
David H. Su

U.S. DEPARTMENT OF COMMERCE
National Institute of Standards

and Technology

Advanced Systems Division

Computer Systems Laboratory

Gaithersburg, MD 20899

QC

100

U56

#4655

1991

U.S. DEPARTMENT OF COMMERCE
Robert A. Mosbacher, Secretary

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
John W. Lyons, Director

NIST

USER’S MANUAL FOR THE
NIST TTCN TRANSLATOR
VERSION 3.0

David H. Su

U.S. DEPARTMENT OF COMMERCE
National Institute of Standards
and Technology
Advanced Systems Division

Computer Systems Laboratory

Gaithersburg, MD 20899

May 30, 1991
August 31, 1991

U.S. DEPARTMENT OF COMMERCE
Robert A. Mosbacher, Secretary

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
John W. Lyons, Director

Table of Contents

1. Introduction 1

2. Developing Executable Test System Using the NIST Translator 2

3. The NIST TTCN Translator 3

3.1 Input and Output of the Translator 3

3.2 How to Run the Translator 4

3.3 Grouping of Test Cases to Separate Files 5

4. The Test System Environment Support 6

4.1 Test Execution/Monitoring Support 6

4.2 Protocol Dependent Support 7

4.3 Test Machine Software/Hardware Dependent Support 7

5. The Test Cases Driver 8

6. The TTCN Language 9

7. Translation of TTCN into C Statements 10

7.1 Mapping of Data Structures 10

7.2 Translator Generated Variables 11

7.3 Test Suite Overview 11

7.4 User Type Declarations 12

7.5 User Defined Operators 12

7.6 Test Suite Parameters 12

7.7 Test Suite Constant Declarations 13

7.8 Test Suite Variable Declarations 13

7.9 Test Case Variable Declarations 14

7.10 PCO Declarations 15

7.11 Timer Declarations 15

7.12 Abbreviations 15

7.13 PDU and ASP Declarations 15

7.13.1 PDU Field Tag

7.13.2 PDU Field Length

7.13.3 PDU Field Group

7.13.4 Examples of PDU Type and PDU Field Group Declarations

7.13.5 How to Write Protocol Support Primitives

7.14 Constraints Declaration IS

7.14.1 PDU and PDU Field Group Constraints

7.14.2 Modified Constraints and Base Constraints

7.15 Behavior Trees in Dynamic Behavior Part 20

7.16 TTCN Event Lines in Behavior Trees 21

7.16.1 Indentation Level Entry Codes

7.16.2 Verdict in an event line

iii

7.17 Send Events

7.17.1 Evaluation of Boolean Expressions and Assignment Clauses

7.17.2 Evaluation of PDU constraints references

7.17.3 Transmission of PDUs
7.17.4 Verdict on the Send Event

7.18 Receive Events 25

7.19 Implicit Send 26

7.20 The OTHERWISE Event 27

7.21 The ATTACH Event 27

7.22 Timer Management 28

7.22.1 Timer Operations -- Start, Cancel, Readtimer, and Timeout

7.22.2 Timers in the Receive_PDU primitives

7.23 Labels and the Goto Statement 28

7.24 The REPEAT Statement 29

7.25 The Default Reference 29

8. Sample TTCN Test Script and Compiled C Statements 29

9. References 30

Appendix A Sample Primitive Routines for LAPD SABME Frame 31

Appendix B. UNIX ttcnc Command Manual 34

iv

USERS’ MANUAL FOR THE NIST TTCN TRANSLATOR V3.0

David H. Su

Standard conformance testing is the first step in ensuring the

interoperability of communications products. There has been
increased interest in the development of Abstract Conformance Test

Suites (ATS) in the standards community. A standard test script

language called Tree and Tabular Combined Notation (TTCN) has

increasingly been used to specify test suites. NIST has developed a

TTCN to C language translator to help the industry in speeding up

implementation of ATSs into executable test suites (ETS). This

manual describes processes involved in implementing an ETS, how
the translator is to be used, and the design of the translator itself.

Keywords: abstract test suite; data communications; conformance

testing; executable test suite; protocol standard; TTCN; translator.

1. Introduction 1

The Tree and Tabular Combined Notation (TTCN) is an international language for specification

of abstract conformance test suites (ATS) for communications protocols. It is defined in Part 3

of a multi-part standard, ISO 9469 OSI Conformance Testing Methodology and Framework [1].

In order to accelerate the implementation of an ATS into an Executable Test System (ETS), the

National Institute of Standards and Technology (NIST) has developed a TTCN translator that

translates the TTCN test scripts into "C programming language source statements that can easily

be compiled on any target test system.

The original translator was implemented in 1989 for the DP2
(Sydney) version of the TTCN. It

has since been updated to accept the DIS (Teddington) version of the TTCN language.

This document is not intended to be a tutorial on the TTCN and C languages, as it is assumed that

the reader has a basic understanding of these languages. The remainder of this document is

organized as follows: section 2 presents the basic processes to implement an ETS from a TTCN
ATS, section 3 shows the input/output of the NIST TTCN Translator and its output options,

section 4 describes the requirements for the test system support and routines to be provided by

the test system implementor in order to run the translated C code, section 5 shows the test case

1

The identification of commercial products in the text is for clarification of specific concepts. In no case does such identification

imply recommendation or endorsement by NIST, nor does it imply the product is necessarily the best for the purpose.

" DP (Draft Proposal) and DIS (Draft International Proposal) are terms used to denote the status of an ISO standard in its

development cycle.

1

on the TTCN language, and lastly, section 7 presents a detailed description on the translation of

TTCN test scripts into C statements.

2. Developing Executable Test System Using the NIST Translator

A TTCN ATS is represented in two forms: a human readable graphic form, called TTCN.GR, for

publication of test suites; and a machine processable form, called TTCN.MP, for transferring test

suites between computer systems and for processing by computer programs. After a test suite has

been developed for a protocol standard, the conformance test system developer first enters the test

scripts into a data base using a TTCN graphic form editor [2,3]. The machine processable form

is generated from the data base using a formatter which is typically part of the TTCN editor. The
test suite in TTCN.MP form is then fed into the NIST TTCN Translator. The resulting C routines

are then compiled, and linked with test machine environment support routines to produce an

Executable Test System. This process is depicted in Figure 1. The lines and arrows connecting

boxes represent the processes and programs invoked in each step, and the boxes represent inputs

and outputs of each of these processes.

The abstract test suite in TTCN form is a high level description of test sequences. For example,

the TTCN Protocol Data Unit (PDU) definitions are abstract descriptions which may not

necessarily match the true PDUs in terms of the size and ordering of fields within a PDU. The

translated C source codes, even though executable, are just another abstract representation of the

test scripts. The test system implementor must provide additional supports to make these translated

C source codes executable on a real test machine. These supports are represented in the box

labeled Test System Environment Support" in Figure 1.

Figure 1. Conformance Test System Development

2

There are three types of supports needed: 1) protocol dependent supports for the mapping of

abstract PDU structures to the real PDUs, 2) machine dependent supports for realization of TTCN
events on the target test machine, such as sending and receiving of N-PDUs through (N-l) layers

of software/hardware supports and the activation and deactivation of hardware timers, and 3) the

test system user interface for the selection and execution of test cases, and for the recording of test

results.

3. The NIST TTCN Translator

The translator was developed using the compiler writing tool YACC 3 and LEX programs [4,5,6]

on the UNIX system, and could be run on any system that supports the C programming language.

The procedures described below, however, applies to the UNIX environment only.

3.1 Input and Output of the Translator

A TTCN test suite consists of several major components: declarations of PDU structures, variables

and timers, mapping of implementation specific parameters into internal variables (test suite

parameters), declaration of PDU field values (PDU constraints), and test scripts (dynamic behavior

tables). The TTCN translator maps these items into corresponding C language constructs and puts

them into various files as instructed by the user. The header file (.h file) contains definitions for

PDU structures, and external definition of all variables and routines generated by the TTCN
translator, and is included by all other C program files (.e file) generated. Variables for all data

structures and pointers to these data objects are declared in the .c file for test cases. The C
routines for the constraints, test cases, and test steps are produced in one or more x files

depending on the options selected (see next section). The main program to run test cases, and

the routine to initialize the test suite parameters, are always generated in a separate file called

"driver.c" (or other name as directed). In addition, there is a set of definitions and routines in files

"sysdef.h" and "sysdef.c" that are common to every test suite. Instead of generating them during

every compilation, they are provided as part of the distribution tape for the TTCN translator. The

following table shows the mapping of inputs and outputs.

TTCN.MP C Source

Declarations -

Test Suite Parameters

Test Suite Constants

Variables (Tfest Suite)

Variables (Test Case)

PDUs
Constraints

Dynamic Behaviors -

Header file for all data structures

Variable declarations and routine "tsparameter()"

#defme statements

Variable declarations

Variable declarations and routine "testcase_var_init()'

Variables for PDU structures

C routines, one per constraint/group

Test Cases

Test Steps

C routines, one per test case

C routines, one per test step

Main program - test case driver

System definition and utilities - sysdef.h and sysdef.c

The actual compiler generator used was Bison by Free Software Foundation [7].

3

3.2 How to Run the Translator

The translator is invoked by the following UNIX shell command:

-s

ttcnc mp-filename [-m filename] [-h filename] [-g filename-prefix] [-1]

-t

where the square brackets
[]

indicate that the enclosed item is optional, and are not part of the

command. All optional items, except -1, are specifications for output files; all filenames specified

will be automatically appended with either a .c or .h suffix as appropriate. The following is the

list of options:

-m : Specify the name of the file for the main routine from which the test cases are

invoked. The default file is "driver.c"

-h : Specify the name of the file for the data structure header file. If this option is

omitted, the filename specified in the -s option is used; if both options are omitted,

the default name is "suite.h"

The next three options, -s, -g, -t, specify the grouping of the test scripts, and are mutually

exclusive.

-s : All output, except the main driver and the header file, are to be stored in one file.

-g : The test cases are to be grouped based on the test suite structure, and stored in

separate files. The filenames are created by concatenating the prefix specified, and

the group name in the test suite. (See next selection for more details.)

In addition, the following files are created (the asterisks represent the prefix):

*decl.c - declarations for variables

*cons.c - routines for the TTCN constraints part

*lib.c - routines for the test step library

-t : Each test case is stored in a separate file. The filename is the concatenation of the

prefix and the test case identifier. Just like the -g option, files *decl.c, *cons.c, and

*lib.c will also be generated.

If none of the -s, -g, -t options are specified, -s is implied and all output will go to "suite.c".

-1 : For each PDU field, provide space for the length of the field. (See section 3.3 for

explanation.)

The input file contains the complete TTCN.MP test suite. If it is not specified, the standard input

file is used.

If the test suite uses abbreviations, a preprocessor must be used to expand the abbreviated strings.

In this case, the shell command is as follows:

4

prep mp-source
|

ttcnc options

Examples:

ttcnc lapd.mp

Compile the TTCN test suite in lapd.mp and produce files suite. h, suite. c and driver. c.

ttcnc lapd.mp -m lapdtest -g lapd

Compile the TTCN test suite in lapdLmp and produce the following files:

suite.h lapdtest. c, lapdedcLc, lapdcons.c, lapdlib.c, and one lapd*.c per group.

prep x25.mp
|

ttcnc

Expand abbreviations in test suite X25.mp and compile it to produce output files

suite. 1% suite, c, and driver, c.

3.3 Grouping of Test Cases to Separate Files

A typical test suite consists of hundreds of test cases, and many more routines in the test step

library. If all routines generated by the translator are put into a single file, the file may become

too large to manage and maintain. Furthermore, the size of random access memory (RAM) on

the test equipment may not allow all test cases to be resident in RAM at the same time. The

translator options -g and -t allow a system implementor to segment a test suite into separate files

by group and test cases, respectively. The grouping of test cases is based on the test suite

structure. An abstract test suite normally divides test cases in a tree structure into groups, and

layers of subgroups, as shown in Figure 2. The -g option will structure the output in such a way

that the test cases in each group will be stored in one file, and that the name of the subgroup

will become part of the filename. Normally the ’C source codes will be located in files

corresponding to the lowest level of grouping. For example, assume that the lowest level of

grouping of a test suite consists of S10, S20, S80, and that the translator is invoked with the

option "-g link", then the following files produced will contain the translated test cases: linkS 10,

linkS20, linkS80.

Test Suite

Test Case Test Case Group uroup

Group Group

Test Case Test Case

Figure 2. Tree Structure of an Abstract Test Suite

5

4. The Test System Environment Support

This section describes the facilities to be provided by a test system implementor on the target test

machine in order to support the execution of C routines produced by the TTCN Translator.

4.1 Test Execution/Monitoring Support

A TTCN test suite provides only a collection of test cases. A test system for an ATS must also

provide mechanisms to execute these test cases and to produce a test results report. The test case

selection function implemented must allow the test operator to select test cases based on certain

criteria: specific test case, specific groups of test cases, answers to Protocol Implementation

Conformance Statement (PICS) and Protocol Implementation eXtra Information for Testing

(PIXIT), etc. The TTCN translator generates a test case driver as the main program in which test

cases are executed sequentially (see Section 5). This program is intended for use as a prototype,

and is to be replaced by the system implementor with a new program that provides choices of test

case selection criteria described above.

The monitoring function must provide a trace of PDUs received and transmitted, and records of

execution results, such as test cases executed and the verdicts assigned.

Coordination

Procedures

PIXIT Informatii

Console

Operator Actions

Fi les

Execution Logs

(Trace of N*POUs)

TEST SYSTEM

Abstract

Test

Scripts

Environment

Support

.v.

,

UT

IUT

T
N-PDUS

(M-1) Service Supports

at Tester and at IUT
I i

Figure 3. Configuration for a Layer N Test System

It is expected that the TTCN translator will be used primarily for ATSs written for the Remote

Single Layer test method, under which no specifications for the Upper Tester (UT) is provided.

As a result, some kinds of test coordination procedures must be provided to successfully complete

the test. Figure 3 shows the configuration of a test system for this type of ATS. The NIST

Translator does not prescribe the mechanism to be used for the coordination procedures between

the test system and the System Under Test (SUT). Every time when the test script calls for a test

coordination action, the translator will generate a call to the routine "implicit_send()" whose

function remains unspecified. A simple implementation could issue a message on the test

equipment console to request action by the test operator.

6

Prior to the execution of test cases, the answers to PIXIT questions must be entered into the test

system in order to initialize the Test Suite Parameters. The translator generates a routine

"tsparameter()
M

which, when invoked, issues a sequence of TO requests on the standard

input/output device (operator console) for the operator to enter the proper values. It is also

expected that this routine will be replaced by a new one that obtains answers to PIXITs from a

variety of sources: menu on screen, data on file, etc.

In summary, while the translator provides a prototype of routines main, implicitsent, and

tsparameter for the user (test operator) interface functions, it is up to the test system implementor

to design a more user friendly interface mechanism for the operation of the test system.

4.2 Protocol Dependent Support

This support includes facilities for formatting the PDUs from the abstract structure to the real

protocol PDU format for transmission to the IUT through the underlying layers, and for comparing

PDUs received from the IUT against the abstract structures as defined in PDU constraints. The

following is a set of routines (primitives) providing the required facilities. For each PDU X defined

in the TTCN test script, two primitives are needed:

SendJPDU_X(pointer to pdu constraints) ~ This primitive formats a PDU using the input

parameter provided and forwards it to the next protocol layer for transmission. An image of the

PDU shall also be recorded in the standard trace file.

Is_PDU_X(pointer to pdu constraints, pointer to buffer) - This primitive analyzes the contents of

the buffer and compares it with the values of the abstract PDU structure provided in the input

argument; it returns a Boolean value TRUE if every PDU field satisfies the constraints; it returns

a FALSE otherwise. The contents of the received buffer must be copied into the corresponding

fields of the PDU constraints after the comparison. Before calling this primitive, Receive_PDU is

presumed to have been invoked to retrieve a message in the input queue and obtain the address

of the buffer containing the message retrieved.

A brief discussion on how to write these two set of primitives is given in Section 7.13.5; a sample

is also provided in Appendix A.

A similar set of primitives, Send_ASP_X and Is_ASP_X is also needed if the ATS contains ASP
declarations.

4.3 Test Machine Software/Hardware Dependent Support

This support includes all of the facilities required to support the underlying layers of the protocol

being tested, as shown in the box labeled (N-l) service supports in Figure 3. If a protocol to be

tested is located at layer N, then the supports include the activation and deactivation of

software/hardware for layers (N-l) to 1, the movement of N-PDUs through these layers, and the

management of First-In-First-Out (FIFO) queues at the N and (N-l) layer boundary. Additional

support must be provided for the recording of the execution log, and the management of TTCN

7

timers. The following is a list of primitives referenced by the generated C statements.

Receive_PDU(Pointer to timer-name) -- This primitive removes a message from the top of the

FIFO input queue from the IUT (or the N-l interface), and returns the pointer to the buffer of

that message. It also saves the actual length of the message (in number of bytes) in the global

variable Jbufferlen. The input parameter is a pointer to the character string representing the name
of a timer. If the queue is empty and if the timer-name is not null, it shall wait fgr a message to

arrive until the specified timer expires. In either case, if no message is available, it returns a null

pointer. The buffer space could be reused or released on the next call to Receive_PDU.

It is recommended that an image of the PDU received be time stamped and added to the standard

trace file, and that if a time out had occurred (i.e. no PDU was received), an empty record be

written.

Send_PDU (pointer to buffer) - This primitive performs the function opposite to the

Receive_PDU routine, that is, places the message in the output (to the IUT) FIFO queue. This

primitive is to be used in the Send_PDU_X routines and is not explicitly referenced by the

generated C statements; therefore, the exact syntax and semantics rules are not specified here.

Start_timer(timer-name, timer-value) - This primitive starts the timer specified by time-name with

the clock duration set to timer-value in units of milliseconds. Timer-name contains a character

string representing the name of the timer.

Cancel_timer(timer-name) — This primitive cancels the specified timer. If the timer-name is a null

string, or if the pointer is 0, all active timers are canceled.

Read_timer(timer-name) — This primitive returns the time elasped since the specified timer was

started. If the timer is not active, a value of 0 shall be returned.

Timeout(timer-name) ~ This primitive returns a Boolean value TRUE if the timer specified has

expired or had never been started, and a FALSE otherwise. If the input is 0 or points to a null

string, then it returns TRUE if any of the active timers has expired.

5. The Test Case Driver

As stated in Section 4.1, at the end of compilation, the TTCN translator generates a main program

in C that invokes all of the test cases in the test suite sequentially. The following shows the

skeleton of a sample main program. It first calls tsparameter to initialize Test Suite Parameters

(see Section 4.1 and 7.6), initialize to initialize items required by the test system environment

support, and test_suite_init to initialize items required by the ATS. Examples of test system

initialization include activation of communications channels and software for lower layer protocols,

and exchange of messages to bring the IUT to a certain pre-test condition. All of these activities

are test machine or test suite dependent, and, therefore, must be provided by the system

implementor.

The main part of the program consists of a sequence of case statements, one case per test case.

8

The routine getjlrst_tc selects the first test case to be executed. All subsequent test cases are

executed sequentially. For each test case, in addition to the routine for the test case itself the

routines Output_Trace, FIush_queue, and Print_verdict are also used. The functions of these

routines are described below, and prototypes for each routine are also included in the file sysdef.c

ma i n(

)

C int tcnumber;

char *msg1="\n\nStarting test case";

char *msg2 = "End test case";

tsparameter();

initial ize();

test_sui te_ini t();

swi tch(tcnumber 5 get_f irst_tc()) (

case 0:

0utput_Trace(msg1 PL1_101 ");

Flush_queue();

PL1J01O;
Print_verdict(msg2," PL1_101 ");

case 1

:

>

>

tcname _tcnames[] = {

""PL1_101"
0,

"PLlj02", 1,

>;

int _ntestcases = 450;

Flush_queue() — Removes all messages waiting in the FIFO input/output queues and clears the

standard input buffer.

Output_Trace(string,string) ~ Sends strings of characters to the standard trace file.

Print_verdict(string,string) - Prints the verdict in Result and strings given in the input parameter

to the standard trace file.

Finally, the name and number of test cases are saved in the following special data structure at the

end of main program:

_tcnames -- A structured array whose entries contain the name of a test case and the test case

number in the order of its appearance in the ATS.

ntestcases - Contains the total number of test cases in the test suite.

6. The TTCN Language

Version 3 of the NIST TTCN Translator supports the DIS (Teddington) Version of the TTCN
Language. It accepts all major features of the TTCN with the following exceptions:

(1) ASN.l notation is not supported.

9

(2) The ATS must use only one Point of Control and Observation (PCO).

(3) Constraints references can not be nested, that is, the actual parameters in a constraint

reference cannot call another constraint.

(4) The encode and decode functions are not supported.

(5) The test suite constants cannot define Bitstring, Octetstring, or Hexstring constants longer

than 32 bits.

(6) Data object references using the array or bit element notation are not supported.

(7) The constraint value for PDU fields cannot contain a range or list of values.

7. Translation of TTCN into C Statements

A detailed description on the mapping of TTCN into the C language is presented in this section.

In the discussions below, it is assumed that the standard default options for the Translator are used;

more specifically, the outputs are to be sent to files driver.c, suite.h, and suite.c.

7.1 Mapping of Data Structures

The following table shows the mapping of TTCN predefined data types onto the corresponding C
data structures.

TTCN type

Integer

Octetstring

Hexstring

Bitstring

Characterstring

Boolean

C Data Type

long int

a. four octets or less: long int

b. more than four octets: unsigned array of char

a. eight digits or less: long int

b. more than eight digits: unsigned array of char

a. 32 bits or less: long int

b. more than 32 bits: array of unsigned char

array of char

int

For the Octet-, Hex-, and Bit-string types, if the length is less than or equal to 32 bits, they are

mapped as long integers, otherwise they are mapped into unsigned character arrays. These types

are considered numeric in nature, therefore, their contents are right justified, and padded (with

zero’s) or truncated on the left. Even though TTCN rules do not allow conversion between the

above string types and integer, all contstants of these types are considered compatible and

interchangeable. For example, the constants 15, ’F’H, ’OF’O, and Tlll’B are all equivalent.

10

Character strings are of variable length just like C character strings. End of strings is signaled by
a ’\0’ character in the text, and therefore, the size of the C char array is one (1) greater the length

of the TTCN string. Their contents are left justified, and truncated on the right, if necessary.

There are two ways to specify the length of strings in TTCN: fixed length, such as [10], and
variable length, such as [1 .. 10]. The numbers inside the bracket

[]
could be a constant, a test

suite parameter, a variable, or another PDU field in the same PDU. The translator needs to know
the maximum space required, so that an array of sufficient length can be created; therefore, if the

length specified is not a constant, a derived maximum length is used by the translator. The derived

maximum length is the size of the largest number which could be stored in that length variable.

For example, if the length is [1 .. DATASIZE] and if DATASIZE is Octetstring[l], then the

maximum length is 256.

According to the DIS Version of the TTCN, a length can only be specified in the PDU fields and

user type declarations. However, the TTCN Translator requires that the length be specified in

other declarations as well, including test suite parameters, test suite constants, test suite variables,

and test case variables.

If the length of a variable or PDU field is not specified, the default length is 32 bits for numeric

string types and 80 characters for character strings.

7.2 Translator Generated Variables

The following is a list of variables generated by the translator. All but the variable Jastlevel are

defined in the driver.c file.

level - This is a global variable used to keep track of the indentation level. At the beginning of

each test case, Jevel is set to one (1), and is incremented by one each time execution moves down

one level.

Result ~ This is a global variable, equivalent to the TTCN variable R, which holds the preliminary

verdict during the execution of the behavior tree and the final result at the termination of a test

case. It is initialized to "NONE" at the beginning of each test case.

buffer - This is a global variable used to hold the pointer to the last message received from the

Tut.

Jbufferlen ~ This is a global variable containing the length of text (in number of bytes) in the

buffer pointed to by ^buffer.

timername - This is a global variable containing the timer name of the first Timeout statement

in an indentation level.

Jastlevel ~ This is a local variable declared in each behavior tree. It is used to save the current

indentation level before entering an attached tree.

11

7.3

Test Suite Overview

No C statements are generated by the C translator for this section.
7.4

User Type Declarations

The base type of the new user defined type is recorded, but no C statements are generated. All

subsequent uses of the new types are converted to their base type and mapped to the

corresponding C structure as described in section 7.1. Two user defined types are considered

compatible if their base types are compatible.

7.5

User Defined Operators

An external function declaration is generated in the suite.h file for each user operator declared.

Since the text defining the operation is presented as FREETEXT in the TTCN.MP, it is ignored

by the translator. The system implementor must provide a separate routine just like other

primitives supporting the test environment. This must be done even if the TTCN.MP text already

defines the body of the operator in a common programming language such as C or PASCAL. All

references to the user defined operators are treated as references to external functions. The type

of the actual parameters must match the type declared for the corresponding formal parameters.

7.6

Test Suite Parameters

The purpose of this section in a TTCN test suite is to associate PICS and PIXIT questions with

internal variables in the test suite. The associated values must be entered at the time of system

initialization before the beginning of a test session.

The translator generates a C routine, tsparameter(), which is to be invoked at the beginning of

the test driver program. The purpose of this routine is to prompt the test operator for the values

of test suite parameters. The routine contains a set of print and read statements on the standard

input/output devices for the parameters declared. The text of the print statements are taken

directly from the comments field in the Test Suite Parameter table. In addition, C declarations are

generated for names declared therein. It is expected that this routine will be replaced by the

system implementor with a more user friendly routine, for example, a menu driven routine.

Example:

Test Suite Parameters

Name Type Comments

Fixed TEI
Fixed_TEI_No

BOOLEAN
BITSTRING[7

]

Test fixed TEI only
Assigned fixed TEI number

12

Output in driver.c file:

tsparameter(

)

C printf ("Enter test suite parameters. \n\n");

printf ("Test fixed TEI only. Enter 1 for True and 0 for False. \n");

scanf ("%d", &Fixed_TEI);

printf ("Assigned fixed TEI nunber. Enter a hexadecimal string. \n);

scanf ("%x"
f
&Fixed_TEI_No);

Output in suite.c file:

int Fixed_TEI;

long Fixed_TiI_No;

Output in suite.h file:

extern int Fixed_TEI;

extern long Fixed_TEI_No;

7.7 Test Suite Constant Declarations

Test Suite Constants are translated into #define statements. Due to the limitation of the C
language, constants for Bit-, Hex-, and Octet-strings are restricted to a maximum length of 32 bits.

7.8 Test Suite Variable Declarations

Test Suite Variables are mapped to C data structures as described above. For each variable in the

table, a declaration statement is generated in the suite.c file to define the identifier and to initialize

its contents, if specified.

Example:

Test Suite Variables

Name Type Value Comments

TEI_Assigned
TEI_Number
No_Links

BOOLEAN
BITSTRING [7]
INTEGER

FALSE
64 TEI # to make call

Output in suite .h file:

extern int TEI_Assigned;

extern long TEl_Number; /*TEI # to make call*/

extern no_l i nks;

13

Output in suite .c file:

int TE I_Ass
i gned = FALSE;

long TEI_Number = 64; /* TEI # to make call */

long No_Links;

7.9 Test Case Variable Declarations

According to the TTCN rules, Test Case Variables (TO/) must be initialized before each test case

is executed. Therefore, the translator, in addition to mapping TCVs to the corresponding C data

structure just like Test Suite Variables, generates a routine, testcase_vars_init(), which is invoked

upon entry to every test case. The body of the routine contains assignments or other statements

to set the contents of TCVs to the values indicated. If no value is given to a variable, zero (0)

is assumed.

Example:

Test Case Variables

Name Type Value Comments

FLAG
I__CNT

MSGJTYPE

BOOLEAN
INTEGER

OCTETSTRING

TRUE
0 Counter for no. of

I__frames received

Output in suite.h file:

extern int FLAG;

extern long I_CNT; /^Counter for no. of I -frames received*/
extern long MSG_TYPE;

Output in suite.c file:

(at variable declarations)

int FLAG;

long I_CNT; /*Counter for no. of I -frames received*/

long mIg-TYPE;

(at end of declarations)

testcase vars init ()

C

FLAG - TRUE;

I_CNT - 0;

MiG TYPE - 0;

>

(at the beginning of every test case)

testcase_vars_ini t ();

14

7.10

PCO Declarations

No C statements are generated for the PCO declarations. The translator keeps track of the name
of PCOs and makes sure that event lines in the behavior part are on the same PCO.
7.11

Timer Declarations

No C statements are generated. The value of timer duration is used as the default value for the

start_timer operation.
7.12

Abbreviations

If a test suite contains abbreviations, the TTCN MP file must be processed by a separate pre-

processor (see Section 3.2) to fully expand these abbreviations, as the translator does not handle

them. The pre-processor provided takes the TTCN MP file as the input and sends output to the

standard output file. Therefore, the output could be redirected to a file or piped to the translator.

It is recommended that piping be used so that the line numbers in the translated C files refer to

the original MP source line number. The expansion applies not only to the event lines in the

Behavior Table, but also to every identifier appearing after the abbreviation declaration table.

7.13

PDU and ASP Declarations

PDUs and ASPs are translated into C structures whose elements correspond to fields in the PDU
or ASP. The mapping of PDU/ASP fields is the same as global variables as described in sections

7.1 and 7.8. A new structured C type is defined for each PDU or ASP, and a variable and a

pointer variable of this new type are declared as well. In the following discussion, the word "PDU”

applies to "ASP” as well.

7.13.1 PDU Field Tag

Corresponding to each PDU field, a "tag
11

element will be created in the PDU structure. This is

to be used for the PDU constraints, as a field in a constraint. It not only specifies a value or

values, it also specifies an operation or option on the value(s). These operations are to be used

in formatting PDUs to be transmitted or analyzing PDUs received. They include:

not present - the field shall not be present.

don’t care ("?") - contents of the field may be of any value of the type defined for the

field.

wildcarded ("*") — similar to don’t care, in addition, the field may not be present,

relational op (">,<,>=,<=,< >,=") --

contents of the field must satisfy the relational operation indicated,

range or list — the contents of the field contain a range or list of values. This feature is

not currently implemented.

15

Possible values for the tag field, as well as their C parameter names, are shown below. These
parameters will be defined in the sysdef.h file with "#define" statements.

Value

0

1

2

3

4

5

6

7

8

9

10

Name
EQUAL_TO
NOTJEQUAL
GREATER_THAN
LESS_THAN
GREATEREQ
LESSJEQ
DONT_CARE
W1LD_CARD
OMITTED
RANGE
LIST

Meaning

equal ("=")

not equal ("<>")

greater than (">")

less than ("<")

greater than or equal (”>=")

less than or equal ("<=")

don’t care ("?")

wildcarded ("*")

not present

the value field contains a range of values

the value field contains a list of values

In addition to the C structure described above, two external function prototype declarations for

each PDU declaration will also be generated:

extern Send_PDU_name(PDU_type *); and

extern int Is_PDU_name(PDU_type *, char *);

where name is the name of the PDU declared in TTCN, and PDU_type is the name of data type

generated by the translator.

7.13.2 PDU Field Length

As described in section 7.1, the length of a PDU field could be of variable length determined by

the contents of the variables or other PDU field at the instance when the PDU is used.

Furthermore, the PDU constraint value can also specify a range of permissible sizes. Due to these

requirements, additional structure is needed in the translated C source code to keep track of the

actual PDU field length. Very similar to the tag field described in the previous section, a length

field is created for each PDU field. The length field contains two subfields carrying the lower and

upper bounds. When the length is of fixed size, the two bounds are equal and are set to the

actual length. The length is in the unit of the type declared for that field: bytes for Octetstrings,

hex-digits for Hexstrings, and bits for Bitstrings.

Since not all test suites require this feature, the translator will generate the length field only if the

-1 option is specified (see section 3.2). This option applies to every field in all PDUs within a test

suite.

7.13.3 PDU Field Group

PDU Field Group tables allow partitioning of a PDU definition into groups, each of which is

16

represented in a separate group table. The format of a PDU Field Group table is identical to the

PDU type definition, and, therefore, the sequence of C statements generated are the same in both

cases. Since a Group table may again refer to other Group tables, a PDU definition may be

mapped into a nested C structure.

7.13.4 Examples of PDU Type and PDU Field Group Declarations

PDU Type Declaration

PDU Names DATA PCO Type: NSAP Comments:

PDU Field Information

Field Name Type Comments

HEADER GROUP Packet header
P S INTEGER Send sequence no.
P R INTEGER Receive sequence no.
M BITSTRING [1] More bit
INFO OCTETSTRING [1 .. 4096] Max. 4096 bytes

PDU Field Group Type Declaration

Field Group Name: HEADER Comments: Packet Header

PDU Field Information

Field Name Type Comments

QBIT BITSTRING [1]
DBIT BITSTRING [1]
GFI BITSTRING [2]
LCI HEXSTRING [3] Logical channel id

Output in suite.h file:

typedef struct { int from; int to } _LENGTH;

typedef struct {

long QBIT;

long DBIT;

long GFI;

long LCI; /* logical channel id */

char QBITjag, DBIT_tag, GFI tag, LCI_tag;

jLENGTH QBITJen, DBITJen, GFIJen, LCIJen;

} group_HEADER;

17

typedef struct {

group_HEADER HEADER;
long P_S; /* Send sequence no. */

long P_R; /* Receive sequence no. */

long M; /* More bit */

BYTE INFO [4096]; /* Max. 4096 bytes */

char P_S_tag, P_R_tag, M_tag, INFO tag;

jLENGTH PjsJen; P_RJen, M_Len, INFOJen;
} pdu_DATA;

extern Send_PDU_DATA 0;

extern ls_PDU_DATA 0;

extern pdu_DATA DATA, *pDATA;

Output in suite.c file:

pdu_DATA DATA, *pOATA=&DATA;

Note that lines in italic are generated only if the -1 option is specified.

7.13.5 How to Write Protocol Support Primitives

As mentioned in Section 4.2, a system implementor must provide two primitives for each PDU
declared in a test suite: Send_PDU_* and Is_PDU_*. In these routines, the tag of each PDU field

must be examined to determine the type of comparison or operations to be used for the field. For

the Send_PDU_* routine, the tag field can only be one of the following: EQUAL_TO,
DONT_CARE, and OMITTED. In the first two cases, the contents of the PDU constraint are

copied into the buffer, and for the third case, the field is omitted. All mandatory fields defined

in the protocol, but not declared in the TTCN PDU, must be filled with their mandatory values.

For example, a test suite may not include in its PDU field declaration the frame control field

indicating the type of frame, because its content is implied by the name of the PDU.

For the Is_PDU_* routines, all types of tag values for each PDU field are possible, and, therefore,

a case statement (switch) is needed to consider all possibilities. In addition to satisfying the

condition indicated in the tag, especially for the cases of DONT_CARE and WILD_CARD, the

field value must conform to the type of the field. For example, if the type of a field is a user

defined type consisting of three possible values, say 1, 3, and 5, then the value in the received

buffer must contain one of these values, even if the tag for the field is DONT_CARE. Those

mandatory fields which are not declared in the PDU type declaration must still be checked with

their mandatory values. Furthermore, the actual values received must be copied into the C
structure for the constraints.

Appendix B contains a sample coding of these routines.

7.14 Constraints Declaration

7.14.1 PDU and PDU Field Group Constraints

For each constraint name associated with a PDU, a C function with the same name is generated.

18

This function assigns values to each of the PDU fields and their associated tags and lengths (see

Section 7.13). If the field refers to a group name, then a call to the group constraint name
referenced in the value column is generated. The formal parameters of the constraints are

converted to a structured type called CONSTARG, which is described in Section 7. 1.7.2.

Example:

PDU Constraints Declaration

PDU Name: DATA Constraint Name:UD(PS NO , PR NO: INTEGER,
LCI : OCTETSTRING [3]

)

Field Name Value

HEADER HDRl(LCI)
P S PS NO
P R PR NO
M 0

INFO ' C1C2C3C4 ' 0 [4]

PDU Field Group Constraint Declaration

Field Group Name: Constraint Name:
HEADER HDR1 (LCI_NO : OCTETSTRING [3]

)

Field Name Value

QBIT 0

DBIT 0

GFI 1 01 ' B
LCI LCI NO

Output in suite.c file:

HDR1 (p_HEADER,LCI_NO)

;

group_HEADER *p_HEADER;
CONSTARG *LCI_NO;

{

p_HEADER->QBIT = 0; p_HEADER- > QBU_tag = EQUAL_TO;

p HEADER->QBIT len.from = 1; p HEADER->QBIT len.to = 1;

p~HEADER->PBIT = 0; p_HEADER->PBfT_tag = EQUAl_TO;

p HEADER->PBIT len.from = 1; p HEADER->PBITJen.to = 1;

p~HEADER->GFI =“
0x1; p_HEADER-”>GFI_tag = EQUAL_TO;

p_HEADER->GFIJen.from = 2; p_HEADER->GFIJen.to = 2;

p~HEADER->LCI = LCI_NO->value”v; p_HEADER->LCI_tag = LCI_NO->tag;

p HEADER- >LCIJen.from = LCI_NO->len.from;

p~_HEADER->LCi~\en.to = LCI NO->len.to;

}

19

UD(p_DATA,PS_NO,PR_NO,LCI)

pdu DATA *p_DATA;

CONSTARG *PS_NO;
CONSTARG *PR_NO;
CONSTARG *LCI;

{

HDR1 (&(p_DATA-> HEADER) ,LCI)

;

p_DATA->P_S = PS_NO->value.v; p_DATA->PS_tag = PS_NO->tag;
p_DATA->P_SJen.from = PS_NO->len.from;

p_DATA->P_SJen.to = PS_NO->len.to;

p_DATA->P_R = PR_NO->value; p_DATA->PR_tag = PR_NO->tag;

p_DATA->P_RJen.from = PR_NO->len.from;

p_DATA- >P^RJen. to = PR_NO->len.to;

p~DATA- >M~= "o
;
p_DATA->M_tag = EQUAL_TO;

p_DATA->MJen.from - 1; p_DATA->MJen.to = 1;

bitcpy (&(p_DATA-> LCI) ,32760, cvttobrt('Cl C2C3C4V32) ,32)

;

p_DATA-> LCI_tag = EQUAL_TO;

p DATA- >INFO ten.from = 4; p DATA- >INFO len.to = 4;

}

The lines in italic are generated only when the translator -1 option is specified.

7.14.2 Modified Constraints and Base Constraints

A constraint may modify a base constraint by specifying only those fields whose values are different

from the base constraint. The constraint is called a modified constraint; the base constraint itself

may be a modified constraint. Any fields not specified will default to those in the base constraint.

Given a modified constraint, C0.C1.C2, the translator will generate a routine, C2, that references

its base constraint, Cl. The constraints CO, Cl, and C2 must be defined in the order given, that

is, CO first, Cl next, and C2 last. The skeleton of the routine C2 is shown below. The routine,

Cl, will have similar structure and will reference CO.

C2(parameters) <-- parameters consists of all parameters for CO, Cl, and C2 combined.

{

Cl (parameters); <— all parameters needed for CO, and Cl
Assignments to fields defined in C2;

}

7.15 Behavior Trees in Dynamic Behavior Part

A C function (routine) is generated for each behavior tree in the Dynamic Behavior Part. The

routines for test case trees are to be invoked from the test case driver. All others are called by

attachment event from test cases or test steps. If, during the execution of the function, a final

verdict is assigned, the function will terminate and return a Boolean value of TRUE, indicating that

the execution should be terminated. Otherwise, a value of FALSE will be returned. The verdict

is stored in the global variable named Result

The names of C functions are the same as the corresponding tree names. This may cause problems

on test machines that limit the length of external names.

20

Example: The following statements are generated for the behavior tree with the following header:

TEST_State(X:INTEGER; Y:OCTETSTRING)

int TEST_State(X, Y)

int X; long Y;

{ int _lastlevel; /* other declarations may follow */

. . .
/* body of tree here */

return (FALSE); /* generated only if no verdict was assigned */

>

The size of a formal parameter, if not declared, is determined from two sources: (1) outside of the

tree -- the actual parameter in the first reference; (2) inside the tree -- the source of the first

assignment to the formal parameter. The first one is used if the tree is referenced before its

definition.

For the main tree of a test case, the generated function will contain additional statements to

initialize global variables. A typical sequence is shown below:

int TestCaseNameC

)

C int _lastlevel;

_level = 1;

strcpy(R, "NONE");

Result - NONE;

... /* body of the main tree */

)

7.16 TTCN Event Lines in Behavior Trees

A TTCN behavior tree basically consists of a set of branches which are represented as a list of

event lines with different indentation levels. Branches on the same level are represented by event

lines with the same indentation number. Since the branches represent a set of mutual exclusive

alternatives, the corresponding TTCN event lines are translated into the C language if ... else ...

structure. The TTCN semantics requires that once an indentation (branch) level is entered, the

alternative events in that level must be checked infinitely until one of the events occurs, then the

evaluation of the tree either continues at the next level or terminates. The corresponding C
structure, therefore, is an infinite while loop with an if statement as the body of the loop:

while (TRUE)

C if ...

else if ...

The evaluation of a TTCN tree is terminated when an event line assigns a final verdict or when

an end branch is reached. A return statement is generated after these event lines. The presence

of a return statement at the end of a "while TRUE" loop may cause some C compilers to flag the

21

statement following the loop as unreachable; therefore, the statement "while (_forever)" is used
instead. The variable forever is initialized to TRUE in the declaration.

Example: The event lines of a partial behavior tree and its corresponding C structure are shown
side by side below.

El

Ell

E12

E2

E21

E3

entry code for indentation level at El
while (_forever)

{ evaluation of fields in PDU constraints for El
if (event El and Boolean expressions for El)

{ statements for assignments in El;

entry codes for indentation level at Ell;

while (_forever)

{ statements for Ell, E12, and ...; }

}

/* beginning of line E2 *1

evaluation of fields in PDU constraints for E2;

if (event E2 and Boolean expressions for E2)

{ assignment in E2;

entry codes for indent level at E21;

while (_forever)

{ statements for E21 and ...; }

}

/* beginning of line E3 */

E3 and ...

}

7.16.1 Indentation Level Entry Codes

Upon entry into a new indentation level, some housekeeping operations must be done, therefore

a sequence of "entry codes" is generated. The statements in the sequence depend on the

indentation level.

A. Entry codes for the first indentation level:

1)

. the statement "Jevei = 1;" to initialize the level nesting counter;

2)

. if there is a TIMEOUT event in this indentation level, the statement

if (Jimemame == 0) _timername = "timer-name";

where timer-name is the name appearing in the first TIMEOUT statement;

B. Entry codes for the second indentation level or higher:

1)

. the statement "Jevei + = 1;" to increment the level nesting counter;

2)

. if there is a TIMEOUT event in this indentation level, the statement

22

_timername = "timer-name";

where timer-name is the name appearing in the first TIMEOUT event;

3)

. if there is a tree attachment (including the Repeat event), but no receive event in this

indentation level, the statement "_bufferlen = -1;" to indicate that nothing has been
removed from the input FIFO queue yet;

4)

. if there is no TIMEOUT event appearing in this level, but there is a tree attachment or

a receive event, the statements "_timemame = (char *) 0;"

5). the first half of the while statement - "while (_forever) {".

Since the first indentation level of a subtree is considered to be at the same level where the tree

is attached, and the initialization for that level has been done before the attachment, therefore,

some of the entry codes must be omitted or conditionally executed. The condition on item A.2),

above, allows the timername to be set only if there was no TIMEOUT event in the calling tree.

7.16.2 Verdict in an event line

When an event line assigns a verdict, the translator generates a call to one of the two pre-defined

functions (or macros), SetpVerdict(new-verdict) and SetfVerdict(new-verdict), for the preliminary

and final verdicts respectively, to set the verdict in the global variable Result. If the verdict is a

preliminary verdict, SetpVerdict will also store the result in a pre-defined TTCN character string

variable R; if it is a final verdict, the translator will generate a return(TRUE) statement, which will

terminate the execution of the function.

7.17 Send Events

Given a send event line of the form

!P [Boolean expressions] (Assignment clauses) P[C]

where P is the name of a PDU and C is the constraint associated with the PDU P, the translator

generates a sequence of statements in the following order:

-statements to prepare the actual arguments for the constraint C;

-call C() to evaluate the constraint C;

- an if statement to evaluate Boolean expressions;

- assignment statements for the Assignment clauses;

- call Send_PDU_P to transmit the PDU.

7.17.1 Evaluation of Boolean Expressions and Assignment Clauses

The translation of Boolean expressions and assignment clauses is straight forward -- an expression

is either copied without change or transformed into a valid C expression. References to PDU
fields will be transformed into C pointer notation. For example, let XYZ be a PDU name, an

identifier of the form XYZ.field is transformed into pXYZ-> field where pXYZ is the pointer to

the storage for PDU structure XYZ.

23

Arithmetic operations are not allowed with operands longer than 32 bits which are mapped into

C unsigned character arrays. Relational and assignment operations involving arrrays are translated

into calls to one of the following predefined functions:

int strcmp(char *Sl,char *S2) — for character compare
int bitcmp(char *Sl,int length-of-Sl,char *S2,int length-of-S2) -- for numeric string compare
void strcpy(char *S2,char *S1) ~ for copying character string SI into S2

void bitcpy(char *S2,int length-of-S2,char *Sl,int length-of-Sl) -- for copying numeric string

SI into S2.

These functions are provided in the sysdef.c file.

7.17.2 Evaluation of PDU constraints references

Since PDU constraints are translated into C functions, evaluation of constraints references consists

of a C function call to the referenced constraint.

If a constraint contains arguments, then instead of passing the argument itself, the translator will

generate a pointer to a special argument structure containing either the value, or a pointer to a

list of values, as well as the tag, and optionally the length of values. The special argument

structure is declared in suite.h as follows:

typedef struct {

union { long v, char *ptr} value;

char tag;

LENGTH len;

} CONSTARG;

For example, let C1(X,Y) be a constraint for PDU ABC with two arguments, X being a long

integer and Y being an unsigned character array of size 10 (Octetstring[10]), the constraint

reference will be translated into

cargl .value.v = X; c_arg1.tag * EQUAL_TO;
c_arg1.len.from = 1; c_arg1.len.to - 1;

c_arg2.value.ptr = Y; c_arg2.tag - EQUAL_TO;
c_arg2.len.from = 10; c_arg2.len.to = 10;

Cl (p_ABC,&c_arg1 ,&c_arg2);

where c_argl and c_arg2 are declared at the beginning of the suite.c file as:

CONSTARG c_arg1, c_arg2;

The lines in italic are generated only if the translator -1 option is specified.

7.17.3 Transmission of PDU

s

It is assumed that the test implementor will provide a primitive to transmit PDUs to the IUT. The

24

function call to use the primitive is of the form

Send_PDU_name(pointer to PDU constraint);

Example: To transmit the constraints Cl for PDU ABC evaluated by the sequence shown in the

previous section, the translator would generates:

Send_PDU_ABC
(
pABC)

;

7.17.4 Verdict on the Send Event

The following sequence shows the translation of a send event without a final verdict or with a

preliminary verdict:

evaluation of constraints

assignment clauses

if (Boolean expression) {

Send_PDU_name(pointer to PDU constraints);

SetpVerdict(verdict); /* generated only if there is a preliminary verdict */

entry codes for the next level of behavior tree

statements for the next level

return(TRUE) or return(FALSE)

}

next alternative at the same level

If an event line contains a final verdict, the following sequence is generated instead:

evaluation of constraints

assignment clauses

if (Boolean expression) {

Send_PDU_name(pointer to PDU constraints);

SetfVerdict(verdict); retum(TRUE);

}

next alternative at the same level

7.18 Receive Events

The translation of a receive event line is similar to the send event line. The following sequence

of statements is generated:

-an if statement referencing Is_PDU-name(pointer to constraints, pointer to buffer) to

analyze the incoming PDU;
- additional expressions in the if statement for boolean expressions in the event line;

- assignment statements in the assignment clause of the event line.

In addition, for the first receive event line at the indentation level two or higher, a call to

25

Receive_PDU to read the input from IUT is also generated:

_buffer = Receive_PDU(_timername);

For the first indentation level of a subtree, a conditional call to Receive_PDU is generated instead,

since an input record may have already been read at the level where the subtree is attached.

if (_bufferlen < 0) _buffer = Receive_PDU(_timername);

Note, that a negative value in _bufferlen indicates that the Receive_PDU routine has not been
executed for the current indentation level. The following is a complete sequence of statements

generated for the receive event.

evaluation of constraints

if ((Is_PDU_name(pointer to PDU constraint, _buffer)) &&
(Boolean expressions)

)

{

assignment clauses

SetpVerdict(verdict) or SetfVerdict(verdict);

/* generated only if there is a verdict */

return(TRUE); or

entry codes for the next level of behavior tree

statements for the next level

}

next alternative at the same level

7.19 Implicit Send

The implicit send event line is used to specify the coordination procedures needed to trigger actions

from the upper layer of IUT It is of the form

< IUT!PDU> comments

It will be translated into a call to a special routine Implicit_send, as defined below.

I mp l i c i t_send(message

)

char * message;

{ printf("Coordination action, force IUT to send %s", message);

>

The input parameter points to a string containing the PDU name and the comments in the implicit

send event line.

This routine could be modified for other test coordination methods. For example, instead of

printing on the console, the routine could send the message through a communication line con-

necting to a test coordinating program on the SUT, which in turn would force the desired action

on the IUT

26

7.20 The OTHERWISE Event

Any input message from the IUT will match the OTHERWISE event, therefore, all that is needed

is to test if the buffer pointer returned by the Receive_PDU primitive is null, as shown below:

if (buffer) { ... /* actions for OTHERWISE */>

7.21 The ATTACH Event

Tree attachments are translated into function calls. The attached tree (function) is expected to

return a Boolean value to indicate whether the execution of the test step should continue or not.

If the function returns a value FALSE, then the execution of the tree will continue either at the

same indentation level where the tree is attached or at the next level, depending on how far the

execution of the function has traversed the attached tree. If the function returns from the first

indentation level in the attached tree, then all events at this level did not match and, therefore,

the execution should continue on the next alternative following the tree attachment; if the function

returns from one of the leaves of the attached tree, then at least one event matched and.

therefore, the execution should continue at the next level of that tree attachment.

If the function returns a value true, it indicates that a final verdict has been assigned, and that

the execution of the tree should be terminated.

Example. The following TTCN sequence

+Subtree(m,n)

x

y

is translated into:

_lastlevel - _level;

if (Subtree(m f n)) return (TRUE);

else if (_level > _lastlevel)

i /* test script at the next indentation level */

_level = _lastlevel + 1;

other entry code for this level;

codes for event x

...I* there will be return statements to exit V
>

_level = _lastlevel;
/* test script at the same indentation level V
codes for event y

27

7.22 Timer Management

7.22.1 Timer Operations — Start
,
Cancel, Readtimer, and Timeout

Since the timer management depends on the hardware and software implementation of clocks on
the target test machine, timer operations are translated into function calls to the appropriate

primitives to be provided by the test system implementor. The input to these primitives is the

name of the timer, such as "T200". In addition, the duration of the timer, scaled to units of

milliseconds, is also passed to the Start_timer primitive. If the TTCN start timer event line does

not specify the timer duration, the default value in the timer declaration table is used.

Examples: The translation of the following timer operations are shown on the right of the TTCN
statements. It is assume that the default duration of the timere T1 is 2 seconds and that the timer

unit for T200 is in seconds.

START T200 (T200value+delta)

START T1

CANCEL T1

CANCEL
TIMEOUT T1

Start_timer('T200",(T200value+delta)

StartJimerfTr, 2 * 1000);

Cancel_Timer(TT);

Cancel_TimeO;
if (Timeout('Tr)) { ... }

1000);

7.22.2 Timers in the Receive_PDU primitives

The TTCN snapshot semantics requires that during the execution of a TTCN test script, events

within an indentation level be polled continuously until one of the event occurs, e.g., timer

expiration or arrival of a message from IUT For this reason the translated C source code consists

of an infinitive while loop for each indentation level. To avoid this repeated polling, the name of

the timer used in the indentation level is also passed to the ReceiveJPDU primitive, which will not

return control to the caller until either a PDU is received or the timer has expired. Thus, only

one pass through the loop is necessary.

If the indentation level does not have a TIMEOUT test, or contains more than one TIMEOUT
tests, then the timer name in the call to Receive_PDU is set to null. In that case, it returns

immediately with or without a PDU.

7.23 Labels and the Goto Statement

Labels and Gotos are translated into their corresponding C counterparts. However, labels on

entries that are not the first alternatives at a given indentation level are ignored, as jumps to these

labels are invalid. A label is always placed before the entry codes (see section 8.2.2.) for the

indentation level where the label is defined.

28

Example: A simple case of goto.

? el LI

! ell Lll

LI: _level += 1;

/* other entry codes for level el */

while (_forever)

{ if (el)

{Lll: entry codes and body of ell }

! e2 if (e2)

? e21 L21

{ L21: entry codes for level e21

while (_forever)

{ if (e21)

-> LI
{ ... }

goto LI;

}

}

}

Even though the TTCN syntax allows jumps from a locally defined test step into the main tree, the

translator will not accept this type of goto.

7.24 The REPEAT Statement

The Repeat event line is translated into the C do while structure.

Example: REPEAT Subtree(m,n) UNTIL [Boolean-expression]

C statement

do

if (Subtree(m,n)) return (TRUE);

while ('Boolean-express ion)

7.25 The Default Reference

If the default tree is referenced, a tree attachment referencing the default tree is generated at the

end of each indentation except when the default attachment can not be reached because the last

event line was a Goto, an unconditional send event, or a pseudo event with only assignment

clauses.

8. Sample TTCN Test Script and Compiled C Statements

Appendix A contains an example showing the translation of a TTCN test suite into C source

statements. The TTCN scripts are shown first in tabular format followed by scripts in machine

processable form (TTCN.MP) and the compiled C source statements.

29

9. References

[1] Information Processing Systems
, OSI Conformance Testing Methodology and Framework -

Part 1-5, 1989. The TTCN language is defined in Part 3: The Tree and Tabular Combined
Notation, DIS 9646-3, December 1, 1989. (ISO/IEC JTC 1/SC 21)

[2] R.L. Probert, H. Ural, and M.W.A. Hornbeek, "A comprehensive software environment for

developing standardized conformance test suites," Computer Networks , vol. 18, no. 1

[3] The ITEX Test Suite Development
, An Introductory Overview

,
Swedish Telecom, Sweden,

1988.

[4] S. Johnson, "YACC: Yet Another Compiler-Compiler," UNIX Programmer’s Manual
, April,

1986.

[5] M. Lesk, E. Schmidt, "LEX - A Lexical Analyzer Gernerator," UNIX Programmer’s Manual ,

April, 1986.

[6] A. Schreiner, H. Friedman, Introduction to Compiler Construction with UNIX, Parentice-

Hall, Inc., 1985.

[7] C. Donnelly, R. Stallman, BISON, The YACC-compatible Parser Generator, Free Software

Foundation, Inc. October, 1988.

30

Appendix A. Sample Primitive Routines for LAPD SABME Frame
Send PDU SABME and Is PDU SABME

Definition of PDU SABME in suite.h File

typedef struct

t /* Set Asynchronous Balanced Mode Extended ‘/

long SAP I ;

long C_R ;
/* Cmnd / Resp */

long EA_0 ;

long TeT ;
/* TEI nunber */

long EA_1 ;

long P ; /* poll bit */

char SAPI_tag, C_R_tag, EA_0_tag, TEI_tag, EA_1_tag, P_tag;

> pdu_SABME;

extern Send_PDU_SABME ()

;

extern int Is_PDU_SABME();

The Send_PDU_SABME and Is_PDU_SABME Routines

#include "suite.h"
#include "sysdef.h"

/*

* Send PDU SABME -- format a SA8ME frame and forward it for transmission
*/

Send_PDU_SABME (f rame

)

struct pdu SABME ‘frame;

{

unsigned char buffer [3]; /* buffer for the SABME frame */

/* format a SABME buffer for transmission */

/* Since all these fields are mandatory, no check for tags is necessary */

bufferCO] = (frame->SAPI « 2)
j

(frame->C_R << 1); /* first byte */

buffertl] = (frame->TEI « 1)
j

1; /* 2nd byte, TEI and EA_1 fields */

buffer[2] * (frame->P « 4)
j

0x6f; /* P and SABME frame control V

/* now use the layer 1 support routine to send the frame */

Send_PDU(buffer); /* this routine is system dependent */

/* generate test records */

trace_send(buffer); /* send a trace entry in log file V
/* we may also want to send a formatted output to

test console */

* Is_POU_SABME -- test if the input in buffer matches the constraints in frame,

* return TRUE if the contents match.
* Copy contents of buffer to the structure for the SABME frame if necessary.
*/

int I s_PDU_SABME(frame, buffer)

struct pdu_SABME ‘frame; /* buffer must match this frame */

31

unsigned char ‘buffer;

<

/* input buffer, assure that layer 1

support has already strip the flags and CRC bytes */

extern int _bufferlen;
if (_bufferlen != 3) return (FALSE); /* message too short */

if ((*(buffer+2) & Oxef) != 0x6f) /* check for SABME frame control */

return FALSE; /‘ not a SABME frame */

/* now check the SAPI field based on the relational operation
indicated in the tag field */

swi tch(f rame->SAPI_tag) C

case DONT_CARE:

case WILDCARD:
break;

case EQUAL_TO:

if (frame->SAPI != (‘buffer » 2)) return FALSE;

break;

case NOT_EQUAL

:

i"f (f rame->SAPI == (‘buffer » 2)) return FALSE;

break;

case GREATER_THAN:

if (frame*>SAPI <= (‘buffer » 2)) return FALSE;

break;

case LESS_THAN:

if (frame->SAPI >= (‘buffer » 2)) return FALSE;

break;

case GREATER_EQ:

if (f rame->SAPI < (‘buffer » 2)) return FALSE;

break;

case LESSJEQ:

if (frame->SAPI > (‘buffer » 2)) return FALSE;

break;

default: return FALSE;

break;

>

frame->SAPI = ‘buffer » 2; /* copy the SAPI field into frame */

/* check command response field -- 1 bit */

if (frame- >C_R_tag == DONT_CARE)

frame->C_R = (‘buffer » 1) & 1; /* copy the C_R field */

else {

if (frame->C R ! = ((‘buffer » 1) & 1)) return FALSE;

)

/* check the EAO flag, must be 0 */

if (‘buffer & 1) return FALSE;

/* next check the TEI number field */

switch(frame->TEI_tag) i

case DONT_CARI:

case UILD~CARD:

break;

case EQUALJ’O:

if (frame->TEI !* (‘(buffer+1) » 1)) return FALSE;

break;

case NOT_EQUAL

:

il (frame*>TEI ** (*(buffer+1) » D) return FALSE;

break;

case GREATER_THAN:

if (frame->TEI <* (*(buffer+1) » 1)) return FALSE;

break;

case LESS_THAN:

if (frame->TEI >* (*(buffer+1) » 1)) return FALSE;

break;

case GREATER EQ:

32

if (frame->TEI < (*(buffer+1) >> 1)) return FALSE;

break;

case LESS_EQ:

if (frame->TEI > (*(buffer+1) >> 1)) return FALSE;

break;

default: return FALSE;

break;

>

frame->TEI = *(buffer+1) >> 1; /* copy the TEI field into frame */

/* check the EA1 flag, must be 1 */

if ((^buffer & 1) !* 1) return FALSE;

/* check the Poll bit */

if (f rame->Pol l_tag == DONT_CARE)

frame->Poll = (*(buf fer+2) >> 4) & 1; /* copy the Poll field */

else {

if (frame->Poll != ((*(buf fer+2) >> 4) & 1)) return FALSE;

)

return TRUE; /* all fields matched and copied */

/* note: before returning, you may want to enter a trace entry */

33

Appendix B. UNIX ttcnc Command Manual

NAME
ttcnc - invoke the ttcn compiler

SYNOPSIS
ttcnc mp-f ilename [-m filename ! [-h filename !

[(-s|-g|-t) filename-prefix ! [-1]

DESCRIPTIONS
ttcnc is the compiler that translates the ttcn test scripts
in the MP form into the C language. All command arguments are
optional. If the input filename is not specified, the
standard input file is used. The default output files are
described in the associated options. All scratch files are
deleted at the end of compilation unless terminated
prematurely.

OPTIONS
All options described below, except -1, are specifications for
output files? all filenames specified will be automatically
appended with either a .c or .h suffix as appropriate.

-m : Specify the name of the file for the main routine from
which the test cases are invoked. The default file is
"driver .

c"

-h : Specify the name of the file for the data structure
header file. If this option is omitted, the filename
specified in the -s option is used? if both options are
omitted, the default name is "suite. h"

The next three options, -s, -g, -t, specify the grouping of
the test scripts, and are mutually exclusive.

-s : All output, except the main driver and the header file,
are to be stored in one file.

-g : The test cases are to be grouped based on the test suite
structure, and stored in separate files. The filenames
are created by concatenating the prefix specified, and
the group name in the test suite. (See next selection
for more details.)

In addition, the following files are created (the
asterisks represent the prefix)

:

*decl.c - declarations for variables
*cons.c - routines for the TTCN constraints part
*lib.c - routines for the test step library

35

-t : Each test case is stored in a separate file. The
filename is the concatenation of the prefix and the test
case identifier. Just like the -g option, files *decl.c,
*cons.c, and *lib.c will also be generated.

If none of the -s, -g, -t options are specified, -s is implied
and all output will go to "suite. c".

-1 : For each PDU field, provide space for the length of
the field. (See section 3.3 for explanation.)

NOTES
If the test suite uses abbreviations, a preprocessor must be
used to expand the abbreviated strings. In this case, the
shell command is as follows:

prep mp-source
|

ttcnc options

EXAMPLES

ttcnc lapd.mp
Compile the TTCN test suite in lapd.mp and produce files suite. h, suite.c and driver.c.

ttcnc lapd.mp -m lapdtest -g lapd

Compile the TTCN test suite in lapd.mp and produce the following files:

suite.h lapdtest. c, lapdedclc, lapdcons.c
,
lapdlib.c, and one lapd*.c per group.

prep x25.mp
|

ttcnc

Expand abbreviations in test suite X25.mp and compile it to produce output files

suite.h, suite.c, and driver.c.

36

4. TITLE AND SUBTITLE

Users’ Manual for the NIST TTCN Translator Version 3.0
5. AUTHOR(S)

David H. Su
6. PERFORMING ORGANIZATION (IF JOINT OR OTHER THAN NIST, SEE INSTRUCTIONS)

U.S. DEPARTMENT OF COMMERCE
NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY
GAITHERSBURG, MD 20899

7. CONTRACT/GRANT NUMBER

8. TYPE OF REPORT AND PERIOD COVERED

NIST-1 14A

(REV. 3-89)

U.S. DEPARTMENT OF COMMERCE
NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY

BIBLIOGRAPHIC DATA SHEET

1. PUBLICATION OR REPORT NUMBER

NISTIR 4655
2. PERFORMING ORGANIZATION REPORT NUMBER

3. PUBLICATION DATE

9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (STREET, CITY, STATE, ZIP)

10. SUPPLEMENTARY NOTES

DOCUMENT DESCRIBES A COMPUTER PROGRAM; SF-185, FIPS SOFTWARE SUMMARY, IS ATTACHED.

11. ABSTRACT (A 200-WORD OR LESS FACTUAL SUMMARY OF MOST SIGNIFICANT INFORMATION. IF DOCUMENT INCLUDES A SIGNIFICANT BIBLIOGRAPHY OR
LITERATURE SURVEY, MENTION IT HERE.)

Standard conformance testing is the first step in ensuring the interoperability of

communications products. There has been increased interest in the development of

Abstract Conformance Test Suites (ATS) in the standards community. A standard test
script language called Tree and Tabular Combined Notation (TTCN) has increasingly
been used to specify test suites. NIST has developed a TTCN to C language translator
to help the industry in speeding up implementation of ATSs into executable test suites
(ETS) . This manual describes processes involved in implementing an ETS, how the

translator is to be used, and the design of the translator itself.

12. KEY WORDS (6 TO 12 ENTRIES; ALPHABETICAL ORDER; CAPITALIZE ONLY PROPER NAMES; AND SEPARATE KEY WORDS BY SEMICOLONS)

abstract test suite; conformance testing; data communications; executable test suite;

protocol standard; translator; TTCN

13. AVAILABILITY

X

UNUMITED

FOR OFFICIAL DISTRIBUTION. DO NOT RELEASE TO NATIONAL TECHNICAL INFORMATION SERVICE (NTIS).

ORDER FROM SUPERINTENDENT OF DOCUMENTS, U.S. GOVERNMENT PRINTING OFFICE,

WASHINGTON, DC 20402.

' ORDER FROM NATIONAL TECHNICAL INFORMATION SERVICE (NTIS), SPRINGFIELD, VA 22161.

14. NUMBER OF PRINTED PAGES

40

15. PRICE

AO 3

ELECTRONIC FORM

