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Abstract

The effect of time-periodic vertical gravity modulation on the onset of thermoso-

lutal convection in an infinite horizontal layer with stress-free boundaries is investi-

gated using Floquet theory for the linear stability analysis. We consider situations

for which the fluid layer is stably stratified in either the Angering or diffusive regimes

of double-diffusive convection. Results are presented both with and without steady

background acceleration. Modulation may stabilize an unstable base solution or desta-

bilize a stable base solution. In addition to synchronous and subharmonic response

to the modulation frequency, instability in the double-diffusive system can occur via

a complex conjugate mode. In the diffusive regime, where oscillatory onset occurs

in the unmodulated system, regions of resonant instability occur and exhibit strong

couphng with the unmodulated oscillatory frequency. The response to modulation of

the fundamental instability of the unmodulated system is described both analytically

and numerically; in the double- diffusive system this mode persists under subcritical

conditions as a high-frequency lobe.
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1. Introduction

When a fluid in a gravitational field contains two components of different diffusivities that af-

fect the density, for example, temperature and solute, a broader range of dynamical behavior

is found in the convective instabilities that may occur. This phenomenon, known variously as

thermosolutal convection, double-diffusive convection, or thermohaline convection when the

solute is salt, has been studied extensively since it was first described by Stommel et al. in

1956 [1]. The early work on the problem is summarized in several reviews [2, 3, 4]. Although

initial research in this area was in the field of oceanography, the study of double-diffusive

convection is of practical importance in many diverse areas involving convective heat and

mass transfer, including astrophysics, geophysics, geology, chemistry, and metallurgy [5].

The current work is motivated by the desire to better understand the conditions for

which convective instabilities can occur in particular configurations used for solidification of

binary alloys. The onset of thermosolutal convection is relevant to the process of directional

solidification via the vertical Bridgman technique, where the inherent temperature and solute

gradients in the melt are aligned with the gravity vector. Buoyant convection resulting

from thermosolutal instabilities is undesirable, since the convection alters the distribution

of solute which can lead to macrosegregation in the solid. Coriell et al. [6] examined the

onset of thermosolutal convection in the liquid and morphological instability of the solid-

liquid interface during the vertical directional solidification of a binary alloy in a constant

gravitational field. The model accounts for the fact that the solid-liquid interface moves

and has an unconstrained shape. In this configuration, the unperturbed temperature and

solute profiles vary exponentially with the distance from the interface as opposed to the

linear variation most often considered in treatments of thermosolutal convection. The onset

of convective and morphological instability in models of vertical directional solidification

has been the subject of numerous studies [6, 7, 8, 9, 10, 11, 12]. A review article by Davis

contains a more complete list of references [13].

It has been found that for many alloys, even when interfacial instabilities can be ignored,

it is difficult to avoid convection in the earth’s gravitational field. Consequently, this has

led to research into the possibility of processing materials in space where the low level

background gravitational acceleration (10“® of the earth’s gravitational acceleration, g^) can

eliminate buoyancy driven convection. However, research has shown [14, 15, 16] that time-

dependent accelerations (g-jitter) of substantial amplitude resulting from orbital maneuvers

and inherent mechanical vibrations may alone induce buoyant convection. It is also of interest

to understand how vibration might be used to control convective instabilities. Recently, low

frequency vibrations have been used in attempts to control the shape and position of the

solid-liquid interface during Bridgman growth [17, 18]. A brief literature review of the use

of vibrations in crystal growth is given by Zharikov et al. [19]

The effect of time-dependent gravitational acceleration on the onset of convection in

the Rayleigh-Benard configuration has been the subject of several investigations by Ger-

shuni and Zhukhovitskii with various co-workers. Their book [20] provides a comprehen-

sive introduction to the study of the effects of time-dependent modulation, including the
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method of averaging for analysis of the high frequency Hmit and numerical computations

of the nonlinear behavior. Gresho and Sani [21] also determined the onset conditions for

the Rayleigh-Benard problem. More recent investigations of the nonlinear behavior have

also been performed [22, 23]. There are several references on related problems involving

time-dependent modulation [24, 25, 26, 27, 28, 29].

Murray et al. [30] considered the effect of sinusoidal time-dependent accelerations on

the onset of solutal convection during directional solidification of a binary alloy at constant

velocity. The processing conditions were assumed to be such that the thermal Rayleigh

number was sufficiently small so that thermal effects could be ignored. The study showed

that a stable base state can be made unstable by the modulation, while an unstable base state

can be made stable. Ideally, a study of the effect of temporal modulation on thermosolutal

convection in a model similar to the one used by Coriell et al. [6] is desired; however, it would

require extensive computations and the number of parameters would preclude a systematic

study. Thus, in the present paper, in order to gain better understanding of this complex

problem we examine the effect of sinusoidal time-dependent accelerations on the onset of

thermosolutal convection in an infinite horizontal layer of fluid. In particular, we consider

the case of stress-free boundary conditions at the top and bottom of the layer, for which

there are exact spatial eigenfunctions so that the linear stability problem reduces to solving a

system of ordinary differential equations in time with periodic coefficients. This paper can be

viewed as a first step in expanding the previous study [30] to the full problem of examining the

effects of gravity modulation on thermosolutal convection during the directional solidification

of binary alloys.

Although the stability analysis for this ideahzed configuration presents no computational

difficulties, it is not easy to predict and interpret the results for this problem, since it

involves the combined effect of gravity modulation on both the thermal and solutal fields.

When opposing temperature and solute gradients are present in a constant gravitational

field, the difference in diffusivities causes two distinct regimes to occur depending on which

gradient is stabilizing. In the fingering regime, which occurs when the component with

the smaller diffusivity is destabilizing (solute), the onset of convection is characterized by

a monotonic increase in the size of the disturbances. When temperature is destabilizing,

the diffusive or overstable regime appears and instability occurs via a Hopf bifurcation with

disturbances growing in an oscillatory fashion. Although the Angering regime is the more

common situation for the directional solidification problem, it is of interest to study how

modulation affects the oscillatory onset of the diffusive regime.

Despite the fact that the computations are relatively easy to perform, there are enough

parameters to explore that it is difficult to obtain a definitive understanding of the prob-

lem. Instead, we present the results from many numerical calculations using a small but

reasonable set of values for these parameters, and interpret those features that emerge from

the calculations. For example, the fact that for the double- diffusive system there are three

Floquet multipliers, rather than just two as in the single component case, allows the overall

topology of the marginal stability curves to be more complicated; the single component case

is described by the damped Mathieu equation [20].
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We find that in the fingering regime, the stabihty results are generally reminiscent of

those for the damped Mathieu equation, in that both synchronous and subharmonic “res-

onant modes” are found for the modulated system. However, the detailed behavior of the

modulated system under conditions for which the unmodulated system is marginally stable

are somewhat different, and the response to modulation of the “fundamental mode” associ-

ated with these near-critical conditions is more complicated in the double-diffusive system.

In particular, we find that the fundamental mode can still persist under sub-critical condi-

tions of the unmodulated system; its behavior for near-critical conditions can be described

analytically for small modulation amplitudes.

Another question we explore is the behavior under modulation of a system which in the

absence of modulation undergoes instabihty by a time-dependent Hopf bifurcation; in this

case a resonant behavior might be anticipated when the forcing frequency and the natural

frequency of the unmodulated system are related. Indeed, in the diffusive regime, we find

that there can be a significant destabilization of the “resonant modes” of the modulated

system under near-critical conditions of the unmodulated state, precisely at multiples of the

natural frequency of the unmodulated system. Here the usual terminology unfortunately

is somewhat confusing: traditionally the parametric instabihties of the modulated system

that are observed at sufficiently large modulation amplitudes under conditions for which the

unmodulated system is stable are referred to as “resonant modes,” and these modes are also

observed in the diffusive regime of double-diffusive convection. Here we are examining condi-

tions under which these modes are destabifized due to a significant resonant reaction to the

natural frequencies of the unmodulated system. There is also a complicated response of the

fundamental mode itself under these conditions, which is analogous to that observed in the

fingering case. Again, these phenomena can be described analytically for small modulation

amplitudes.

In Section 2 we describe the governing equations for the model and outline the linear

stability analysis. The periodic coefficients in the finear stability equations permit the use

of Floquet theory to compute the onset conditions for instabihty. In Section 3 we present

some characteristic results of the calculations and in Section 4 summarize the results. Some

details of associated expansion procedures are summarized in Appendices I and II.

2. Governing equations

The present paper considers the effect of a sinusoidal temporal modulation of the vertical

gravitational field on the onset of thermosolutal convection in an infinite horizontal layer of

fluid. For mathematical convenience both the top and bottom boundaries are assumed to be

stress-free, with the temperature and solute concentration there fixed. Assuming an incom-

pressible Newtonian fluid, the governing equations are the conservation of mass equation,

the Navier-Stokes equations, the convection-diffusion equation for the solute concentration

c, the convection-diffusion equation for the temperature field T, and a linear equation of

state expressing the dependence of the melt density p on solute concentration and temper-

ature variation. Furthermore, the Boussinesq approximation is employed so that variations
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in density are ignored except in the body force term in the Navier-Stokes equations,

equations are

V • u = 0

du

'di
+ (tx • V)u = -Vp/po + + gp/ po

+ (u V)c = HV'c

^ + (u V)T = kV^T

p = ^o[l - a{T - To) + l3{c - Co)]

The

(la)

(lb)

(l c)

(l d)

(le)

where p is the fluid pressure, po is the density at the lower surface, i/ is the kinematic

viscosity, D is the solute diffusion coefficient, k, is the thermal diffusion coefficient, Cq and To

are the solute concentration and temperature at the lower surface, and a and (5 are volume

expansion coefficients due to temperature and solute concentration variations, respectively.

The gravitational field is taken to be

y = — + ecos Qt)z, (2)

where ^ is a reference acceleration level, 8 and e are the relative amphtudes of the steady

and modulated components of the acceleration, respectively, is the modulation frequency,

and z is the unit vector in the vertical direction. Here, the modulation amphtude e varies

continuously, while 8 takes on the values 0 or 1 only; the value = 0 represents no steady

background acceleration level, while = 1 corresponds to terrestrial conditions.

The steady-state base solution consists of no fluid motion, with the temperature and

solute fields given by the expressions

r('>)( 0
)
= ro + (z/<i)Ar, (3a)

c^°\z) = Co {z !d) i\c, (3b)

where d is the thickness of the layer, and AT = Ti — To and Ac = ci — cq are the differences

in temperature and solute across the layer with T\ and Ci being the temperature and solute

concentration at the top surface. The pressure in the undisturbed fluid is hydrostatic.

Dimensionless variables are defined in terms of the length scale d, the time scale

the velocity scale i//d, the temperature scale AT, and the solute scale Ac; from henceforth,

all variables will be dimensionless. For the linear stability analysis of the base state we write

the flow field variables as the sum of the base state and a perturbation quantity that is

Fourier analyzed in the lateral directions. We have

/ u{x,y,z,t) \

v(x,y,z,t)

p{x,y,z,t)

T{x,y,z,t)

\ c{x,y,z,t) J

0

0

pW(z)

T<°'>lz)

cW(z) /

+

tx(')(2,t) \

vW(2,i)

ti;(')(2,i)

p(')(2,0

rw(2,t)

c(')(z,t) /

exp(zaxX + layp), (
4

)
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where [ax^ciy) is the dimensionless horizontal wavenumber and [u,v,w) are the components

of the velocity field in the (x,t/, z) frame.

Substituting these quantities into the governing equations and Hnearizing yields

-f- = 0,

dt

-{- iayp^^^ = (Z^ —

—h Zp^^^ = (Z^ — + Ra((5 + ecosa;t)^— — Rs((^ + ecoscjt)^^-
ut Pr Sc

m /r2
4-iu^ ^ = (Z^ - a^)

dt Pr
’

c(i)

at
=

(5a)

(5b)

(5c)

(5d)

(5e)

(5f)

where Z refers to the spatial derivative [djdz). The thermal and solutal Rayleigh numbers

are

g a AT (P
Ra =

l/K

Rs = g /3 AcP

where with the chosen sign conventions, positive Rs and negative Ra correspond to unstable

density stratification when g is downward. The remaining dimensionless parameters are the

driving frequency uj = Qd^ju^ the modulus of the horizontal wavenumber a = + aj, the

Prandtl number Pr = i///c, and the Schmidt number Sc = ujD. A fist of the dimensional

and dimensionless parameters are given in Table I.

Through the use of the curl operator and algebraic manipulations [31], one can eliminate

the horizontal velocity components and the pressure from (5) to reduce the system to

(Z^ — — a^Ra((? + ecoscjt)— (- a^Rs((^ + ecosa;t)-—
(yu ITT OC

plus the second-order equations for the perturbed temperature, and the perturbed

solute concentration,

Since we assume the tangential stresses vanish along the upper and lower surfaces, the

vertical component of the flow satisfies = 0 with = 0 at z = 0

and z = 1. These conditions are satisfied if the vertical dependence of the perturbations is

assumed to have the form sinmrz. This results in the ordinary differential equations

dW 0 C
(n^TT^ -|- a?)-— = — (n^TT^ + a^YW + a^Ra(^ + ecostjt)— a^Rs((^ + ecosa;t)—

,
(6a)

dt Pr be
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^ - W, (6b)

w =

where we have written w^^^(z,t) = W(t) sin utt z
,
T^^\z,t) = 0(t) sinnTz, and c(»(.,i) =

C(t) sin uTTz.

Since the coefficients in (6) are either constant or periodic in t, using Floquet theory [32]

one can obtain solutions of the form

W{t) \ (

\

Q{t) 0(i)

c{t) y

(
7

)

where W, 0, and C are periodic in t with period 2tt

/

uj and a = (Jr-\-i(Jx is the complex growth

rate. To calculate a, we use the computer code DDRIV2 [33], which uses high-order Adams
methods or Gear methods (for stiff problems) to solve a system of first-order differential

equations. We choose convenient initial conditions and compute three linearly independent

solutions for the unknowns at the end of one forcing period. These fundamental solutions

form the columns of a 3 x 3 matrix, the eigenvalues of which are the Floquet multipliers,

gO- 2x/u;^ from which a can be computed. The base state is linearly stable for a given set of

parameters if, for all three eigenmodes, the real part of a is negative for all disturbances. To

study the effect of modulation on the stability of the base state, neutral curves are obtained by

varying one of the parameters (e.g., modulation amplitude e) with the remaining parameters

fixed to determine where ar = 0.

3. Results

Before presenting results on the effect of modulation on the onset of thermosolutal convection,

it is helpful to review the essential results for the unmodulated problem (e = 0). In this case,

a cubic dispersion relation in terms of the complex growth rate a is obtained [2]. Analysis

of this relation yields the stability criteria in terms of Ra and Rs for given values of a, Pr,

and Sc.

For our definition of the parameters, when Ra and Rs are positive, the solute field is

destabilizing while the thermal field is stabilizing. This is the fingering regime which is

characterized by steady onset. The critical value Rs* of the solutal Rayleigh number for

steady onset is given by the linear relation

Rs* =— + Ra, (8)
4

which is independent of the Prandtl and Schmidt numbers. When Ra = 0 equation (8)

reduces to the critical Rayleigh number for the single component case (Rs* = 277r'^/4) with

stress-free boundaries [31].
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In the diffusive regime, Ra and Rs are negative and the thermal field is destabilizing.

The onset of time-dependent oscillatory instabihty occurs when

Rs*
277r"(Pr + Sc)(Pr-H) Sc^ +
4 Pr^ Pr^ Sc + 1

and the frequency of oscillation is given by

2 1 \27v* f 1 1
1

^
Ra Rs

“
3 4 PrScj p7

~

(
9

)

(
10

)

In both regimes, the critical wavenumber is given by a = tt/ \/2. Fig. 1 shows the stability

boundaries in the (Ra,Rs) plane in the absence of modulation. The solid curve is the steady

onset curve (8); the dashed curve corresponds to oscillatory onset (9). The oscillatory onset

curve is shown for Pr = 1 and Sc = 10. The dependence of the slope of the oscillatory onset

curve on Pr and Sc typically yields large values of the slope for materials of practical interest,

and so, in general, it is difficult to show the stabihty regions of interest for both onset modes

on the same plot.

Another relevant frequency for a stably stratified system is the buoyancy or Brunt-Vaisala

frequency [2] which in our notation is given by

N = y'Ra/Pr - Rs/Sc. (11)

This frequency is contained in the double-diffusive oscillation frequency, cj*, and may also be

important with regards to resonance phenomena resulting from the modulation.

We present results from the linear theory for the effect of sinusoidal modulation. In

principle, the critical wavenumber for instabihty should be determined by scanning the

entire range of wavenumbers. For the results presented here, the wavenumber is fixed at

the unmodulated critical value (n = 1 and a = 7r/\/2) in order to explore more fully the

dependence on the other parameters. Alternatively, one could adopt the viewpoint that the

wavenumber hcis been fixed by imposing lateral boundary conditions that represent flow in

an idealized box with stress-free sidewalls. For the first set of results, we consider the effect of

sinusoidal modulation on the onset of convection in the single component (thermal problem)

to serve cis a reference for the thermosolutal calculations. Also, we begin by considering a

case relevant to a low gravity environment, and assume the steady component of gravity is

negligible. We set <? = 0 and look for values of the relative modulation frequency, e, that

lead to instabihty for given values of the modulation frequency, uj. To obtain the results for

thermal convection only, we set Rs=0 in (6a). We note that with (^ = 0, the results depend

only on the product eRa which represents the overall modulation amplitude.

In Fig. 2 we plot e versus the inverse of the modulation frequency to show the neutral

stabihty boundaries (where = 0) for Ra = 1000 and Pr = 0.1. The shaded regions indicate

where the sinusoidal modulation destabihzes an otherwise stable configuration. The linear

stabihty problem for the single component case reduces to the damped Mathieu equation as

-8-
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discussed in detail in Gershuni and Zhukhovitskii [20]. The lobe-shaped shaded regions al-

ternate between subharmonic = u;/2) and synchronous (cTi = 0) resonant response which

is characteristic of solutions to the Mathieu equation and similar Floquet systems. The

regions are shaded with vertical lines to indicate a subharmonic resonant response or hori-

zontal lines to indicate a synchronous resonant response. The minimum amplitude required

for instability (eRa = 7290) occurs at a dimensionless frequency uj around 105. This am-

plitude corresponds to approximately eleven times the unmodulated critical level of 277r'^/4.

The minimum amplitude for instability of the remaining lobes increases as the frequency

decreases. A similar case was presented in Gershuni and Zhukhovitskii [20], although for a

different value of the Prandtl number; the same qualitative behavior as shown in Fig. 2 was

obtained. The value of the Prandtl number controls the level of damping, and hence the

amplitude of modulation required for destabilization. At very large frequencies, the system

is unable to react to the modulation and the state of the unmodulated system is approached.

For resonant behavior at large frequencies, an analysis of the governing equations indicates

that eRa ~ in the limit cj oo [34].

3.1. Fingering Regime

For the thermosolutal problem we first consider parameters corresponding to the fingering

regime in the unmodulated case where the solutal field is the destabilizing component. For

Ra = 1000, the critical solutal Rayleigh number is 1657.5. Again, we start with a case of

no background acceleration (<^ = 0). Fig. 3 shows the neutral stability boundaries for the

modulated solution when = 0, Ra = 1000, and Rs = 1690. The Prandtl and Schmidt

numbers are fixed at 0.1 and 10, respectively, for the modulation calculations. These values

are a reasonable approximation for semiconductor-type materials. As before, the vertical

and horizontal shading lines indicate that the onset of convection is subharmonic and syn-

chronous, respectively. Intersecting hnes indicate doubly unstable regions, that is, areas

where two of the three growth rates <7^ are positive. Diagonally intersecting hnes indicate an

oscillatory response where the onset of convection occurs as a complex conjugate pair, while

intersecting vertical and horizontal lines indicate both a subharmonic and a synchronous

instabihty. In Fig. 3 the lobe which exists for the highest frequencies shows a synchronous

response to the modulation, but this region is overlapped by a doubly unstable area where

a subharmonic response also appears. Adjacent to this region is a lobe where the onset of

instabihty appears as a complex conjugate pair. The two doubly unstable regions in Fig. 3

are similar to the first two lobes seen in the single component thermal problem in Fig. 2.

The last region for the lower frequencies shown in Fig. 3 shows a subharmonic response but

it is no longer lobe-shaped.

We now let S = 1, so that the steady component of gravity is significant. Then the prob-

lem is equivalent to looking at the effect of a sinusoidal modulation with a one-^ background

level. With no modulation, the critical solutal Rayleigh number is 1657.5, so Rs = 1690 is

slightly unstable for e = 0. In Fig. 4 we show the neutral stability regions for this case (S

= 1, Ra = 1000, and Rs = 1690). Because this case is unstable without modulation, there

is what is referred to as a fundamental region of instabihty [20], which is synchronous for
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all frequencies, as indicated by the horizontal shading hnes. It is possible to stabilize the

fundamental mode of instability with an e that depends on frequency, with larger frequen-

cies requiring larger modulation amplitudes. However, the stabilization is bounded above

by lobes or bands of resonant instability. The structure of the resonant bands is quahta-

tively similar to the regions found for the same Rayleigh numbers with <^ = 0 in Fig. 3.

This indicates that the resonant behavior is somewhat insensitive to the level of the steady

background acceleration.

In Fig. 5 we show the neutral stability curves obtained when modulation is applied for

the same parameters as in Fig. 4, except that Rs has been reduced to the unmodulated

subcritical value of 1624. We find that the subharmonic and complex conjugate resonant

lobes and the broad subharmonic region at lower frequencies are qualitatively, similar for the

two different Rs values. The primary difference is the change in the synchronous fundamental

region, which is now a lobe region at Rs = 1624. For Figs. 2-5, the buoyancy frequency (11)

is approximately 100, which is in the vicinity of the highest frequency subharmonic resonant

lobe.

For (^ = 1, a transition in the stabihty of the modulated system for small values of e is

apparent in comparing Figs. 4 and 5. The transition occurs as the solutal Rayleigh number

exceeds its unmodulated critical value Rs*. For Rs < Rs*, the axis e = 0 lies in the stable

region, whereas for Rs > Rs* this axis lies in the unstable region. The transitional behavior

is shown in more detail in Fig. 6, where it is evident that the marginal stability curves for

Rs < Rs* and Rs > Rs* are tending toward a common asymptote or separatrix as Rs tends

to Rs*; this separatrix is shown as the dashed line in Fig. 6 with l/cj % 0.013 at e = 0.

The specific value oi uj = ljq for the separatrix at e = 0 can be determined through an

expansion procedure in e. For Rs = Rs*, the separatrix describes a time-periodic solution

to the linearized governing equations, which as e — 0 tends to the marginally-stable steady-

state eigenmode

/ Wo \

00

\ Co /

1 \
-Pr/(ir2 + a2)

-Sc/(V + a^) /

of the unmodulated system. For fixed values of Ra and Rs = Rs*, the solution is expanded

formally in powers of e.

/ W(t,e) \

0(t,e)

C(t,e)

= ^ e" ©(")(()

" V C'W(t)
)

and the expansion is inserted into the governing equations, which are examined at each order

in e.

The zero-th order system describes the unmodulated state, whose marginally-stable so-

lution is given by the above eigenmode. The first order system describes the response to

the small-amplitude sinusoidal forcing with frequency uj. The solution can be written in the
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form
(w,\

©1 e’"' + C.C.,

C, )

where ‘c.c.’ denotes the complex conjugate of the preceding term. Here the coefficients are

complex constants given by

a^(Rs - Ra)

2(7r2 + a^)

a^Ra

(tt^ 4- -f za;Pr)

a^Rs

(tt^ + + za;Sc)
+ iuj{7r^ + a^)

5

0: = -PrW^i

(tt^ + a2 ^ 2a;Pr)
’

and

Cl = -ScV^i

(tt^ H- 4- za;Sc)

Through first order, the system has a time-periodic response to the driving force for any

frequency uj. At second order, the system describes the response to harmonics generated by

the interaction of the sinusoidal forcing with the first-order response. A non-periodic, secular

response is generated by the resulting mean component of the forcing unless a solvability

condition on lj is satisfied. The system at second order has the form

. 2 . 2 2N2Tr.r2^ 2 t. 2t. C^^) . ©U) .

['K^-\-ar)——

—

aryW^ 1 — a^Ra—— +a^Rs—— = a^Ra—— coscjt — a^Rs—

—

cosut,
CLu ir r o 0 L r o o

, , ,,0(2) „_ + (,,^ + a2)_ + Vr(2) = 0,

<iC(2)
, , ,,C(2) „ „

+ (x2 + o2)-— + Vr(2) = 0.
cLl oC

Setting the mean component of the right hand side to zero gives

RsWi RaH^i
0 =

(tt^ 4- 4- za;Sc) (tt^ + + zcjPr)
+ C.c,

which is an equation for the value of a; = cjq that allows the periodic solution to exist along

the separatrix curve near e = 0. This equation is equivalent to a quartic polynomial in Uq,

whose roots may be found by inspection; there is a trivial root and two negative roots given

by (x>Q = — (tt^ + a^y/Fi^ and = — (tt^ 4- a^Y/Sc^. The only root which can be positive is

given by the expression

2
{(RsSc — RaPr)(7r^ + a^)^/a^ 4- RsRa(Sc — Pr)^}

^
(x2 + a2)Pr2Sc2Ar2

’

where N is the Brunt-Vaisala frequency given above in (11).
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For the parameters under consideration, this equation gives the value ljq = 76.639, or

I/luq = 0.01305, as shown in Fig. 6. By introducing an expansion uj = ljq for

the frequency as well, this procedure could be continued to higher order in e to obtain the

curvature of the separatrix at e = 0, but we have not pursued this question. In the language

of bifurcation theory, the effect of detuning the system by taking Rs slightly different than

Rs* has the nature of an imperfection [35], and could be analyzed systematically as well.

The occurrence of the separatrix terminating at the frequency uq is a feature of the

double-diffusive system; this phenomenon does not occur in the single-component case (c.f.

Ref. [20], p. 210, for example). As Ra becomes small, the unstable region bounded on the

right by the separatrix, and bounded below by the interval from zero to I/ljq, shrinks in size

and disappears as A” —> 0; this behavior is indicated by the values of 1/uJo shown in Table II

for Pr = 0.1 and Sc == 10. The dependence of uq on Ra is not monotonic; the largest value

of l/cjo occurs for Ra ^ 250, and I/ujq tends to zero for smaller values of Ra.

Note that the use of the term “fundamental mode” is really motivated by the instability

of the modulated system for Rs > Rs* at low values of e such as illustrated in Fig. 4. For the

double-diffusive case with moderate values of Ra, Fig. 5 illustrates that this “fundamental

mode” becomes a synchronous lobe for Rs < Rs*, and in appearance is not dissimilar to the

other lobes which are commonly termed “resonant modes” in the literature. Moreover, as

illustrated in Fig. 3, the “fundamental mode” also persists as a synchronous lobe in the case

0 in which the mean component of the gravitation vanishes. This mode thus can exist

in situations which are quite removed from the more familiar setting in which the base state

is marginally stable in the absence of modulation (e = 0).

3.2. Diffusive Regime

For our calculations in the diffusive regime, where oscillatory onset can occur in the absence

of modulation, we choose parameters such that this is the case (i.e., steady onset is also

possible in this regime, see Fig. 1). For the same values of the Prandtl and Schmidt numbers

(Pr= 0.1, Sc= 10) and the wavenumber (a = 7r/%/2) used for the calculations in the fingering

regime, we select a value of Rs = -300000 which yields a critical Ra of approximately the

same magnitude as the previous cases. For these parameter values, (9) yields a critical value

of Ra = —1030.5. The corresponding oscillatory frequency is a, = 95 from (10).

Figs. 7 and 8 show the stability diagrams (e versus l/uj) for sinusoidal modulation in

the presence of steady acceleration ((^ = 1) for a subcritical value of Ra = -1000 and a

supercritical value of Ra = -1051, respectively. Both figures consist of regions of resonant

instability where the behavior alternates between subharmonic and synchronous modes as

illustrated by the vertical and horizontal shading lines, respectively. The resonant bands are

similar for the two values of Ra, except for the minima. Figs. 7 and 8 differ substantially

in the unstable crosshatched region where instability occurs by complex conjugate pairs. In

Fig. 8, the magnitude of Ra lies above the unmodulated critical value and this produces a

fundamental instability which corresponds to the crosshatched region. Again, the usage of

the term “fundamental instability” is intended to suggest the relation of this mode to the

associated instability of the base state in the absence of modulation (e = 0); in the diffusive
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regime the unmodulated instability occurs via complex conjugate pairs for (7^

There is a similarity in the behavior of the fundamental instability in the present diffusive

case to that in the fingering case which was shown in Figs. 4 and 5. In both cases, for

unmodulated subcritical conditions (Figs. 5 and 7), the fundamental mode appears as a

lobe whose minimum decreases as the unmodulated system becomes less stable. In the

diffusive case shown in Fig. 7, this lobe consists of a pair of complex conjugate growth rates.

As the unmodulated system becomes unstable, the boundary of the lobe transforms into a

separatrix curve marking the transition from unstable to stable in a similar manner to Fig. 6.

At the highest frequencies, the system is unable to react to the sinusoidal modulation, and

the stability or instability of the region matches that of the unmodulated solution. As in

the fingering case, an asymptotic analysis for e << 1 can be used to determine the values

of the forcing frequency oj along the separatrix in the critical case Ra Ra*; details are

given in Appendix I. For the case appropriate to Figs. 7 and 8 with Rs = —300000 and

Ra = Ra* = —1030.5, the separatrix hits the axis e == 0 at = 4.23 • (10“^). This

value of cj for the separatrix is near but distinct from the point u; = 2(7^ where the resonant

mode of highest frequency intersects the axis e = 0. Further, as the magnitude of the solutal

Rayleigh number is decreased, these two points diverge from each other, with the separatrix

intersecting the axis e = 0 at larger and larger values of oj.

For the subcritical case. Fig. 7, the highest frequency resonant band has a minimum of

approximately e = 10“^ at cj % 190, which is twice the unmodulated oscillatory frequency, cTi.

The minimum of the mth resonant band occurs at a; ~ 2(7^1m. As the modulation frequency

decreases, the minimum amplitude of the resonant bands increases. For the supercritical

case shown in Fig. 8, strong resonance is obtained for both u = cr^ and 2cr^ with synchronous

and subharmonic response, respectively. There are regions in the resonant bands where the

system is doubly unstable; this occurs in the vicinity of the transition from fundamental

(complex conjugate modes) to resonant regions.

The penetration at low values of e of the high-frequency subharmonic lobe appears to

be a resonance phenomenon: if Ra is set to its unmodulated critical value Ra*, then for

e = 0 the system has a marginally-stable oscillatory mode with frequency cr, given by equa-

tion (10). The governing equations describing the first-order correction for the case of small

modulation amplitude then have the possibility of resonance, since the interaction of the

driving frequency u with the zero-th order mode gives rise to inhomogeneous forcing terms

with frequency u ± <7^. The frequency difference is thus in resonance for uj = 2a This obser-

vation is developed in Appendix II, where expressions for the amphtudes e of the marginal

stability curves are given for \u — 2cr,| <C 1. Resonance at other forcing frequencies may also

occur at higher orders; for example, at second order a resonance occurs when lu = a^ (see

Fig. 8).

To better understand the resonant behavior exhibited by the cases shown in Figs. 7 and 8,

we plot in Fig. 9 the stability region for the single component case obtained by setting Ra =

0 and keeping Rs = -300000, which is a highly stable situation in the absence of modulation

and subject only to resonant instability. The structure of the resonance bands is somewhat

similar between the single component and thermosolutal cases; however, the minimum of the
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resonant bands is considerably broader and a much higher modulation amplitude is required

for instability in the single component case. For Ra = 0, the governing equations reduce to

the damped Mathieu equation

Ctt +
(TT^-f g^)

LJ
Ct +

1 2\2
(TT^ + g^)

g^Rs

(tt^ -f a^)
(1 + ecos C = 0,

where r = ut. Note that the damping term is proportional to l/o;; the damping is responsible

for the increase in the minima of the lobes as the frequency decreases. If the damping

is neglected in this equation, the resonant modes then extend down to zero modulation

amplitude (e = 0), where the resonant driving frequencies of these undamped modes are

given by the expressions = m^Sc(7r^ + a^)/(4g^{~Rs}) in the limit of large |Rs|. For the

conditions in Figs. 7 and 8 with Rs = —300000, this gives a value = 5.0(10“^), which is

in good agreement with the observed value l/u ^ 5.27(10“^) for the resonant mode with the

highest frequency. While it is apparent in the thermosolutal case that the resonance is tuned

to the unmodulated oscillation frequency <7j, it is interesting that in the single component

case there is only a small shift of the frequency of the minima from the thermosolutal case.

The buoyancy frequency for this single component case is IjN = 5.78(10"^), which is in the

vicinity of the highest frequency subharmonic minimum.

In Fig. 10 we plot the minimum values of e on the highest frequency subharmonic mode
(solid curve) and the highest frequency synchronous mode (dashed curve) for values of the

thermal Rayleigh number ranging from Ra = Ra* down to Ra = 0; the variable on the

horizontal axis is (Ra* — Ra)/Ra*. The curves illustrate the relative rate of descent of these

modes as the critical thermal Rayleigh number is approached and resonance occurs. The

values for the subharmonic mode decrease linearly with (Ra* — Ra)/Ra*, whereas the values

for the synchronous mode show a square root dependence.

In Fig. 11 we consider thermosolutal convection for the same Rayleigh numbers as in

Fig. 7 in the absence of background acceleration [8 = 0), so that the system is stable for e

= 0. Alternating bands of resonant instability are again obtained, although the structure

is considerably different from that of Fig. 7. The onset of instability as e is increased is a

smooth function of frequency and does not exhibit the cusps of Fig. 7. The vertical scale

of Fig. 11 has been increetsed in order to show the region of complex conjugate instability,

which occurs at high frequencies in both cases. For various ranges of frequencies, particularly

at low frequencies, the ^ = 0 case is less stable than the ^ = 1 case. When ^ = 0, the same

results would be obtained if the sign of both Rayleigh numbers wcls changed. During half

of the modulation cycle the thermal field is destabilizing, while for the other half the solute

field is destabilizing. Since the magnitude of the solutal Rayleigh number is very large, the

solutal instability dominates, and similar results would be obtained if the thermal Rayleigh

number was set to zero, although the complex conjugate mode of instability only occurs for

the thermosolutal case.

The single component case with ^ = 0 was previously described in Fig. 2 in terms of the

thermal field. To the extent that the thermal Rayleigh number can be neglected for the case

in Fig. 11, the results are identical to those of Fig. 2 with the appropriate rescaling of e and
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<jj. The (jj for the solutal case is smaller by a factor of 10 (y Sc /Pr) and e is smaller by a

factor of 300. We note that the modulation amplitude in the single component problem does

depend on the Prandtl (or Schmidt) number, but the dependence is of the form \/Pr + 1 /

[20], so that the thermal case with Pr = 0.1 is equivalent to the solutal case with Sc = 10.

4. Discussion and Conclusions

We have considered the effect of sinusoidal gravity modulation on the onset of thermosolutal

convection in an infinite layer with stress-free boundaries; this reduces the problem to a set

of three coupled ordinary differential equations which are solved numerically using Floquet

theory. The problem still depends on a large number of parameters. The unmodulated

problem depends on the thermal and solutal Rayleigh numbers, the Prandtl number and the

Schmidt number, while the modulation is characterized by the dimensionless frequency and

amplitude. We have only considered situations for which the fluid layer is stably stratified,

but have treated both the “fingering” and “diffusive” regimes of double-diffusive convection.

Calculations have been carried out both with and without steady background acceleration,

with the latter case being relevant to microgravity conditions.

As in the case of a single component system, sinusoidal modulation can destabilize a

mode that is stable in the unmodulated case, or stabihze an unstable mode, with the sta-

bility characteristics depending on the frequency of modulation and the degree to which the

thermal and solutal Rayleigh numbers differ from the unmodulated critical values. For large

frequencies the effect of modulation on stability decreases, so that the stability or instability

of the mode matches the unmodulated case. In addition to synchronous and subharmonic

response to the modulation frequency, which also occurs for the single component case, insta-

bility in the double-diffusive system can occur via a complex conjugate mode. In general, the

frequency (imaginary part) of the conjugate mode is unrelated to the modulation frequency.

In the Angering regime, where the solutaJ field is destabilizing, sinusoidal modulation

produces resonant lobes of instability that are relatively unaffected by the level of background

acceleration. When the unmodulated system is unstable there is a fundamental region of

instabihty having a synchronous response. However, in contrast to the single component case,

at subcritical values this fundamental region remains and becomes lobe-like (see Fig. 6).

In the diffusive regime the thermal field is destabilizing and oscillatory onset occurs in

the unmodulated case. With modulation the fundamental region of instability corresponds

to a complex conjugate pair. The regions of resonant instabihty which occur exhibit strong

coupling with the unmodulated oscillatory frequency, with sharp minima at multiples of this

frequency.

In the presence of gravity modulation the two component system exhibits more compli-

cated dynamical behavior. These calculations provide some insight into this behavior. In

the practical apphcation to directional solidification the behavior is further complicated since

the solute and temperature act over different length scales and the solid-hquid interface is

a free boundary. Further, the sohdification problem cannot be reduced to ordinary differ-

ential equations, and for typical metalhc alloys the Schmidt and Prandtl numbers differ by
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four orders of magnitude. Although calculations for directional solidification are in progress,

these factors limit the investigation; whereas for the model presented here, a wide-range of

conditions can be studied.
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Appendix I

Much as in the fingering case, in the diffusive case there is a fundamental mode which

is unstable for small modulation amplitudes when the magnitude Ra exceeds that of the

unmodulated critical value Ra*. In this case the fundamental mode is neither synchronous

nor subharmonic, so that Gi assumes values other than zero and a;/2; this is associated with

the instability of the unmodulated base state to oscillatory modes with non-zero g^. As Ra
decreases in magnitude to values that are subcritical with respect to Ra*, the fundamental

mode contracts to a region bounded by a separatrix for Ra = Ra*, and then for still smaller

magnitudes becomes a lobe located at higher frequencies; this behavior may be inferred by

comparing Figs. 7 and 8. The resonant modes do not show large modifications as Ra is

varied in the vicinity of Ra* (see also Fig. 10 for the behavior of the first two resonant modes

as Ra is varied).

The local behavior of the separatrix at small modulation amplitudes may again be de-

scribed by an expansion procedure in e. In the diffusive case, however, the separatrix does

not represent time-periodic marginally-stable solutions since g^ will generally be incommen-

surate with cj, and the procedure used previously must be modified. The more complicated

time-dependence is taken into account by representing the marginally-stable solutions in

Floquet form as

/ W{t) \m
C{t)

= e^'‘

W{t) \

©(f)

c{t) y

j

where the frequency cr, is to be determined, and the variables W{t)^ ©(0) ^(0
periodic with frequency lu. The governing equations then have the form

dW ^ ^
u— h iGiW = — + a})W +

dr

a^Ra

(tt^ + a^)
(1 -t- ecos t)A

Pr

a^Rs

(tt^ -1- a^)
(1 + ecos r)—

o c

+ za,Q — — (tt^ + — W,
dr Pr

and _ _

+ idiC = -(tt^ + ~
UT OC

where we have again written r = uit. For fixed Rs and Ra = Ra', we expand the variables

in the form
W{t, e) \

0(T,e)

C{t, e)

VFW(t) \

e(")(r)

V d"’ )

)

where the zero-th order solution corresponds to the unmodulated marginally stable stable

solution, with g-^^ given by the expression (10); the hmiting value of the forcing frequency

along the separatrix as e 0 is to be found as part of the solution. Higher order corrections
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to cj = a;(e) along the separatrix could be computed by an extension of the expansion, but

as we will not pursue this point, it suffices for our purposes to determine only the zeroth

order term We then have the leading order solution

/

0(“)(r) =r

C(°)(r) J v

— Pr/(7r^ -f -f iCiPi)

— Sc/(7r^ + + zo-jSc)

The first order solution satisfies = 0 and

where

/ \

0(i)(r)

C(')(r) ;

=

=

_ g

A

0'+>

j

+ e'

W^-'> \
0<->

C{-> j

(tt^ + ± aif^JJPr)

-Sciy|=^>

and

(tt^ + a2 ^ i a;(°)]Sc)

(0) w o 'iK ct^Rs
(tt^ + a^Y + i

a^Ra
]^(±) _ ^

(tt^ H- + z[cr|°^ ± a;]Pr). 2

(tt^ + ± u;]Sc)

Rs Ra

(tt^ + -|- ic7(°)Sc) (tt^ + + zcr(°)Pr)

The second-order system can be written in the form

u
dr

(
W(2)(r) \

0(2)(t)

CW(r) /

0(2)(7-)

cw(t) ;

+ K^).

where the time-independent matrix A is given by

A =

^ — (tt^ + -t- a^Ra[Pr(7r^ + — a^Rs[Sc(7r^ + ^

— 1 — (tt^

-

f + i(7f°^Pr)/Pr 0

— 1 0 — (tt^ H- + za,^°^Sc)/Sc
j

and the vector 6(r) is given by

6(t) = —ial
(2)

/ w(°) \

0(0)

V y

+
a'

/ (Ra/Pr)0^^^ cos T — (Rs/Sc)^^^^ cos r ^

(tt^ + a^)
V /
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We now can determine and uj = from a solvability condition by requiring the mean
component of 6(r) to be orthogonal to the null vector t] of the adjoint of A, where

/ 1 \

T] = a^Ra[(7r^ + -h — 2<7j°^Pr)]~^

^
— a^Rs[(7r^ + — 2a--°^Sc)]“^ j

The mean component of ^(t) is given in the expression

UJ

2t

1 \

— Pr/(7r^ + + iaf^^Pr)

— Sc/(7r^ -f-

+

2a-j°^Sc) j

+

2(7r2 + a^)
\

the solvabihty condition has the form

f (Ra/Pr)[0+ + 0r] - (Rs/Sc)[C+ + Cf] \
0

0 /

I O’.
(
2

)
1 +

a^RsSc a^RaPr

(tt^ + a2)(7r2 -f + zcrj^^Scj^ (tt^ + a^)(^Tr'^ + + 2(7)^^Pr)2
(
0 ).

2(7r2 + a^)

This complex-valued expression provides two real equations in the two unknowns and

and some numerical solutions are given in Table III for various values of the solutal

Rayleigh number Rs with Sc = 10 and Pr = 0.1. Also shown are the values of for these

cases as well.
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Appendix II

In the diffusive regime, the marginal stability curves of the resonant modes for Ra = Ra*,

uj ~ 2cr,, and e << 1 may be described by an expansion procedure. To do this, it is convenient

to rescale time by setting r = cjt, and expanding the variables as

/ W{T,e) \

0(t, £)

C(r, e)

‘^(e) /

W"W(r) \

©{n)(T)

C7W(t) )

where 0;^°^ = 2a^ and

(
0(°)(r) — e*“

C(°)(r) J V

1 \

— Pr/(7r^ 4- + zo-jPr)
glT/2

_j_

is the unmodulated eigenfunction; here the appropriate phase a is to be determined as part

of the solution procedure. The first order equations have the form

= A
C(^)(r) J

+

where the time-independent matrix A is given by

A =
f — (tt^ 4- a^) a^Ra[Pr(7r^ -f a^)]~^ — a^Rs[Sc(7r^ + a^)]“^ ^

— 1 —

0

— 1 0 + a^)/Sc J

and the vector 6(t) is given by

6(r) 0 (0) +
C(0) )

+

/

(Ra/Pr)0(°) cos T — (Rs/Sc)C7(°) cos r

1 \

— Pr/(7r^ 4- 4- icT^Pr)

^
— Sc/(7r^ 4- 4- i^T’iSc) )

e‘^/2 + C.C.+

a ( Rs/(7r^ 4- — zcTiSc) — Ra/(7r^ 4- — icTiPr) \

2(7r2 + a^)
V

gtr/2
4_^ c. 4-other harmonics.

/

A solvabihty condition for the existence of time-periodic solutions to these equations is that

the vector coefficient of in the above expression for 6(r) must be orthogonal to the

left eigenvector of A corresponding to the eigenvalue A similar condition in terms of
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the coefficient of and the left eigenvector with eigenvalue also holds; the two

conditions are related through complex conjugation. The left eigenvector with eigenvalue

satisfies A^t] = —iaiTj, and is given by

7
]
= a^Ra[(7r^ + — faiPr)]"^

\ — a^Rs[(7r^ + — zcTiSc)]"^
y

The solvabihty condition has the form

a Rs

2(7r2 + a^)
[
(tt^ + — ^a^Sc)

Ra

(tt^ + —

f a^RaPr a^RsSc— -U

2 [
(tt^ + a2)(7r2 + + 2(7,Pr)2 a^)[7r^ + io^Scy

If we write this expression in the form

then there are two solutions, one with = 0 and a = (^, and the other with = — /?

and a = <() + 7r/2. Evaluating these quantities for the case Rs = —300000, Pr = 0.1, and

Sc = 10.0 gives /? = 44.4876 and
(f)
= 0.1855. For e = 0.01, this approximation predicts a

frequency of = 190.1584 on one branch of the marginal curve, which agrees with

the corresponding numerical solution to six figures.
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Table I

Definition of Symbols

Dimensional Parameters

solute diffusion coefficient D cm^/s

thermal diffusion coefficient K cm^/s

thermal expansion coefficient a K-^
solutal expansion coefficient P wt%~^

kinematic viscosity V cm^/s

thickness of layer d cm
gravitational field g = —g{8 + ecosQt)z cm/ s^

reference gravitational acceleration 9 cm/s^

modulation frequency a s~^

Dimensionless Parameters

relative amplitude of steady component of acceleration

relative amplitude of modulated component of acceleration

Prandtl number

Schmidt number

thermal Rayleigh number

solutal Rayleigh number

dimensionless modulation frequency

8

e

Pr = 1///C

Sc =ulD
Ra = gaATd^
Rs = g/3Acd^/(uD)

LJ = Qd^u
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Table II

Separatrix for Fingering Case

Ra Uq IjujQ X 10

10,000 188.2 0.531

5,000 137.6 0.727

2,000 95.4 1.049

1,000 76.6 1.305

500 66.2 1.510

250 62.4 1.601

100 66.9 1.495

50 79.4 1.260

20 120.7 0.828

10 224.8 0.445

7 673.2 0.149

6.642 oo 0
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Table III

Separatrix for Diffusive Case

-Rs -Ra 0)
l/cjo X 10^ X 10^

300000. 1030.495 94.8568 236.33 4.23133 887.22

250000. 980.495 86.5899 245.42 4.07461 419.96

200000. 930.495 77.4455 263.74 3.79163 181.45

150000. 880.495 67.0657 307.59 3.25107 57.110

100000. 830.495 54.7522 510.55 1.95869 4.34146

90000. 820.495 51.9404 722.12 1.38481 0.970315
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Figure Captions

Figure 1. Stability diagram for unmodulated thermosolutal convection.

Figure 2. The relative modulation amplitude e at the onset of thermal convection versus the

inverse of the frequency I/lj for sinusoidal gravitational acceleration. Shading with vertical

lines represents subharmonic instability and shading with horizontal lines a synchronous

instability.

Figure 3. The relative modulation amplitude e at the onset of thermosolutal convection

versus the inverse of the frequency Iju for sinusoidal gravitational acceleration. Shading

with vertical lines represents subharmonic response and shading with horizontal lines a syn-

chronous response. Crosshatched lines indicate a doubly unstable region characterized by

the presence of complex conjugate pairs in the solution sets for a.

Figure 4. The relative modulation amplitude e at the onset of thermosolutal convection

versus the inverse of the frequency 1/u; for sinusoidal gravitational acceleration. Without

modulation the system is unstable.

Figure 5. The relative modulation amplitude e at the onset of thermosolutal convection

versus the inverse of the frequency l/o; for sinusoidal gravitational acceleration. Without

modulation the system is stable.

Figure 6. Synchronous response to the onset of modulated thermosolutal convection for

values of Rs above and below the critical value of 1657.

Figure 7. The relative modulation amplitude e at the onset of thermosolutal convection

versus the inverse of the frequency l/cj for sinusoidal gravitational acceleration. Vertical

shading lines represent a subharmonic instabihty; horizontal shading lines represent a syn-

chronous instability; diagonally intersecting shading lines indicate instability via a complex

conjugate pair.

Figure 8. The relative modulation ampUtude e at the onset of thermosolutal convection

versus the inverse of the frequency l/o; for sinusoidal gravitational acceleration. Shaded

regions are unstable.

Figure 9. The relative modulation amphtude e at the onset of solutal convection versus the

inverse of the frequency Iju for sinusoidal gravitational acceleration.

Figure 10. The minimum values of the relative modulation amplitude e on the neutral

stability curves for the highest frequency subharmonic mode (soHd curve) and the highest

frequency synchronous mode (dashed curve) for values of the thermal Rayleigh number

ranging from Ra = Ra* down to Ra = 0.

Figure 11. The relative modulation amplitude e at the onset of thermosolutal convection

versus the inverse of the frequency l/o; for sinusoidal gravitational acceleration in the absence

of background acceleration. Shaded regions are unstable.
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