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Abstract

In this paper we describe a new phase-field model to describe isothermal phase tran-

sitions between ideal binary alloy solution phases. Governing equations are developed

for the temporal and spatial variation of the phase field, which identifies the local state

or phase, and for the composition. An asymptotic analysis as the gradient energy co-

efficient of the phase-field becomes small shows that our model recovers classical sharp

interface models of this situation when the interfacial layers are thin, and we relate the

parameters appearing in the phase-field model to material and growth parameters in

real systems. We identify three stages of temporal evolution for the governing equa-

tions; the first corresponds to interfacial genesis which occurs very rapidly; the second

to interfacial motion controlled by diffusion and the local energy difference across the

interface; the last takes place on a long time scale in which curvature effects are im-

portant, and corresponds to Ostwald ripening. We also present results of numerical

calculations.

Permcinent address: School Of Mathematics, University Walk, Bristol, BS8 ITW, UK.



1 Introduction

Classical macroscopic models of phase transitions describe the interface between regions of

different phase as a surface of zero thickness. The governing equations for thermodynamic

variables, such as temperature and composition, are formulated in each phase independently,

based on conservation principles and quantitatively verified phenomenological laws that re-

late fluxes to gradients. The boundary conditions at the interface are of two types: those

which represent conservation laws when there are discontinuities in the thermodynamic vari-

ables or their gradients, and those which deal with the values of the thermodynamic variables

at the interface and are based on modeling of the interface on an atomic scale. This approach

gives rise to the formulation of a free boundary problem which provides a difficult mathe-

matical setting in which only phase changes with simple configurations have been rigorously

analysed mathematically. Because these models have been used for many years, it is clear

from the outset what physical mechanisms are incorporated into them, and comparison with

carefully controlled experiments have been performed, e.g. the dendritic growth experiments

of Huang and GHcksman [1] and the grain boundary groove measurements of Hardy [2].

An alternative technique for investigating systems involving a phase transition involves

the construction of a Cahn- Hilliard or Landau-Ginzberg free energy functional, which unlike

the classical model treats the system as a whole. This approach has its roots in statistical

physics (see e.g. Landau and Khalatinikov [3]). For this purpose, a phase field, (^(x, t), is

postulated to exist, which characterises the phase of the system at each point in space and

time. It is assumed that the Helmholtz free energy ...], is a functional of the phase

field, as well as any other thermodynamic variables (such as temperature and composition

which are denoted here by ellipsis), and their gradients, in the following way:

•••] =
_(

[M, • ) + + . .

.]

dn,
(
1
)

where Q is the region occupied by the system, and /(<^, ...) is the Helmholtz free energy

density for a phase with no gradients. Its dependence on usually has a “double-well” form.

Here we assume that the only contribution to the energy functional from local gradients is

that of the phase field; a more general model might also include contributions due to the

gradients of the other thermodynamic variables. The phase field is then assumed to evolve
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as:

^oc£(^), (2)

where £ is some partial differential operator, such that £(0) = 0. This equation is then

supplemented by partial differential equations for the other thermodynamic variables.

In some situations the composition naturally plays the role of the phase field, in which case

the double-well in the free energy occurs with respect to composition. Cahn and HiUiard

[4, 5, 6] have used this approach to model interfacial energies, nucleation and spinodal

decomposition in a binary alloy. Also Langer and Sekerka [7] have modeled the motion of a

planar interface using this approach.

More generally, various models that employ these ideas are reviewed by Halperin, Ho-

henburg and Ma [8], particularly in regard to the study of critical phenomena. The Model

C given by Halperin et al. has been adapted by Langer [9], Fix [10], and most prolifically

by Caginalp [11], to derive the so-called “phase-field model” of solidification which describes

the phase change of a pure material. Caginalp has studied this model, and its variations

[12, 13], extensively. In this model the phase field is required to evolve according to:

= = <!>") + (3)

where a, a, and ( are non-dimensional constants. A non-dimensional temperature, T, satis-

fies the heat equation, modified to allow for latent heat production as a source term propor-

tional to <^t:

Tt + 1^. = KV^T, (4)

where I is the latent heat production. The Helmholtz free energy density used by Caginalp

is:

= (5)

where T = 0 is the phase transition temperature.

It has emerged from study of this model that quaHtatively it exhibits features common to

soHdification of a pure material. Numerical calculations by Smith [14] and by Socolowski and

Caginalp [15], and for a similar model by Kobayashi [16], show such features as breakdown of

planar and circular interfaces to cellular structures, as well as the formation of dendrite-like

structures, inclusion of liquid pockets, and Ostwald ripening or coarsening behaviour.
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Caginalp [12] has shown in various distinguished limits, in which ^ ^ 0, that various

forms of the classical Stefan problem may be recovered, in which the interface is taken to be

“sharp” i.e. modeled by a surface. In this limit, there are thin layers within Q, of thickness

0{i) in which the phase field rapidly changes. These are interpreted as representing diffuse

interfaces. From this analysis it transpires that in some limits, the interfacial dynamics

involve curvature effects corresponding to the Gibbs-Thomson interfacial surface energy effect

as well as kinetic effects. In other hmits, it is also possible to recover the classical Hele-Shaw

problem. It is clear that this approach can embody a considerable variety of reafistic physical

effects in a coherent way.

When applying the model above to a definite physical situation it is not clear how to

choose the values of parameters in the phase-field model so that it describes the solidification

of a pure material with known materials and growth parameters. Such a choice of parameters

is essential to permit comparison with experiment. Also the free energy functional is only

employed in the formulation of the kinetic equation for the phase field and not for the

temperature. An alternative approach, as suggested by Penrose and Fife [17], is to construct

an entropy functional of the system, and postulate kinetic equations for (j) and T which

ensure that the entropy increases monotonically in time, as required by the Second Law of

Thermodynamics

.

The appeal of phase-field models in describing phase transitions is twofold:

• It provides a simple, elegant description, that appears to embody a rich variety of

realistic physical growth phenomena.

• From a computational point of view, it is relatively simple to obtain solutions. This is

because it is not necessary to distinguish between the different phases. Computations

that employ the classical sharp interface formulation require the free boundary to be

tracked numerically, and the regions occupied by each phase are therefore determined

and dealt with individually. Added difficulties with the classical method are encoun-

tered when the connectedness of the solid or liquid regions change in time. These

considerations often result in very difficult and untidy numerical algorithms.

In this paper we derive and analyse a new phase-field model for isothermal phase tran-
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sitions of a solution of two components. In an isothermal system the driving force for phase

transformation is developed through the growth of a product phase into a supersaturated

parent phase. To our knowledge, there are to date no phase-field models that deal with im-

pure materials and alloys. The model presented here is a first step to developing a phase-field

model for the solidification of an alloy. In future work we hope to incorporate this model

in a formulation based on increcising entropy, which will then allow both variations in tem-

perature and composition, and provide a phase-field model for commercially important alloy

sohdification processes used in such things as the fabrication of modern electronic devices

and directionally solidified turbine alloys.

In section 2 we discuss the phase-field model of a pure material due to Kobayashi [16],

and use it as a basis to derive our isothermal phase-field model for growth of binary alloys.

We employ a kinetic formulation which ensures that the Helmholtz free energy decreases

monotonically in time. In the following section we consider the sharp interface limit. This

shows the correspondence of our phase-field model with classical sharp interface models, and

allows us to relate the materials parameters in the phase-field model to those of the classical

Stefan problem.

We show that the time evolution of the system occurs on three scales. There is an initial

very short period in which interfaces form. It is a response of the system to the initial data

and does not necessarily represent the process of nucleation. This is followed by a second

period in which the interfaces move in response to the energy density difference across them.

In the third and final period coarsening occurs, in which the interfaces move very slowly,

primarily in response to changes in curvature. In section 4 we discuss the motion of a planar

interface and show how segregation is dependent on the interfacial growth rate in this model.

In the last section, we present results from a numerical integration of the model, which bear

out the results of section 3 and 4 and show the power of this formulation.
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2 Problem Formulation

2.1 The Governing Equations

We consider an isothermal solution of two different components A and B which may exist

as two distinct phases, solid and liquid, contained in a fixed region Q with boundary dO..

We denote the concentration of B by c(x, t) and we introduce a phase field (^(x, t) which

represents the phase in time and space in Specifically, we describe the solid-hquid interface

by <^(x, t) = 1/2 and denote regions where <^(x, t) > 1/2 as sohd and regions where <^(x,t) <

1/2 as Hquid.

A recent phase-field model due to Kobayashi [16] models the phase transition of a pure

material by employing the following gradient weighted free-energy functional:

dn.
(6 )

where e is a constant, T(x, t), is the temperature and the free energy density is

fi^,T)=f%{p-l){p-^-/3iT))dp. (7)
Jo

Here 0{T) is a monotonic increasing function of T, such that P{Tm) = 0, where Tm is the

freezing temperature of the material, and \P[T)\ < 1/2. The free energy density f((t),T)

is a double-well potential in (j>^ see Figure 1. The restriction \^{T)\ <1/2 ensures that it

has local minima at <^ = 0 and (^ = 1, and a local maximum at = 1/2 Because

of the two minima, the system may exist stably in a state which is a single phase liquid

((^(x, i) = 0) or a single phase solid (<^(x,t) = 1). There is an energy penalty for a change

of phase within the region fl, which corresponds to (j) varying between zero and unity. This

is because such a variation increases the total energy of the system, due to an increased

energy density associated with the double-well nature of the energy density, and also due to

the contribution to the total energy due to the gradient energy, which is no longer zero.

If — 1/2 < /3 < 0, i.e T < Tmi then the global minimum of the energy density is at (^ = 1,

and so the single-phase sohd has the lowest energy. However, if 0 < /3 < 1/2, i.e T > Tm

then the situation is reversed, and the single-phase hquid has the lowest energy.

We now employ this form for the free energy density to develop the appropriate free

energy density for an isothermal solution in which the two different phases are assumed to be
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ideal solutions. We assume that where and are the freezing temperatures

of pure A and pure B when c = 0 and c = 1 respectively. We assume that the actual

temperature of the solution, T, which is given, hes between these two freezing temperatures,

i.e. > T > T^. We also assume that the Helmholtz free energy densities of each

component A and B aJone are of the form given by Kobayashi, and are denoted by /^((^; T)

and respectively. SpecificaJly we put:

fA{cl>;T) - Wa [%{p - l){p - i - fiA{T))dp, (8)
Jo

fB{<l>;T) = Wb f%{p
- l){p - - MT))dp, (9)

where Wa,Wb are constants, ajid the temperature T is a parameter in this isothermal

situation. We note that because < T < then —1/2 < Pa{T) < 0 < Pb{T) < 1/2.

We take the energy density /(<^, c;T) of the solution as:

f{4>,c-,T) = c/b(i^;T) + (1 - c)fA{^;T) + [c logc + (l - c) log(l -c)], (10)
I'm

where R is the universal gas constant constant and Vm is the molar volume, which is assumed

to be constant. The first two terms correspond to the contribution to the energy density

due to the individual molar Helmholtz free energies densities of the two components and the

last term is due to the decrease in energy associated with the mixing of the two components,

under our assumption that both liquid and sohd phases are ideal solutions. In Figure 2 we

represent the free energy density (10) as a surface. This model could easily be extended to

the case of a regular solution by adding a term of the form c(l — c)[n£, + — Ql)] to the

free-energy density /(c, ^), where and Qs are thermodynamic constants.

We define the free energy functional by:

n^,c;T]= fJn
dCl.

(
11

)

In order to derive a kinetic model we make the assumption that the system evolves in time

so that its total free energy decreases monotonically. The following prescription is consistent

with this cLssumption and ensures that the total amount of solute is conserved:

d<j>

It (
12

)
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| = A/.V.(<l-c)vf (13)

where Mi and M2 are positive constants. The choice of boundary conditions

d<l> _ dc

dn dn
(14)

where n is the outward normal to the boundary 50, ensures that there is no change in the

total composition of the system due to transport across its boundary and that the Helmholtz

free energy decrecises monotonicaJly with time. We may interpret the right hand side of (13)

as the negative of the divergence of a solute flux, j
= —

M

2c(l — c)V{8!F/ 5c). The coefficient

c(l — c) has been included to ensure that the diffusion equation for the solute that emerges

has a diffusion coefficient that is not dependent upon composition.

Evaluating the variational derivatives of the free energy functional gives:

dt

dc _
dt

"V
)

which may be also written by using (10) as:

dt
= Mi

dc

dt
M2V • (c(l

d<t> d4>

c)V{fA - fa)) + DV^C,

(15)

(16)

(17)

(18)

where D = M^RTIvm is identified as the diffusivity of the solute. We note that in this

formulation the solute diffusivity is the same in each phase; this restriction could be overcome

by allowing the quantity M2 to depend on <!>.

We now nondimensionalise these governing equations by introducing the following di-

mensionless quantities (denoted by a tilde):

7*2 nm
x = rx, t=—i, T = T*f, / =—/, (19)

IJ Vm

where I* is a representative length of the system 12, T* = {T^ -}- 3j§)/2 is the average of the

melting temperatures of the two constituents, and time has been scaled on the diffusive time

scale. Here / = /(<^,c; f) = cfB{(j>\f) + (1 - c)fA{^; f) -f [c logc-f- (1 - c) log(l - c)], where
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fAi4>; f) = Wa So pip
- l)(p - 5 - PA{f))dp, fsi^’, f) = Wb So p{p “ 1)(p “ 5 - PB{f))dp,

Wa = Wav^IRT and Wb = Wbv^IRT.

The governing equations, (17) and (18) can then be written as

where

Ml =
DVrrv

. _ £ ! Vm

I* V RT*

(
20

)

(
21

)

(
22

)

2.2 Relationship Between Materials Parameters of the Phase-

Field Model and Sharp Interface Theories

In order to determine the relative magnitudes of the dimensionless parameters and to per-

mit application to real materials systems, it is necessary to obtain estimates for the seven

materials-related parameters of the alloy phase-field model. They are e, Wa, Wb,/3a{T),/3b{T),

Ml and M2 . The parameter M2 has already been related to the diffusion coefficient as

D = M2RTjvm, through the similarity of (18) (when (/> is identically zero or unity) to the

linear diffusion equation.

We proceed to develop expressions that relate the parameters e^Wa, Pa{T) and Mi to

parameters common to sharp interface theories for pure A. These parameters are: aa, solid-

liquid surface energy of a stationary planar interface; La, the latent heat of fusion per unit

volume; and the linear kinetic coefficient, which relates the normal interface velocity

to interface temperature by

K = HAiT^ - T). (23)

This data (or estimates of it) is available for most pure materials. The corresponding iden-

tification of parameters for the case of pure B is completely analogous. We consider each

parameter separately in turn.
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2.2.1

Energy Difference Between Phases

The difference in free energy between solid and liquid phases is known as a function of

temperature. This quantity, /^(l; T) — /a(0; T), is often approximated by a linear function

of temperature near the melting point as:

h{l; T) - Ua-, T) =

Evaluation of this free energy difference from the integration of (8) gives

WaPa{T)

(24)

hence

fAil-,T)-fA{0-,T) =

WaMT) La{T-T^)
6

(25)

(26)

2.2.2

Free Surface Energy

An expression for the excess free energy of the interfacial region over the bulk phases

has been derived for an interface with a nonconserved order parameter (the case employed

in our phase-field model) by Allen and Cahn [19]. With change of notation this is

= e
'JfA{<i>-,T)d4>. (27)

Evaluation of this integral (at T = Tm) using the form of the free energy density given by

(8) yields

cja =
12

(28)

2.2.3

Interface Kinetics

We consider the one-dimensional solution of (15) for a pure material, c = 0 or c = 1, (see

Hajowell and Oxtoby [20]) which represents the uniform motion of a planar, diffuse interface.

Transforming to a frame moving with constant velocity Ki, (15) has a steady solution which

satisfies

dx^ Ml dx d<l>

10



The only solution with the property that ^^lascc—>— oo and 0 0 as cc —^ +oo is

T -1

^(i) = l + exp\xJ^ (
30

)

and this solution only exists when

V„ = -Mj6/3A(T)y/^. (
31

)

We see from the form of the solution (30), or from Allen and Cahn [19], that the thickness

of the interface Sa is characterised as

Sa =

Equations (26) and (31) give

Vn = -6MieLA‘

Wa
(32)

W, qnA (33)

from which by comparison with (23) we find

6MiLaSa=
ta
-L HA

(34)
M

Equations (26), (28) and (34), derived from comparison with classical sharp interface

theory, provide three relations for the four unknowns e, W^,/?>i(r) and Mi. In addition,

information is required about either the height of the maximum of the double-well potential

(I40i/64 at T = T^) or the interface thickness 8a to uniquely establish values for all pa-

rameters. In some cases, such as spinodal decomposition, the height of the maximum of the

double-well potential can be estimated from a regular solution model of the phase and the

proximity of the critical point. In the present application to liquid- solid reactions, such an

approach is not currently possible. We therefore choose to treat the interface thickness as

an input parameter, in which case the values of the phase field are related to the classical

data as I

(35)

Wa = 12^2°^^

JWi =

Sa

6La5a’

(36)

(37)
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(
38

)
(
LaSa \ (

T-T^ \

\2v^(jyi/ V )

by employing equations (26), (28), (32) and (34).

We emphasize that whatever choice we mcike for the interface thickness the resulting

values of e, Wa,/3a(T') and Mi provide a model that has the required free energy change,

surface energy and kinetics to match the classical theory.

To treat the alloy case at hand in the present paper, the last four equations would be

evaluated for each pure component. However, because we have assumed that e and Mi

are constant and do not depend on composition, we are restricted in the choices for some

parameters. To ensure that single values of e and Mi are obtained, the following restrictions

must be satisfied:

— — —
o-A ’

fJ'A _ La

fiB ^B Lb

(39)

(40)

These restrictions could be removed by choosing both e and Mi to depend linearly on com-

position.

Numerical values of these constants can be estimated for the alloy system Ni-Cu. The

liquid-solid part of this phase diagram closely resembles that for the ideal solution model

assumed in this work. Values for the parameters are taken primarily from Coriell and

Turnbull [22] and are given in Table 1. The dimensionless parameters e and Mi can be

calculated from the data in Table 1. For a length scale /*, we chose a dimension typical of

cellular and dendritic structures of 100/zm. Using the data in Table 1 and T* = (2m + Tj^)/2,

we have e = 9.6 x 10~®, and Mi = 8.5 x 10^^. These values, along with equations (20)

and (21), provide a complete formulation for the calculation of isothermal phase transition

(solidification) in the Ni-Cu alloy.

3 Asymptotic Analysis: The Limit e — 0.

In this section we analyse the system in the limit e — 0. We restrict our attention to the

situation when the domain Q is two-dimensional. We assume that (j) and c satisfy Neumann

conditions on the boundary, so that the total amount of solute is conserved and the free
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energy of the system decreases monotonically in time. In particular, we consider the spatio-

temporal evolution of the concentration and phase field from given initial data. We require

that the initial data, Ctntt(x) and for c(x, t) and ^(x, t) respectively is bounded in the

interval [0,1], i.e. 0 < Cinit(^) ^ Ij 0 < <^mtt(x) < 1, and satisfies the Neumann boundary

conditions. We emphasize that because of the generality of this initial data it does not

necessarily represent a physically realistic initial state.

We assume that the contribution of the gradient energy is much smaller than that of

the free energy density and so « RT* jvyn^ and hence e << 1. Further, we assume

Ml >> 1 and in particular we put:

M
Ml = —

,
(41)

e

where

D \ Vm

In fight of the values of Mi and e calculated above for the Ni-Cu alloy such assumptions are

clecirly justified.

The governing equation for the phase field becomes:

(43)

and that for the composition is unchanged from (21). Below we shall consider the limit

e —^ 0, which corresponds to considering the situation when the mobility of the phase field is

very large and the thickness of the interfaces is very thin. We note that this represents one

distinguished limit of the governing equations (21) and (43), which we show below provides

a realistic model of phase transitions in isothermal alloys. Other distinguished limits are of

course possible, as for instance considered by Caginalp [12], in his analysis of the phase-field

model of a pure material.

In the limit e ^ 0 the diffusivity associated with the phase field, which is Me, becomes

small, cind results in the formation of interior layers within the region Q, in which the phase

field and the concentration vary rapidly, the former from zero to one. Such layers represent

solid-liquid interfaces. In this section we seek to derive the jump conditions which relate the

concentration field and its derivatives in the vicinity of such layers to their normal velocity

13



and curvature. We first consider the outer solution in regions away from the interfacial

layers.

Henceforth we only deal with dimensionless quantities in the governing equations, and

for simphcity of notation, we omit the tilde’s.

3.1 Outer Solution

To proceed we seek an outer solution as a regular perturbation in e. Thus we put:

^(x,<) = + e^(^)(x,f) + C>(e^), (44)

c(x,t) = + 0{e^). (45)

The leading order problem is

|f(^W.c(«)) = 0. (46)

— = Vc(°)(l - c(°)) • V(/^ - /b) + (47)

from (46) we find that = 0 or =
1, depending on whether the region is all Hquid

or all solid respectively. (The other extremum of / represents an unstable maximum of the

energy, and need not be considered.) It follows then from (47) that the leading order solute

field simply satisfies the diffusion equation:

^ (48)

The governing equations for the first order corrections may also found in a similar way;

however, it is easily shown that there are no contributions to
<l>
beyond the leading order

terms, i.e. is exactly zero or one as appropriate.

Because of the generahty of the initial data that we have allowed, the initial conditions

will not necessarily correspond to (j) zero or unity. In such a situation it is simple to show

that there is an initial fast transient, on a time scale 0(e), in which <!> attains the value

zero or unity for cdmost each x E depending on the value of the initial data for
(f)

at x.

After this short period there will, in general, be large gradients in <j), which represent the

interfacial layers. During this short initial period interfaces are created. It is their subsequent

development which we now consider.

14



3.2 Inner Solution: The Interfacial Layer

We assume that the interfacial layer ((^(x,t) = 1/2) is given by the curve r(t). We introduce a

local orthogonal coordinate system (^(x, t), s(x,t)) where, in the vicinity of r(t), r measures

the normal distance to the curve. Thus T{t) is therefore described by r(x,t) = 0, and

|Vr| = 1 in its neighborhood. Further we note that the curvature )C of T[t), is given

hy )C = V^r. Along r(t) the coordinate ^(x, t) measures distance from some fixed point.

Employing these new independent variables the governing equations become:

(t>t + rt(t)r + St<f>3 = M e[(l)rr + - €

Ct + TtCr + 5tC, =

+c(l - c))

j

(tc

,2,df

I)
/ rr \ y 33

+W

d<f>

dc

(49)

(50)

In the interfacial layer the rapid changes in the phase-field variable ensure that the effect

of the diffusion is important. Thus we scale the coordinate r with e as:

r = ep.

We also introduce an additional slow time scale, r:

T = ct.

(51)

(52)

We shall employ the method of multiple scales and hence we associate the partial derivative

with respect to time in the governing equations with d/dt edj dr.

We expand the dependent variables as:

c= ^°\p,3,t,T) + S^\p,s,t,T) + 0{e^), 4i = $^°\p,3,t,T) + e^^^\p, s,t,T) + (53)

where we denote variables in this region by an over bar.

The matching conditions upon the inner solution in the transition region are found by

the expanding the outer solution in terms of the inner variables,

ac(°)
C —^ C^°^|(r=0+) + C + P + 0{e^), as p ^ CO, (54)

•=o+.
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c -> + e
(
c(^^|r=o- +

dr
+ O(e^), as /?

—> — oo,

(r=o-),

^ — 1 duS p — OO,

(^ = 0 as ^ +00 .

(55)

(56)

(57)

In choosing the matching conditions in this way we have assumed that in this local coordinate

system the outer liquid region is aJiead, and the outer solid region is behind, the interfacial

region. To proceed we insert the forms (51), (52) and (53) into the governing equations

(49) and (50) to yield a sequence of partial differential equations at each order of e, which

we now consider in turn.

3.2.1 Leading Order

The leading order problem is:

= M ^(°))) .

= 0 .

The latter may be integrated to give that:

c^°^(l — c^°l) j—

-

= function of s, t and r,
dp

However the matching conditions (54), (55), (56), (57), require that dfc/dp

Hence we deduce that the function of integration is zero and so:

fc{^°\$^°^)-A{s,t,T) = 0, (61)

where A is a function of integration, which at this stage is undetermined. It is now convenient

to define a new modified energy density ^^°^) by

^(“)) = /(c^o), ,^(“)) - A{s, t, t)c(°). (62)

in which case the equations (58), (59) may be expressed as:

= M (0(°) - F*(c<“), ^(“))) (63)

(58)

(59)

(60)

0 as \p\ oo.
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F,(c(°),^W) = 0. (64)

By employing the matching conditions we find

Fcic^°\0-,t),l) = Fc(c‘°>(0+.4).0) = 0. (65)

Equation (64) relates to as:

= ffo(0'“’; A), (66)

where,

So(^^°'; A) = (l + exp {/s(i^(°>) - /x(^'°*) - A(5, i, r)}) \ (67)

Thus, the modified energy density F(c(°l, A), is a function of 0^°)

only which we denote by (= ^)j in which case (63) and (64) may

be combined as the single equation:

« - ^ (“)

This problem determines (and hence c^°l from (66)) and i4(s, t, r). The function A(s, t, r)

is found from the asymptotic behaviour required by the matching conditions, which is only

possible if the boundary conditions represent singular points of (68), in which case the

required solution is the heteroclinic orbit between them. Any other solution would attain

the boundary conditions at a finite value of p.

We now derive an expression for the normal velocity Vn = —rt. We multiply (68) by

and integrate to obtain:

^ /_
= 0 - (

69
)

However from matching:

^<,°>U=o = 4°>|p=-cc = 0, (70)

and

» 0 as p —> oo (71)

—> 1 as p — oo . (72)
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and so:

M[E{0) - £;(!)]
(73)

where

To = r (74)
J—OO

Thus we see that the interface motion is driven by the energy disequilibrium between the two

phases; the interface locaJly advances into the phase with the higher modified energy density,

The interface acts to reduce the energy F of the system by moving to convert

regions of high F into low F. Time only enters the problem for through the matching

conditions and hence acts as a parameter. Thus and Vn are time dependent and are

controlled by the time-dependence of the solute field outside the interfacial layer. In section

4 we show that equations (65) and (73) may be interpreted geometrically as a parallel

tangent construction to the Helmholtz free-energy surface for a moving planar interface or

a common tangent construction for a planar stationary interface.

3.2.2 First Order

We now go on to consider the next order approximation to the governing equations:

(75)

= (c(“>(l - ^°')(/cc(c<“>, . (76)

We may integrate (76) once from ^ = —ooto /o = +oo, which gives:

p=oo

p=oo
= 0 . (77)

\ dr
\ = ~Vn (c(°^|(r=o+) - c(°^|(r=0-)) •

0-/
(78)

On employing the matching conditions this gives that:

dr
0+

^

This simply represents a conservation of solute normal to the moving interface and is the

usual condition employed in the classical model model of phase transitions involving sharp

interfaces.
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As an isolated system evolves, it approaches its final minimum energy, in which case

the energy differences across the interface, which drive the interfacial motion, become small.

Thus > 0 as t —> CO and so the system evolves on a slower time scale. To determine

the interfaciaJ d5mamics on this long time scale, which is given by the scaled time r, we

put T4 = 0, in which case the interfacial velocity is given by In this regime the

concentration gradients near the interfaces are small, 0{e). The slow velocity Vn is given

from a solvability condition that arises from the first order problem. In the Appendix we

discuss the adjoint problem and use it to determine the solvability condition, which is:

c(o)(0+)-c(°)(0-)
+ ro(Af-v„ + x:) = 0, (79)

c(o)(0-)(l-c(o)(0+))

where Fq is given by equation (74). The above solvability condition determines the slow

component of the normal interface velocity, which is thus dependent upon the local

curvature, /C, and the perturbed concentration in the Hquid, In the Appendix

we also derive another solvabihty condition, equation (116), which relates the perturbed

interfacial concentrations c(^)(0“) and c(^)(0''‘) at the interface.

3.2.3 Temporal Evolution

From the above analysis we can identify three different stages in the evolution of the solution

of the phase-field equations based on initial data in which 0 < (j)init £ 1:

• Stage I. Initially there is a very fast initial transient 0(e) in which the phase field

adjusts locally to the values zero or unity. We interpret this as a period in which

interfacial layers are born and regions of solid and liquid are differentiated.

• Stage II. Subsequently, on an 0(1) time scale, away from these interfacial layers in

the outer regions,
(f)

is either zero or unity and the solute concentration is governed by

the diffusion equation. Between the outer regions the interfacial layers exist. The local

normal velocity of these interfaces is determined by the local jump in the modified

energy density across the layer, E, (and thus by the deviation of the composition from

the equilibrium values) described by (73). More specifically, the interfaces move so

as to decrease the energy of the system. The interfaciaf motion will slow down as the

system approaches its minimum energy, i.e. —> 0 as t > oo.
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• stage III. Finally, on a longer time scale 0(e~^), the normal interfacial velocity is

given from (79). The slow motion of the interface is controlled by a balance between

curvature and thermodynamic disequilibrium, the latter is represented by the term

involving the perturbed concentration. This represents the process of Ostwald ripening.

Thus, initially the system evolves very fast to minimise its energy, by evolving the phase

field at each point in space to zero or unity; the minima of the energy density for a fixed

concentration. Subsequently diffusion acts and the interfaces move to reduce the energy

differences across them. Finally they slowly evolve in response to local energy disequilibrium

and kinetic effects, as well as to reduce the energy associated with their curvature.

3.2.4 A Mechanical Analogy

The leading order behaviour, discussed above is described by the system:

+ (80)

0 = F^{x,y), (81)

when we identify x with y with p with time, and F{x,y) = f{x,y) — Ax as

before, where A is to be determined and / is the free energy density. This system represents

the motion of a paxticle in a potential z = —F{x,y), constrained to lie on the curve x =

go{y] A), with friction acting only in the y direction. We note that the surface z = F(x,y) is

obtained from that of the free energy density surface z = /(x,t/) by inverting it and tilting

it in the x direction; the amount of tilt depending on the value of A. The frictional

constant is equal to M~^Vnj and so the stationary interface corresponds to the frictionless

case. The matching conditions require that the particle follows a path such that it approaches

a stationary state as time goes to plus and minus infinity. The only possible such motion is

one that begins and ends at local maxima of the surface z = — F'(x,t/). The form of the free

energy density ensures that such local maxima only occur for one given value of x on

y = 0 = 0) and one given value of x on y = I = 1), both of which depend

on A and He on the curve x = go{y] A) . Thus the particle must follow a trajectory between

these local maxima which traverses from y = 0 to y = 1. When the interface is stationary.
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the particle moves in the absence of friction, in which case the constant A (or equivalently

the amount of tilt of the surface) is chosen such that the heights of the two maxima are the

same. For a non-stationary interface the constant A must be chosen such that the potential

energy difference associated with the difference in height of the two maxima is just sufficient

to account for the energy dissipated by friction. A mechanical analogy was noted by Cahn

[4] for the Cairn-Hilliard equation, as well as by Harrowell and Oxtoby [20].

3.3 Discussion Of Asymptotics

As shown in section 3.1 the governing equation for the solute reduces to the diffusion equation

in the solid and hquid regions with the diffusivity D given by B = MiRT* /vm. Thus the

governing equation for composition given here is the same as those of a sharp interface, or

classical model, in the solid and liquid regions.

We see from (73) that the temperature, T, and normal velocity, Vn, determine the

leading order interfacial concentrations in the solid and liquid. Thus cs = HsiT^Vn) and

Cl = HLiT^Vn). When the interface is stationary, = 0, then the functions cs — Hs{T^^)

and Cl = HL{T^{f) simply represent the solidus and liquidus curves of the phase diagram of

the alloy (see section 4.1).

The asymptotic analysis generalises the results given in section 2.1 for the interface

kinetics and surface energy of a pure material to the case of an alloy. In particular (73) is

the non-dimensional analogue of (31) for the kinetics of a pure material. The solvability

condition (79) represents an energy balance at 0{e)] the first two terms are the change in

energy due to the perturbed concentration and interfacial motion, the last term represents

the surface energy. Thus the surface energy, a, is e JToo{i^p^Y^P which may be rewritten

with the help of (69) as

a = eV2 / (82)

which is the generalisation of (27) and a similar result of Cahn and Hilhard [4]. However, for

the alloy these expressions for the surface energy (82) and interface kinetics (73) have no

simple analytic form as they do for the case of the pure material. For simplicity we therefore

choose to determine the parameters of the phase-field model in the way discussed in section
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2.2 by making contact with the properties of the pure components.

4 Constant Velocity Planar Solutions as e —> 0.

In this section we look for solutions in the limit e —> 0 corresponding to a planar interface

advancing at at constant normal velocity V. We only consider the outer solution. We take

a coordinate coincident with the moving interface, which is then given by the plane z = 0.

The leading order problem for c is then:

Czz + Vc^ = 0

M[E{0) - E{1)]

To

c|z=o~ c|^—0+ ^o(0> •^)

dr z=0+

dc

dr
— —y{c\z=iO+ — c

|
j:=o-)

(83)

(84)

(85)

(86 )

z=0~ •

with 0(2) Coo as l^l
—^ 00 . The leading order solution is easily found to be:

c{z) = C5 + (cl — C5)exp(—Fz), z> 0, (87)

c{z) = cSiZ<0, (
88

)

where we associate cs and cl with c(°^|z=o+ respectively, which along with the

constant A are determined by the three conditions given in (84) and (85). We note that

Coo = Cs, which therefore cannot be prescribed independently of the temperature, T.

The segregation coefficient is

jfe = —
, (89)

Cl

which depends on the interface speed V. For this reason we first consider the situation when

the interface is stationary.

4.1 Stationary Interface: V = 0

In this case the concentration is constant in each phase:

c{z) = cs,z < 0, c{z) = cl,z> 0, (90)
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where cs^cl, and A satisfy the three conditions in (84) and (85) with V=0. The condition

(84) gives that:

i^(c5, 1) = ^(cl,0). (91)

We note that from the definition of the function go given by (66) and the conditions in (85)

that:

Fc(c5,1) = Fc(cl,0) = 0. (92)

Using the fact that F{cj(j>) = — Ac it is easily shown that these statements are

equivalent to requiring that cs and cl are chosen such there is a common tangent between

the curves /(c, 0) and /(c, 1). This construction, see Figure 3(a), is precisely that given

by classical thermodynamics to determine the equihbrium concentrations in this situation.

It is usually derived by requiring that the chemical potential of the two phases on either

side of the interface in a first order phase transition is continuous. The locus of pairs of

compositions cs and cl at different temperatures provides the hquidus and soHdus curves

of the phase diagram. The common tangent construction also corresponds to constructing

a common tangent plane to the free energy surface, shown in Figure 2, which is tangent to

both sections of the energy surfaces, <^ = 0 and
<f)
= 1.

We now employ this stationary interface solution to examine the possible stationary

configurations of the system as e —> 0. In particular we consider a one dimensional box,

of length L, whose ends are impermeable to both components of the solution. The average

composition C is ^ Jq cdx. There are single phase solutions; single phase sohd [(j) = 1) and

single phase liquid {(j) = 0). These exist for aU values of the average composition, C G [0, 1],

and are linearly stable. However, the analysis above indicates that other solutions are possible

representing a single interface between two regions of different phase when min (c5 ,C£,) <

C < max(c5 ,
C£,). In Figure 4 we schematically illustrate the possible solutions. The

variation of the fraction sohd is given classically (disregarding the interfacial surface energy)

by the “lever” rule and is hnear in the composition between cs and cl.
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4.2 Non-Stationary Interface V ^ 0

In this situation the only condition that is different is (91) which becomes:

F(cl, 0) - F{cs, 1) = M-^VTo, (93)

the left hand side of which is a constant, AF{VyT), for a given interface velocity, V, and

temperature, T. The conditions (92), (93) cire equivalent to selecting cs and cl such that

their tangents on the curves /(c, 0) and /(c, 1) are parallel, but the tangents are a vertical dis-

tance AF( V, T){= F{cl^ 0) — F{cs, 1)) apart, see Figure 3(b). It follows that the equilibrium

concentrations of a moving planar interface are dependent on its normal velocity.

From (84) and (85) we find that the segregation coefficient is given by:

k = exp {-AF{V, T) - fsil) + /s(0))
, (94)

which for small V is given approximately by:

fc = fco (l - ro|(v=o) + <^(^')) . (95)

where ko is the value of the segregation coefficient for the stationary planar interface. Sim-

ilarly for a small energy difference across the interface the segregation coefficient may be

approximated by:

k = ko 1 - AF(0, T) -f O((AF(0, r))2) (96)

From equation (68) we numerically computed c^, cs and fc as a function of the inter-

face velocity. The results are displayed in Figure 5. We see that the soHd-liquid interfacial

concentrations and the segregation coefficient are monotonically decreasing functions of the

interface velocity, (the latter dependence is in agreement with the small growth rate expres-

sion for fc, (95)).

Experimentally, the behaviour of the segregation coefficient fc with increasing interface

velocity has been shown to change from the equilibrium value (normally less than unity) at

low velocities to values necir unity for high velocities
(
« 1 m/s), see White et al. [21]. This

tendency towards unity is not recovered in the current model. We anticipate that inclusion

of a term in the energy functional involving the solute gradient energy in addition to the

phase field gradient energy will produce a wide variety of possible behaviour, depending on
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the relative importance of the two gradient energy terms. In fact a model by Baker [23]

shows that k need not change monotonically towards unity with increasing velocity.

5 Numerical Calculations

In this section we give the results of numerical calculations upon our model. The aim of

these calculations is two-fold, first, to verify as far as possible the asymptotic analysis given

in the previous section, and second to demonstrate that our model qualitatively models

the behaviour of phase transitions in an isothermal alloy. In order to apply our model

to situations in which the interface is sharp, we require the value of e to be small. This

provides the major difficulty in conducting calculations, which is that the interfacial layers are

necessarily thin, and thus a sufficiently fine computational mesh is required in order to resolve

the solution structure within them. For this reason it is much easier to conduct calculations

in one spatial dimension than two. Thus, in this section we first employ calculations in

one dimension to verify quantitatively much of the boundary layer analysis, and we further

perform two-dimensional calculations with a somewhat larger value of e to provide evidence

that our model is qucditatively in agreement with this analysis and that it shows behaviour

similar to that found in real systems.

5.1 One-Dimensional Calculations

We consider the evolution of the system (20) and (21) in one spatial dimension, x, on

the domain 0 < x < L. We imposed the boundary conditions = Cx = 0 at x = 0, and

<t>x
= 0,Cx + aoc = ai a.t X = L. The initial data is given by (^(x,0) = (^ 0 (

2:), c(x, 0) = co(x).

We used the software package PDECOL [24], which employs a finite element collocation

procedure for the spatial discretisation and the method of fines to advance the solution in

time. In all cases we used 500 break points. The first set of calculations were aimed to test

the cLsymptotic analysis by generating the planar traveling wave solutions predicted by the

theory given in section 4. The most trivial solution corresponds to the stationary interface, in

which case the asymptotic analysis predicts the (constant) values of the concentration either

side of the interface. With initial data for c and (p set to the appropriate step functions.
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it is found that the predicted concentrations were indeed recovered within the accuracy

of the scheme, with e taken sufficiently small. We also conducted calculations for a non-

stationary interface. The results of the asymptotic analysis displayed in Figure 5 predict

the interface velocity, V to be 0.1 when cs = 2.0339 x 10“^ and C£, = 0.3679. In order to

avoid end effects we chose ao = V and ai = Cg, which is exactly satisfied by the traveling

wave solution concentration profile, (87), when <^ = 0. Physically this corresponds to

extracting solute from the liquid phase at the boundary of the domain in order to maintain

the supersaturation which is driving the interfacial motion. We put Pa = —0.1, /3b = 0.1,

Wa = Wb = 1*0, e = 10“^, and L = 0.4. The initial data was
<t)Q

= 0.1 + 0.9if(x — 0.04)

and Co = Cs + H{x — 0.04)(cl — cs)exp[—F(x — 0.04)], where H{x) is the Heaviside function.

In Figure 6 we display the computed composition profile at times of 0.0, 1.0, 2.0 and 3.0. It

clearly reproduces the predicted travehng wave solution with the predicted constant velocity

interface velocity of 0.1. We note that initially the velocity of the interface is slightly less

than that predicted by the asymptotic analysis as e —> 0. We attribute this to the adjustment

required by the profile in the interfacial boundary layer, which was not properly given by

the initial data. This is manifested by the smoothing out of the initial discontinuity of the

initial data in this region. The above calculations quantitatively verify the result given by

(73) and confirm that the modified energy differences drive the interfacial motion.

We also conducted a numerical calculation which models the motion of a planar interface

in a closed system in response to the presence of an initially supersaturated liquid. From

Figure 5 the interface is stationary when cs = 0.1589 and cl = 0.8411. We chose the same

parameters as the previous calculation but the initial data for the composition was different:

Co = C5 + (0.6 — cs)H[x — 0.04). Also the boundary condition for the composition at x = 0.4

was Cx = 0. This initial state corresponds to a supersaturated liquid phase with composition

0.6(< cb). In Figure 7 we display the composition profile at times 0, 2.0, 4.0, 6.0, 8.0 and

10.0. There is in fact a rapid initial transient, not apparent in this figure, in which the

concentration in the solid decreases to approximately 0.1 and the concentration in the liquid

adjacent to the interface increases. Subsequently, as shown in Figure 7 the concentration

boundary layer so formed in the hquid is accompanied by forward interfacial motion. Finally,

the system relaxes back to the uniform concentrations predicted by the asymptotic theory
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for a stationary interface. This behaviour is expected on physical grounds; the interface

moves to reheve the supersaturation subject to the constraint that the composition of the

system is conserved. However, in a real system it would be expected that the planar interface

would be unstable and evolve to a cellular structure as it moved forward. We next consider

two-dimensional calculations.

5.2 Two-Dimensional Calculations

As discussed above, the thin interfacial layers presently cause a difficulty in conducting

accurate numerical calculations. In two dimensions this problem is important because the

computer storage and processor requirements associated with fine meshes become restrictive.

Below we present the results of prehminary calculations which employ a uniform 80 x 80

mesh, the finest mesh that was feasible using the computer facilities available to us. We used

the software package PDETWO. This employs second order accurate central finite differences

to conduct the spatial discretisation, allied to an accurate ordinary differential integrator to

evolve the solution in time. We have performed a number of calculations. Below we show

typical results for one particular case.

We performed a calculation in a square region of side unity. The initial data for the

phase field and composition was generated from a random distribution of these variables

with amplitude 0.01 about a mean value of a half. The following values were used for

the various nondimensioncd constants; Pa = —0.1,^b = O.I^Wa = 10, Wh = 10, Mi =

40,a7ide = These values for Mi and e are chosen to He in the asymptotic regime of our

analysis. In particular the size of e is a compromise between making it sufficiently small that

the interfacial layers are thin enough for the asymptotic analysis to hold but large enough

that they are adequately resolved by the finite difference grid. In Figure 8 we display the

phase field at times t = 0,0.01,0.05,0.1 and 1.

From Figures 8(a-d), it is clear there is a rapid initial transient evolution of the phase

field to ^ = 0 or 1, which is complete by t = 0.1 when fully differentiated regions of solid and

liquid have been established. This is in agreement with our asymptotic analysis although it

is evident that there is also a significant coarsening of the solid regions during this period.

Subsequently this coctrsening behaviour continues until t = 1, the final time displayed.
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We monitored the total amount of solute present as a function of time. It was found that

our present numerical scheme suffers a small loss of solute from the system. The loss is most

pronounced at small times when the system is evolving most rapidly. A total loss of 1.26%

by t = 1 is observed. The lack of solute conservation in the numerical scheme precludes long-

time integration of the governing equations, since the loss can be large enough to eventually

shift the average solute concentration C to values outside the range cs < C < cl for the

two-phase system. This results in eventual dissolution of one of the phases, leading to a

final state consisting of a single phase. The final period of evolution that is predicted by the

asymptotic analysis, in which curvature variations are important, is thus difficult to observe

with the current numerical scheme.

The qualitative behaviour observed largely substantiates our asymptotic analysis, demon-

strating the rapid period of interfacial genesis and order-one motion due to energy differences.

In addition, coarsening is observed which is reminiscent of Ostwald ripening.

6 Conclusions

In this paper we have presented a new phase-field model which describes the spatial and

temporal evolution of isothermal phase transitions between ideal binary alloy solution phases.

We have shown how the parameters which characterise this phase-field model are related to

material parameters and thermodynamics data employed in classical sharp interface models.

We conducted an asymptotic analysis of the governing equations in the distinguished

limit e — 0 with Mi = 0(e“^), which approximates the situation when the mobility of the

phase field is large and its diffusivity small. In this regime there exist thin interfacial layers

of width 0{e)j and so we recovered a sharp interface model in this limit. From this analysis

we determined the interfacial dynamics and showed that the interface evolved on three time

scales. There is short initial transient in which interfaces are born. It results primarily

from the response of the system to the initial data we have chosen and does not necessarily

represent the process of nucleation. This is followed by evolution on the diffusion time scale

in which the interfacial motion is controlled by the energy difference across the interface and

diffusion in the solid and liquid phases. Finally there is a long period in which the interfaces
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move slowly in response to their surface energy and thermodynamic disequihbrium. This

final period we interpret as representing Ostwald ripening. We constructed planar interface

solutions in this asymptotic hmit and were able to characterise the interface kinetics in terms

of the thermodynamic driving force and show a dependence of the segregation coefficient on

interfacial velocity.

Lastly, we presented numerical calculations which illustrate the predictions of our asymp-

totic analysis.

It is clear from this work that this phase-field model provides a good description of

isothermal phase transitions between binary solution phases and provides a first step in

devising a non-isothermal phase-field model for an alloy system.

7 Acknowledgements

The authors are grateful to G. Caginalp, J. W. Cahn, S. R. Coriell, R. Kobayashi, B. T.

Murray, and R. F. Sekerka for many helpful discussions. AAW acknowledges support by the

Science and Engineering Research Council of Great Britain, and the Royal Society of London.

GBM acknowledges support by the Microgravity Science and AppHcations Division, NASA,

and the Applied and Computational Mathematics Program, DARPA. AAW and GBM were

supported in part by a NATO Collaborative Research Grant.

8 Appendix: The Adjoint Problem

In order to obtain equation (79), representing the slow time evolution of a curved interface,

which arises from solvabiHty conditions on the first order equations (75) and (76) we require

their adjoint solution when Vn = 0. Equations (75) and (76) when K = 0 are:

=
, (97)

+ = 0. (98)
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with

^1) ^ as /9 -> oo, (99)

^1)
1 (^=0-) as ^ ^ —oo, (100)

We introduce the adjoint solution [<j>'^ and take the inner product of (97) and (98) with

the adjoint solution. This gives

J°°
Af-' [^J°> + 4>+dp =

+

f
~ + £'''[(^“^1 - ^°^)Cp)pfcc - M*]} dp+

(101)

Thus the adjoint problem is:

(c(«)(l - = 0.

This has a solution:

p Bi - B2c(°)(x)

^0)(l _

^+(/)) = B^mp ),

ip) = /Jo
dxj

(102)

(103)

(104)

(105)

where Bi and B2 are constants of integration. We note that ~ a+p+^+H-o(l), as p ^ +00

and c
'^ ~ a_p + )

0_ +0(1), as p
—> —00. The constants a+, a_, /?+,/?_ are determined by the

constants of integration as:

Bi B2
a+ =

a_ =

C(°)
I
(r=0+ )

( 1 - c(°)
I (r=0+ ) )

1 ”
|
(r=0+

)

Bi ^2

c(°)|(r=0-)(l - c(°)|(r=o-)) 1 “ c(°) 1(^=0")

I3_ = Bi'y- + B272
",

(106)

(107)

(108)

13+ = Bi7i+ + ^272
', (109)
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where

7i

7r

-£

-L

c(
0)(i _ ^0

)) c(0)
1 (^=0-) (1

- c(°)|(r=o-)).

^0)(1 - c(0)) c(0)|(r=o+)(l - c(°)|(r=0+)).

dp,

dp,

72

72^

-L

-I

(l-c(0)) (1 - c(°)|(,=o-)).

1

(l-c(0
)) (l-c(0)|(,=o+))J

Inserting these forms into the inner product (101) gives

cW(O-) cW(0+)

dp,

dp.

(
110

)

(
111

)

(112)

(113)

c(o)(o-)(l - c(o)(0-)) cW(0+)(l - c(°)(0+))

cW(0+) c(i)(0-)

(114)

l_c(o)(0+) l-c(“)(0-)

= B2 r°° M-i
J 0

(115)

This is true for afl choices of the constants Bi and B2 and so we equate the coefficients of

these quantities in the above expression to obtain the following two nontrivial solvability

conditions;

c(i)(0-) c(')(0+)

c(o)(0-)(l _ c(o)(0+)) c(o)(0+)(l - c(o)(0-))’
(116)

and

:(')(0+)
-

1 - }°)fo-i
= /r1 - c(o)(0+) 1 - c(<>)(0-)

These solvability conditions may be combined to give:

f-iSS— = -ro(^ + M-^Vn), (118)
c(°)(0+)(l - c(o)(0+))

where Vn = — t’t is the the slowly varying component of the normal velocity of the interface,

K, = V^r is the mean curvature of the interface, and

ro = r 0°^fdp.
J — 00

(119)
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Captions to the Figures

Figure 1. The free energy density /(^, T), employed by Kobayashi [16] displayed as a func-

tion of (j) for three values of the temperature near the melting temperature, Tm- for T < Tm

{P = -0.2), T = Tm{P = 0), and T > Tm {P = 0.2).

Figure 2.The free energy density for the isothermal solution given by (10) as a function of

(f)
and c.

Figure 3. (a) The common tangent construction representing equilibrium of a stationary

flat interface, (b) The parallel tangent construction predicted by this model for a non sta-

tionary planar interface. In both cases Wa = Wb = 100, Pa = —0.1, and Pb = 0.1.

Figure 4. The soHd fraction, So versus average composition, C, obtained from

from one-dimensional stationary solutions. The dashed Hne represents two-phase solutions.

Figure 5. The solid and liquid interfacial concentrations cs and cb as a function of growth

rate, V”, for a planar constant velocity interface, for the case M = 1, Wa = 100, Wb = 100,

Pa — —0.1, Pb = 0.1. The dashed curve indicates the the segregation coefficient, A; as a

function of the growth rate.

Figure 6. The one-dimensional traveling wave solution obtained by direct numerical inte-

gration of the governing equations. The concentration profile is shown for t = 0, 1, 2, 3 (from

left to right).

Figure 7. The evolution of the concentration profile, in response to initial conditions in

which the liquid is at a spatial uniform concentration away from its equilibrium value. The

concentration profile is shown dX t — 0,2,4,6,8,10.

Figure 8. The evolution of the phase field (j) in time and space on the domain [0, 1] x [0,1].

The solid curve is the locus of points ^ | and represents the solid-liquid interface. The

shaded areas represent 0<<^<^;^<(^<|;|<<^<|;|<(^<1 (in increasing order of

darkness). Thus the darkest regions represent solid areas. Plots are given at times (a) t = 0,

(b) t = 0.01, (c) t = 0.05, (d) t = 0.1, (e) t = 1.
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Nickel (Jopper

Classical Parameters

Tm{K)
L (J/cm^)

Vjn /mole) “

a
\j/cm?)

^

fi (cm/Ks)
D [cm? /s) ®

6 (cm)
Phase Field Materials Parameters

e (J/cm)^
W (J/cm?)

fi{T)

Ml (^cm^/Js)

M2 (cm^/Js) '*

1728

2350

7.0

3.7 X 10-5

200 '

10-5

5 X 10-® f

1358

1725

7.8

2.8 X 10-5

247 ''

10-5

6.6 X 10-® «

4 X 10-5

1.3 X 10^ 7.2 X 105

^ 'tB

4.9 X 10«

5.7 X 10
-^

“ An average value of 7.4 will be taken, since this model does not deal with volume changes.

^ Estimated from <7 = 0.7L(vm/

N

q)^

,

see Coriell and Turnbull [22]; Nq is Avagadro’s Number.
^ Estimated from fx = ^^ 5

^
;
V, is the speed of sound in liquid metal

(taken as 3 x lO^cm/s); Coriell and Turnbull [22].

^
Calculated from using equation (40).

* Typical liquid diffusion coefficient.

^ We have taken the interface thickness to be on the order of atomic dimensions.
^ Calculated using equation (39).
^ At T* = 154ZK.

Table 1: Material and phase-field parameters for the Ni-Cu alloy.
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