
U.S. DEPARTMENT OF COMMERCE
National Institute of Standards and Technology

NISTIR 4685

NATL INST. OF STAND & TECH R.I.C.

A111D3 7331U7

NationalPDES Testbed

Report Series

A Conceptual
Ardiitecture

fora
Mechanical Parts

Production System
Based on STEP

QC”— -

100

.U56

//ft685

1991

(

U.S. DEPARTMENT OF COMMERCE
National Institute of Standards and Technology

NISTIR 4685

li'^

NationalPDES Testbed

U.S. DEPARTMENT OF

COMMERCE

Robert A. Mosbacher,

Secretary of Commerce

National Institute of

Standards and Technology

John W. Lyons, Director

September 27, 1991

NATIONAL

TESTBED

A Conceptual
Architecture

for a

Mechanical Parts

Production System
Based on STEP
Edward J. Barkmeyer

James E. Fowler

NIST
Spencer P. Magleby
Brigham Young University

Disclaimer

No approval or endorsement of any commercial product by the National Institute

of Standards and Technology is intended or implied.

This publication was prepared by United States Government employees as part of

their official duties and is, therefore, a work of the U.S. Government and not

subject to copyright.

Acknowledgement

The National PDES Testbed is funded by the Computer-aided Acquisition and
Logistic Support (CALS) Office of the U.S. Department of Defense.

ii

Table of Contents

Table of Contents

1 Introduction 1

1.1 Background 1

1.2 STEP Implementation Concepts 1

1.3 Architecture Scope 5

2 System Architecture 7

2.1 Design Engineering Subsystem 8

2.2 Manufacturing Engineering Subsystem 10

2.3 Inspection Engineering Subsystem 13

2.4 Shop Hoor Subsystem 16

2.5 Data Repository Subsystem 17

3 STEP Implementation Considerations 22

3.1 Existing Systems 22

3.2 Near-Term Systems 23

3.3 Next Generation Systems 24

4 Summary 27

A Glossary 28

B References 30

iii

'0

ifcif

«I ..v,'.^., «->.-E,..^.

is;....:':. . .:.„

-gaUn^MiS"^

:k-
_ h .

;.. s^:. .V .\-.'
. r.rri:;''''--'4a»‘ /'

...,

-

List of Figures

List of Figures

1 Data Exchange via Files 3

2 Data Exchange Through Shared Database 4

3 MPPS Subsystems 7

4 Design Engineering Subsystem Components 9

5 Manufacturing Engineering Subsystem Components 12

6 Inspection Engineering Subsystem Components 15

7 Shop Floor Subsystem Components 16

8 Shared Database Components 20

9 Correlation Between AP, AIS, & Software 25

V

rX.>-

H

f
) f

"1 £

r \--

v

•. • y

' y

..
, it"

t

Introduction

1 Introduction

This document describes an architecture for a manufacturing system using STEP
as a primary means for information exchange between software components. The
manufacturing system described here is set in the context of mechanical parts

production. The architecture presented is intentionally generic. Therefore, the

concepts discussed should be largely applicable to other manufacturing domains
as well.

1.1 Background

The Standard for the Exchange of Product Model Data (STEP) is an emerging

international standard addressing the problems of data exchange and
representation for goods produced in a variety of manufacturing enterprises.

STEP is a project of the International Organization for Standardization (ISO)

Technical Committee on Industrial Automation Systems (TC184) Subcommittee

on Industrial Data and Global Manufacturing Languages (SC4). In the United

States, the IGES/PDES Organization (IPO) serves to ensure that the requirements

of US industry are incorporated into STEP"^. Participation in both ISO and IPO is

voluntary - the National Institute of Standards and Technology (NIST) is active in

both organizations. In addition, the PDES, Inc. industry consortium is working
with both standards organizations, government agencies such as NIST, and its

own member companies to accelerate the development and usage of STEP.

As one aspect of NIST's mission, the agency assists US industry with the

assimilation of standards that are used in Computer Integrated Manufacturing.

NIST has established the National PDES Testbed specifically to address the

development and testing of STEP, and to serve US industry in its use of the

standard. Funding for the National PDES Testbed is provided by the Department

of Defense's Computer-aided Acquisition and Logistic Support (CALS) Office.

Among the projects planned for the National PDES Testbed is the development of

a Product Data Exchange Network [Fre90]. Such a network would link

manufacturing sites and research facilities electronically and facilitate STEP
validation, implementation, and testing activities. Implementation of various

STEP based manufacturing systems, such as that described in [Fow90a], would be

a prime candidate for the Network. The architecture presented in this document
is equally applicable to an implementation at one physical site and to an

implementation distributed over several physical sites.

1.2 STEP Implementation Concepts

Before presenting the details of the architecture, a brief introduction to some of

the concepts associated with STEP is required. The reader is encouraged to

consult the references for more thorough treatments of these concepts.

^ PDES is Product Data Exchange using STEP and is used to refer to the US efforts toward the

development of STEP.

1

Introduction

STEP is a collection of specifications. The individual specifications are known as

'Tarts"'*’ and categorized into resource models, application resource models,

application protocols, descriptive methods, implementation methods, and testing

methods [ISOl]. The fundamentals of such specifications are briefly examined
below with emphasis on implementation concepts.

1.2.1 STEP Resource Models

The STEP specifications which cover the broadest domain of product modeling
constructs are grouped in the integrated resource models. The integrated resource

models cover such areas as Geometric and Topological Representation [IS042],

Materials [IS045], Shape Tolerances [IS047], Form Features [IS048], etc. All of the

integrated resource models are described in the information modeling language

EXPRESS [ISOll]. The integrated resource models are meant to be applicable to

all product modeling domains. Product modeling constructs from the integrated

resource models are the fundamental building blocks used to define Application

Protocols.

1.2.2 STEP Application Protocols

Application Protocols (APs) are STEP specifications which define the

interpretation of particular elements of STEP within the context of a particular

application. An AP defines the specific scope and information needs of the

application area, an integrated data model in EXPRESS which meets those needs

using elements from the resource models, usage guidelines for the AP, and testing

specifications [Pal91]. Examples of APs nearing completion for inclusion in the

initial release of STEP include Configuration Controlled Design [ISO203],

Mechanical Design using Boundary Representation [ISO204], and Mechanical

Design using Surface Representation [ISO205]. There will be many APs defined

for STEP. Work is currently underway to ensure that AP development proceeds in

a sensible way [Kra91]. APs are the STEP specifications establishing useful and

testable product data exchange domains.

1.2.3 STEP Implementation Methods

There are two implementation mechanisms currently under consideration by the

various software developers working to implement STEP. The first is data file

exchange. The second is data sharing through a database.

^ For example the phrase "Part 11 of STEP" means ISO 10303-11 Description Methods: EXPRESS
Language Reference Manual [ISOll].

2

Introduction

File Exchange

The file exchange method is analogous to that currently employed for IGES
[Ree90]. Application software systems exchange information by passing data files

from one to the other (see Figure 1). An application software system supports

implementation of the standard by having the capability to read data in the

standard file format. Reading the file in is known as post-processing the data, i.e.,

the software system is said to have a post-processor which supports the standard.

An application software system can also support implementation of the standard

by having the capability to output data in the standard file format. Writing the file

is known as pre-processing the data, i.e., the software system is said to have a pre-

processor which supports the standard.

The data file exchange specification for STEP is Part 21 [IS021]. The exchange

specification describes how STEP data is encoded in an exchange file - not how
the data is to be interpreted.

3

Introduction

Database Sharing

This database sharing method has no analog in the IGES environment.
Application software systems exchange information by passing data through a

shared database (see Figure 2). The shared database itself contains a

representation of the STEP data to be exchanged. How the STEP data is actually

stored in the database is a function of the type of database and could be

determined by the user or implementer of the database. There is no standardized

scheme for representing STEP data in any type of database. The database

management system provides an interface which permits the applications to

access and modify the contents of the database. In order to accomplish the

information exchange, the developers of the application software systems must
agree on (1) a common database system to use, and (2) the STEP storage structure

to use. Finally the application developers must know how to use the database

interface provided in conjunction with the STEP data storage structure in the

database.

The STEP standards organizations are addressing the complexity of database

sharing through specification of the STEP Data Access Interface (SDAI) [Fow90b].

This specification will define the functionality for generic interface operations

based on the data modeling capabilities of EXPRESS.The specification will be

supplemented by a variety of programming language bindings describing how
the interface operations are to be used in these languages. The expectation is that

application developers, using the interface in conjunction with database software

supporting it, would not have to know the underlying details of how STEP data is

stored in a database - they would only need to know how the data was described

in EXPRESS. There are additional benefits to this approach: applications

developers could interface their software with any database supporting the

4

Introduction

Specification without regard to the type of database. In addition, database

developers could optimize the implementation of their systems for STEP in

completely proprietary ways.

As with the exchange file specification, the SDAI specification will not describe

how STEP data is to be interpreted.

1.2.4 STEP Conformance

Phrases like '"supporting the standard" or "supporting the specification" are often

used without really defining what is meant. One may also hear phrases such as

"STEP-based system" or "STEP application." All of these terms are intended to

convey the notion that a particular software implementation is in accordance with

some aspect of the STEP standard. This is a purposefully fuzzy definition. The
litmus test of whether a software system implements STEP as the standards

organizations intend is conformance testing. Only software which has

successfully passed a rigorous, independent conformance testing process can be

truly recognized as a STEP implementation.

An entire series of STEP specifications focus on the subject of conformance; the

General Concepts document [IS031] and Testing Laboratory/Client

Requirements [IS032] are the first in the series. More specific conformance

specifications will follow. In addition, NIST is working towards development of a

conformance testing service [Kem91]. The service will establish the procedures by
which vendors can obtain certification of their products as conforming STEP
implementations.

A primary criterion for conformance will be a product's adherence to one or more
STEP application protocols. The intention of the standards organizations is that

vendors will supply software products which exchange and interpret product

data according to the specifications prescribed in an application protocol. A
vendor's product would not be conformant if, for example, it exchanges

information according to a conveniently selected collection of geometry and
topology from Part 42 [IS042]. Such an implementation would lack the specific

context for interpretation imposed by an application protocol. There would be no

criteria against which to measure this product's ability to interpret data it was
consuming or for another product's ability to interpret the data the first was
supplying. As a result, reliable product data exchange would not be assured.

1 .3 Architecture Scope

A manufacturing system architecture describing components and interactions can

be quite complex. Describing how STEP would fit in a very general

manufacturing architecture might not provide enough concrete information to

assist an implementer of a specific system. We expect that initial implementations

of STEP will be in focused manufacturing domains paralleling the first set of

STEP specifications. The initial STEP specifications largely pertain to mechanical

parts production. Initial STEP implementations are likely to be in specific

manufacturing functions which could be components of a larger overall

5

Introduction

production system. Therefore the context of mechanical parts production is an apt

domain for the architecture described in this document as is a focus on those

functions where STEP implementation fits in that domain.

The scope of this document then is to identify potential software systems to be

used in a mechanical parts production environment that includes STEP APs and
examine in a generic sense how appropriate software systems would implement
the APs.

6

System Architecture

2 System Architecture

We envision a Mechanical Parts Production System (MPPS) comprised of five

logical subsystems (Figure 3):

• the Design Engineering Subsystem -

incorporates the software needed to generate all of the product description

information for the parts to be manufactured by the MPPS;

• the Manufacturing Engineering Subsystem -

incorporates the software needed to generate the manufacturing process

description information for the parts to be produced by the MPPS;

• the Inspection Engineering Subsystem -

incorporates the software needed to generate the inspection process

description information for quality assurance of parts as produced by the

MPPS;

• the Shop Floor Subsystem -

incorporates the software and manufacturing equipment needed to execute

the actual production and inspection of parts in the MPPS;

• the Data Repository Subsystem -

incorporates those software components providing for the interchange of both

STEP and non-STEP information among all of the above '"production"

systems.

Each of these logical subsystems is actually comprised of several integrated

software components. For example, the Manufacturing Engineering and Shop
Hoor Subsystem include shop-floor planning and control software which provide

for the scheduling and execution of the actual manufacturing operations on

physical parts. It is entirely likely that each of the logical subsystems will include

one or more local databases as well.

In different manifestations of this architecture, the application subsystems (i.e.,

the Design, Manufacturing, and Inspection Subsystems) will be roughly

equivalent within a given manufacturing domain and even across similar

domains. Actual MPPSs using this architecture, however, will differ significantly

in the nature and choice of hardware and software within each logical subsystem,

even within equivalent manufacturing domains. Thus the class of parts which a

MPPS can fabricate, and the nature of information exchanged between
application systems, will differ according to the APs that the MPPS' implement.

7

System Architecture

Figure 3: MPPS Subsystems

2.1 Design Engineering Subsystem

The Design Engineering Subsystem in this architecture performs all of the

functions which generate the information describing the part. In this context the

Design Engineering Subsystem provides for the creation, modification, and
graphical display of part description information. The part description

information must be complete so as to enable the Manufacturing and Inspection

Engineering systems to determine which processes to use for manufacturing and
inspection. Such part description information could include structure, geometry,

features, tolerances, materials, etc.

The Design Engineering Subsystem must be capable of expressing and
understanding the product definition in a manner consistent with pertinent STEP
APs. The APs that the Design Subsystem will be required to implement are

determined by the needs of the other applications in the architecture. Once the

pertinent APs are determined, the Design Subsystem must be capable of

conforming to all of them.

8

System Architecture

Design Engineering Software Components

Within the Design Engineering Subsystem there can be numerous tools that deal

with various aspects of the design process. These tools may be very complex,

providing a vast range of services to a design team. These tools may exchange

information with each other during the process of creating a final design.

Ideally, all of the software components in the system would share information

using a common STEP AP. Design, however, is a many-faceted problem with

multidisciplinary solutions. In practice, different APs will be needed for the

integration of different software tools attacking different aspects of the design

problem. Every Design Engineering Subsystem implementation will necessarily

identify the design tools it comprises, and define the integrating APs accordingly.

Since the emphasis of this architecture is not on the design process, but rather on

its relationship to the other logical subystems, the problems of integrating various

design tools into a coherent Design Engineering system are largely outside the

concern of this architecture.

The Design Engineering Subsystem shown in Figure 4 represents an example

DESiCN eiGiHEERING SUBSVSTBI

SOLID
MODELER

1

FEATURE
MODELER

i DIMENSION
&

i
TOLERANCE

j MODELER

LOCAL
DATABASE

STEP
TRANSLATOR

INTEGRATING SOFTWARE

Figure 4: Design Engineering Subsystem Components

decomposition of this system. This decomposition assumes that the product

definition is based on a boundary representation geometric definition augmented
with features and tolerances. Such representations are found in Part 204, Part 47,

and Part 48 [ISO204, IS047, IS048]. Other product definition schemes would
likely dictate changes in the components but the basic concepts would remain the

same.

The Design Subsystem components may be physically combined but can logically

be considered as separate entities according to function.With this product

definition scheme, the three main design tools of this Design Subsystem are a

solid geometric modeler, a feature modeler, and a dimension and tolerance

modeler. The solid geometric modeler is used to create the fundamental

geometric shape description of a part. The feature modeler allows a designer to

9

System Architecture

identify features (e.g., bosses, chamfers, etc.) on the solid geometric shape

description of a part. The dimension and tolerance modeler allows a designer to

establish dimensional tolerances both on the shape and features of a part as well

between features themselves. The Design Subsystem could incorporate a local

database for intermediate storage of design data. In addition, STEP translation

software could be considered as a separate component which performs the

functions of exporting design information according to the APs the system

supports. Communication among the software components is the responsibility

of the integrating software and may or may not use STEP. Thus, the local database

subsystem is not required to store design information according to STEP
information models.

2.2 Manufacturing Engineering Subsystem

The Manufacturing Engineering Subsystem in this architecture performs all the

functions which define the mechanisms and procedures for production of the

designed part using a specific collection of shop floor resources. This includes

process plans, routing slips, operation sheets, etc. That is, the Manufacturing

Engineering Subsystem specifies, at all necessary levels of detail, how to make the

designed parts.

There are two major classes of information used by the Manufacturing

Engineering Subsystem:

• the description of the products to be made, and

• the description of the fabrication resources available to make those products.

Since this system is to be implemented in a STEP environment, a critical

implementation requirement is that there be an AP available defining the

information to be shared between the Design and the Manufacturing Engineering

Subsystems for the chosen class of parts. This AP represents the "'universe of

discourse" of the interface between the Design and Manufacturing Engineering

Subsystems. In this document we shall refer to this as the Manufacturing Interface

AP. All of the information units identified in this AP must be producible by the

Design Engineering Subsystem. This is not meant to imply that a single

subsystem within the Design Subsystem can support the totality of information

required in this AP. Rather, the Manufacturing Interface AP can be seen as the

view of product information from the Design Subsystem held by the

Manufacturing Engineering Subsystem.

10

System Architecture

In addition to the product description, however, the development of process

descriptions requires the availability of descriptions of the manufacturing

resources available in the shop-floor subsystems, or more specifically, the

resource types and their capabilities. There is currently no STEP model for this

information base. While work has just started to address this area"*", currently the

models used for such information and the structure of the corresponding

information repositories must be derived from other sources.

The output of the Manufacturing Engineering Subsystem is several levels of plans

for the manufacture of the part, commonly called "process plans." At the top

level, the plans are often called routing sheets - they identify the sequence in

which the workpiece must be moved to workstations (or workstation types, in the

engineering form of the plan), and which "operation sheet" is to be used at each

such workstation. The operation sheet is the next level of plan, specifying the

handling, fixturing and processing of the workpiece within the workstation, and

referencing machine "control programs" for the handling, fixturing and

processing operations which are automated. The control program is the lowest

level of plan, specifying the detailed machine operation steps required to perform

the major operations. Regardless of the degree of automation of the shop-floor

subsystems, these data form the conceptual interface between the Manufacturing

Engineering Subsystem and the Shop Hoor Subsystem. We therefore designate

them the Production Interface.

Although there is an existing STEP activity for the development of a process

description (or "process plan") resource model, this model is not currently

considered to be part of the initial STEP release. Moreover, there are closely

related activities and standards, such as APT [ANS87] and BCL [EIA83]. Because

the actual Production Interface is intimately connected with the actual fabrication

resources available, we consider it to lie outside the immediate scope of this

architecture. The use of standards and draft specifications in this area is strongly

recommended, but not necessarily a component of a STEP environment^.

Interested readers may wish to consult the architecture document produced from

NIST's Manufacturing System Integration project [Sen91] for further information

regarding the non-STEP aspects of a system architecture'*"*’.

Manufacturing Engineering Subystems

The internal architecture of the Manufacturing Engineering Subsystem can be

quite variable and still accomplish the objectives of a MPPS. The decomposition

presented in this section should be thought of in a conceptual sense and is not

^ A new working group (WG8) has been formed in ISO TC184/SC4 to address the definition and

use of manufacturing information (e.g., process plans, production resource models) other than

product data.

^ As the work in WG8 progresses, such specifications may indeed be part of a STEP manufacturing

environment.

The work of ISO TC184/SC5/WG1 is equally applicable to this subject.

11

System Architecture

meant to constrain the internal arrangement of an actual implementation. This

internal architecture decomposition overly simplifies the functions of these

subsystems for the purpose of highlighting where STEP fits into the

implementation.

Figure 5 diagrams the internal architecture of the Manufacturing Engineering

Subsystem. The primary manufacturing software tools are the process planning

Figure 5: Manufacturing Engineering Subsystem Components

and equipment programming software. The supporting components include a

software module which imports data according to the Manufacturing Interface

AP and a software module which interfaces with the Shop Roor Subsystem.

In this configuration it would be the responsibility of the STEP translator to obtain

STEP data from the Design Engineering Subsystem according to the specifics of

the supported Manufacturing Interface AP. This data could then be made
available to the rest of the Manufacturing Engineering software components in a

format the components could use. A local database could be used for the purpose

of storing such data. The shop floor translator is responsible for acquiring

descriptions of the shop floor production resources. Such production resource

descriptions are needed by the primary Manufacturing Engineering software

components. These descriptions too could be stored in a local database. Again,

there is no requirement that data is communicated between software components
according to STEP information models.

The process planning module requires information describing the production

facility resources and the product description. The product description

information comes from the Manufacturing Interface AP by way of the STEP
translator. Production facility information, i.e., equipment descriptions, tool

descriptions and the like, is made available by the shop floor translator. When the

process planner has created the manufacturing plan appropriate to the

production facility the plan is made available to the equipment programming

12

System Architecture

module. The equipment programming software would be used to transform the

plan instructions into more detailed information, e.g., NC programs, operation

sheets, etc., to be used by the shop floor production resources. It is the

responsibility of the shop floor translator to make the resulting programs and
operation descriptions available to the Shop Floor Subsystem. Thus the output

from the shop floor translator constitutes the conceptual Production Interface.

2.3 Inspection Engineering Subsystem

The Inspection Engineering Subsystem in this architecture performs all the

functions which define the mechanisms and procedures for inspection of the

manufactured product with a specific collection of inspection, measurement, and
manipulation resources. That is, the Inspection Engineering Subsystem specifies,

at all necessary levels of detail, how to determine whether a given part as-

manufactured meets the intended design criteria.

In most ways, the Inspection Engineering Subsystem is completely analogous to

the Manufacturing Engineering Subsystem. However, the requirements for

inspection processes are different than those for manufacturing process, therefore

the two subsystems are considered separate.

Like the Manufacturing Engineering Subsystem, there are two major classes of

information used by Inspection Engineering Subsystem:

• the description of the products to be made, and

• the description of the inspection resources available to evaluate the products

during and after manufacture.

In the Manufacturing Engineering Subsystem, we referred to the "Manufacturing

Interface AP" which defined the universe of discourse between the Design and
Manufacturing Engineering Subsystems. Here we shall refer to an Inspection

Interface AP which serves the same function between the Design and Inspection

Engineering systems. All of the information units identified in the Inspection

Interface AP should be producible by the Design Engineering Subsystem

(although, as mentioned earlier, not necessarily by any single subsystem of that

system). The Inspection Interface AP is the view of the product information from

the Design Engineering Subsystem held by the Inspection Engineering

Subsystem.

It is possible that there may be considerable overlap between the Inspection

Interface AP and the Manufacturing Interface AP. Since the underlying objectives

of the two systems, however, are entirely different, one would expect there will be

some significant differences in the information required in the two interfaces.

Accordingly, the two application protocols should be considered separate.

The output of the Inspection Engineering system is several levels of plans for the

inspection of the part. The top level plans call for additions to the routing sheets,

identifying the points in production at which the workpiece must be moved to an

inspection station and which "inspection plan" is to be used at each such station.

The inspection plan is the next level of plan, specifying the handling,

measurement and analysis of the workpiece within the workstation, and

13

System Architecture

referencing machine control programs for the handling and measurement
operations which are automated. The control program is the lowest level of plan,

specifying the detailed machine operation steps required to perform the major

operations. Regardless of the degree of automation of the shop-floor inspection

subsystems, these data form the conceptual interface between the Inspection

Engineering systems and the Shop Floor Subsystem.

The Production Interface described earlier for the Manufacturing Engineering

Subsystem must also include data from the Inspection Engineering Subsystem.

This are two reasons for this:

• A given workpiece has a single "routing sheet" which identifies and
sequences the routing to both manufacturing and inspection workstations,

especially when intermediate inspections are to be performed.

• Some inspection operations may be performed at a manufacturing

workstation, during or after manufacturing operations on the workpiece, and
therefore become part of the single "operations sheet" at that workstation.

The requirement for Inspection Engineering to transmit measurement evaluation

criteria to the Shop Floor Subsystem may necessitate additions to the

manufacturing models for process plans and control codes. This is an appropriate

modification in order to accomplish the necessary merger of the production and
inspection instructions. But, as in the case of Manufacturing Engineering, the

definition of a Production Interface itself goes beyond the scope of this

architecture.

Inspection Engineering Subsystem Software Components

The Inspection Engineering Subsystem internal architecture is similar to that for

the Manufacturing Engineering Subsystem. Both systems import the product

definition according to STEP APs, both acquire descriptions of shop floor

resources, and both export information to the Shop Floor Subsystem to

14

System Architecture

accomplish the desired processes. The decomposition illustrated in Figure 6

INSPEOnON ENGINEERiNQ SURSYETEM

INSPECTION
i

PLANNING i

EQUIPMENT
PROGRAMMING

LOCAL
i DATABASE

1

STEP
TRANSLATOR

> >

SHOP FLOOR i;

i

TRANSLATOR
li

INTEGRATING SOFTWARE

Figure 6: Inspection Engineering Subsystem Components

shows one possible set of subsystems for the Inspection Engineering Subsystem.

As with the Design and Manufacturing Engineering decompositions, this internal

architecture is to be considered conceptual and not a constraint on an actual

implementation.

Here the primary software components are the inspection planning and
equipment programming software. The supporting subsystems include a STEP
translator which imports STEP data and a shop floor translator. The translator has

the responsibility of importing and exporting information from and to the

subsystems external to the Inspection Engineering subsystem.

In this configuration it would be the responsibility of the STEP translator to obtain

STEP data from the Design Engineering Subsystem according to the specifics of

the supported Inspection Interface AP. This data would then have to be made
available to the rest of the Inspection Engineering components in a format these

components could use. A local database could be used as the intermediate store

for such data. As in the Manufacturing Engineering Subsystem, the shop floor

translator must acquire the description of inspection resources and make these

descriptions available to the primary software components. Additionally, the

shop floor translator for this subsystem must have the ability to acquire

Production Interface data (e.g., manufacturing equipment routing instructions) so

that this information can be updated with inspection instructions. The local

database can be used for intermediate storage of these data as well. Again, there is

no requirement that data is communicated between software components

according to STEP information models.

The inspection planning module requires information describing the production

facility resources and the product description. The product description

information comes from the Inspection Interface AP by way of the STEP interface.

15

System Architecture

Production facility information, i.e., inspection equipment descriptions,

manufacturing process descriptions and the like, is made available by the Shop
Floor translator. The inspection planner creates the inspection plan appropriate

for the production processes with the inspection resources available. This plan

may necessitate modifications to the manufacturing operation and routing

instructions derived earlier in the Manufacturing Engineering Subsystem. The
inspection plan is made available to the equipment programming software. As in

the Manufacturing Engineering Subsystem, the equipment programming module
takes the inspection plan and derives control codes appropriate for automated
inspection resources in the Shop Floor Subsystem. The results of the Inspection

Engineering activity - routing information, operation instructions, and control

codes - form the remainder of the conceptual Production Interface.

2.4 Shop Floor Subsystem

The Shop Floor Subsystem for a MPPS includes the equipment, associated

controllers, and software which are used to execute the actual production and
inspection of products. Since the MPPS is by definition an environment for

mechanical parts, we can describe some of the components typically used in this

domain. It is important to note that the actual selection of shop floor resources is

intimately related to the specific class of parts to be produced, the APs supporting

information interchange between application subsystems, and the capabilities of

the application subsystems themselves.

Shop Floor Subsystem Components

Figure 7 illustrates typical components envisioned for the production capabilities

$HQP FLOOR UBy$llEiyi

PRODUCTION I

EQUIPMENT
i

INSPECTION
EQUIPMENT

li k

LOCAL
DATABASE

il

i PRODUCTION
1 INTERFACE
TRANSLATOR

RESOURCE i

MANAGEMENT
li

EQUIPMENT SCHEDULER

Figure 7: Shop Floor Subsystem Components

of an MPPS. This decomposition of the Shop Floor Subsystem is given at a high

level of abstraction and is only meant to give the reader a sense of what

16

System Architecture

constitutes a mechanical parts production environment An implementation of an

actual MPPS might include only a few of these components or a much more
complex arrangement.

The primary components of the Shop Floor Subsystem are the production and
inspection equipment Production equipment resources could include machining
centers. Machining centers come in different varieties (e.g., milling, turning,

grinding, etc.) but their common purpose is material removal - i.e., processing

raw stock into the desired form. Modern machining centers are computer
controlled. Inspection equipment resources could include coordinate measuring
machines (CMMs). CMMs operate like machining centers but instead of using a

tool to remove material from a workpiece they use a sensitive probe to determine

the dimensions of a part under inspection.

Machining centers and CMMs receive the computer codes which drive them from

the equipment programming modules of the Manufacturing and Inspection

Engineering Subsystems. This data, which we described as one aspect of the

Production Interface, is acquired for the Shop Floor Subsystem by the production

interface translator. The raw control codes generated by the equipment

programming modules will usually need to be post-processed and possibly

reformatted before the data is ready for consumption by the machine controllers.

Here, such processing is handled by the production interface translator. In the

future shop floor controllers may be able to handle this data without post-

processing.

Aside from the production interface translator, other supporting software

components could include equipment scheduling software, resource

management, and a local database. The scheduling software optimizes the use of

available machine resources given the production requirements generated by the

engineering application subsystems. Resource management for raw stock, tools,

and the like must also be coordinated with scheduling software to achieve

effective production control. Again, as with the other subsystems, a local database

is available for intermediate storage of whatever data is necessary for the software

components internal to the Shop Floor Subsystem. Certainly for complex

fabrication facilities, more complex supporting software components will be

required.

2.5 Data Repository Subsystem

The Data Repository Subsystem is responsible for providing storage and access to

the information exchanged between subsystems. The information stored by the

Data Repository Subsystem will include both STEP and non-STEP data. As
described in this architecture, STEP data will be shared between the application

subsystems. Non-STEP data will be exchanged between the Manufacturing

Engineering and Shop Floor Subsystems and between the Inspection Engineering

and Shop Floor Subsystems. Two mechanisms are considered for implementation

of a Data Repository Subsystem: file exchange and shared database. Selection of

one or the other of the mechanisms has certain ramifications in the

implementation of the translator software components described for each of the

17

System Architecture

subsystems. Additionally, the physical communication network available for

electronically linking the subsystems influences whether or not the subsystems

can be geographically distributed.

File Exchange

A file exchange mechanism for communicating STEP data between systems is

most straightforward. In this case, exchange files containing STEP data according

to the specifics of the Manufacturing and Inspection Interface APs would be pre-

processed by the Design Engineering system and post-processed by the

Manufacturing Inspection Engineering systems respectively. Here the STEP
translation software within the Design Engineering Subsystem is responsible for

transforming data internal to Design Subsystem components into the STEP data

prescribed by the APs and exporting that data in the STEP file format [IS021].

Conversely, the STEP translation software within the Manufacturing and
Inspection Engineering Subsystems is responsible for importing the files and then

transforming the STEP data contained within into data internally useful to the

systems. One could consider the collection of files under the management of the

host computer file system to be the Data Repository in this case^.

The only difference in using file exchange for non-STEP data is that the format

and contents of the files would not be according to STEP. For example, in sending

NC program information from the Manufacturing Engineering Subsystem to the

Shop Floor Subsystem, the BCL format could be used. For some informanon
exchanges, there may be no accepted specification for the format and content of

data - these would then be determined by the requirements of the software

components involved.

A shared database mechanism is more complex than file exchange. The next

section explores such an implementation. However the reader is urged to consult

the PDFS, Inc. Data Sharing Architecture document [PDE91] for a more detailed

treatment.

Shared Database Components

Figure 8 illustrates components of a Data Repository Subsystem for a shared

database implementation. The figure shows both the data repository system and
applications linking with the repository - the repository components are

differentiated by the cross-hatching in the illustration. In the context of this

document the applications of interest are the Design, Manufacturing, and
Inspection Engineering systems. These applications communicate STEP data with

each other by storing STEP data in the repository and retrieving this data from the

repository. The specific data to be stored and retrieved is defined by the APs - in

this case, the Manufacturing and Inspection Interface APs. The applications

^ While a host computer's file system could serve to manage a collection of data files, a more
sophisticated approach would impose a configuration control system on the files. At the other end

of the spectrum, one could consider a rack of magnetic tap>es containing data files as a data

respository as well.

18

System Architecture

communicate with the STEP Data Repository via the STEP Data Access Interface

(SDAI). This component essentially hides the details of the STEP data storage

from the applications.

The SDAI operates in conjunction with the underlying databases and Information

Resource Dictionary System (IRDS) [ANS90] components. Three database

components are shown in Figure 8; this is intended to convey the notion that the

repository may be comprised of multiple databases - not that there is a specific

requirement about the number of databases. The databases provide the physical

storage of STEP data in whatever format is appropriate. The database storage

format is entirely implementation dependent, thus it is outside the scope of this

document and indeed outside the scope of STEP. The SDAI software

communicates with the databases through interfaces which are specific to each

database implementation.

The STEP data prescribed by the Manufacturing and Inspection Interface APs can

be distributed across the databases in the repository The IRDS serves to keep

track of where data is stored. The SDAI software communicates with the IRDS in

order to correctly respond to applications' requests for data. Additionally, the

IRDS can manage the computer representations of the STEP APs as well (not the

data associated with the APs but the AP information models themselves). This

meta-data is made available to the IRDS through the EXPRESS compiler'*’. The
EXPRESS compiler processes the AP information models (often referred to as AP
schemas) into computer data structures which can then be used by the IRDS.

As with the description of the internal architectures of the other logical systems, it

is important to remember that what has been presented here is only one possible

decomposition. More complex implementations could involve remote access to

databases, through the SDAI, which are geographically distributed. A simpler

realization could involve only a single database, obviating the services of the

IRDS, but still supporting the SDAI. The key architectural requirement is that

both the underlying repository in a shared database implementation and the

applications communicate through the SDAI.

Using a shared database implementation for the Data Repository Subsystem thus

implies that the STEP translation software described earlier for the Design,

Manufacturing, and Inspection appUcations is quite different than that described

for a file exchange implementation. Whereas the STEP interface software for file

exchange plays the role of pre- or post-processor, here it uses the SDAI provided

by the Data Repository to make internal data available to the other applications.

The STEP translation software operation must therefore conform to both the

specifics of the APs and the specifics of the SDAI^.

^ Recall that STEP information models are described using the EXPRESS language [ISOll].

^ The SDAI specification itself is still evolving in the STEP community. It has tentatively been

identified as Part 22 of STEP.

19

System Architecture

20

Figure

8:

Shared

Database

Components

System Architecture

Non-STEP data is also stored in the Data Repository Subsystem. Storage of and

access to such data may be different than for STEP data. We could make the

simplifying assumption that the data in question is (or can be) modeled in

EXPRESS. Using this assumption everything described above for STEP data

would hold true for non-STEP data as well. Describing it in EXPRESS would
permit it to be stored in the repository through the EXPRESS compiler/IRDS
combination and accessed using the SDAI. The alternative is somewhat more
complicated.

Storage of non-STEP data in the repository could be accomplished in several

ways. A particular database within the repository could be set aside particularly

for this purpose and access to the data could be accomplished through whatever

interface was supplied for the selected database. Another method, employing the

IRDS, would require direct access to the IRDS service functions to manage and
access the data within the repository's databases. Obviously the method chosen

for managing and accessing non-STEP data directly impacts the implementation

of the shop floor translation software described for the Manufacturing and
Inspection Engineering Subsystems and the production interface translator in the

Shop Roor Subsystem.

21

STEP Implementation Considerations

3 STEP Implementation Considerations

This section provides some insight regarding the implementation prospects

resulting from the use of STEP in the architecture described in the previous

section. Bear in mind that the aspects of STEP which will primarily impact

implementation of the architecture's logical systems are the APs defining the

information exchange between systems, the EXPRESS information modeling
language, the STEP implementation specifications supported (e.g., exchange file

specification, SDAI), and the STEP conformance criteria'*’ ultimately defined. We
now look at three implementation scenarios; one which could use existing

systems, one which could use near-term systems, and one which employs what
we speculatively refer to as next generation systems.

3.1 Existing Systems

Current commercial CAD/CAM systems typically provide facilities for data

exchange using ICES. As described in the introduction, such data interchange

takes place using file exchange. While STEP is certainly more complex than ICES,

it should not be long before commercial CAD/CAM vendors begin to support

STEP data exchange via files. Thus we can envision how the applications in this

architecture - the Design, Manufacturing, and Inspection Engineering Subsystems
- would be implemented in a STEP environment.

Whatever the content of the APs any of the application systems implement, it is

unlikely that there will be a one-to-one relationship between the data

representations internal to an application and the data representations specified

in an AP. STEP translation software, which transforms the application's internal

data representations into those required by the APs (and vice versa), will be

needed for each application. Such translation software, referred to as pre- and

post-processing software in section 1, was identified as the STEP interface

subsystem for the discussions in section 2.

In order to develop such a translator for STEP, a software developer must
understand and have software access to the internal data representations the

application already uses. The software developer must also understand the

contents of the AP to be supported and the STEP exchange file specification.

Understanding an AP requires knowledge of the information domain the AP
covers and of the information modeling language EXPRESS. Understanding the

exchange file specification also requires knowledge of EXPRESS.

Implementing the transformation between the application's internal data

representations and the AP's data representations can be accomplished by
encoding the transformation directly, or indirectly using supplementary mapping
software. Conformance testing will determine whether the translator can produce

STEP exchange files containing data according to the AP's intent and whether the

translator interprets such files correctly. If the translator for the application

successfully completes these conformance tests, the application supports the AP.

^ STEP conformance criteria, tests, and procedures for testing are all still evolving.

22

STEP Implementation Considerations

We made the point in section 2.4 that when exchanging STEP data via files, the

STEP repository can be made arbitrarily simple. Essentially, the collection of STEP
data files representing product descriptions is the repository. With Design,

Manufacturing, and Inspection Engineering Subsystems providing the

functionality described in section 2 and implemented as described here, the

architecture is realized.

3.2 Near-Term Systems

In this implementation scenario, the previous discussion of existing systems is

adapted to work in the data sharing environment described in section 2.5. From
the application system's perspective, the only change is how the translation

software is implemented. Instead of producing and consuming STEP data in the

exchange file format, the translator now produces and consumes STEP data

according to the SDAI specification. Modifying a STEP file translator, or

developing a new translator, to work with SDAI requires knowing how to use the

SDAI but still requires interpretation of APs described in EXPRESS. Prototypes of

both software which implements SDAI-like functionality and systems which use

those interfaces have been developed [Cla91]. On the basis of such prototypes and
the evolution of the SDAI specification, we could expect to see commercial

realization and usage within three years.

The conformance tests for an application using SDAI are somewhat more
complex than for a file exchange environment. The tests for conformance will first

have to ascertain that the application's translator uses the SDAI correctly and then

determine whether the application produces and interprets STEP data using

SDAI according to the intent of the APs.

From the Data Repository perspective, the situation is considerably different than

that described for a file exchange environment. Product descriptions are not

stored in STEP exchange files - they are now stored in the Data Repository

software. Access to the Data Repository, and therefore to product descriptions, is

provided by the SDAI. Database vendors may take it upon themselves to

implement the SDAI over their database product, as is the case with SQL [FIP90]

implementations. On the other hand, third party developers may perform system

integration of software supporting IRDS, multiple database products, and

implement the SDAI over these different components. In either case, the

implementer of an SDAI must certainly understand the specification itself and

understand EXPRESS. While an implementer may not need to understand the

domain of information covered by APs the Data Repository supports, the

implementer may be able to fine-tune the performance of the Data Repository if

given a reasonable understanding of the AP information and its usage

characteristics.

At the least. Data Repository Subsystems will have to be tested to ensure that they

conform to the SDAI specification. It is also possible that they will need to be

tested for AP support as well, in a fashion similar to that for applications.

Whether or not this will be necessary will become clearer as the details of SDAI
are resolved in the STEP community.

23

STEP Implementation Considerations

The architecture is realized in this scenario through establishment of the SDAI
specification, modification of the applications to work with SDAI, and by
implementation of the underlying Data Repository Subsystem.

3.3 Next Generation Systems

In this section we consider a realization of the architecture which builds on the

implementation described in section 3.2. This implementation includes another

interface layer, a layer which we believe directly corresponds to the intended use

of APs. First, some background information on the CAM-I Application Interface

Specification (AIS) [Mag91] is necessary.

The AIS is an emerging standard that is intended to complement the STEP effort.

The AIS addresses standardization of the programming interfaces to product

modeling systems. The AIS effectively surrounds a modeler providing a

standardized virtual modeler to application programs. This standardized virtual

modeler is based on a STEP data model: the current scope of the AIS is solid

geometric modeling including both boundary representation and constructive

solid geometry from Part 42[IS042]. The AIS concept exceeds the current scope of

STEP by normalizing functionality associated with the data, i.e., it specifies the

manipulation of STEP data entities in the context of a modeling system for those

entities. For clarity, the currently defined AIS shall be referred to as the SM-AIS
(Solid Modeling - Application Interface Specification).

Given that the SM-AIS addresses a specific domain in a particular context, it is

natural to infer a correlation between the SM-AIS and an AP which applies solid

geometric modeling representations to product description'*’. The general concept

of an AIS could be thought of as implicitly defining a portion of an AP, e.g., how
the data associated with an AP is to be used and manipulated. Tying the general

AIS concept to that of APs would require extensions to the information modeling

capabilities of EXPRESS - in fact the ISO committee responsible for EXPRESS
development is already considering such extensions. The idea of an AIS reflecting

a particular AP could be used as a paradigm for development of AIS's in addition

to the current SM-AIS.

^ [ISO204] currently proposes the use of boundary representation for mechanical product

definition. This AP excludes constructive solid geometry.

24

STEP Implementation Considerations

Consider how supplementing APs with the AIS concept could influence the

implementation of application systems. Figure 9 shows the relationship between

t
AP

Compatible

AP
Dependent

AP
Independent

AP
Schema

AP
‘Realization’

Figure 9: Correlation Between AP, AIS, & Software

software, an AP, and an AIS. Previously we described how the application

software interacted with the Data Repository Subsystem through the SDAI. Now
two modules provide intermediate functionality between the application and
SDAI software. The AIS implementation embodies the manipulations provided

against the data according to a particular AP. These manipulations are referred to

as "AP-Dependent" (entity-specific) operations since they are tailored to the data

and its context as specified by an AP. The AIS implementation may be a very

complex piece of software; for the SM-AIS this module essentially provides the

capabilities of a solid geometric modeler. The AIS/SDAI loader performs the

25

STEP Implementation Considerations

function of moving data according to the requirements of the AIS implementation

across the SDAI implementation. Since the loader is tailored for a particular AIS it

too is "AP-Dependent." The functionality of the SDAI is not tailored to a specific

AP - therefore we refer to it as "AP-Independent" (or entity-independent). One
can think of the AIS/SDAl loader as playing a role similar to that of the

translators described in section 3.2. The collection of the AIS implementation, the

AIS/SDAI loader, and the SDAI implementation can be thought of as together

realizing an AP and presenting AP-compatible capabilities to application

software.

We can also see how application software incorporating AIS functionality for an

AP could be more thoroughly tested for conformance. Semi-automated

conformance testing software would have two "test points" in the application.

One, where the application makes use of the SDAI, would permit tests of the

application's ability to produce and consume data in accordance with the

constraints described by the AP. The second, where the application makes use of

the AIS, would permits tests of the application's ability to manipulate data in

accordance with the AP's intended interpretation.

Let's return to the specific case of the applications described in this architecture. It

should be clear that the STEP interface subsystem described for each of the three

applications would be realized by the combination of AIS/SDAI loader and AIS

implementation shown above. Although prototypes of the SM-AJS have been

developed [Gun91] they have not made use of an underlying STEP Data

Repository Subsystem since the SDAI is still evolving. The timeframe to realize

this type of implementation, requiring establishment of SDAI, the underlying

repository subsystems, and AIS's for the APs of interest, is definitely greater than

three years.

26

STEP Implementation Considerations

4 Summary
This document has presented a conceptual architecture for a mechanical parts

production system using STEP as the primary means for product information

exchange between software applications. We have discussed the functionality of

the major systems and discussed the internals of those systems as they relate to

the use of STEP. The major focus has been on the software components required to

make use of STEP in the context of mechanical parts production. Finally, we have

offered insight as to how the software components could be implemented both

now and in the future.

We have identified that STEP Application Protocols - APs - will define what
information is interchanged between the engineering applications of the system.

These APs have been designated in an abstract way as the Manufacturing and
Inspection Interface APs. We use these designations as place-holders: the

information described by these two APs may be realized in the standards

community as several APs^. Nevertheless the concepts described for the software

components and their implementation should remain applicable.

This architecture can serve as a guidebook for those intending to implement an

MPPS or related system. With more APs becoming available, implementation of

such systems can be considered. A real implementation of a system would require

selection of the APs appropriate to the product domain and engineering and
fabrication capabilities. Choices would have to be made when designing the

implementation: whether to use STEP data internally within application

subsystems, whether to employ file exchange or shared database, how
sophisticated a data repository to employ, and how to handle non-STEP data.

These issues can, and should, be addressed incrementally in implementations.

The benefit of such implementations would not be diminished. Starting work
now on STEP implementations will provide valuable experience for software

developers while the software users will see real progress towards removing

barriers to productivity.

^ In fact, as this document goes to print, there are proposals to the STEP standards bodies for work

on two new APs: one for Numerical Controlled Processes for Machined Parts, and the other for

Process Plans for Machined Parts. These APs would be completely applicable to the information

domain described in this document as the Manufacturing Interface AP.

27

Glossary

A Glossary

AIS

Application Interface Specification; a proposed US standard specifying a

software interface to product modelers.

Application Protocol(s)/AP(s)

A specification of a subset of STEP data, the context of this data, and the usage

of this data for the purposes of meaningful exchange between particular

applications.

APT
Automatically Programmed Tools; a task oriented language used for directing

numerically controlled machines tools.

BCL

Binary Cutter Location; an exchange format for conveying instructions to NC
machine tools.

CAD
Computer-Aided Design; software used by designers and engineers to

produce a computer representation of a product, part, assembly, structure, etc.

CMM
Coordinate Measuring Machine; a computer-driven machine which can be

directed to take measurements on a part.

IGES

Initial Graphics Exchange Specification; an existing standard used largely for

exchanging the computer representations of engineering drawings between
Computer-Aided Design systems.

IPO

IGES/PDES Organization; the voluntary organization in the US devoted to

development of IGES and STEP.

IRDS

Information Resource Dictionary System; a specification for software to be

used for management of complex data systems.

ISO

International Organization for Standardization; the international voluntary

organization devoted to developing and setting standards - STEP is just one of

the many standards this organization is responsible for.

MPPS
Mechanical Parts Production System; the manufacturing system this

architecture addresses.

28

Glossary

NC
Numerical Control; a historical term now generally used to mean the

programs or means of controlling manufacturing equipment via computer.

NPT
National PDES Testbed; the NIST facility devoted to development, testing, and
dissemination of STEP,

PDES

Product Data Exchange using STEP; the US efforts toward the development of

STEP

PDES, Inc.

An expanding consortium of companies formed in 1988 for the purpose of

accelerating the development and use of STEP

SQL

Structured Query Language; a software language designed for the

specification and manipulation of information in a relational database.

SDAI

STEP Data Access Interface; an evolving specification describing a STEP
implementation mechanism.

STEP

Standard for the Exchange of Product Model Data; it is the proposed

international standard for product representation and exchange.

29

References

B References

[ANS87] ''American National Standards - for information systems -

programming language - APT", American National

Standards Institute, New York, NY, 1987.

[ANS90] ATIS, Information Resource Dictionary System, ANSI
X3H4 Working Draft, February 1990.

[Cla91] Clark, S., et. al., "Prototype Evaluation for STEP Data

Access Interface Prototype Implementation", National

Institute of Standards and Technology, Document in

Preparation.

[EIA83] "RS-494 32 Bit Binary CL (BCL) Input Format for

Numerically Controlled Machines", Electronic Industries

Association, Washington, DC, 1983.

[nP90] "Database Language SQL", FIPS Publication 127-1,

February 1990. Available from National Technical

Information Service.

[Fow90a] Fowler, J.E., "STEP Production Cell Technical

Development Plan", NISTIR 4421, National Institute of

Standards and Technology, Gaithersburg, MD, September

1990.

[Fow90b] Fowler, J.E. ed., "STEP Data Access Interface

Specification", ISO TC184/SC4/WG7 Document N499,

August 1990.

[Fre90] Frechette, S., Jurrens, K., "Development Plan: Product

Data Exchange Network", NISTIR 4431, National

Institute of Standards and Technology, Gaithersburg, MD,
September 1990.

[Gun91] Gunn, K., et. al., "Implementing the AJS Version 2.0 with

Parasolid", Research Report to the Product Modeling

Program of CAM-I, Arlington, TX, Report Number to be

determined, September 1991.

[ISOl] ISO 10303-1 Overview and Fundamental Principles.^

[ISOll] ISO 10303-11 Description Methods: The EXPRESS
Language Reference Manual.^

[IS021] ISO 10303-21 Clear Text Encoding of the Exchange

Structure.'*’

^ This Part is one in a series of Parts which together comprise the International Standard ISO 10303

Industrial Automation Systems - Product Data Representation and Exchange.

30

References

[IS031] ISO 10303-31 Conformance Testing Methodology &
Framework: General Concepts.^

[IS032] ISO 10303-32 Conformance Testing Methodology &
Framework: Requirements on the Testing Laboratory and
the Client for the Conformance Assessment Process.^

[IS042] ISO 10303-42 Integrated Generic Resources: Geometric
and Topological Representation.'*’

[IS045] ISO 10303-45 Integrated Generic Resources: Materials.^

[IS047] ISO 10303-47 Integrated Generic Resources: Shape
Tolerances.^

[IS048] ISO 10303-42 Integrated Generic Resources: Form
Features.^

[ISO203] ISO 10303-203 Application Protocol: Configuration

Controlled Design.'*’

[ISO204] ISO 10303-204 Application Protocol: Mechanical Design

Using Boundary Representation.’*’

[ISO205] ISO 10303-205 Application Protocol: Mechanical Design

Using Surface Representation.'*’

[Kem91] Kemmerer, S.J., "'Development Plan: STEP Conformance
Testing Service", NISTIR 4641, National Institute of

Standards and Technology, Gaithersburg, MD, August
1991.

[Kra91] Kramer, T., Palmer, M., Feeney, A.B., "Issues and
Recommendations for a STEP Application Protocol

Framework", National Institute of Standards and
Technology, Draft, September, 1991.

[Mag91] Magleby, S., Jackson, D., "A Standardized Application

Interface for Geometric Modelers", Product Modeling for

Computer-Aided Design, selected papers from the 3rd

IFIP Workshop on Geometric Modeling, Rensselaerville,

NY, June 1990, Elsevier Science Publishers, The

Netherlands, 1991.

[Pal91] Palmer, M., Gilbert, M., Anderson, J., "Guidelines for the

Development and Approval of STEP Application

Protocols", National Institute of Standards and
Technology, Gaithersburg, MD, Draft, July 1991.

^ This Part is one in a series of Parts which together comprise the International Standard ISO 10303

Industrial Automation Systems - Product Data Representation and Exchange.

31

References

[PDE91]

[Ree90]

[Sen91]

PDES, Inc., "A High-level Architecture for Implementing
a PDES/STEP Data Sharing Environment", PTI017.03.00,

South Carolina Research Authority, Charleston, SC, May
1991.

Reed, K., ed., "The Initial Graphics Exchange
Specification (IGES) Version 5.0", NISTIR 4412, National

Institute of Standards and Technology, Gaithersburg, MD,
September 1990.

Senehi, K., et. al., "Manufacturing Systems Integration

Initial Architecture Document", National Institute of

Standards and Technology, Draft, September 1991.

32

NIST-1 14A U.S. DEPARTMENT OF COMMERCE
(REV. 3-90) NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY

BIBLIOGRAPHIC DATA SHEET

1. PUBUCATION OR REPORT NUMBER

NISTIR 4685
2. PERFORMING ORGANIZATION REPORT NUMBER

3. PUBUCATION DATE

SEPTEMBER 1991
4. TITLE AND SUBTITLE

A Conceptual Architecture for a Mechanical Parts Production System Based on STEP.

5. AUTHOR(S)

6. PERFORMING ORGANIZATION (IF JOINT OR OTHER THAN NIST, SEE INSTRUCTIONS)

U.S. DEPARTMENT OF COMMERCE
NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY
GAITHERSBURG, MD 20899

7. CONTRACT/GRANT NUMBER

8. TYPE OF REPORT AND PERIOD COVERED

9.

SPONSORINQ ORQANIZATION NAME AND COMPLETE ADDRESS (STREET, aTY, STATE, ZIP)

Office of the Secretary of Defense

CALS Program Office
Pentagon
Washington, DC 20301-8000

10.

SUPPLEMENTARY NOTES

11.

ABSTRACT (A 200-WORD OR LESS FACTUAL SUMMARY OF MOST SIGNIFICANT INFORMATION. IF DOCUMENT INCLUDES A SIGNIFICANT BIBUOQRAPHY OR
LITERATURE SURVEY. MENTION IT HERE.)

The Standard for the Exchange of Product Model Data (STEP) is an emerging
standard addressing the problems of data exchange and representation of

produced goods in a variety of manufacturing enterprises. Given that the

initial STEP specifications largely pertain to mechanical parts production,
this domain is an appropriate context for initial STEP implementations.
This document describes an architecture for systems realizing a mechanical
parts production capability using STEP data exchange. The functions of the

major systems and relationships between systems is discussed. Software
components which could be used to implement major systems are identified.
Major emphasis is given as to how STEP is implemented and used in the context
of the architecture.

12.

KEY WORDS (6 TO 12 ENTRIES; ALPHABETICAL ORDER; CAPITALIZE ONLY PROPER NAMES; AND SEPARATE KEY WORDS BY SEMICOLONS)

PDES; STEP; CAD/CAM; STEP Af^lication Protcx»ls; STEP Inplementation; AIS; SDAI

13. AVAJLABIUTY

X UNUMITED

FOR OFFICIAL DISTRIBUTION. DO NOT RELEASE TO NATIONAL TECHNICAL INFORMATION SERVICE (NTIS).

ORDER FROM SUPERINTENDENT OF DOCUMENTS. U.S. GOVERNMENT PRINTING OFFICE,

WASHINGTON, DC 20402.

ORDER FROM NATIONAL TECHNICAL INFORMATION SERVICE (NTIS), SPRINOnELD, VA 22161.

14. NUMBER OF PRINTED PAGES

38

15. PRICE

AO 3

ELECTRONIC FORM

q TT2 IV YSQiavihmT owiA eoaAOHATe

^

SJT21W

»?§j-: j5*6>aTW

Ya0J0viK>iT OMA eojuoHATe^ arurrreMJ j«iOTtAK

PDE£- ft^c !^jlk'(frQf?'s?Tr'TrrtpIS^i.« _

* PDRS/lTKr J

V CiBta^Pki - _.
_ 3

ng bfftsXifi Rt?dF^ aciSkiri/to:J^ WjnM ^

<W«lk’ in*V» f
.

i> ^ it^ ip*»®' iKf» TW®*

!.t

es

*>lo
,

• ;'.; r©|»Jxia^

ocGS-iocbi ^jd

«5SAt

^
:in^i^3X)h

t :s.fi3mi ^vifr i
’ ftalow « 311^170^^.3

lx®4£r0'3 ifli ^ rt#VXj^

;!AC2?
vS2Ta

cr*Wir fSBI

Aiom«i4j7#>d ^
j»m.mjwumMUsm^

mm

[

.

f

:

i

vf

i

