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ABSTRACT

A closed-form, integration-based, and massively-parallel algorithm for

determining depth of points in 3-D using one moving camera is presented. It is

based on analyzing a sequence of images that result from a known rectilinear

motion of a camera (with no rotation) in a stationary environment. A

traceable point in an image sequence is reconstructed using an integration

operation (no differentiation operator is involved).

The method arose from two simple observations:

(1) Stationary points in the 3-D scene appear to move away from the

focus of expansion (FOE).

(2) The distance of a point in 3-D space from the camera motion-axis is

the same at all instants of time.

Any visible moving point in the image can be processed independently of,

and concurrently with, any other point. Laboratory results for the case where

the optical axis is parallel to the motion axis show an error of less than 0.6% in

absolute distance.

1. INTRODUCTION

This paper presents a new, robust, integration-based, and massively

parallel algorithm for determining depth of points in 3-D using one moving

camera. It is based on analyzing a sequence of images that result from a

known rectilinear motion of a camera (with no rotation). A traceable point in

the image sequence is reconstructed using an integration operation.

The method arose from two simple observations:

(1) Stationary points in the 3-D scene appear to move away from the

focus of expansion (FOE) (or toward the focus of contraction).



(2) The distance of a point in 3-D space from the camera motion axis is

the same at all instants of time.

Observation (1) provides the concurrent processing property since each

image radial line can be processed independently. Using the rather than

the X-Y image-plane coordinate system, the algorithm becomes very simple

(constant
<J)

corresponds to a radial line that emerges from the FOE; constant

0 corresponds to a circle in the image plane whose center is the FOE).

Tracking a point in the image sequence is directional (i.e., along constant ^

line) and thus computationally inexpensive. In fact, each point on a constant

$ line can be processed on a separate processor. Assuming that 0 and d0/dt

of a point in the image plane are known as well as the speed of the camera,

then the location of the corresponding point in space can be explicitly

calculated. In the proposed method d0/dt is not measured, but indirectly

calculated using an integration operation. One of the major advantages of this

technique is that the integration operator "smoothes out” errors caused by

unfocused camera, camera’s noise, (x-y) to (0-<l)) image conversion error,

inexact edge location, non . ideal motion of the camera, etc.). Also, the method

is more appropriate for structured environments.

Using this method the distance of a traceable point from the axis of

motion of the camera can be obtained. Given this distance and the location of

the point in the image plane, the location of the point in 3-D in camera

coordinates can be explicitly found.

In a set of experiments we obtained the distance of a point from the

camera’s axis-of-motion (which in our case, is also the optical axis of the

camera). An accuracy of 99.4% has been achieved from a sequence of 40

images. We anticipate significantly smaller error when the camera’s optical

axis is perpendiculr to the motion axis.
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Related work deals with depth estimation from two consecutive images,

[3-6] from a larger sequence of images [1,2,7-9,12], using mainly optical flow

[3-9,12,20,21], temporal and spatial brightness gradients [1,10,11,18],

correlation-based methods [20] and epipolar analysis [2].

2. THE 0-4) DOMAIN

During a rectilinear motion (with no rotation), points in the image plane

move away from the FOE (Figure 1). Based on this observation we use for our

method an angular 0-^) (rather than X-Y) image plane. Figures 2 and 3 show

the chosen coordinate system and the definition of the angles 0 and
(J)

:

Constant $ corresponds to a radial line that emerges from the FOE, and

constant 6 corresponds to a circle whose center is the FOE. Clearly, a point

(x,y) in the (X-Y) plane can be transformed to a ( 0-(}) ) point in the (0 - <1>)

plane and vice versa.

We assume that the camera moves in a known rectilinear motion. Using

the 0 - <|) coordinate system, any point in the image plane moves along a

constant
(J)

line. This fact provides concurrent processing capability (each

constant can be processed separately and independently of any other $

line). Also each point on a constant
(J)

line can be processed independently of

other points that lie on the same line. As will be shown later, the expression

for the distance of a point in space from the camera pinhole is independent of

4). A constant
(J)

line can be processed as a ID image. Figure 4 shows an

example of the time evolution of a 1-D image.

3. THE 3-D RECONSTRUCTION ALGORITHM

Using the 0 - ^ coordinate system we show a simple way to find the 3-D

location of a point in space. Along a constant $ line, for small enough changes
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in time and continuous speed V(t) of the camera, the following calculations

hold for the point P (Figure 5). Assume a pinhole model of the camera, then:

Af = V(t)Atsin 6(t) (1)

A€ = Rit)tan A0(/) (2)

From (1) and (2) and for At-O we get (note that tan A0(t)==' A0(t) for A0(t)->-O):

V^_
RU)~

dm)

dt

sinm)

(3)

With a known V(t) and measured 0(t) and d0(t)/dt, R(t) can be calculated

from Equation (3). Now let us consider Figure 6. During rectilinear motion

the distance d is constant at all times. By substituting

in (3) we get

R{t) =
d

sinm)
(4)

or

m _
d

dmydt

sin^it)
(5)

dm) vit)
. 2^,,= Siam)

dt d
(6)

Integrating d0(t)/dt with respect to time yields:

and thus

e«2)-9a.)=i
<2

V{t) sin^G(t) dt

h

(7)

<2

V{t) siri^m) dt

(8)

m^)-m^)
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For a moving camera the expression for d in equation (8) is based on

integration and is the same for all ti, t2(ti=tt2 ). Given d, 6, and (}), the 3-D

location of a point can be explicitly calculated. By combining Equations (6)

and (8) an integration-based expression for d0(t)/dt is obtained:

d0(^) o
= V’(^) sinQit)

dt

eap-eUj)

2 9
VU)sinQ{t)dt

Note that the ratio

eu2)-0(^i)

V(^) sm^GU) dt

(9 )

( 10 )

in Equations (8) and (9) can be computed independently of the time instant for

which the value of d0(t)/dt is desired.

For the special case where the speed of the camera is constant, i.e., V(t) =V

and

d=V

2 9
dt

e(/2)-e(^i)

de it)

dt
= sin^S(t)

e(<2)-e(^i)

<2

sin^Q(t) dt

( 11 )

( 12 )

The latter result is independent of V.

The relations (8) and (9) can also be expressed as time independent

expressions. By substituting dx = V(t) dt in equations (8) and (9) we get:

^2
2

sinQ(x) dx

e(x2)-0(a:j)

( 13 )
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and

dd ix) sin^Qix)

dx d
( 14 )

where x is the location of the pinhole point along the path of motion, and e(x)

is the angle 6 of the point p at location x.

4. EXPERIMENTAL RESULTS

A set of experiments have been conducted to test the proposed method. First

we describe the environment, then explain the experiments and finally show

the results.

4.1. Set Up (Refer to Figure 7)

A CCD video camera is attached to an IBM 7565 gantry robot which has

six degrees of freedom. The optical axis of the camera and its direction of

motion coincide. The camera, with a field ofview of about ± 12° was manually

focused on the object at its initial position only. It moves in such a way that its

distance from the object varies from 1125.2 mm to 299.7 mm. Dark objects

placed on a white background are used in this experiment for better contrast.

The images are processed on a PC-based vision system and the relevant image

parameters (in our case, the edges) are extracted to subpixel accuracy. Since

the algorithm is parallel and each ^ line can be analyzed independently we

chose for this experiment
(J)
= 0 and

(J)
= n lines only (Figure 3). Similar

processing could be applied to other values of the angle
(J)

as well.

4.2. Finding Edges in an Image

Due to image digitization, focusing problems, etc. edges in the image are

not sharp. For example, a 1-D image may look like Fig. 8a.

Certain cacnmercial equipment, instruments or materials are identified in this paper in order to adequately specify the experimental

procedure. Such identification docs not imply recommendation or endorsement by the National Institute of Standards and

Technology, nor does it imply that the materials or equipment identified are necessarily the best available for the purpose.
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For the pixels near an estimated edge we used polynomial approximation

and a brightness threshold to estimate the edge location. Refer to Fig. 8b.

4.3. Moving Along the Optical Axis

In order to assure that the axis of motion coincide with the optical axis, the

robot was moved toward and away from a circular shaped dark object along the

X axis (Figure 7). At each position we detected edges of a dark circle relative

to the center of the image. The other five degrees of freedom of the robot were

used to change the position and orientation of the camera such that, finally, at

all positions of the camera along the motion axis, the circle appeared in the

middle of the image.

4.4. Pixel Location Conversion

For the algorithm to work we converted (x-y) to (0-(})) at each pixel. As

mentioned earlier, we used ({> = 0 and $ = n radial lines. The conversion

resulted in a look-up table which is pictorially shown in Figure 9. dpixel is the

pixel number from the central pixel.

4.5. Measurement of Distances

We showed our system a new object and computed distances from the axis

ofmotion to a point on the object. In this experiment the optical axis is parallel

to the direction of motion. Forty images were taken every 0.635 mm and

processed. The initial range from the focal point to the object was 972.8 mm.

We used (13) to estimated the distance ”d”. The following table summarizes

the results. For integration purposes we assumed first order polynomials

between two consecutive points, i.e. 0(x) between two consecutive

measurements of 0 estimated to be on a straight line connecting the points

(Xi, .0(xi)) and (Xi + i,0(Xi + i)).

In Table 1 we show the measurements errors. As mentioned earlier, a

total of 40 measurements were taken when grouping the measurement into 36

sets of 5 images each, that is
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images 1,2,3,4,

5

images 2,3,4, 5,

6

and images 36,37,38,39,40,

and computing the distance ”d” from (13) for each set, there were different

results for ”d”. When averaging the results obtained from the 36 sets, the

average error was 2.08%. The average of absolute error of ”d” was 12.82%.

One of the 36 sets resulted in 0.13% error.

Similar computations were done for 10,20,30,38, and 40 images in each

set. Note that for a set of 40 images the error was 0.56%.

TABLE 1: RESULTS

# of
images

Camera
location

increment
in mm

#of
images'

sets

Average
error of d

in %

Average
of

absolute
error of d

in %

Minimum
absolute
error of d

In %

5 0.635 36 2.08 12.82 0.13

10 0.635 31 0.71 8.77 0.62

20 0.635 21 3.38 4.97 0.01

30 0.635 11 2.67 2.67 0.18

38 0.635 3 0.32 0.60 0.42

40 0.635 1 0.56 0.56 0.56

5. CONCLUSIONS

An algorithm for depth estimation of a traceable point has been

presented. In 0-^> coordinates all traceable points in the image can be

concurrently reconstructed. Due to the integration process the points whose 3-
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D locations are desired do not have to be reliably traced. Errors caused by an

unfocused camera, camera noise, (X-Y) to (6-(})) conversion, non-ideal motion

of the camera, etc. are "smoothed” by the reconstruction algorithm. The

method may also work for object features such as centroids of 2-D objects.

Centroids can be more reliably traced than visible feature points. The location

of the FOE is assumed to be known. In many practical cases this is not the

case. However, the FOE can be obtained using methods as described by Jain

[16], Nagahdaripour et. al. [17], Vitoria Lobo at el. [19], or by using an inertial

navigation system. An average absolute error in distance measurements of

0.56% for 40 images has been obtained in the case of a camera optical axis

which is parallel to the motion direction. Better results may be obtained with

an improved calibration process, a focused camera, higher camera resolution,

better robot, wider range of 0, largers 0’s (in particular 0 near 90°), more

sampled images, improved edge detection methods and better numerical

integration methods.
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Figure 7. A Camera Mounted on the IBM 7565 Robot.
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