is the polygon

whose boundary is composed of the line segment [Pj,Pj], the convex envelope in R

y

of

Pj, j = 1 , . .
.

,

jio and the convex envelope in Ry of Pj7
, j — 1, . .

.

: jy. Thus, the region is

a comet-shaped polygon relative to [Pj,Pj;], and algorithm EDGTRI is also applicable for

computing a triangulation for it. Figure 3 illustrates a comet-shaped polygon that has been

partitioned into the three aforementioned regions. The shaded region is the interior of the

third region. The first region is the rest of the polygon on or below [P, Q ]
minus the interior

of the linear component of the polygon that contains Q. The second region can be similarly

identified on or above [P,Q ].

Let T be a triangulation for a polygon R. Given a triangle t in T, we denote by A(t) the

set of vertices of R that are vertices of triangles in T adjacent to f, and say that t satisfies

the circle criterion in T if none of the vertices of R in A(t) is inside the circumcircle of T.

Using arguments similar to those in [4], it can be shown that T is a Delaunay triangulation

for R if each triangle in T satisfies the circle criterion. Algorithm OPTTRI is an incremental

algorithm which, based on this result, computes a Delaunay triangulation for a polygon R
from an arbitrary triangulation T for the polygon. OPTTRI starts by selecting an arbitrary

triangle, which we call G, in T

.

Let m be the number of triangles in T. Given a positive

integer n, n < m, OPTTRI inductively selects triangles 1 1 , . .
.

,

t n in T, whose union, which we

call P n ,
is connected, and computes triangles t”, . .

.

,

f", the collection of which is a Delaunay

triangulation for Rn . OPTTRI then proceeds to select a triangle t n+ 1 in T in such a way

that tn+ 1
is different from the previously selected triangles and the union of R n and tn+ 1 ,

which we call Pn+i, is connected. Because the vertices of the triangles in T are in P(P), t n+ 1

must have exactly one side in common with R n . Thus, an iterative edge-swapping procedure

based on the circle criterion can be applied to
,
f", tn+ 1 ,

that starts by testing t rj+ i
for

the circle criterion, and that ends with a possibly new collection of triangles t"
+1

, . .

.

each of which satisfies the circle criterion, and the union of which is R n+\.
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Figure 3: A comet-shaped polygon and the three regions into which it is partitioned by

algorithm CMTTRI.
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2. The EDGTRI algorithm

Let R be a simple polygon, and let e be a linear component of B(R) such that R is comet-

shaped relative to e. Let r be the number of vertices of P, and let P x , . .
.

,

PT be the vertices

of R in the order in which they appear in B(R) in a counterclockwise direction around R
with [Pi,Pr ]

equal to e. Let i, k be integers, 1 < i < k — l<r, and let R,k and E,k be,

respectively, the convex realization and the convex envelope in R of P,, . .
.

,

P*.. Set j equal

to k — i -f 1, and define a one-to-one function F from {1, . .
.

,

j} onto {Pi, . .
.

,

P^} by setting

F(/) equal to P,+/_i for each /, / = 1 , . .
.

,

j.

In what follows, we present algorithm EDGTRI which computes in linear time a repre-

sentation for Eik and a triangulation for each component of non-empty interior of R,k- The

output from EDGTRI will consist of P, the collection of triangles computed by EDGTRI,
tacitly in the form of a data structure that describes the triangles and their interrelations;

J, 2 < J < j ,
the number of points in {P,, ..

.

,

P*.} fl Eik', and G
,
the representation for E,k,

in the form of a one-to-one function from { 1 , . .
.

,

J} into { P, , . .
.

,

Pk}, with G(l) equal to

Pi, G(J) equal to Pk, Eik equal to U/~
1

1

[G(/), G(l + 1)], and G(l), . .
.

,

G( J) equal to the

points in { P, , . .
.

,

P* } fl E,k in the order in which they appear in B(R) in a counterclockwise

direction around R. Here, given points Q i, Q 2 , Q 3 in the plane, Q 2 / Q 3 and Q 2 ^ Q x ,

Q^Qx) will represent the size in radians of the angle produced by a counterclockwise

rotation around Q2 from ray Q 2Qz to ray Q 2Q\. The outline of EDGTRI follows.

procedure EDGTRI(P, P, j, G, J)

begin

1 . T := 0; G(l) := F(l); G( 2
)
:= F( 2 ); J := 2

;

2. for I 3 until j do

begin

3. J := J + 1; G(J) := P(7);

4. Q x := G{J -
2); Q 2 G(J - 1); Q3 := G(J);

5. while (m(Q 2Q3,Q 2Q x )
< ir and J ^ 2) do

begin

6 . T :=TU{AQ 1Q 2Q3 };

7. J := J — 1
;
G(J) := Q 3 ,

8 . if (

J

^ 2
)
then

begin

9. Q x G(J — 2 ); Q 2 :=G{J - 1
)

end

end
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end

end

The justification of EDGTRI is essentially that of EDGSTR in
[
2 ]. As for its complexity, it

depends essentially on how often lines 6 through 9 of EDGTRI are executed. Since the latter

depends essentially on how many triangles are created during the execution of EDGTRI, it

follows that the complexity of EDGTRI depends linearly on j

.

3

.

The CMTTRI algorithm

Let R be a simple polygon, and let P and Q be points in V(R) and B(R ), respectively,

P ^ Q, such that R is comet-shaped relative to [P, Q\. Let r be the number of vertices

of R
,
and let Pl5 ...,Pr be the vertices of R in the order in which they appear in D(R)

in a counterclockwise direction around R with P\ equal to P. Define a function F from

{ 1 , . .
.

,

r -f 1} onto V(R) by setting F(i) equal to P, for each i, i = 1 , . .
.

,

r, and F(r + 1)

equal to Pi.

In what follows, we present algorithm CMTTRI which computes in linear time a trian-

gulation for R. The output from CMTTRI will consist of P, the triangulation for P, tacitly

in the form of a data structure that describes the triangles and their interrelations. The

outline of CMTTRI follows.

procedure CMTTRI(P, P, P, Q)
begin

1. Pi(l) := P(l); Pi( 2 )
:= P( 2 ); j := 2;

2. while (Q (F(j), F(j + 1)) and Q ± F(j)) do

begin

3 . j = j + 1
;
F\(j) F(j)

end

4. j i := j; flag := 0;

5 . if (Q ± F(j)) then j := j + 1

else flag := 1;

6. P2

(

1
)
:= P(j); P2 (

2
)
:= F(j + 1); j := j + 1; j 2 := 2;

7 . while (P 7^ F(j)) do

begin

8- J = j + 1
; J2 := 72 + 1

; P2O2) := F(j)

end

9



9- if (j i
> 3) then EDGTRI(Tj, Fi,ji, Gi, J\)

else

begin

10. T, := 0; G,(l) := F,( 1); G,(2) := F,(2); J, := 2

end

11- if (j 2 > 3) then EDGTRI(P2 ,
P2 , j2 ,

C 2 ,
J2 )

else

begin

12. r2 := 0; G2 (l) := F2 (l); G2 ( 2) := F2 (2); J2 := 2

end

13. if {flag — 0) then

begin

14. for j := 1 until J2 do F3 (j) := C2 (j);

15. j3 J2 ;

16. for j := 2 until Ji do

begin

17- j3 is + 1; Fs(j^) := G\(j)

end

18. EDGTRI(T3 ,
F3 , j3 ,

G3 ,
J3 )

end

19. else T3 := 0;

20. T := Ti U r2 U T3

end

In order to simplify the justification of CMTTRI, we assume that [P, Q] is parallel to the

x-axis of the two-dimensional Cartesian coordinate system and that it partitions R into two

regions of non-empty interior. Under these assumptions, let Ri be the polygon which is the

portion of R on or below [P, Q], and let Ry be the polygon which is the portion of R on or

above [P, Q\.

Lines 1 through 8 of CMTTRI essentially partition the vertices of R into two sets. Pi(j),

j = l,...,ji, are the vertices of R that lie on or below [P, Q] in the order in which they

appear in D{Ri )
in a counterclockwise direction around Ri with Pi(l) equal to P. P2 (j),

j
= 1, . .

.

,

j 2 ,
are the vertices of R that lie on or above [P, Q] in the order in which they

appear in B(Ru) in a counterclockwise direction around Ru with P2 (j2 )
equal to P.

Clearly, Ri is comet-shaped relative to [P,Q\ and [P, Q] is a linear component of its bound-

ary. Thus, if ji >3 then algorithm EDGTRI can be used in line 9 of CMTTRI to compute Tj

,

a collection of triangles that is the union of triangulations for the components of non-empty

10



interior of the convex realization in Ry of j = 1 , . .
. , j i ;

and G\ (j), j = 1 , . .
.

,

J1? those

points among j = 1, ... ,j\, that lie in the convex envelope in Ri of Fi(j), j = 1 ,... ,j x ,

in the order in which they appear in D{Ri) in a counterclockwise direction around Ry with

Gi(l) equal to Fi(l).

Similarly, if j 2 > 3 then algorithm EDGTRI can also be used in line 11 of CMTTRI to

compute F2 ,
a collection of triangles that is the union of triangulations for the components

of non-empty interior of the convex realization in Ru of F2 (j), j = 1 ,...,j 2 ;
and C' 2 (j),

j = 1, . .
.

,

J2 ,
those points among F2 (j), j = 1, . .

.

,

j 2 ,
that lie in the convex envelope in Ru

of F2 (j), j — 1 , ...,j 2 ,
in the order in which they appear in B(Ru) in a counterclockwise

direction around Ry with G 2 (l) equal to F2 (l).

If Q is not a vertex of R
,
lines 14 through 17 of CMTTRI identify F3 (j), j = 1 , . .

.

,

j3 ,
the ver-

tices of the polygon whose boundary is the line segment [Fi(jq), F2 (l)], the convex envelope

in Rl of Fi (j ) , j = 1 , . .
.

,

ju and the convex envelope in Ru of F2 (j), j - 1, . .
. , j 2 . F3 (j),

j = 1 , ... , 73 ,
are in the order in which they appear in the boundary of the aforementioned

polygon in a counterclockwise direction around the polygon with F3 (l) equal to F2 (l). Since

the aforementioned polygon is comet-shaped relative to [Fi(ji), F2 (l)], algorithm EDGTRI
can be used in line 18 of CMTTRI to compute F3 ,

a triangulation for this polygon.

Finally, since merging Ti, F2 ,
and T3 produces a triangulation for F, this is done in line 20

of CMTTRI.
As for the complexity of CMTTRI, it depends essentially on the complexity of the executions

of EDGTRI. Since the latter depends linearly on the largest of jb, j 2 ,
and j3 ,

it follows that

the complexity of CMTTRI depends linearly on r.

4. The OPTTRI algorithm

Let R be a simple polygon, and let T be any triangulation for R. In what follows, we present

algorithm OPTTRI which computes from T a Delaunay triangulation for R. The input for

OPTTRI must consist of F, the known triangulation for F, tacitly in the form of a data

structure that describes the triangles and their interrelations; and t, any triangle in F, in

the form of a variable that locates it in F. The output from OPTTRI will consist of F’,

a Delaunay triangulation for F. Here, given a triangle t with vertices Fl5 P2 ,
P3 ,

in one of

the three orders in which they appear in B(t) in a counterclockwise direction around f, we

denote t by either APiP2P3 or AP2P3 Pi or AP3PiP2 ,
and say that each one of the three

ways of denoting t identifies t. The outline of OPTTRI follows.

procedure OPTTRI(F*,F, f)

begin

11



Pi, P2 ,
P3 := points such that AP1P2P3 identifies the triangle located by t in T

Pi :=Pu T ‘ := {AP,P7P3 }; j := 0;

for i := 1 until 3 do

begin

if (there exists P such that APP,+iP, identifies a triangle in P)then

begin

P := point such that APPt+1Pt
identifies a triangle in P;

j := j + 1
;
H(j) := APP,+1 P,

end

end

while (j 7^ 0) do

begin

P*,P',P" := points such that AP*P'P" =

j = j - i;

if (there exists P such that APP* P" identifies a triangle in T) then

begin

P := point such that APP*P" identifies a triangle in T
;

j := j + 1
; tf(i) := APP-P"

end

if (there exists P such that APP'P* identifies a triangle in T) then

begin

P := point such that APP'P* identifies a triangle in T;

j := j + 1
;
H(j) := APP'P*

end
p p/. p p//.
-Cadj • *

j
-* cur • •*

i

flag := 1;

while
( flag = 1) do

begin

if (there does not exist P such that APPcur Padj

identifies a triangle in T* or (there exists P such that

APPcurPadj identifies a triangle in T* and

P is not inside the circumcircle of AP*

P

adjPCur)) then

if [Pad] P') then

begin

P := point such that AP*PPa dj identifies a triangle in P*;

12



* cur • •* adj i ^adj •— •*

end

else flag := 0

else

begin

P := point such that APPcurPadj identifies a triangle in T*;

T- := (T* \ {APP^.APP^?.*}) U {AP'PadlP, AP-PPm };

Pad, = P
end

end

end

end

The iterative edge-swapping procedure based on the circle criterion that is used in OPTTRI,
has been discussed, among others, in [2], [3], [4], for incrementally computing Delaunay

triangulations for point sets, polygons, etc. In each case, during the incremental step, an

existing triangulation, say 7\, in which each triangle satisfies the circle criterion, is merged

with a new triangle, say t, and a new triangulation is formed, say T2 ,
equal to T\ U {£}. The

iterative edge-swapping procedure based on the circle criterion is then used on T2 ,
starting

with £, and a third triangulation is obtained, say T3 ,
the union of the triangles of which is

the union of the triangles in T2 ,
and in which each triangle satisfies the circle criterion. In

each case, the procedure works because the triangles in T\, if any, that are adjacent to t and

that are unaffected by the procedure continue to satisfy the circle criterion in T3 .

The same is true for OPTTRI. During the incremental step, an existing triangulation in

which each triangle satisfies the circle criterion, is merged with a new triangle, and the it-

erative edge-swapping procedure based on the circle criterion is then used on the resulting

triangulation. Since the new triangle is adjacent to exactly one triangle in the initial tri-

angulation and this triangle is affected by the procedure, the procedure works due to the

absence of triangles in the initial triangulation that are adjacent to the new triangle and

that are unaffected by the procedure.

5. Summary

We have presented two triangulation algorithms which combined produce an algorithm for

computing a Delaunay triangulation for a comet-shaped polygon. The first algorithm, called

CMTTRI, computes in linear time a triangulation for a comet-shaped polygon. The second

13



algorithm, called OPTTRI, constructs a Delaunay triangulation for a polygon from any

triangulation for the polygon.

A specialized combination of the two algorithms has been implemented at the National

Institute of Standards and Technology for the purpose of deleting a vertex anywhere in a

Delaunay triangidation and obtaining a Delaunay triangulation for the remaining vertices.

With this implementation, only the triangles having the vertex in common are affected, and

each computed triangle is contained in their union.

Finally, we remark that algorithm CMTTRI can be used to construct in linear time a

triangulation for a polygon R if points P and Q exist in B(R) such that R would be comet-

shaped relative to [P, Q] if only P were in V(R). To do this, we first obtain a triangulation T
by executing CMTTRI for P, P and Q as if P were in V(R). Next, we let R' be the polygon

which is the union of the triangles in T that have P as a vertex, and let P' and Q’ be the

vertices of R for which [P',Q'] contains P. Clearly, [P',Q'] is a linear component of P(P'),

and R' is comet-shaped relative to [P',Q']. Finally, we eliminate from T each triangle that

has P as a vertex, and obtain a triangulation T1 by executing CMTTRI, or for that matter

EDGTRI, for P', P' and Q' as if each vertex of R in R' were in V(R'). Clearly, T U T' is a

triangulation for R.
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