
NAT L INST. OF STAND & TECH R.I.C.

A111D3

development of an Optical
Disk System for the
Automated Retrieval of
EASEAR Records

NISTIR 4654

Natalie Willman

us. DEPARTMENT OF COMMERCE
National Institute of Standards

and Technology

Advanced Systems Division

Computer Systems Laboratory

Gaithersburg, MD 20899

Sponsored by:

Social Security Administration
Baltimore, Maryland

US. DEPARTMENT OF COMMERCE
Robert A. Mosbacher, Secretary

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
John W. Lyons, Director

QC

100

.U56

//465it

1991

NIST

NISTIR 4654

Development of an Optical
Disk System for the
Automated Retrieval of
EASEAR Records

Natalie Willman

U^. DEPARTMENT OF COMMERCE
National Institute of Standards

and Technology

Advanced Sjystems Division

Computer Systems Laboratory

Gaithersburg, MD 20899

Sponsored by:

Social Security Administration

Baltimore, Maryland

August 1991

U.S. DEPARTMENT OF COMMERCE
Robert A. Mosbacher, Secretary

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
John W. Lyons, Director

>' y

%

Acknowledgments

Many people, in addition to the author of this report, have contributed to the program outlined

in this publication, and the author is most appreciative of that assistance. Special thanks are

due to the following individuals from NIST: Dana Grubb (Manager, Data Storage Group),

Fernando Podio, Mark Williamson, Lloyd Gilmore and Diane Honeycutt.

The support and information provided by the project team at SSA are also appreciated.

Special thanks are due to the following individuals from SSA: Malcolm Ewell, Ed Bulson,

Marty Mahon, Joan Piasecki, Janice Whelchel, Ann Dempsey, Charlie Fuller, Perry Briscoe,

Michael Macer and Michael Banks.

11

iii

Table of Contents

1 Introduction 1

2 Pilot System Components 3

2. 1 Hardware Components 3

2.2 Software Components 4

3 Pilot System Design 5

3 . 1 Operating System 5

3 . 2 Mass Storage Devices and Integration 6

3.2.1 Mass Storage Media and Drives 6

3.2.2 Device Integration Methods 6

3.2.2. 1 Small Computer Systems Interface 6

3. 2. 2.2 Common Access Method 7

3.2.3 Open Reel Tape Drive 7

3.2.4 Optical Disk Library System 7

4 In-House Software Design 9

4. 1 Overview of the EASEAR User Interface 10

4.1.1 General Screen Characteristics 10

4.1.2 The Query Screen 11

4.1.3 The Browse Screen 12

4.1.4 The Detail Screen 13

4.1.5 The Error Screens 13

4.1.6 Management Information 13

IV

4.2 User Interface Software Organization 14

4.2.1 Software Data Structures 14

4 . 2 . 1 . 1 The Query Parameters 14

4.2. 1.2 The Browse Data 14

4.2. 1.3 The Full Record Data 15

4.2. 1 .4 The Informix Host Variables 15

4.2. 1.5 The Request Message 15

4 .2 . 1 . 6 The Acknowledge Message 16

4 .2 . 1 . 7 The Management Information 16

4.2.2 High Level Software Organization 17

4.2.2. 1 Initialization and Control of the

User Interface Environment ’. 17

4. 2. 2. 2 Entry of the User Query 18

4 . 2 . 2 . 3 Selection of the Matches to the Query 18

4 .2 .2 .4 Display and Viewing of Browse Fields 19

4. 2. 2.5 Display of Detailed Record Information 19

4.3 Overview of the Cartridge Handler Device Driver 19

4.3.1 The Scheduler Algorithm 20

4.3.2 The Control Algorithm 20

4.4 Cartridge Handler Device Driver Software Organization 21

4.4.1 Software Data Structures 21

4.4. 1.1 The Message Queues 21

4 .4 . 1 .2 The Request Message 21

4 .4 . 1 . 3 The Acknowledge Message 22

4.4. 1.4 The Drive Status Information 22

4.4. 1.5 The Command Descriptor Block 22

4 .4 . 1 . 6 The SDLP Command Information 23

V

4.4.2

High Level Software Organization 23

4.4.2. 1 Initialization of the Data Structures 24

4. 4. 2.2 Receipt of a Request 24

4. 4. 2. 3 Processing of a Request 24

5 Conversion and Handling of SSA Data 27

5 . 1 Basic Procedures 28

5.1.1 Inserting a Disk into a Library Drive 28

5.1.2 Ejecting a Disk from a Library Drive 28

5.1.3 Logging into an Account on the UNIX System 29

5.1.4 Gaining System Administrator Privileges 29

5.1.5 Formatting an Optical Disk 29

5.1.6 Placing a File System on an Optical Disk 29

5.1.7 Mounting a File System 30

5.1.8 Unmounting a File System 30

5.1.9 Logging out of an Account 30

5 . 2 Conversion from Tape to Optical Disk 31

5.2.1 System Procedures 31

5.3 Data Analysis 32

5.3.1 System Procedures 32

5.4 Separation of the Data 33

5.4.1 System Procedures 33

5.5 Conversion of Data to Informix Database Table Format 34

5.5.1 System Procedures 34

5.6 Compression of the Data 35

5.6.1 System Procedures 35

6 References 37

VI

A User Instructions 39

A. 1 Entering the System 39

A.2 The Query Screen 40

A. 3 The Browse Screen 42

A.4 The Detail Screen 43

B Rapport Setup 45

B. 1 Terminal Parameters 45

B.2 File Transfer Parameters 46

B. 3 Screen Colors 46

C System Error Messages 47

C. l User Interface Error Messages 47

C.2 Cartridge Handler Device Driver Error Messages 48

D Listing of the Code 51

vii

Table of Figures

Figure 1 System Components 3

Figure 2 System Software Flow of Data 9

Figure 3 Query Screen 11

Figure 4 Browse Screen 12

Figure 5 Detail Screen 13

Figure 6 Error Screen 13

Figure 7 User Interface Software Control Flow 17

Figure 8 Cartridge Handler Device Driver Software Control Flow 23

Figure 9 Data Conversion Process 28

Figure 10 IRD File 32

Figure 1 1 Index File 33

Figure A1 Login Screen 39

Figure A2 Query Screen 40

Figure A3 Browse Screen 42

Figure A4 Detail Screen 43

viii

IX

1. Introduction

The Social Security Administration (SSA) maintains records of the yearly wages earned by

every person in the United States. Each year, approximately 2.5 gigabytes of data are collected

on self-employed wage earners and stored in the EASEAR file. Another 47 gigabytes of data

are collected on other wage earners and stored in the EAMATE file. The records are currently

stored on over 110,000 rolls of microfilm. It takes over 400 scouts to retrieve information

needed by the professional staff. Often, the needed roll of film is missing from the file due to

being currently in use, misfiled, or misplaced. In addition, the information obtained from the

microfilm is not always the most current, and decisions are sometimes based on obsolete data.

Advances in peripheral mass storage technology during the 1980s (e.g. magneto-optic recording)

now allow for alternative approaches to data storage and retrieval. The agency believes that an

automated retrieval system would provide a more accurate, timely, and cost effective means of

retrieving the information.

The focus of this document is the evolution and design of the EASEAR pilot application. The

full pilot consists of three phases. Phase One of the project consists of the development of an

automated retrieval pilot system for two years of the EASEAR records. In Phase Two of the

pilot system, one year of the EAMATE records will be added to the pilot system, and in Phase

three, a provision will be made for the connection of the pilot system to the SSA mainframe.

The goals of the project are as follows: to demonstrate the feasibility of a full scale automated

records retrieval system, to study the impact of an automated system on the users, and to gain

insight into the factors which may impact the design of a full scale system.

This pilot system, both hardware and software, is intended solely for use in a pilot

environment. The NIST developed software, while being tested to the best of our abilities,

is not guaranteed to be error free. The pilot system design was intended to minimize cost

while placing maximum emphasis on establishing the feasibility of an automated system

and studying the factors that would impact the design of a full scale system. The pilot

system design used does not imply any recommendations for a full scale system design.

Any products named are for descriptive purposes and do not imply a recommendation for

a final implementation.

1

2

2. Pilot system Components

The EASEAR pilot system is an integration of NIST developed software and commercially

available software and hardware. In this way, the pilot system could be tailored to focus on the

areas that were of interest to SSA and which could influence a later implementation of a full

scale system. The following section discusses the hardware and software components of the

pilot system.

2.1 Hardware Components

The EASEAR pilot system file server consists of a Compaq 386/20 with a 200 MB hard drive

and 12 MB of RAM. The file server is daisy chained, via a Western Digital 7000 FASST-2
SCSI host bus adapter and external SCSI cables, to a Hewlett-Packard 88780B 12.7 mm Q/i in)

open reel tape drive and a Hewlett-Packard C1710A rack mountable optical disk library with

two 130 mm (514 in) magneto-optic drives and 32 cartridge slots. The file server also contains

an Amet Smartport-8 multiport adapter board connected to four 19200 baud modems. The

power to the file server and its peripherals is regulated by a Sola MCR series 2.0 kVA surge

suppressor/voltage regulator.

The workstations in the pilot employ Intel 80286 or 80386 microprocessors in a 100% IBM
compatible AT with color monitors and 101 keyboards. The workstations communicate with the

file sever using 19200 baud modems (see Figure 1).

Figure 1. System Components

3

2.2 Software Components

The operating system for the file server is Interactive UNIX System V Release 3.2, Version. 2.2.

With the exception of the optical disk library cartridge handler, the file server’s peripherals are

controlled by Columbia Data Products software drivers and UNIX utilities. NIST developed a

software driver and scheduling algorithm to handle the requests for optical disk cartridges and

the movement of the optical disk library cartridge handler. In addition, NIST developed an

EASEAR user interface to allow the user to query for and to browse through the EASEAR
record data. The Informix ESQL/C embedded SQL database engine is used to manage the

EASEAR record data.

The operating system for the workstations is DOS 3.1 or above. Rapport, a DOS/UNIX bridge

developed by Tundra Software, is used to communicate with the UNIX file server.

4

3. Pilot System Design

In order to provide SSA with the most feedback on the problems involved in the development of

an automated records retrieval system, the design of the pilot system reflects a great effort to

remain vendor-independent, while still consisting largely of "off-the-shelf products. In the

choice of components, NIST attempted to closely follow the existing and emerging standards in

the following issues: removable optical disk media. Small Computer Systems Interface (SCSI)

devices and programming interfaces. Structured Query Language (SQL) databases, and

operating systems (see Reference Section).

The main goals of the pilot system were to demonstrate the feasibility of an automated retrieval

system and to study the impact of the system on the users. Considering these goals, it was

determined that the most crucial areas in the design of the pilot system were the operating

system, the integration of a mass storage capability, the indexing methods used to retrieve

records, and the user interface. This section of the document concentrates on the operating

system and mass storage devices, while issues concerning the user interface and indexing

methods are discussed in the software section of this document.

3.1 Operating System

The main criteria for the file server operating system was that it provided multiuser access, a

POSIX-like interface, and supported removable optical disk media. With these criteria in mind,

the following operating systems were considered; OS/2 extended edition, Novell Netware and

UNIX. Based on the factors outlined below, NIST chose UNIX for the file server operating

system.

While OS/2 would merge well with SSA's existing IBM mainframe hardware, it is still a fairly

new operating system. Along with several other minor flaws in its current version, OS/2 does

not currently provide adequate support for SCSI optical disk drives.

While Novell Netware has the most dominant networking operating system on the market, at this

time it does not support removable optical media. According to Novell's development engineers,

Novell will not guarantee that their operating system will work with removable optical media,

and actually strongly recommended that Novell Netware and removable optical media not be

used together.

5

UNIX had many advantages over the other operating systems. It is a well established operating

system with a large market share, considerable power and flexibility, and an interface which

supports the spirit of POSIX. UNIX supports optical media with no compromise to its

efficiency, and was repeatedly recommended by industry developers for use with this type of

media, drives and libraries.

Implementations of the UNIX operating system available for Intel 80386 microprocessor based

systems were considered. NIST chose to use Interactive Systems Corporation's (ISC) Interactive

UNIX System V Release 3.2.

3.2 Mass Storage Devices and Integration

The integration of a mass storage capability into the pilot system involved the consideration of a

large number of issues. The following are the major areas that were researched: mass storage

media, mass storage device integration methods, open reel tape drives, and automated library

systems.

3.2.1 Mass Storage Media and Drives

Optical disk media currently offers the highest density removable, direct-access media and was

chosen as the mass storage media for the pilot. The specific optical media selected was 130 mm
(SVi in) magneto-optic double sided media with 512 byte sectors and a capacity of 600

megabytes per cartridge. An international standard (ISO/IEC 10089) exists for this type of

media, and the cost of the media, drives, and library systems were suitable for a pilot.

3.2.2 Device Integration Method

The device integration method includes the hardware interface as well as the software interface.

The following sections discusses the Small Computer Systems Interface (SCSI), the pilot system

hardware interface, and the Common Access Method (CAM), the pilot system software

interface.

3.2.2.1 Small Computer Systems Interface

The Small Computer Systems Interface (SCSI) is a specification that defines a high-

performance, general-purpose interface that allows a system to communicate with a wide variety

of peripheral devices. Due to its flexibility, SCSI is a popular method for the integration of

external mass storage devices. However, the interface has so many options that the integration

of devices can be very difficult. In many cases, the physical connectors, as well as the command
set used to control the devices, are vendor specific. Many "plug and play" subsystems have

involved the use of proprietary boards and software, which lock a system into one manufacturer.

6

In order to promote interchangeability between vendors, Task Group X3T9.2, Lower Level

Interfaces, has developed the SCSI-1 and SCSI-2 standards, and is currently working on a SCSI-

3 standard. These standards provide specifications on the physical connectors and the command
set, as well as many other characteristics that are necessary to allow for interchangeability.

SCSI compliant devices are daisy chained together and controlled by a single host bus adapter

(HBA). Each device is assigned a target ID, via which the host bus adapter routes commands to

the device. NIST chose to use the Western Digital 7000 FASST-2 SCSI host bus adapter.

3.2.2.2 Common Access Method

Another major problem in the integration of SCSI compliant devices is the programming

interface. The Common Access Method (CAM) specification, being developed by the Task

Group X3T9.2, defines a standard programming interface between an operating system and a

host bus adapter. This interface provides a standard format for SCSI commands, regardless of

the type of the device. For a device which is SCSI-compliant, a device driver following this

specification would be written using high-level standardized commands rather than device

specific SCSI commands. This enables the physical devices to be interchanged without having

to rewrite code. This document is sufficiently complete that several software developers are

already developing programming interfaces which comply to the CAM draft specification.

NIST chose to use the Columbia Data Products SDLP CAM-compliant programming interface.

3.2.3 Open Reel Tape Drive

A 12.7 mm (V2 in) open reel 256 cpmm (6250 cpi) 9-track tape drive was also an integral part of

the pilot system as the EASEAR data was provided from SSA on this type of media. The

Hewlett-Packard 88780B tape drive was selected as it provided an option for a SCSI interface.

3.2.4 Optical Disk Library System

In order to store all of the data intended for the pilot system, and to provide a response time

acceptable for the number of users in the pilot, a library with approximately 20 gigabytes of

storage capacity and two rewritable magneto-optic drives was required. It was also required that

the optical drives and library cartridge handler be controlled by SCSI-1 or SCSI-2 commands.

NIST chose to use two Hewlett-Packard C1710A rack-mountable library systems.

7

8

4. Software Design

The EASEAR pilot system software consists of a mix of off-the-shelf packages and software

developed by NIST (see Figure 2). The off-the-shelf software consists of the ESQL/C database

engine, the software drivers for the optical disk drives, as well as several UNIX utilities. The

software written at NIST consists of two major programs, the EASEAR user interface and the

library cartridge handler device driver. The software is written in the C Language, using a

modular design approach, and compiled with the Interactive UNIX C compiler. The user

interface is pre-compiled by the Informix ESQL/C precompiler, which allows the C language

program to make SQL queries to the database engine.

User

Optical Disk

Cartridge from

Library

Figure 2. System Software Flow of Data

9

4.1 Overview of the EASEAR User Interface

Before writing the pilot system user interface, several visits were made to the Metro West branch

of the Social Security Administration. From information obtained on a tour of the manual

retrieval system currently in use, a prototype interface was designed and implemented for an

IBM PC compatible running DOS. This prototype interface was used by approximately 20 users

at SSA who were asked to offer suggestions to improve the user interface design. From these

comments, the prototype was refined and taken back to SSA for a final prototype test.

The EASEAR user interface provides record retrieval and viewing capabilities to the user. The

user enters certain information on the record for which he or she is searching. This information

is reordered into an SQL query, and records that match the query are retrieved. A limited

number of fields from each record are displayed, and the user is allowed to browse through the

records, select a record to be displayed in full, and select records to be printed. In addition to

these functions, the user interface collects certain management information to help assess the

results of the pilot system test. The listing of this code, "easear.ec", can be found in Appendix

D.

4.1.1 General Screen Characteristics

The user interface consists of four types of screens: the query screen, the browse screen, the

detail screen, and the error screen. The first screen, the query screen, is used to enter the

parameters that define a query. The next screen, the browse screen, is used to view a subset of

information on every record that matches the query. Both screens have a blue background and

yellow text, and, in order to make available as much information as possible, are the size of the

entire display. The detail screen, used to display full information on a selected record, and the

error screen, used to report an error condition or status information to the user, have a red

background and yellow text. These two screens are smaller than the display as only limited

information is necessary, and overlay either the query or browse screen. With the exclusion of

the error screen, there are prompts on the bottom of each of the screens outlining options

available to the user while at the current screen.

10

4.1.2 The Query Screen

The query screen appears upon entry into the program, and prompts the user to enter parameters

for a record search (see Figure 3). It is mandatory that the user specify the tax year, the internal

revenue district (IRD), and at least four letters of the wage earner's last name. Optional

information includes the initials, the social security number, the spouse's social security number

and the amount of self employed income.

Tax Year —

IRD Generated by DEQY —

Last Name —— Initials

Social Security Number —

-

Spouse's SSN

Self Employed Income —

—

ESC=EXIT ENTER=SEARCH

Figure 3. The query screen

If the user places a period at the end of the specified last name, only records in which the last

name matches the specified pattern are retrieved. Otherwise, all records with the last name

beginning with the specified character sequence are retrieved. If the user enters self employed

income information, all records are retrieved in which the self employed income is in the range

of +/- one dollar of the figure designated as a query parameter.

When the user has entered the maximum number of characters for a response to a parameter, the

cursor jumps to the next field. The user also has the use of the arrow and tab keys to move

between fields. The Page Up key is used to view the tax year and the IRD from the previous

query. When the user presses enter, the program retrieves the records matching the query and

proceeds to the browse screen. If the user presses escape, the program terminates.

11

4.1.3 The Browse Screen

The browse screen displays partial information on all of the records that match the user's query

(see Figure 4). The information displayed is intended to be enough for the user to refine his or

her search in order to request detailed information on a few records.

Name

Tax Year: 88

SSN SEI

IRD Generated by DEQY: 14

Spouse's SSN and SEI Full Name

AANESTA AJ 061 36 3003 37692 564 53 6009 37347 ARLET AND JAMES AANE

ABERNAT JF 658 72 4029 19187 624 05 2003 31731 JOAN AND PETER ABERN

ACKERMA JA 951 81 2019 34883 660 61 4017 19187 JOHN AND BELINDA ACK

ADAMSON AJ 658 72 4029 31731 951 81 2019 36778 AUDREY AND CARL ADAM
ALEXAND CC 660 61 4017 24776 256 78 6022 34883 CHARLES AND MARY ALE

ALEXAND CF 256 78 6022 35587 778 84 0006 24776 CYNTHIA AND ROB ALEX

ALEXAND ER 778 84 0006 33323 658 72 4029 35587 EUGENE AND ELEXIS AL

ANDERSO BJ 624 05 2003 36778 621 69 0034 33323 BEVERLY AND TERRY AN

ESC^QUERY SCR ENTER=DETAIL SCR PGUP/PGDN=SCROLL END/HOME-SHIFT REC

Figure 4. The browse screen

The the arrow keys are used to browse through the page of records currently on the screen, and

the Page Up and Page Down keys are used to retrieve a previous page or a new page of matches.

The End key is used to view any portion of the record that is too long for the standard display,

and the Home key is used to restore the line.

The user is able to view all records that match the query, up to the point where system

performance would be impacted. By pressing Esc, the user is returned to the query screen. If

the user presses Enter while the cursor is positioned over a record, he or she proceeds to the

detail screen.

12

4.1.4

The Detail Screen

The detail screen displays all the information in the current record as it would appear on the

microfilm (see Figure 5). If the user presses Enter, the record information is sent to the dot

matrix printer at the user's workstation. If the user presses Print Screen, the entire screen is

printed.

Name : AUDREY AND CARL ADAMSON
Address: 32 Hopper Way

Gaithersburg, MD 20878

Name SSN NESEB NESEF WAGES SEI YEARQU ST DLN/EIN IND CD

ADAMSON AJ 061 36 3003 00000 00000 00000 37692 8812 21 16222111940356
26 564 53 6009 00000 00000 00000 37347 060767625 7716

Figure 5. The detail screen

4.1.5

The Error Screens

The error screens are used to inform the user that an error condition has occurred (see figure 6).

When an error screen appears, the user presses Esc to exit the screen. Some error messages are

caused by an improper entry, and return the user to the current screen. Others are system error

messages, and cause program termination. Refer to Appendix C for a list of error messages.

Error! You Must Enter the Tax Year, IRD and 4 Letters of the Last Name

Figure 6. The error screen

4.1.6

Management Information

The EASEAR user interface maintains certain management information in order to help assess

the results of the pilot system test. It collects the information, and stores it in a file. A separate

program uses the information stored by the user interface and prints the following;

- Total logins to the pilot system

- Total time elapsed during all logins

- Average time elapsed during a login

- Total number of queries

- Total number of 1988 queries

- Total number of 1989 queries

- Total time elapsed during all queries

- Total time elapsed during 1988 queries

- Total time elapsed during 1989 queries

- Average time elapsed during a query

- Average time elapsed during a 1988 query

- Average time elapsed during a 1989 query

- Total requests for detailed records

- Total requests for 1988 detailed records

" Total requests for 1989 detailed records

- Total requests for record printouts

- Total requests for 1988 record printouts

- Total requests for 1989 record printouts

13

4.2 User Interface Software Organization

The following subsections discuss the data structures implemented in the user interface, as well

as the high level software organization.

4.2.1

Software Data Structures

The major data components involved in the user interface consist of seven data structures: the

query parameters, the browse data, the full record data, the Informix host variables, the request

message, the acknowledge message, and the management information.
4.2.1.1

The Query Parameters

The Query Parameters data structure is implemented as an array of size two of the user-defined

C structure INFO, and is used to store search parameters entered by the user. One element of the

array is used to store the current query parameters, while the other array element is used to store

the previous query parameters. The structure contains the following data:

-Tax Year - Social Security Number
- IRD - Spouse's Social Security Number
- Last name - Self Employed Income
- Initials

4.2.1.2

The Browse Data

The Browse data structure is implemented as an array of size MAXSCR (number of matches

displayed on the screen in the user interface) of the user-defined C structure QUERY, and is

used to store the fields of the record that the user views in the browse screen. The structure

contains the following data:

- Tax Year

-IRD
- Last Name
- Initials

- Social Security Number

- Self Employed Income
- Spouse's Social Security Number
- Spouse's Self Employed Income
- Full Name as Reported on the 1040 form

14

4.2.1.3
The Full Record Data

The Full Record data structure is implemented as an array of size MAXSCR (number of matches

displayed on the screen in the user interface) of the user-defined C structure REC, and is used to

store the remainder of the record fields which the user views in a detail screen. The structure

contains the following data;

-NESEB
-NESEF
- Wages
- Month

- Quarter

- Option Code

-DLN
-IWP
- Error Code

- Spouse's NESEB
- Spouse's NESEF
- Spouse's Wages
- Date

-EIN
- Industry Code
- Street Address

-City and State

- Zip Code

4.2.1.

4

The Informix Host Variables

The Informix Host variables data structure is implemented as the user-defined C structure

RECEIVE, and is precompiled by the Informix ESQL/C database engine. It is used as a set of

variables for the passing and receiving of data between the user interface and the embedded

database engine. This is a separately defined data structure because the database engine has

problems dealing with an array of structures serving as a host variable. It contains all of the

information in the QUERY and REC user-defined structures.

4.2.1.5

The Request Message

The Request Message data structure is implemented as the user-defined C structure MSGBUF,
and is used to pass requests for mounting and unmounting cartridges to the cartridge handler

device driver. The structure contains the following data;

- Message Type (mount or unmount)
- User Number
- Library Number
- Cartridge Number
- Cartridge Side

15

4.2.1.6 The Acknowledge Message

The Acknowledge Message data structure is implemented as the user-defined C structure

MSGACK, and is used to receive acknowledgement of a mounted cartridge from the cartridge

handler device driver. The structure contains the following data:

- Message Type (Acknowledge)
- Directory to which the cartridge has been mounted

4.2.1.7 The Management Information

The Management Information data structure is implemented as the user-defined C structure

MANAGEINFO, and is used to collect information that will be used to assess the effectiveness

of the pilot system. The structure contains the following data:

- Number of logins to the pilot system

- Length of time the user has been logged into the pilot system

- Number of 1988 and 1989 queries

- Length of time the user is involved in a 1988 and 1989 query

- Number of 1988 and 1989 detailed screens viewed
- Number of 1988 and 1989 printouts requested

A separate program, "print_mi.c", uses this information to calculate and print the parameters

listed in section 4.1.6. The code for this program is listed in Appendix D.

16

4.2.2 High Level Software Organization

The user interface software organization consists of five distinct phases; the initialization and

control of the user environment, the entry of the user query, the selection of the matches to the

query, the display and viewing of the browse fields, and the display of detailed record

information (see Figure 7). These phases are discussed in the following sections.

Figure 7. User interface software control flow

4.2.2.1 Initialization and Control of the User Interface Environment

The user interface uses a set of library routines in the UNIX compiler referred to as the "curses"

library. These routines provide windowing, screen handling, and cursor control functions, and

are used to draw and manage the user interface screens for character oriented displays. In the

initialization phase, the screen windows are set up, the management information is initialized,

the user number is determined based on the port the user is logged into, the length of login timer

is started, and the login count is incremented.

The entry of the query phase is then entered by a call to the get_queryO function. Control is

returned to initialization phase when the get_queryO function returns an escape character,

signalling the end of a session. At this point, the login timer is ended, the management

information is collated and written to a file, the windowing environment is exited and the

program terminates.

17

4.2.2.2 Entry of the User Query

In the Query Entry Phase, the get_queryO function performs the following steps:

- initializes the length of query timer

- increments the query count

“ draws the query screen

- traps and interprets each character entered by the user

If the user presses Esc, the program returns to the initialization phase and the query timer is

discarded. If the user presses Enter, the select_matchesO function is called, and the program

proceeds to the match selection phase.

All characters, excluding escape and enter, pass to the function interpQ, which either processes

the input or routes it to the correct lower level function. If the character is an arrow key, the

character passes to the proc_arrowO function, which moves the cursor in the direction of the

arrow. If the character is a tab key, the cursor moves to the next field. If the character is a Page

Up key, the tax year and the IRD from the previous query are displayed. If the character is a

backspace, it passes to the function del_charO, which deletes the last character entered, from

both the screen and the INFO data structure. Otherwise, the character passes to the function

add_charO, which adds the character to both the screen and the INFO data structure.

4.2.2.3 Selection of the Matches to the Query

In the Selection of Query Matches Phase, the INFO data structure containing the user query

passes to the select_matchesO function. The last name parameter is checked by the

check_search_typeO function to determine if the search type is prefix or exact match. The

assign_user__filesO function is called to allocate files for use by this user, and the req_user_dataO

function is called to request files from the optical disk library.

The req_user_dataO function queries the indexing tables for files that contain the IRD, last name

and initials, if specified, that match the data in the INFO structure. If the number of files that

meet this criteria is greater than twenty, an error occurs and the user is asked to refine his or her

query and control returns to the entry of the query phase. Otherwise, the cartridge containing the

files is requested from the cartridge handler scheduling algorithm. Upon receipt of an

acknowledge message, the files are copied from the cartridge to the magnetic hard disk and

decompressed, and the scheduling algorithm is notified that the use of this cartridge is complete.

The program then returns to the select_matchesO function.

At this point, the data in the INFO structure are concatenated into a string which forms the SQL
query. The user’s database is then opened, and all matches to the query are retrieved. If no

matches are found, an error message is displayed, and program returns to get_query functionQ

and the entry of the query phase. If matches are found, the display_matchesO function is called,

and control of the program continues to the display and viewing of the browse fields.

18

4.2.2.4 Display and Viewing of Browse Fields

In the Display and Viewing of Browse Fields Phase, the display_matchesO function draws the

query screen and each character entered by the user is trapped and interpreted. If the user

presses Esc, the length of query timer is ended, and the program returns to the get_queryO

function and the query entry phase. If the user presses enter, the disp_recO function is called,

and the program proceeds to the detail view phase.

All characters, excluding escape and enter, are passed to the function browseQ, which either

processes the input or route it to the correct lower level function. If the character is an arrow

key, the cursor is moved in the direction of the arrow. If the character is a page up, the

view_previous_matchesO function is called and the previous page of matches is retrieved, if

applicable. If the character is a page down, the view_next_matchesO function is called and the

next set of matches is retrieved, if applicable. If the character is an end key, the move_lineO

function is called and the rightmost portion of the current record is displayed. If the character is

a home key, the restore_lineO function is called and the leftmost portion of the current record is

displayed.

4.2.2.5 Display of Detailed Record Information

In the display of detailed record information phase, the disp_recO function draws the detail

screen, increments the detail view count, and both traps and interprets each character entered by

the user. If the user presses Esc, the program returns to the display_matchesO function and the

Query Entry Phase. If the user presses Enter, the program calls the print_recO function,

increments the print count, and prints the record. All other characters are disregarded.

4.3 Overview of the Cartridge Handler Device Driver

The Helwett-Packard optical disk library system contains two 130 mm (514 in) magneto-optic

drives, a cartridge handler device and 32 cartridge slots. The Columbia Data Products software

drivers, in combination with several UNIX utilities, provide adequate support for the two drives.

No off-the-shelf software support existed for the cartridge handler device in this environment,

therefore it was necessary to develop the software at NIST. The device driver consists of two

major algorithms: a scheduler algorithm and a control algorithm. The scheduler algorithm

creates and maintains a messaging interface with all copies of the EASEAR user interface that

are running, and handles their requests for optical disk cartridges. The control algorithm deals

with the movement of the cartridge handler device. The listing of this code, "devhandler.c", can

be found in Appendix D.

19

The cartridge handler device driver must be run with system administrator privileges in the

background. This is necessary in order to have the correct permissions to mount and unmount
file systems.

4.3.1 The Scheduler Algorithm

The scheduler algorithm communicates with the EASEAR user interface through a form of

UNIX interprocess communication referred to as messaging. After setting up the messaging

interface, the scheduler waits for a request from the user interface. The messages are one of two

types - a request to mount a cartridge or to unmount a cartridge.

Before checking the incoming messages, the scheduler first checks to see if any drives are

available. If no drives are currently free, the scheduler waits until an unmount request is placed

in the queue and services it before retrieving any mount requests.

When a mount request is received, the scheduler checks to see if the cartridge is available. If so,

a drive is allocated, the cartridge is moved into the drive and mounted, and an acknowledge

message is sent to the user interface. If the requested cartridge is currently in use, the request is

placed in the wait queue.

When an unmount request is received, the scheduler first checks the wait queue to see if any

requests are pending for the cartridge in question. If there are no requests, the cartridge is

unmounted and returned to its library slot. If a request is pending, the scheduler ascertains

which side of the cartridge is requested, flips the cartridge if necessary, and sends an

acknowledge message to user interface.

4.3.2 The Control Algorithm

The cartridge handler device is controlled through the Columbia Data Products Standard Level

Device Protocol (SDLP) interface. This interface, for supported types of devices, removes the

necessity to send SCSI commands to the device. Instead, higher level commands are sent to an

SDLP driver which generates the SCSI commands. As the cartridge handler is not currently a

supported device for the SDLP interface, it was necessary to use the pass-through mode to

bypass the SDLP interface and send SCSI-2 commands directly to the cartridge handler.

When the scheduling algorithm requests that a cartridge be moved, the control algorithm creates

a command descriptor block (CDB) that contains the SCSI-2 command for move medium, and

sends an SDLP command to the Columbia Data Products SDLP driver requesting that this CDB
be passed through to the cartridge handler device.

20

4.4 Cartridge Handler Device Driver Software Organization

The following subsections discuss the data structures implemented in the cartridge handler

device driver, and the high level software organization.

4.4.1 Software Data Structures

The major data components involved in the cartridge handler device driver consist of six data

structures: the message queues, the request message, the acknowledge message, the drive status

information, the command descriptor block, and the SDLP command information.

4.4.1.1 The Message Queues

The Message Queues are implemented as a C system-defined structure, and are managed by the

UNIX operating system. The messages in the queue are implemented as a system-defined linked

list that is also managed by the UNIX operating system. The exact format of these data

structures is found in the UNIX C library header files "ipc.h" and "msg.h". For the purposes of

this documentation, the queues and messages are viewed as a structure pointer that is returned by

the system.

The cartridge handler device driver utilizes three message queues -- the incoming messages

queue, the wait queue, and the acknowledge queue. The incoming messages queue is used to

receive cartridge requests from the user interface. The wait queue is used to hold cartridge

requests that cannot be filled immediately due to the cartridge being in use. The acknowledge

queue is used to send acknowledgement of an available cartridge to the user interface.

These queues are created by the scheduler but are not released by the program as the scheduler

operates continuously. If, for any reason, the scheduler is terminated, it is necessary to release

the messaging queues before restarting the program. There is a small program, "killq.c", which

releases the queues. The listing of this code is located in Appendix D.

4.4cl.2 The Request Message

The Request Message data structure is implemented as the user-defined C structure MSGBUF,
and is used to receive requests from the user interface for the mounting and unmounting of

cartridges. The structure contains the following data;

- Message Type (mount or unmount)
- User Number
- Library Number
- Cartridge Number
- Cartridge Side

21

4.4.1.3
The Acknowledge Message

The Acknowledge Message data structure is implemented as the user-defined C structure

MSGACK, and is used to send acknowledgement of a mounted cartridge to the user interface.

The structure contains the following data:

- Message Type (Acknowledge)
- Directory to which the cartridge has been mounted

4.4.1.4

The Drive Status Information

The Drive Status information is implemented as an array size MAXDRJVES (the number of

drives in the pilot system) of the user-defined C structure DRINFO, and is used to maintain the

current state of each of the drives, as well as system and address information on the drive. The

following information is kept for each of the drives;

- The SDLP unit number of the jukebox in which it resides

- The SDLP unit number of the drive

- The file name of the software driver for the drive

- The directory to which this drive mounts a cartridge

- A flag indicating whether or not the drive is in use

- The cartridge number of the cartridge currently in the drive

- The side of the cartridge currently in the drive

4.4.1.5

The Command Descriptor Block

The Command Descriptor Block is implemented as an array size 12 of characters, and is used to

store the move medium SCSI command and related information needed by the cartridge handler

device. It contains the following information:

- SCSI command (0xA5 - move media command)
- Logical Unit Number of target device

- Cartridge Handler Device Address

- Source Element Address

- Destination Element Address

- Invert Flag

22

4.4.1.6 The SDLP Command Information

The SDLP Command Information is implemented as a user-defined C structure, and is used to

store information needed by the Columbia Data Products SDLP driver in order to execute a pass-

through move medium SCSI command. The structure contains the following information;

- Command for the SDLP device driver to execute (Oxff - passthrough)

- SDLP unit number of the device for which this command is intended

- Address of the return buffer (for commands that return information)

- Length in bytes of the return buffer

- Address of the Command Descriptor Block containing SCSI command
- Length in bytes of the Command Descriptor Block

- I/O direction of the command (read or write)

- Type (always 0)

- Error Status

4.4.2 High Level Software Organization

The cartridge handler device driver organization consists of three distinct phases: the

initialization of the data structures, the receipt of a request, and the processing of a request (see

figure 8). These phases are discussed in the following sections.

Figure 8. Cartridge handler device driver

software control flow

4.4.2.1
Initialization of the Data Structures

In the initialization phase, the messaging environment is created and the control data structures

are initialized. The incoming messages, wait, and acknowledge queues are created, the SDLP
device driver is opened, and the DRJNFO data structure is initialized to contain starting

information for each of the drives. Control passes to the receipt of a request phase, which runs

continuously.
4.4.2.2

Receipt of a Request

In the receipt of a request phase, the DRINFO data structure is checked to determine if any

drives are available. If a drive is free, the program calls the msgrcvQ function and waits for the

next message to be placed in the queue. If no drives are free, the msgrcvQ function waits until

the next unmount message is placed in the queue. Once a message is received and stored in the

MSGBUF data structure, control passes to the processing of a request phase.4.4.2.3

Processing of a Request

In the processing of a request phase, the MSGBUF data structure is checked to determine which

kind of request has been received.

If the request is a mount request, the DRINFO data structure is checked to determine if the

requested cartridge is free. If it is currently in use, the MSGBUF data structure is sent to the

msgsndQ function and the message is placed in the wait queue. If the cartridge is free, the

free_driveO and mark_busyO functions are called to allocate a drive, and the mov_diskO
function is called in order to move the cartridge to the allocated drive. At this point, a hardware

response delay is caused to allow the cartridge to be inserted into the drive, and then the

mount__diskO function is called to mount the file system. If the process is not delayed, the

mount__diskQ function will fail. Once the file system is mounted, the MSGACK data structure is

filled and sent to the msgsndQ function and the message is placed in the acknowledge queue. At

this point, control is returned to the receipt of a message phase.

If the request is an unmount request, the determine_driveQ function is called to ascertain which

drive contains the cartridge to unmount. The check_wait_queueQ function is then called to see

if any messages in the wait queue need this cartridge. If not, the mark_idleQ function is called

to change the status of the drive to idle, the unmt_diskQ function is called to unmount the file

system, and the ret_diskQ function is called to return the cartridge to the library slot. At this

point, control is returned to the receipt of a message phase.

24

If a message in the wait queue is waiting for this cartridge, the MSGBUF data structure is filled

with the pending message, and is checked to determine if the current side of the cartridge is

needed. If so, the MSGACK data structure is filled and sent to the msgsndQ function and the

message is placed in the acknowledge queue. If the opposite side is needed, the unmt_diskO

function is called to unmount the file system, the mark_busyO function is called to update the

cartridge information stored in the DRINFO data structure, the flip_diskO function is called to

flip the cartridge in the drive, and, after a short hardware response delay, the mount_diskO

function is called to mount the file system. The MSGACK data structure is filled and sent to the

msgsndQ function and the message is placed in the acknowledge queue. At this point, control is

returned to the receipt of a message phase.

25

26

5. Conversion and Handling of SSA Data

The EASEAR data was received from SSA on 12.7 mm (V2 in) open reel 256 cpmm (6250 cpi)

9-track; tape. Each year of the data contained approximately 1 1 million records, and was stored

as a multi-volume file split over 17 tapes. The data was in the EBCDIC character set, with each

tape containing a header section, a data section, and a trailer section. Each section is separated

from the others with filemarks. The tapes contained between 60 to 107 blocks, with 31824 bytes

each and separated with a '<' character. The data itself was split into records of 234 bytes each,

and was organized in increasing numeric order by IRD, and in alphabetic order within IRD.

The EASEAR data was manipulated at NIST until it was finally stored as database files of 300

records using the ASCII character set. Each of the files contains only one IRD, and is assigned a

name beginning with the IRD and a sequential file number starting at one for each IRD. The

files are stored on 130 mm (514 in) magneto-optic cartridges in a compressed format. In its final

compressed state, one year of data consumes approximately one gigabyte of optical disk storage.

The steps in the conversion of the data include the following (see Figure 9):

- transfer the data from tape to optical disk cartridge

- convert the data to the ASCII character set

- analyze the data to determine which IRD's resided in each of the files

- separate the data into files of 300 records, with only one IRD per file

- convert the data to Informix Relational Database Table format

- compress the database tables

5.1 Basic Procedures

There are some basic system procedures required for the system manager to convert the data.

These include inserting a cartridge into a library drive, ejecting a cartridge from a library drive,

logging into an account on the UNIX system, gaining system administrator privileges,

formatting an optical disk cartridge, placing a file system on an optical disk cartridge, mounting

a file system, unmounting a file system and logging out of an account.

5.1.1 Inserting a Cartridge into a Library Drive

Insert the cartridge into the library mailbox slot. The side of the cartridge to be used by

the drive should be facing to the right. Press the load button and then use the next and

previous buttons until the desired drive number is shown m the display. Press the enter

button. The cartridge is loaded into the selected drive.

5.1.2 Ejecting a Cartridge from a Library Drive

Press the eject button to remove the cartridge from the drive, and use the next and

previous buttons to select the correct drive. Press the enter button. The cartridge is

unloaded from the selected drive and placed in the library mailbox slot.

28

5.1.3 Logging into an Account on the UNIX System

At the login: prompt, type the account name. The system prompts for the password.

Once the valid password is entered, the system prompt, a %, is displayed.

5.1.4 Gaining System Administrator Privileges

At the system prompt, type: su root. The system prompts for the password to this

account. Once the valid password is entered, the root system prompt, a #, is displayed.

Note: The super-user account is a privileged account on the UNIX system. While

logged in as the super-user, there are no restrictions on what can be done to the system.

Extreme caution should be exercised while in this account.

5.1.5 Formatting an Optical Disk Cartridge

Place the cartridge into the library drive, and log into the system. At the system prompt,

type: /usr/sst/dutil. At the menu, select the device corresponding to the drive in which

the cartridge resides. When prompted to select an action, choose option 7, Format.

When asked to enter an interleave value, enter 0, Default interleave value. When asked

whether to continue with format or to quit, choose Yes, continue with format.

The screen says: Formatting Device #... and when the format is complete, the screen

says: Format ofDevice # Successful, press any key.

When asked to select an action, choose option 9 to exit, then choose Q to quit. At the

"%" prompt, log out of the system and remove the cartridge from the library drive.

5.1.6 Placing a File System on an Optical Disk Cartridge

Place the cartridge into the library drive, and log into the system. At the system prompt,

if the cartridge is in drive number one, type: mkfs /dev/sstbO 576998. If the cartridge

is in drive number two, type: mkfs /dev/sstbl 576998.

The screen prompts with mkfs /dev/sstbx (Del ifwrong) and pauses for 10 seconds. Press

the delete key if the wrong device name has been entered, and re-enter the command as

above.

29

If the process is not stopped, the screen displays file size information such as logical

block size, number of logical blocks, etc., and places a file system on the cartridge. This

takes approximately 15 minutes. When completed, the screen displays the total available

blocks and returns to the prompt. Log out of the system and remove the cartridge

from the library drive.

5.1.7

Mounting a File System

To mount a file system, the system manager must have system privileges. Insert the

cartridge into the library drive. At the # prompt, type: mount /dev/sstbx /directory,

where x is 0 if the cartridge is in drive one or 1 if the cartridge is in drive two, and

directory is the name of the directory to which to mount the cartridge in the drive.

The system then mounts the file system on the cartridge to the specified directory. This

takes approximately 5 minutes. When complete, the screen displays warning: < >

mounted as </driveO>

.

5.1.8 Unmounting a File System

To unmount a file system, the system manager must have system privileges. At the #

prompt, type: umount /dev/sstbx where x is 0 if the cartridge is in drive one, or 1 if the

cartridge is in drive two. The system then unmounts the file system. This takes

approximately 5 minutes.

5.1.9 Logging out of an Account

At the system prompt, type: exit to leave the account.

30

5.2 Conversion from Tape to Optical Disk

The first step in the conversion of the EASEAR data was to copy the data from tape to optical

disk. The data were also converted to the ASCII character set, and split into smaller files.

Moving the data to optical disk rather than leaving it on magnetic tape made the data conversion

process much easier for our system as this provided direct-access retrieval of the data. The data

were copied from the tape and converted to ASCII using the UNIX utility "dd". The actual code

for this procedure is the shell script "downld", a listing of which is in Appendix D.

The script deals with the data in 50 block sets of data. The information is read from the tape,

converted to ASCII, and stored in a file on the optical disk whose file name corresponds to the

current value of the loop counter within the script. The resulting file size on the optical disk is

approximately 1.5 megabytes.

5.2.1 System Procedures

Take the tape drive off-line, and press Unload to open the tape hatch. Remove the tape

from Its case and insert the tape into the drive. Close the hatch, and wait for the tape to

load. The display on the drive reads Ready when complete.

Place the cartridge into the library drive, and log into the system. At the % prompt, type:

/usr/sst/dutil. At the menu, when prompted to select a device, choose the number of the

device corresponding to the tape drive. When prompted to specify an action, choose

option 6, File mark. When asked to go to a file mark or to write a filemark, choose

option g. Go to a file mark.

The screen displays Searching for filemark, and once it is found, displays Filemark

found. When asked to select an action, choose option 9 to exit and then choose option Q
to quit.

Mount the destination cartridge to /driveO, and type: downld (#sets), where a set is

defined as 50 blocks of data on the tape. Round the value up to the nearest integer. This

converts the tape data from EBCDIC to ASCII, and stores the data on the optical

cartridge with a filename corresponding to the set number. The results of the transfer of

each set are printed on the screen.

Unmount the cartridge from the library drive, remove the cartridge from the library

drive, and log out of the system.

Take the tape drive off-line, and press the rewind/unload button on the drive twice to

rewind and unload the tape. The tape hatch door opens when rewind/unload is complete.

31

5.3 Data Analysis

The next step in the data conversion was to analyze each of the files in order to determine which

IRD's resided in each of the files, and to create a file listing the IRD's found in each file.

The program reads in each record, one at a time, and checks the value of the IRD m the record.

If the IRD is the same as that of the previous record, the program continues to the next record.

If the value is different from the previous record, the IRD and the current filename is written to a

file which is named irdfile.x, where x stands for the tape number (see Figure 10). This analysis

is done to expedite the next process, the separating of the data into smaller files by IRD. The

code for this procedure is the C program "check.c", listed in Appendix D.

01 /drive2/0

01 /drive2/1

01 /drive2/2

01 /drive2/3

01 /drive2/4

01 /drive2/5

01 /drive2/6

01 /drive2/7

01 /drive2/8

01 /drive2/9

01 /drive2/10

02 /drive2/10

02 /drive2/1

1

Figure 10. IRD file

5.3.1 System Procedures

Insert the cartridge into the library drive, log into the system, and mount the cartridge to

/driveO.

At the % prompt type: Is -I /driveO. This provides a directory of the files on the

cartridge. Look for the highest numbered file, and add one to this number. This is the

number of files to analyze.

At the % prompt, type: check. The program prompts for the number of files to analyze,

and the tape number from which this data originated.

The program analyzes each of the files in turn and a list of the IRD's contained in each

file is written to the file "irdfile.x", where x corresponds to the tape number.

Unmount the file system, remove the cartridge from the library drive, and log out of the

system.

32

5.4 Separation of the Data

The data was then separated into files of 300 records in length. This number of records was

chosen to provide maximum effectiveness for compression and decompression, both in speed

and size, as well as trying to transfer from optical disk cartridge the fewest number of records in

order to meet a user’s queries.

An index file, startend.x where x is the IRD, is generated for each of these files (see figure 1 1).

The index file contains the starting last name and initials, the ending last name and initials, and

the filename of each output file. The code for this procedure is the C program "sep.c" listed in

Appendix D.

CAISSIE AM CAMPBEL RS /drive2/01 32
CAMPBEL RW CANOLIE AR /drive2/0133

Figure 11. Index file

The program accepts as input a starting filename and the total number of files to search. For

each of the files, the records are read from the input file and written to an output file. A record

count is maintained, and when the number of records written to one output file reaches 300, a

new output file is started. The output files are named with the IRD and a sequential file number

that starts at zero for each IRD. An entry is made in the IRD's index file for the first record and

the last record of each output file. Records that contain an IRD lower than the IRD for which

the program is searching are skipped. When a record is encountered with an IRD higher than the

search IRD, the program terminates.

5.4.1 System Procedures

Place the source cartridge in the library drive two, and the destination cartridge in the

library drive one. Login to the system and mount the source cartridge to /drive2 and the

destination cartridge to /drivel.

At the % prompt, type; sep. When prompted, enter the IRD for which to search, the

total number of files to search, and the file number with which to start. This information

may be obtained from the data analysis report generated in the previous step.

33

The data that corresponds to the selected IRD is extracted from the larger files and stored

on the destination cartridge in small files. At the same time, indexing information for

this IRD is stored in a file called "startend.x", where x corresponds to the IRD. If the

data for this IRD is contained on more than one cartridge, the system manager is

prompted to change cartridges. Go to another terminal, unmount and remove the current

cartridge, insert and mount the next cartridge. The system manager is again be prompted

for the number of files to search, and the file number with which to start.

Unmount the file systems, remove the cartridges from the library drives, and log out of

the system.

5.5 Conversion of Data to Informix Database Table Format

The files separated by IRD are then converted to Informix database table format, and indexed by

last name. The program accepts as input a list of file names, and for each file creates a database

and an index file. The records are then read in one by one and stored in the table. The database

table and index file are copied to the destination cartridge, and the table on the hard drive is

dropped. The code for this procedure is the C program "conv.ec", listed in Appendix D.

The last name and initials index files generated in the separating step are converted to database

table format and stored on the magnetic media. In addition, fields are added to these tables to

indicate on which cartridge and side the data are stored. The code for this procedure is the C
program ” index. ec", listed in Appendix D.

5.5.1 System Procedures

Place the source cartridge in the library drive two, and the destination cartridge in the

library drive one. Login to the system and mount the source cartridge to /drive2 and the

destination cartridge to /drive 1

.

At the % prompt, type: Is > /usr/pilot/names. This generates the list of input file names

that the program expects.

Type: conv Each file is converted and the database and index files are copied to the

destination cartridge.

34

Unmount the file systems, remove the cartridges from the library drives, and log out of

the system.

5.6 Compression of the Data

The last step in the data conversion process is the compression of the database and index files.

The compression algorithm used is the Huffman encoding scheme, which is included in the

UNIX operating system as a utility. The code for this step is the c program "compress. c" listed

in Appendix D.

5.6.1 System Procedures

Place the source cartridge in the library drive two, and the destination cartridge in the

library drive one. Login to the system and mount the source cartridge to /drive2 and the

destination cartridge to /drive 1

.

At the % prompt, type: cd /drive2, then type; Is > /usr/pilot/names and then type: cd

/usr/pilot. This generates the list of input file names that the program expects.

Type: comp < names. Each file is copied to the destination cartridge and compressed.

Unmount the file systems, remove the cartridges from the library drives, and log out of

the system.

35

36

6. References

American National Standard for Information Systems - Small Computer Systems Interface

(SCSI), ANSI X3. 131-1990.

Federal Information Processing Standard Publication - Database Language SQL, FIPS

Publication 127-1.

International Standard ISO/IEC 10089, Part A, Information Technology - 130 mm Rewritable

Optical Disk Cartridges for Information Interchange.

SCSI Common Access Method - Transport and SCSI Interface Draft Document, X3T9.2 90-

186 Revision 2.3.

Federal Information Processing Standard Publication - POSIX: Portable Operating System

Interface for Computer Environments, FIPS Publication 151-1.

37

38

Appendix A

User Instructions

A.1 Entering the System

Welcome to the INTERACTIVE Systems Corporation

INTERACTIVE UNIX Operating System
System name: pilot

login:

Figure Al. The login screen

In Order to ...

- Login to the system, at the login: prompt, type the account name. At the Password:

prompt, type the password for the account.

39

A.2 The Query Screen

Tax Year —

IRD Generated by DEQY —

Last Name —— Initials

Social Security Number

Spouse's SSN —
Self Employed Income

ESC=EXIT ENTER=SEARCH

Figure A2. The query screen

Mandatory Search Parameters: Tax Year

IRD generated by the DEQY system

Last name

Optional Search Parameters: Initials

Social Security Number
Spouse's Social Security Number
Self Employed Income

Rules: A period is placed at the end of the last name field to indicate a search for

an exact match of this last name. In other cases, the last name parameter is

treated as a prefix, and a search is made for last names beginning with

this sequence of characters.

At least four letters of the last name must be entered, unless a search for an

exact match is indicated.

In Order to ...

- Move between fields or within a field, use the Tab and Arrow keys.

- Delete a wrong character, use the Backspace key.

- View the year and IRD from the previous query, press Pg Up.

- Print the information on the screen, press Print Scrn.

- Exit the program, press Esc.

- Retrieve matches, press Return.

If...

- No records match the search parameters, a message is displayed. Press Esc to

return to the query screen.

- More records match the search parameters than can be reasonably retrieved, a

message is displayed asking to refine the search. Press Esc to return to the

query screen.

- A reasonable number of matches are found, the records are displayed on the

screen for the user to browse.

41

A.3 The Browse Screen

Name

Tax Year: 88

SSN SEI

IRD Generated by DEQY: 14

Spouse's SSN and SEI Full Name

AANESTA AJ 061 36 3003 37692 564 53 6009 37347 ARLET AND JAMES AANE

ABERNAT JF 658 72 4029 19187 624 05 2003 31731 JOAN AND PETER ABERN

ACKERMA JA 951 81 2019 34883 660 61 4017 19187 JOHN AND BELINDA ACK

ADAMSON AJ 658 72 4029 31731 951 81 2019 36778 AUDREY AND CARL ADAM

ALEXAND CC 660 61 4017 24776 256 78 6022 34883 CHARLES AND MARY ALE

ALEXAND CF 256 78 6022 35587 778 84 0006 24776 CYNTHIA AND ROB ALEX

ALEXAND ER 778 84 0006 33323 658 72 4029 35587 EUGENE AND ELEXIS AL

ANDERSO BJ 624 05 2003 36778 621 69 0034 33323 BEVERLY AND TERRY AN

ESC=QUERY SCR ENTER=DETAIL SCR PGUP/PGDN=SCROLL END/HOME=SHIFT REC

Figure A3. The browse screen

Browse Fields (Header): Tax Year

IRD generated by the DEQY system

Browse Fields (Record): Last name
Initials

Social Security Number
Self Employed Income

Spouse's Social Security Number
Spouse's Self Employed Income

42

In Order to ...

- Move between records within a page, use the Arrow keys.

- Move between pages of records, use the Pg Up and Pg Dn keys.

- View a portion of the record that is off the screen, press End.

- Return a record after viewing an off-screen portion, press Home.

- Print the information on the screen, press Print Scrn.

- Return to the Query screen, press Esc.

- View a record in detail, position the cursor to it and press Return.

A.4 The Detail Screen

Name : AUDREY AND CARL ADAMSON
Address; 32 Hopper Way

Gaithersburg, MD 20878

Name SSN NESEB NESEF WAGES SEI YEARQU ST DLN/EIN IND CD

ADAMSON AJ 061 36 3003 00000 00000 00000 37692 8812 21 16222111940356
26 564 53 6009 00000 00000 00000 37347 060767625 7716

Figure A4. The detail screen

Detail Fields (Header) : Last name as Reported on 1040 form

Street Address

City, State and Zip Code

Detail Fields (Record) ; All fields as displayed on the microfilm, except the fields in the

header

43

In Order to ...

- Print the information on the screen, press Enter or Print Scrn.

- Return to the Browse screen, press Esc.

44

Appendix B

Rapport Setup

B.l Terminal Parameters

USING AN RS-232 CONNECTION

BAUD : 19200

DATA BITS ; 7

STOP BITS : 1

PARITY : EVEN
HANGLT ; NO

After entering Rapport, the login prompt is displayed immediately. If it does not appear, press

the Enter key. To exit, return to the login prompt and press Alt-Spacebar two times.

USING A MODEM LINE

BAUD : 19200

DATA BITS : 7

STOP BITS ; 1

PARITY : EVEN
HANGUP : NO

After entering Rapport, type: ATZ The screen displays OK. Then type: ATDP (Phone #) for

pulse lines, or ATDT (Phone #) for tone lines. The modem dials the number, connects to the

system, and the login prompt is displayed. To exit Rapport, return to the login prompt and type:

CONTROL-D The computer responds with NO CARRIER. At this point, type: ATH to hang

up, and the screen displays OK. Press Alt-Spacebar twice to exit Rapport.

45

B.2 File Transfer Parameters

PORT
MAX. BAUD RATE
BLOCK SIZE
TTY BUFFER SIZE
RETRIES/BLOCK
TIMEOUT

COM 1 or COM 2

19200

1024

512

4

5

B.3 Screen Colors

Normal : Blue background with yellow letters

Bold Red background with yellow letters

Appendix C

System Error Messages

C.l User Interface Error Messages

Too much data requiredfor query — Please refine query

The query entered by the user requires more than 20 files to be copied from the library, which

could impact system performance due to the amount of time needed to copy and decompress that

amount of files. The user must specify more letters of the last name, or enter initials upon which

to search.

Error! Must enter tax year, IRD and 4 letters of last name

It is mandatory that the user enter the tax year, the IRD and at least four letters of the last name

in order to request records. The user must return and provide any missing information. If the

user enters less than four letters of the last name but ends the last name field with a period, this

error message should not appear.

Error! Tax year must be 88 or 89

The data stored on the pilot system is only for the years of 1988 and 1989. If the user enters

another year, this error message is displayed.

Error! IrdXX is invalid

The pilot system has data only for the IRD's that were found on the tapes of data sent to NIST.

If the user specifies an IRD for which there is no data, this error message is displayed.

47

Invalid User — Please go to an authorized terminal

In order to maintain management information and to keep each user's files separate, each user is

assigned a user number based upon the terminal at which they are working. The terminal port is

parsed into a user number, and if the resulting number is not in the range of the acceptable users,

this error message is displayed.

Error opening database

Error preparing the query id

Error declaring the scroll cursor

Error opening the query

These error messages are displayed when the Informix ESQL/C database engine encounters

problems with the query. Consult the ESQL/C manual for more documentation.

Cannot communicate with the Handler — Please alert Computer room

The user interface requests cartridges from the optical disk library by sending a message to the

cartridge handler device driver. If an error is returned by a messaging function, this error is

displayed. This error could be cause by the handler program not being active on the file server.

C.2 Cartridge Handler Device Driver Error Messages

Error getting queue

This error message is displayed if the cartridge handler device driver could not allocate a

message queue to allow communication between the user interface and the cartridge handler

device driver.

48

Error sending acknowledge message to user

This error message is displayed if the cartridge handler device driver receives an error when

trying to acknowledge to the user interface that the cartridge requested is now mounted and

available.

Jukebox error occurred while moving the disk

This error message is displayed if the ioctl() call to the library cartridge handler returns an error.

49

50

Appendix D

Listing of the Code

'£

/*
*

* Header file for Device Handler for
* Jukebox
*

* util.h
* by Natalie Willman
*

* April 2 , 1991
*

*/

/* Define Statements */

#def ine TRUE 1 /* Logical True */

#def ine FALSE 0 /* Logical False V
#def ine MAXDRIVES 2 /* Maximum number of drives that are controlled */

#def ine MAXDISKS 10 /* */

#def ine KEYl 1234L /* Key for aquiring the service message queue */

#def ine KEY2 5678L /* Key for aquiring the wait message queue */

/define KEY3 2345L /* Key for aquiring acknowledge message queue */

/define PERMS 0666 /* Permissions for queue - read/write to all */

/define MSGLEN 14 /* Length of service message */

/define ACKLEN 10 /* Length of acknowledge message */

/define WAIT 0 /* Wait for the next message of MTYPE */

/define NEXTMSG 0 /* Get the next message, regardless of MTYPE */

/define MOUNT lOOL Message type to request mounting of a disk V
/define UNMOUNT 200L /* Message type to request unmounting of a disk */

/define ACK 300L /* Message type to send an ack to the user */

/* Structure to hold information passed to and returned from */

/* an ioctl() call to the sdlp device driver (pass thru mode */

struct lOCTL
{

unsigned int CMD;
unsigned int UNIT;
union

{

paddr_t ADDR;
unsigned long DEVSIZ;
> II;

union

{

unsigned
unsigned
unsigned
} 12 ;

union
{

unsigned
unsigned
unsigned
} 13 ;

union
{

unsigned
unsigned
unsigned
unsigned
unsigned
} 14;

union

int COUNT;
int BLKSIZ;
int TRANSPORT;

long START;
char DEVTYP;
long CDBADDR;

int DTSTAT;
int lODIRECT;
int DESTl;
int NUMELEMENTS;
int VALUE 1;

{

unsigned
unsigned
unsigned
unsigned
} 15;

union

char GRPSIZ;
int DEST2;
int ELEMENTYPE;
int VALUE2;

{

unsigned char VARBLK;
unsigned char INVT;

} 16 ;

unsigned int TYPE;
unsigned int STATUS;
>;

/* Structure containing information on the drives in the system */
struct DRINFO

{

int jukeaddress;
int driveaddress;
char devname[15];
char mountdir [10]

;

int disk;
int side;
int busy;

};

/* Template for message passing of service request messages */
struct MSGBUF

{

long mtype;
int user;
int juke;
int disk;
int side;

};

/* Template for message passing of acknowledge messages */

struct MSGACK
{

long mtype;
char mtdir[10];
};

/*

* Proto.

h

* Header file for user interface,
* easear.ec, contains #define statements,
* and struture definitions
*

*/

I* Define Statements */

#def ine ESC 27
#def ine ENTER 10
#def ine BACKSPACE 8

#def ine UPARROW 3

#def ine DOWNARROW 2

#def ine LEFTARROW 4

#def ine RIGHTARROW 5

#def ine TAB 9

#def ine PAGEDOWN 82

#def ine PAGEUP 83
#def ine END 104
#def ine HOME 6

#def ine ROWTAX 5

#def ine ROWIRD 7

#def ine ROWLAST 9

#def ine ROWINI 9

#def ine COLINI 57
#def ine ROWSSN 11
#def ine ROWSP 13

#define ROWSEl 15
#def ine MINCOL 36
#def ine MAXCOL 70
#def ine FIRSTROW 6

#def ine LASTROW 20
#def ine MINVIEW 5

#def ine MAXVIEW 77
#def ine MATCHSCR 8

#def ine GENERALWIN 0

#def ine DETAILWIN 1

#def ine ERRORMSG 2

#def ine KEYl 1234L
#def ine KEY3 2345L
#def ine MSGLEN 14
#def ine ACKLEN 10
#def ine WAIT 0

#def ine MOUNT lOOL
#def ine UNMOUNT 200L
#def ine ACK 300L

/* Global pointers to windows and panels */

WINDOW *general, *detail, *errormsg;
PANEL *pgeneral, *pdetail, *perrormsg;

struct QUERY
{

char lastname [8]

;

char initials [3] ;

char ssno [10]

;

char sei [6]

;

char year [3];

char ird[3]

;

char fulinaine[50]
char sp_ssno [10]

;

char sp_sei [6]

;

>;

struct REC
{

char nesef[6];
char neseb[6];
char wages [6]

;

char month [3]

;

char se_guar [2]

;

char option__cd[2

]

char din [15]

;

char iwp[3]

;

char err__code
[3]

;

char sp__neseb
[6]

;

char sp_nesef[6];
char sp__wages

[6]

;

char date [7]

;

char ein[10];
char ind_cd [5]

;

char st_add[35];
char city__st [22] ;

char zip[6];
>;

struct INFO
{

char year [3]

;

char ird[3]

;

char lastname [8]

;

char initials[3];
char ssno[10];
char sp^ssno [10]

;

char sei [6]

;

>;

struct MSGBUF
{

long mtype;
int user;
int juke;
int disk;
int side;

};

struct MSGACK
{

long mtype;
char mtdir[10];
};

/*
* check.

c

*

* by Natalie Willman
*

* This program opens a series of files as specified by the user, and
* prints to a file the IRD's found in each file.
*/

/* Include files */

#include <stdio.h>
#include <string.h>

/* Define statements
#define TRUE 1

#define FALSE 0

/*
*

* MAIN PROGRAM
*

*/

main
(

)

{

int i, count;
char filename[30] , tape[4];

/* Retrieve Information from the user on the files to analyze */

print f
("Enter the Total number of files on the disk: ”);

scanf (”%d%*c" , ficount);
printf ("\n\n”)

;

printf ("Enter the Tape number from which this data originated: ");

scanf ("%s%*c" , tape);
printf ("\n\n")

;

/* Initialize the filename array */
sprintf (filename, "/driveO/0")

;

/* Analyze each of the files *!
for(i =0; i < count; i++)

{

printf ("Analyzing File %s ...\n", filename);
check_file (filename , tape)

;

/* Create the next file name */
sprintf (filename, "%s%d", "/driveO/", i+1);

>

}

* Read in the records and check to see if the ird is different
* from the ird of the last record read. If so, the ird and
* the filename are printed out to a file.
*

* Input: Filename from which to read the data
* tape number of the tape from which the data originated

* Output: A file containing any changes in IRD
*

V
check_file(filename, tape)

char filename[], tape[];

<

int i;

char record[235);
char ch, ird[3);
char prevird[3], output [20);
FILE *dat, *temp, *fopen();
int rec, result, totalrec;

/* Open the tape data file from which to read records */
dat *= fopen(filename, "r");

/* Set up record counters and initialize the previous IRD variable *!
rec =0;
totalrec = 0;
prevird[0) = 'O';
prevird(l] = 'O';
prevird[2) =0;

j* Read in each of the records in the file */
do

{

/* Read in the record - 234 characters long */
for(i = 0; i < 234; i++)

{

record[i) = fgetc(dat);
ch * record[i);
/* if EOF is returned at this point, it is most likely an error */

I* sop print a notice to the error file */

if(record[i) =* EOF)

{

sprint f (output, "%s%s", "err.”, tape);
temp = fopen (output, "a");
fprint f (output, "Error record %d, file %s\n", totalrec+1, filename)
fclose (output)

;

}

/* Copy the IRD to
if (i 44)

ird[0) - ch;
if (i == 45)

{

ird(1] = ch;
ird[2) * 0;

}

}

a variable */

/* set EOL character
record (234) = 0;

/* Increment the total record count for this file */

totalrec++;

/* compare the ird just read to the previous ird */

result = strcmp(ird, prevird);

I* if the irds are different, print ird and filename to a file */

if ((result 1= 0) && (ird(O) 1= EOF))

<

sprintf (output , "%s%s", "irdf ile. , tape);
temp “ fopen (output, "a");
fprintf (temp, ''%s %s\n", ird, filename);
fclose(temp)

;

>

/* copy the current ird to the previous ird */
prevird[0] = ird[0);
prevird[l) - ird[l];
prevird [23 = 0;

/* skip over the EOB character if at the end of a block */

if(rec -- 135)

{

ch - fgetc(dat);
rec = 0;

}

else
rec++

;

>

while (ch != EOF);

/* close the data file */

fcloae(dat)

;

>

/*
* Compress.

c

*

* This program copies a series of files from the source disk
* to the destination disk and compresses them
*

*/

#include <stdio.h>

main(

)

{

char command [200] , f ilename [60] , ird[5];
char sourcef ile[100] , destf ile [100]

;

char ch;

/* Read in the first filenaime */

ch = scanf ("%s%*c" , filename);

/* While there is still a remaining list */

while (ch 1= EOF)

/* Create source and destination file names */

strcpy (sourcefile, ''/cirive2/"
) ;

strcat (sourcef ile, filename);
strcpy (destf ile, "/drivel/”);
strcat (destf ile, filename);

/* Copy the file from the source disk to the destination disk */

printf ("Copying file %s to file %s\n", sourcefile, destf ile);
strcpy (command, "cp ");
strcat (command, sourcefile);
strcat (command, " ");
strcat (command, destfile);
printf ("%s\n" , command);
system (command)

;

/* Compress the file on the destination disk */

strcpy (command, "pack ");

strcat (command, destfile);
printf ("Compressing File %s\n", destfile);
printf ("%s\n" , command);
system (command)

;

/* Get the next filename */

ch = scanf ("%s%*c" , filename);

>

itv noi-;

.
M

r'

•:-r' haA ••<:'

.£««•:? 41*; wD *

*

•.;
. :

•:: .
'.

^ f
“» SetT' '^'•>

:

at ’.. /Tirt-tiSOi af’:J ot
#

'Vii/r?S> . *T^V

• //.»n

.
••

, , n

; rooi v-^i • v
.

i
- w.r '; .I'.'J '.

'. i "i;—«- •

. / « a&

\^ .'rilvaifr.; 1 ..-/'iJ. .? •

'

, T'r»n ,1 ri'.l •'
.
*

'''u.'''
'

; .
— ?3

fir!'iS>'^. ft H lJa’ >9 \ v..x :>:‘...' _ laV ^\
'

(^.'1 '» ' ij;.xrtw

>
'

*••3.'. jj. ...'t ,.>oi
: "#eb ' j --'V

y \
'- .avi -j

J

5 V '*
, oi f'

i
j

•..'a.UK.'Otf i ?, :t .,.fX

i
(’ M '•vV' r’ i'/' ’

,
Ji’k

V >?»i aij''R

y
{ ’ . >n wratiCd)

, rM JA
*

'

'
' :. '“noiOO) *

'k'
^ ‘ .

ai ‘ ^'.

, hjtftjaxtoa ; y<?-

;
b;.

a-s ^ ’iD" i
•'

/*
* conv.ee
*

* by Natalie Willman
*

* This program opens a list of files of easear records, and
* converts them to Informix Database format
*

*/

/* Define statements */

#define TRUE 1

#define FALSE 0

/* Include Files */

$include sqlca;
#include <stdio.h>
#include <string.h>

/* Structure Definitions */

struct QUERYINFO
<

char lastname [8)

;

char initials[3];
char ssno[10];
char sei[6];
char year [3]

;

char ird[3];
char fullname[63]

;

char sp__ssno[10]

;

char sp_sei[6];
>;

struct REC
<

char nesef[6];
char neseb[6];
char wages [6]

;

char month[3};
char se_guar [2]

?

char din [15]

;

char iwp[3);
char err_code [3]

;

char option__cd
[2]

;

char sp_neseb [6)

;

char sp_nesef (6]

;

char sp_wages [6)

;

char date__rcd [7]

;

char ein[10);
char ind_cd [5]

;

char st__add[35];
char city__st[22]

;

char zip[6];
>;

/*
* Main Program

*/

main(

)

<

struct QUERYINFO guerymatches ,
*query;

struct REC full_record, ’'^record;

char filename [30] , cpyname[10], command [300]

;

FILE *namefile, *fopen();
char ch;

printf ("Make sure that the source disk is mounted as read only in\n”)
printf (, and that the destination disk is mounted as\n'');
printf ("read/write in /drivel. \n\n");
printfC'Make sure that you have done a 'Is' of the source disk\n’');
printf ("and stored the file as 'names' in the current directory\n")

;

printf ("Press any key to continue ...\n\n");
getchar ()

;

/* Set up pointers */

record = &full_record;
query = fiquerymatches;

/* Open the database */

$ database junk;
if (sqlca. sqlcode)
printf ("ERROR\n")

;

/* Open the list of files to convert */

namefile = fopen("names" , "r");

ch = fscanf (namefile, "%s%*c", cpyname);
while (ch 1= EOF)

{

strcpy(filename, "/drive2/");
strcat (filename , cpyname)

;

printf ("Converting file %s ...\n", fileneime);

/* Create the Database Table */

$ create table test
(

lastname char (7)

,

initials char (2)

,

sen char (9)

,

neseb char (5)

,

nesef char (5)

,

wages char (5)

,

sei char (5)

,

year char (2)

,

month char (2)

,

se^quar char (1)

,

option__cd char (1)

,

ird char (2)

,

din char (14)

,

full_name char (62)

,

iwp char (2)

,

err^code char (2)

,

sp_ssn char (9)

,

sp__neseb char (5)

,

sp_nesef char (5)

,

sp__wages. char (5)

,

sp_sei char (5)

,

date__rcd char (6)

,

ein char (9)

,

indeed char (4)

,

st_add char (34)

,

city_st char (21)

,

zip char (5

)

);

$ create index test on test (lastname);

/* read in and convert the records */
read_rec (query, record, filename);

/* Copy the files to an optical disk */
strcpy (command , "cp /usr/pilot/ junk. dbs/test* . dat /drivel/");
strcat (command , cpyname)

;

strcat (command, ".dat");
system (command)

;

strcpy (command, "cp /usr/pilot/ junk. dbs/test* . idx /drivel/");
strcat (command, cpyname);
strcat (command, ".idx");
system (command)

;

/* Drop the table — if the table is not dropped, subsequent */
/* records will be stored in reverse order */

$ drop table test;

/* Read in the next filename */

ch = fscanf (namef ile, "%s%*c", cpyname);
>

}

/*
* Read in the records, splice them into fields, and convert
* the data to .dbs format
*

* Input: structures to hold the spliced data
* Filename of the file from which to read records
*

*/

read_rec (query , record, filename)
struct QUERYINFO *query;
struct REC *record;
char filename[];
{

int i;

char rec[235];
char ch;
FILE *dat, *fopen();

/* Open the file to read */
dat = fopen(filename, "r");
if (dat ~ NULL)

{

printf ("ERROR opening file %s\n", filename);
exit()

;

>

/* Read in each of the records in the file */

do

{

/* Read in the record - 234 characters long */

for(i =0; i < 234; i++)

{

rec[i) = fgetc(dat);
ch = rec (i]

;

>

if(ch 1* EOF)

{

/* Split the records into fields */
8plice_rec(rec, query, record);

j* convert the records to .dbs format */
conv_rec (query , record);
}

}

while (ch 1= EOF);

/* Close the file */
fclose(dat)

;

}

* Function to split the records into separate
* fields
*

* Input: The record as a string
* Structure to hold the spliced record
*

* Output: The record is split into fields and stored in the
* structures
*

*/

8plice_rec(rec, query, record)
char rec [)

;

struct QUERYINFO *query;
struct REC ^record;
{

int i;

I* set up the EOL characters */
query->lastname[7] =0;
query->initials[2] =0;
query->8sno[9

)
* 0;

query->sei[5] =0;
query->year [2]

* 0

;

query->ird [2)
* 0;

query->fullname[62)
« 0;

query->sp_8sno[9] * 0;
query->sp__8ei(5)

=0;
record->nesef [5] « 0;
record->ne8eb[5]

* 0;
record->wage8 [5]

=0;
record->month [2)

* 0;
record->se__quar [1)

« 0;
record->dln[14) * 0;
record->iwp[2)

® 0;
record->err_code [2)

= 0

;

record->option__cd[i] =0;
record->8p__neseb [5)

* 0;
record->8p__nesef [5]

*= 0

;

record->8p_wage8 [5)
= 0

;

record->date_rcd[6)
=0;

record->ein[9]
= 0;

record->ind_cd(4)
*= 0;

record->st_add[34)
= 0;

record->city_8t[21) - 0;

record->zip[5)
=0;

/* splice the field based on position in record string */
for(i = 0; i < 234; i-*-+)

{

switch(i)

{

case 0: case 1: case 2: case 3^ case 4: case
query->lastname [i]

=

break;
rec [i]

;

case 7: case 8:

query->initials [i-7

]

break;
= rec [i]

;

case 9: case 10: case 11: case 12: case 13:
case 14: case 15: case 16: case 17:

guery->ssno [i-9
]

= rec[i];
break;

case 18: case 19: case 20: case 21: case 22:
record->neseb[i-18] =

break;
rec[i]

;

case 23: case 24: case 25: case 26: case 27:
record“>nesef [i-23

]
=

break;
rec [i]

;

case 28: case 29: case 30: case 31: case 32:
record->wages [i-28

]
=

break;
rec [i]

;

case 33: case 34: case 35: case 36: case 37:
query->sei[i-33

]
= rec[i];

break;
case 38: case 39:

query->year [i-38] = rec[i];
break;

case 40: case 41:
record->month(i-40] = rec[i];
break;

case 42:
record”>se_quar [i“42]

= rec[i];
break;

case 43:
record“>option_cd[i-43

]
= rec[i];

break;
case 44: case 45:

query->ird[i-44
]

= rec[i);
break;

case 46: case 47: case 48: case 49: case 50: case 51j

case 52: case 53: case 54: case 55: case 56: case 57:

case 58: case 59:
record->dln [1-46

]

= rec [i]

;

break;
case 60: case 61: case 62: case 63: case 64: case 65

case 66: case 67: case 68: case 69: case 70: case 71
case 72: case 73: case 74: case 75: case 76: case 77

case 78: case 79: case 80: case 81: case 82: case 83

case 84: case 85: case 86: case 87: case 88: case 89
case 90: case 91: case 92: case 93: case 94: case 95

case 96: case 97: case 98: case 99: case 100: case 101:

case 102 : case 103: case 104: case 105: case 106: case 107

case 108: case 109: case 110: case 111: case 112: case 113

case 114: case 115: case 116: case 117: case 118: case 119

case 120: case 121:
query->fullnaine

[
i-60]

= rec[i];
break;

case 122: case 123:
record->iwp[i-122

]
= rec[i];

break;

>

case 124: case 125:
record->err code[i-124] = reef i];
break;

case 126: case 127: case 128: case 129: case 130:
case 131: case 132: case 133: case 134:

query->sp_ssno[i-126
)

= reefi] /

break;
case 135: case 136: case 137: case 138: case 139:

record->sp neseb[i-135) = reef i];
break;

case 140: case 141: case 142: case 143: case 144:
record->sp nesef(i-140] = reef i];
break;

case 145: case 146: case 147: case 148: case 149:
record->sp wages [i-145] = rec[i);
break;

case 150: case 151: case 152: case 153: case 154:
query->sp sei[i-150] = rec [i]

;

break;
case 155: case 156: case 157: case 158: case 159:

record->date rcd[i-155] = rec[i];
break;

case 161: case 162: case 163: case 164: case 165:
case 167: case 168: case 169:

record->ein [
i-

break;
161) == rec [i)

;

case 170: case 171: case 172: case 173:
record->ind cd[i-170] = rec[i] 7

break;
case 174: case 175: case 176: case 177: case 178:
case 180: case 181: case 182: case 183: case 184:
case 186: case 187: case 188: case 189: case 190:
case 192: case 193: case 194: case 195: case 196:
case 198: case 199: case 200: case 201: case 202:
case 204: case 205: case 206: case 207:

record->st add[i-174] = rec(i] f

break;
case 208: case 209: case 210: case 211: case 212:
case 214: case 215: case 216: case 217: case 218:
case 220: case 221: case 222: case 223: case 224:
case 226: case 227: case 228:

record->city st[i-208] = rec[i];
break;

case 229: case 230: case 231: case 232: case 233:
record->zip[i-229

]
= rec[i];

break;
}

case 160:

case 166:

case 179
case 185
case 191
case 197
case 203

case 213
case 219
case 225

I*
* Convert the record to .dbs format
*

* Input: Structures containing the spliced record
*

* Output: The data is written to an Informix SQL Database Table
*

*/

conv^rec (query , record)
struct QUERYINFO *query;
struct REC ^record;
{

/* Declaration of Host Variables */

$ char lastname[8];

$ char initials [3]

;

$ char 8sno[10]

;

$ char sei(6]

;

$ char year [3)

;

$ char ird [3]

;

$ char fullname (63)

;

$ char sp ssno[10]

;

$ char" sp__sei(6)

;

$ char nesef [6]

;

$ char nesebf 6]

;

$ char wages [6]

;

$ char month [3]

;

$ char se guar [2]

;

$ char dln(15]

;

$ char iwp [3]

;

$ char err__code
[3]

;

$ char option_cd [2]

;

$ char sp__neseb
[6]

;

$ char sp__nesef
(6] ;

$ char sp wages [6]

;

$ char date__rcd[7]

;

$ char ein[10]

;

$ char indeed [5]

;

$ char st__add
[35]

;

$ char city_st [22]

;

$ char zip[6]

;

/* Copy the structure data to a host variable - this is due to a */
/* bug in Informix which causes ESQL/C to have problems dealing */
/* with structures as host variables */
stcopy {query->lastname, lastngime)

;

stcopy (query->initials, initials)

;

stcopy (guery->ssno, ssno)

;

stcopy (query->sei, sei);
stcopy (guery->year, year);
stcopy (query->ird, ird)

;

stcopy (query->fullname, fullname);
stcopy (query->sp__ssno, sp__ssno) ;

stcopy (query->sp_sei, sp__sei);
stcopy (racord->nesef , nesef)

;

stcopy (record->neseb, neseb);
stcopy (record->wages, wages);
stcopy (record->month, month);
stcopy (record->se_c[uar, se_quar)

;

stcopy (record->dln, din);
stcopy (record->iwp, iwp)

;

stcopy (record->err_code, err_code)

;

stcopy (record->option__cd, option^cd)

;

stcopy (record->sp__neseb, sp_neseb)

;

stcopy (record->sp_nesef, sp_nesef)

;

stcopy (record->sp__wages , sp__wages)

;

stcopy (record->date__rcd, date_rcd)

;

stcopy (record->ein, ein);
stcopy (record->ind__cd, ind_cd);
stcopy {record->st__add, st^add)

;

stcopy (record->city_st , city_st)

;

stcopy (record->zip, zip);

/* Insert record into database */

$ INSERT INTO test (lastname, initials, ssn, neseb, nesef,

wages, sei, year, month, se_c[uar, option_cd, ird,

din, full__name, iwp, err__code, sp_ssn, sp__neseb,

ep__ne8ef, sp_wages, sp_sei, date_rcd, ein,

ind_cd, st__add, city_st, zip) VALUES (

$lastname, $initials,
$ssno, $n@seb,
$nese£, $wages,
$sai, $yaar,
$month, $®e_quar,
$option_cd,
$ird, $dln,
$£ullname, $iwp,
$err__code,
$sp__B8no, $Bp_neseb,
$sp__nesef, $sp__wages,
$sp_sei, $date__rcd,
$ein, $ indeed,
$st_add, $city_st,
$Eip)

;

/* Check to see that no error occured while writing to the database */

if (sglca. sglcode)

{

printf ("ERROR occured! - Number %d\n”, sqlca. sqlcode)

;

exit();

}

}

/*
*

* Program devhandler.c
* by Natalie Willman
*

* April 2 , 1991

* This is the device driver for the HP jukeboxes which
* controls the logic of the queues
*

*/

/* Include Files */

/include <stdio.h>
/include <stdlib.h>
/include <fcntl.h>
/include <sys/ioctl . h>
/include <termio.h>
/include <string.h>
/include <ctype.h>
/include <sys/types . h>
/include <sys/ipc.h>
/include <sys/msg.h>
/include "util.h"

main
(

)

{

int i, j; /* Counters */

int res;
int queueid; /* queue id for messages to service */
int waitid; /* queue id for messages waiting on a disk */
int ackid; /* queue id for acknowledgement messages */
int freedrive; /* Drive number of the drive to mount to */

int unmtdrive; /* Drive number of the drive to unmount */
int empty; /* boolean variable to indicate waiting msgs */

struct DRINFO drives [MAXDRIVES] ; /* Array with drive info */
struct MSGBUF message, *pmessage; /* pointer to service msgs */

struct MSGACK msgack, *pmsgack; /* pointer to ack messages */

/* assign the message structures to the pointer */

pmessage = Simessage;
pmsgack = &msgack;

/* Initialize the drive information structure array */

drives [0]. jukeaddress = 0;
drives [0]. driveaddress = 1;
strcpy (drives [0] .devname, '' /dev/sstbO") ;

strcpy (drives
[0] .mountdir, ''/driveO") ;

drives [0]. busy = FALSE;

drives (1]. jukeaddress = 0;
drives [1]. driveaddress = 2;
strcpy (drives [1] .devname, "/dev/sstbl")

;

strcpy (drives [1] .mountdir, "/drivel")

;

drives [1]. busy = FALSE;

/* setup the message queues */

queueid = msgget(KEyi, PERMS
|

IPC_CREAT);
waitid = msgget(KEY2, PERMS

|

IPC_CREAT);
ackid = msgget(KEy3, PERMS

|

IPC_CREAT)

;

/* if any of the queues cannot be created, error and exit */
if((queueid < 0)

| |

(waitid < 0)
| |

(ackid < 0))

{

printf ("error getting the queue\n");
exit (0)

;

}

do

/* Check to see if both drives are currently busy - if so wait for */
/* an unmount message */
if { (drives[0] .busy == TRUE) && (drives [1] .busy == TRUE)

)

{

msgrcv(queueid, pmessage, MSGLEN, UNMOUNT, WAIT);
print_msg (pmessage)

;

unmtdrive = determine_drive (drives
,
pmessage);

empty = check_wait_queue(pmessage, waitid);
if (empty)

{

printf ("Nothing in wait queue - returning disk\n");
mark_idle(unmtdrive, drives);
unmt__disk(drives, unmtdrive);
ret_disk(pmessage, drives, unmtdrive)

;

>

else
{

print_msg (pmessage)

;

if (pmessage->side == drives (unmtdrive]. side)

{

printf ("Same side retrieved from queue\n");
strcpy

(
pmsgack->mtdir , drives [unmtdrive) . mountdir)

;

pmsgack->mtype = ACK + pmessage->user

;

res = msgsnd(ackid, pmsgack, ACKLEN, IPC_NOWAIT)

;

if (res < 0)
printf ("ERROR sending acknowledge message to user\n%c", '\007');

}

else
{

printf ("Opposite side retrieved from queue - flipping disk\n");
unmt_disk(drives, unmtdrive);
mark_busy (drives, pmessage, unmtdrive)

;

flip_disk(drives, unmtdrive);
/* Delay so that the mount will not fail due to disk not in drive */

for(i = 0; i < 30000; i++)
for(j = 0; j < 30; j-t-+);

mount_disk(drives, unmtdrive);
strcpy (pmsgack->mtdir , drives (unmtdrive] . mountdir)

;

pmsgack->mtype = ACK + pmessage->user

;

res = msgsnd (ackid, pmsgack, ACKLEN, IPC_NOWAIT)

;

if (res < 0)

printf ("ERROR sending acknowledge message to user\n%c", '\007');

>

>

>

else /* if both drives are not busy */

{

msgrcv(queueid, pmessage, MSGLEN, NEXTMSG, WAIT);
print_msg (pmessage)

;

if (pmessage->mtype == UNMOUNT)

{

unmtdrive = determine_drive (drives
,
pmessage);

empty = check_wait_queue (pmessage, waitid);
if (empty)

{

printf ("Nothing in wait queue - returning disk\n");
mark__idle (unmtdrive, drives);
unmt__disk (drives , unmtdrive) ;

ret__disk(pmessage, drives, unmtdrive);
>

else

<

print__msg (pmessage
) ;

if (pmessage“>side drives [unmtdrive] . side)
{

printf ("Same side retrieved from queue\n");
strcpy (pmsgack->mtdir , drives [unmtdrive] .mountdir)

;

pmsgack->mtype = ACK + pmessage->user

;

res = msgsnd(ackid,pmsgack,ACKLEN, IPC_NOWAIT)

;

if(res < 0)

printf ("ERROR sending acknowledge message to user\n%c", '\007');

}

else

{

printf ("Opposite side retrieved from queue - flipping disk\n");
unmt_disk(drives, unmtdrive);
mark_busy (drives

,
pmessage, unmtdrive);

flip_disk (drives , unmtdrive);
/* Delay so that the mount will not fail due to disk not in drive */
for(i =0; i < 30000; i++)

for(j = 0; j < 30; j++);
mount_disk (drives , unmtdrive);
strcpy (pmsgack->mtdir, drives [unmtdrive] .mountdir)

;

pmsgack~>mtype = ACK + pmessage“>user

;

res - msgsnd(ackid,pmsgack,ACKLEN, IPC_NOWAIT)

;

if(res < 0)
printf ("ERROR sending acknowledge message to user\n%c", '\007');

}

}

else if
((

(pmessage->disk =:= drives
[0]. disk) && (drives

[0]
.busy == TRUE)) ||

((pmessage“>disk == drives [1]. disk) && (drives [1] .busy == TRUE)))

{

printf ("request placed in wait queue - disk not available\n")

;

pmessage->mtype = MOUNT+pmessage->disk;
res = msgsnd (waitid, pmessage, MSGLEN, IPC_NOWAIT)

;

if(res < 0)
printf ("ERROR sending acknowledge message to user\n%c", '\007');

}

else
{

printf ("A free drive is available, and the disk is available\n")

;

freedrive = get_drive (drives)

;

mark_busy (drives
,
pmessage, freedrive);

mov_disk(pmessage, drives, freedrive);
/* Delay so that the mount will not fail due to disk not in drive */

for(i = 0; i < 30000; i++)
for(j = 0; j < 30; j++);

mount_disk (drives , freedrive);
strcpy (pmsgack->mtdir , drives [freedrive] .mountdir)

;

pmsgack->mtype = ACK+pmessage->user

;

res = msgsnd (ackid, pmsgack, ACKLEN, IPC_NOWAIT);
if (res < 0)
printf ("ERROR sending acknowledge message to user\n%c", '\007');

}

}

}

while(TRUE); /* INFINITE LOOP */

}

/*
* .

* Function determine_drive {

)

*

* This function determines which drive contains
* the disk referenced in the message pointed to by
* the passed pointer
*

* Input: Array containing drive information
* Pointer to the message
*

* Output: The drive number containing the requested disk

*/

determine_drive (drives , pmessage

)

struct MSGBUF *pmessage;
struct DRINFO drives[];
{

int unmtdrive;

if (drives [0]. disk == pmessage->disk)
unmtdrive = 0;

else
unmtdrive = 1

;

printf ("Removing disk from drive %d\n", unmtdrive+1)

;

return (unmtdrive)

;

}

/*
*

* Function get__drive()

* This function determines which drive is currently free
*

* Input: Array containing drive information
*

* Output: The drive number that is free
*

*/

get_drive (drives

)

struct DRINFO drives[];

{

int freedrive;

if (drives [0] .busy == FALSE)
freedrive = 0;

else
freedrive = 1;

printf ("Placing disk in %d\n", freedrive+1)

;

return (freedrive)

;

>

/*
*

* Function mark_busy()

* This function marks the selected drive as busy
*

* Input: Array containing drive information
* Pointer to message
* Drive number to mark as busy
*

* Output: The drive array is modified so that the drive
* is busy, and the disk number and side in the
* drive are stored in the array
*

V
mark_busy (drives, pmessage, freedrive)

struct DRINFO drives
[];

struct MSGBUF *pmessage;
int freedrive;
{

drives [freedrive]. busy = TRUE;
drives [freedrive]. disk = pmessage->disk;
drives [freedrive]. side = pmessage->side;

printf ("Drive %d marked as busy and having disk %d side %d\n",
drives [freedrive] . driveaddress , drives [freedrive] .disk,
drives [freedrive] . side)

;

>

/*

* Function mark_idle()
*

* This function marks the selected drive as idle
*

* Input: Array containing drive information
* Drive number to mark as idle
*

* Output: The drive array is modified so that the drive
* is marked as idle
*

*/

mark_idle (unmtdrive, drives)
int unmtdrive;
struct DRINFO drives[];
{

drives [unmtdrive]. busy = FALSE;
printf ("Drive %d marked as idle\n", drives (unmtdrive]. driveaddress

)

}

I*
*

* Function flip_disk()

* This function sets the source and destination address of the
* disk, as well as indicating the address of the changer device,
* and passes it to a function to make the CDB and to execute

* the SCSI instruction to flip the disk and replace it in the drive

* Input: File descriptor for the sdlp device driver
* Pointer to the message
* Array containing drive information
* Drive the disk is to be placed in
*

* Output: The correct disk is flipped and replaced in the drive
V

f lip__disk(drives, freedrive)
int freedrive;
struct DRINFO drives[];
{

int srcint, destint, num;
unsigned int movemed(), cdbsize, buffsize;
char cdb[12], source, dest, invert;

srcint = drives [freedrive]. driveaddress

;

destint = drives [freedrive]. driveaddress

;

source = srcint; /* Set Source Address - Will drop the MSB */
dest = destint; /* Set Destination Address - Will drop the MSB */
num = drives (freedrive]. jukeaddress ; /* Set jukebox SCSI ID *

/

if (drives [freedrive). side == 1)
invert = TRUE

;

else
invert = FALSE;

printf ("Source set at %d. Destination set at %d\n", srcint, destint);
printf("SCSI address set at %d, flip set to %d\n", num, invert);

buffsize = movemed(cdb, Stcdbsize, source, dest, invert);
execute(cdb, cdbsize, buffsize, num);

}

/*
*

* Function mov_disk()
*

* This function sets the source and destination address of the
* disk, as well as indicating the address of the changer device,
* and passes it to a function to make the CDB and to execute
* the SCSI instruction to move the disk to a drive
*

* Input: File descriptor for the sdlp device driver
* Pointer to the message
* Array containing drive information
* Drive the disk is to be placed in
*

* Output: The correct disk is inserted into the drive
*1

mov_disk(pmessage, drives, freedrive)
int freedrive;
struct MSGBUF *pmessage;
struct DRINFO drives[];
{

int srcint, destint, num;
unsigned int movemed(), cdbsize, buffsize;

char cdb[12], source, dest, invert;

srcint = pmessage->disk + 10;
destint = drives [freedrive]. driveaddress

;

source = srcint; /* Set Source Address - Will drop the MSB */
dest = destint; /* Set Destination Address - Will drop the MSB */

num = drives [freedrive]. jukeaddress ;
/* Set jukebox SCSI ID */

if (drives [freedrive]. side == 1)

invert = TRUE

;

else
invert = FALSE;

printf ("Source set at %d. Destination set at %d\n", srcint, destint);
printf("SCSI address set at %d, flip set to %d\n", num, invert);

buffsize = movemed(cdb, Sccdbsize, source, dest, invert);
execute(cdb, cdbsize, buffsize, num)

;

}

/*
*

* Function mount_disk()
*

* This function issues a mount command to mount the file system
* of the disk in the current drive
*

* Input: Array containing drive information
* Drive number of the drive containing the disk
*

* Output; The disk is mounted and available to the user

*/

mount_disk(drives, freedrive)
struct DRINFO drives[);
int freedrive;
{

printf ("Drive %s mounted to %s\n" , drives [freedrive] .devname,
drives [freedrive] .mountdir)

;

mount (drives (freedrive] . devname, drives [freedrive] .mountdir, 1)

;

}

/*
•k

* Function ret_disk()
*

* This function sets the source and destination address of the
* disk, as well as indicating the address of the changer device,
* and passes it to a function to make the CDB and to execute
* the SCSI instruction to return the disk to a storage slot
it

* Input: File descriptor for the sdlp device driver
* Pointer to the message
* Array containing drive information
* Drive the disk is to be removed from

* Output: The disk is removed from the drive and placed back in
* its correct storage slot
if

V
ret_disk(pmessage/ drives, unmtdrive)

int unmtdrive;
struct MSGBUF *pmessage;
struct DRINFO drives[];
{

int srcint, destint, num;
unsigned int movemed(), cdbsize, buffsize;
char cdb[12], source, dest, invert;

srcint = drives [unmtdrive]. driveaddress

;

destint = pmessage->disk + 10;
source = srcint; /* Set Source Address - Will drop the MSB */
dest = destint; /* Set Destination Address - Will drop the MSB */
num = drives [unmtdrive]. jukeaddress ; /* set jukebox SCSI ID */

if (drives [unmtdrive]. side == 1)

invert = TRUE;
else

invert = FALSE

;

printf ("Source set at %d. Destination set at %d\n", srcint, destint);
printf("SCSI address set at %d, flip set to %d\n", num, invert);

buffsize = movemed(cdb, &cdbsize, source, dest, invert);
execute(cdb, cdbsize, buffsize, num);

}

/*
*

* Function unmt_disk()
*

* This function issues an unmount command to unmount the file system
* of the disk in the current drive
*

* Input: Array containing drive information
* Drive number of the drive containing the disk
*

* Output: The disk is unmounted

*/

unmt_disk(drives, unmtdrive)
struct DRINFO drives[];
int unmtdrive;
{

printf { "drive %s unmounted\n" , drives [unmtdrive] .devname)

;

umount (drives (unmtdrive) . devname)

;

>

/*
* Function check_wait_queue

(

)

* This function tries to retrieve a message from the wait queue.
*

* Input: Array containing drive information
* Pointer to structure to hold a new message, if available
* Queue Id of the wait queue
*

* Output; The function returns TRUE if a message is found, and the
* pointer points to the new message. Otherwise, FALSE is
* returned
*

*/

check_wait_queue (pmessage, waitid)
struct MSGBUF *pmessage;
int waitid;
{

int msg, empty;

msg = msgrcv (waitid, pmessage, MSGLEN, MOUNT+pmessage->disk, IPC_NOWAIT)

if(msg < 0)

empty = TRUE

;

else
empty = FALSE;

return (empty)

;

}

/*
*

* Function print_msg()
*

* This function prints the contents of the current message
* for diagnostic purposes
*

* Input: pointer to the message structure
*

* Output: contents of the message is printed out on the console screen

*/

print_msg (pmessage

)

struct MSGBUF *pmessage;

{

printf ("Message
printf ("Message
printf ("User
printf ("Jukebox
printf ("Disk #
printf ("Side
printf ("\n\n")

;

}

Received from
type %d\n"

,

%d\n"

,

%d\n"

,

%d\n"

,

%d\n"

,

User: \n")

;

pmessage->mtype)

;

pmessage->user)

;

pmessage->juke)

;

pmessage->disk)

;

pmessage->side)

;

/*
* Sets the CDB for a Move Media Command
*

* Input: array to hold the CDB
* CDB size

source Address*

destination Address
bit set for flipping the disk

*

*

* Output: CDB holds the Move Media command
* size of return buffer
*

*/

unsigned int movemed(cdb, cdbsize, source, dest, invert)
char cdb()

;

unsigned int *cdbsize;
char source, dest, invert;

{

cdb[0) = 0xA5; /* Command # lA Hex */
cdb[l] = 0x0; /* Bits 5, 6, 7 are LUN */
cdb[2) = 0x0; /* Transport Element Address (MSB) */
cdb(3] = 0x0; /* Transport Element Address (LSB) */
cdb(4) s 0x0; /* Source Element Address (MSB) */
cdb[5] = source; /* Source Element Address (LSB) */
cdb[6] = 0x0; /* Destination Element Address (MSB) */
cdb[7] = dest; /* Destination Element Address (LSB) */
cdb[8) = 0x0; /* Reserved */
cdb[9] = 0x0; /* Reserved */
cdb[10] = invert; /* Reserved - Bit 0=1 will flip */
cdb(ll] = 0x0; /* Control Byte */
*cdbsize = 12;

return(O)

;

}

/*
* Execute a SCSI command
*

* Input: File descriptor to the sdlp device driver
* Array containing the CDB
* CDB size
* Buffer size of the return buffer
* SCSI id of the device to send the command to
*

* Output: SCSI command is executed, or error message is returned
*

*/

execute (cdb, cdbsize, buffsize, num)
char cdb(]

;

unsigned int cdbsize, buffsize;
int num;

{

struct lOCTL io;
char buffer (512);
int sdlp;

io.CMD = Oxff;
io.UNIT = num;

10.11.

ADDR = (unsigned long) (&buf fer (0))

;

10.

12,

COUNT = buffsize;
io. 13 .CDBADDR = (unsigned long) (SccdbfO));
io.I4,IODIRECT = 0;
io.IB.GRPSIZ = cdbsize;
io.TYPE = 0;
io. STATUS = 0;

/* SCSI pass-thru command
/* SDLP Unit number
/* Address of return buffer
/* length of return buffer
/* Address of CDB
/* I/O Direction (Read/Write
/* length of CDB
/* Type = 0

/* Status of No errors

/* Open the Device Driver for the SDLP controller */

sdlp = open (
" /<36v/sdlpO" , 0_RDWR) ;

if(sdlp < 0)

{

printf ("Error opening SDLP driver for Jukebox 1 \n")

;

exit (0)

;

>

/* Execute CDB and check for errors */

if (ioctl (sdlp, Oxff, &io) < 0)

{

printf ("Jukebox error occured while moving the disk\n");
exit (0)

;

}

/* close the device driver */

close (sdlp)

;

}

#
/ Downld

by Natalie Willman
#
This shell script will read sets of 50 blocks of
data from the tape, convert the data to ASCII, and
store it in smaller files on an optical disk
mounted to /driveO

Print the number of sets of 50 blocks entered by the user
echo $1

Initialize the counter and other variables
counter=0
full=$l

While there are still sets left, print the set number, and
download the set, converting it to ASCII, and increment the counter
while test $counter -It $full
do
echo $counter
dd if=/dev/seqN0 of=/driveO/$counter ibs=31824 cbs=31824 conv=ascii count=50
counter= 'expr $counter + 1'

done

Print the last set number (a partial set), and download and convert
the records in that set
echo Scounter
dd if=/dev/seqN0 of=/driveO/$counter ibs=31824 cbs=31824 conv=ascii

Easear .ec

/*

* by Natalie Willman
* April 2 , 1991
*

* This is the user interface for the Pilot System for SSA
*

*/

#include <curses.h> /* Windowing functions for UNIX */
#include <panel.h> /* Windowing functions for UNIX */

#include <string.h> /* String manipulation functions */
#include <sys/types . h> /* Used in Time Monitoring functions */

#include <sys/ipc.h> /* Interprocess communication structures */

#include <sys/msg.h> /* Messaging structures and functions */

$include sqlca; /* Informix ESQL/C header */

Sinclude sqlda; /* Informix ESQL/C header */

#include "proto. h” /* #define statements and structure definitions */

/* Host variable to receive data from the database file - this is */

/* done rather than making the true structures the host variables for */

/* two reasons: to keep control of the arrays (so they are not */

/* altered by esql, and because host variable structures cannot */

/* be arrays — bug in ESQL */

$struct RECEIVE
{

char lastname[8];
char initials[3];
char ssno[10];
char nesef(6];
char neseb[6];
char wages [6]

;

char sei (6]

;

char year [3]

;

char month[3];
char se__quar (2]

;

char option__cd [2]

;

char ird[3];
char din [15]

?

char full_name[50]

;

char iwp [3]

;

char err_code [3]

;

char sp__ssno[10]

;

char sp_neseb [6]

;

char sp_nesef[6];
char sp_wages [6]

;

char sp_sei[6];
char date_rcvd [7]

;

char ein[10]

;

char ind__cd [5]

;

char st__add[35];
char city__st

[22]

;

char zip[6]

;

> retrvar;

/* Management Information structure. */

struct MANAGEINFO

{
. */

long int logtime; /* Time that the user is logged into the system /

long int logcount; /* Count of logins to the system */

long int qt88

;

/* Time the user is entering 1988 queries *!
long int qt89

;

/* Time the user is entering 1989 queries */

long int qc88; /* Count of 1988 queries */
long int qc89; /* Count of 1989 queries V
long int dc88; Count of 1988 Detailed information requests */
long int dc89 ; /* Count of 1989 Detailed information requests */

long int pc88

;

/’* Count of 1988 Printout requests */
long int pc89

;

/* Count of 1989 Printout requests V
time__t Itimerl; /* Login timers */
time__t ltimer2

;

time _t qtimerl; /* Query timers */
time_t gtimer2;
>;

/*
* Main Program
*

*/

main
(

)

{

struct MANAGEINFO minfo, *pminfo; /* management information structure */
struct QUERY querymatches [MATCHSCR] ; /* contains browse info on matches */
struct REC full_record[MATCHSCR] ; /* contains full info on matches */
struct INFO usrquery[2]; /* contains users query parameters */
char qinput, binput; /* Individual char of user input */
char get__query () ; /* function to get a user's query */
int nummatches, curmatch; /* # of matches in memory, and */

/* array index of current match */

int user; /* User number - based on tty port */

int possible; /* Is the user's query possible */

/* Initialize the screen to use the ETI interface and setup windows */

/* Obtain the user number, and setup management information */

initscr ()

;

setup_windows
()

;

user = get_user_no()

;

pminfo = &minfo;
init_mi(pminfo)

;

inc_log_count (pminfo)

;

Start_log_timer (pminfo)

;

clrcjuery (usrquery, TRUE);

/* Get the user's queries, until he presses ESCAPE, indicating the */

/* session is complete */

do

{

start_query_timer (pminfo)

;

qinput = get_query (usrquery)

;

if(qinput != ESC)

{ ,
/* Display the wait message */

disp__wait ()

;

/* select matches from the database */

possible = select_matches (usrquery, user);

// Remove the wait message

rem__wait ()

;

if (possible == FALSE)

{

disp_err ("Too much data required for query — Please refine query");
clrquery (usrquery , FALSE);

>

else
{

/* display screens of matches for user to browse */

nummatches=display__matches (usrquery
,
querymatches , ful l_record , ficurmatch)

;

if (nummatches 1= 0)

{

j* allow user to page up and down through the matches */

binput = wgetch
(general)

;

while (binput 1= ESC)

{

browse (binput, &nummatches, &curmatch, usrquery, querymatches,
full_record, pminfo)

;

binput = wgetch
(
general)

;

>

}

else
disp_err("NO MATCHES TO THIS QUERY — PRESS ESC FOR QUERY SCR")

;

/* When the user is done browsing, clear the current query */

inc_query__count (usrquery [0] . year ,
pminfo)

;

end_query_timer (usrquery [0] .year, pminfo)

;

clrquery (usrquery , FALSE)

;

}

}

}

while (qinput 1= ESC);

/* Leave the ETI environment */

endwin ()

;

end_log_timer (pminfo)

;

write_mi_stats (user , pminfo)

;

}

/***
*

/* Top Level Functions
/*

/

/

/

/

/

/*
*

*

*

*

*

This function prompts the user for the query information

and stores it in the userquery structure

Input: pointer to structure to hold the users query (usrquery)

Output: The structure usrquery is filled with the search parmeters

The indicator by the user whether to search for matches (ENTER)

or quit the query session (ESC)

V

char get_guery (usrquery

)

struct INFO usrquery[];
{

int row, col; /* Location of cursor on the screen
int done; /* boolean variable to indicate when the query is entered */
char input; /* individual character of user's input */
int lastlen; j* Length of last name in the query */
char errmsg[50]; /* Error message to print

/* Clear the background window */
clrwin(GENERALWIN)

;

/* Allow user to enter a C[uery and check to make sure that the year, IRD */
/* and at least 4 characters of the last name are entered */
do

{

/* Prompt for the Tax Year */
disp_string(general, ROWTAX, 10, "Tax Year :

—
")

;

/* Prompt for the IRD */
disp_string(general, ROWIRD, 10, ”IRD Generated by DEQY :

—
”)

;

/* Prompt for the Last Name */
disp_string(general, ROWLAST, 10, "Last Name ; ");

/* Prompt for the initials */
disp_string(general, ROWINI, 45, " Initials: — ");

/* Prompt for the Social Security Number */
disp__string(general, ROWSSN, 10, "Social Security Number : ");

/* Prompt for the Spouse's Social Security Number */

disp__string(general, ROWSP, 10, "Spouse's SSN : ");

/* Prompt for the Self Employed Income */

disp_string(general, ROWSEI, 10, "Self Employed Income : ");

/* Add user direction prompts */

disp__string(general, 22, 18, "ESC=EXIT ENTER=SEARCH PGUP=LAST QUERY ")

;

/ Move to the first prompt and refreshes the screen */

wmove(general, ROWTAX, MINCOL)

;

wrefresh(general)

;

j* Obtain and interpret the User input until ESC (exit progreun) */

/* or ENTER (search on query) is given */

input = wgetch (general)

;

while ((input 1= ESC) && (input 1= ENTER))

{

interp (input , usrquery)

;

input = wgetch (
general)

;

>

/* check to see if the user entered enough information. If so, */

j* the user is done entering the query. If not, display an error */

/* message and loop until the user enters the correct information */

if ((
(strlen(usrquery[0) .year) < 2) ||

(strlen(usrquery[0) .ird) < 2) ||

(strlen(usrquery (0] . lastname) < 4)) && (input 1= ESC))

{

lastlen = strlen (usrquery [0] . lastname)

;

if (usrquery (0). lastname [lastlen-1)
!= '.')

disp_err("ERROR! MUST ENTER TAX YEAR, IRD, AND 4 LETTERS OF LAST NAME!")

clrwin(GENERALWIN)

;

done = FALSE

;

>

}

else if((invalid_year (usrquery[0] .year)
) && (input 1= ESC)

)

{

disp_err("ERROR 1 TAX YEAR MUST BE 88 OR 89");
clrwin(GENERALWIN)

;

done = FALSE;

>

else if((invalid_ird(usrquery[0] . ird)
) && (input != ESC))

{

sprint f (errmsg, "%s%s%s" , "ERROR 1 IRD " ,usrquery[0] . ird, " IS INVALID!");
disp_err (errmsg)

;

cIrwin (GENERALWIN)

;

done = FALSE;

>

else /* User has entered a correct query /
done = TRUE;

}

while (done == FALSE);

/* returns either ESC or ENTER, indicating to either exit or search */
return (input)

;

}

/*
* select_matches

(

)

*

* Filter the database file to records matching the
* user's query
*

* Input: Users query information
* User number (tty port)
*

* Output: The database is filtered to contain records matching the query,
* and a cursor is set up to move through the database
*

V
select_matches (usrquery , user)

struct INFO usrquery[);
int user;

{

char query_last [12] ; /* query for selection last name */
char selc[uery [200] ; /* database query sent to INFORMIX SQL */
$char unionqry [4000] ; /* union of databases to query */

char dbase [20 1 [10] ; /* names of databases to union */

int exact; /* Boolean variable to indicate if search is */

/* exact or prefix */

int sei; /* integer representation of sei */

int len; /* integer length of sei string */

int lower, upper; /* upper and lower bounds for sei search */

char low[7], high[7); /* upper and lower bounds for sei search */

int count , i

;

/* check to see if the search is an exact search on the last */

/* name or only a prefix search *

!

exact = check_search_type (usrquery [0) . lastname)

;

I* select the file where the user's database information will */

/* be stored and request the files from the jukebox */

assign_user_files (dbase, user);

count = req_user__data(user , usrquery, exact);
if (count > 20)

return (FALSE)

;

/* create the query information for the last name j
strcpy

(
query_last , " \ '"'

)

;

strcat (
query_last , usrquery [0] . lastname

)

;

if (exact == FALSE)
strcat (query__last ,

'**");

strcat (query_last, "\"");

/* create the where portion of the user's query */
sprint f (selquery, "%s %s", "WHERE lastname matches”, query__last)

;

/* If the user entered initials, add them to the query string *!
if (strlen(usrquery [0] .initials)

)

{

strcat (selquery, ” AND initials matches \”");
strcat (selquery, usrquery [0] . initials)

;

strcat (selquery ,
"\”");

>

/* If the user entered a ssn, add it to the query string */
if (strlen(usrquery (0) . ssno)

)

{

strcat (selquery ,
" AND ssn matches \"");

strcat (selquery , usrquery [0] . ssno)

;

strcat (selquery ,
"\"");

}

/* If the user entered a spouse's ssn, add it to the query */
if (strlen (usrquery [0) . sp_ssno

)

)

{

strcat (selquery ,
" AND sp_ssn matches \"");

strcat (selquery , usrquery (0] . sp_ssno)

;

strcat (selc[uery, "\"”);

}

/* If the user entered a sei, add it to
/* searching for +/- 1 of the sei value
if (strlen (usrquery [0] .sei)

)

{

sei = atoi (usrquery (0) .sei)

;

upper = sei +1;
lower = sei - 1;

sprintf(low, "%d”, lower);
sprintf (high, "%d”, upper);
len = strlen(low);
switch (len)

{

case

case

1 :

low(4

]

low[3

]

low[2)
low[1

]

low[0

]

low[5

]

break;
2 :

low(4)
low[3

)

low(2)
low(1

]

low(0

)

low(5

]

low[0]

;

' 0 '

' 0 '

' 0 '

' 0 '

0 ;

low[1)

;

low[0]

;

'0

'0

'0

0 ;

the query string
entered by the user

*/
*/

break;
case 3:

low[4

]

low[3

]

low[2

]

low[1

]

low[0]
low[5

]

break;
case 4:

low[4

]

low[3

]

low[2]
low[1

]

low[0

]

low[5

}

break;

low[2]

;

low[1]

;

low[0]

;

' 0 '
;

' 0 '
;

0 ;

low[3]

;

low[2];
low[1]

;

low[0]

;

' 0 '
;

0 ;

}

len = strlen (high)

;

switch (len)

{

case 1:

high [4

)

high [3

]

high [2

]

high[1

]

high[0]
high [5

)

break;
case 2:

high [4

]

high [3

]

high[2

)

high [1

]

high[0]
high [5

]

break;
case 3:

high [4

]

high [3

)

high [2

]

high [1

]

high [0

]

high [5

]

break;
case 4:

high(4]
high (3

]

high [2

]

high [1

]

high[0]
high[5

]

break;
}

high[0]

;

' 0 '
;

' 0 '
;

' 0 '
;

' 0 '
;

0 ;

high [1]

;

high [0]

;

' 0 '

;

' 0 '

;

' 0 '

;

0 ;

high [2]

;

high [1]

;

high[0)

;

'0'
;

'O';
0 ;

high[3)

;

high[2)

;

high (1)

;

high [0]

;

' 0 '
;

0 ;

strcat (selquery ,

strcat (selquery,
strcat (selquery,
strcat (selquery,
strcat (selquery

,

strcat (selc[uery

,

strcat (selquery

,

>

" AND sei between
low) ;

" AND ”
)

;

"\"");
high)

;

\)

;

, dbase[0].sprint f (unionqry %s %s %s SELECT * FROM selcjuery

)

/* string all of the databases to union
for(i =1; i < count; i++)

{

strcat (unionqry
strcat (unionqry
strcat (unionqry
strcat (unionqry
strcat (unionqry
}

" UNION ALL "
)

;

"SELECT * FROM ");
dbase [i])

;

" ");
selquery)

;

*/

/* select the easear database and check for status
switch (user)

<

case 1:

$database userl;
break;

case 2:

$database user2

;

break;
case 3:

$database user3;
break;

case 4:

$database user4;
break;

case 5:

$database userS;
break;

case 6:

$database userS;
break;

case 7:

$database user?

;

break;
case 8:

$database userS;
break;

}

if (sqlca . sqlcode

)

{

disp_err("ERROR OPENING THE DATABASE");
endwin ()

;

exit ()

;

}

/* prepare the query id from the user query string
$prepare qid from $unionqry;
if (sqlca. sqlcode)

{

disp_err("ERROR PREPARING THE QUERY ID");
endwin ()

;

exit ()

;

}

/* Declare a scrolling cursor for the query
$declare recptr scroll cursor for qid;
if (sqlca . sqlcode

)

{

disp_err("ERROR DECLARING THE SCROLL CURSOR");
endwin ()

;

exit()

;

>

/ open the query

$open recptr;
if (sqlca. sqlcode)

{

disp_err("ERROR OPENING THE QUERY");
endwin ()

;

exit ()

;

>

return (TRUE)

;

}

/*
* Display Matches

* Input: structure containing the user's query information
* arrays containing the query matches loaded in memory
* current match number
*

* Output: the matches are displayed on the user's screen
*/

int display_matches (usrquery
,
querymatches, full_record, curmatch)

struct QUERY querymatches
[]

;

struct REC full_record
[]

;

struct INFO usrquery[];
int * curmatch;
{

int nummatches, diff;
$int topscr;

/* display the header information and the first screen of matches */
view_header (usrquery)

;

/* load one screen of matches */

nummatches = load_matches (querymatches, full_record)

;

if (nummatches 1= 0)

{

*curmatch = 0;
/* Display the screen of matches */

disp_screen(querymatches, nummatches)

;

/* Return the pointer to the top of the set of matches */

diff = MATCHSCR - nummatches;
topscr = -((MATCHSCR - 1) - diff);
$fetch relative $topscr recptr;

>

/* return the number of matches found */

return (nummatches)

;

}

/*
*

* Browse the initial matches

* Input: user's directional information
* total number of matches in memory
* current match number
* user's query information
* array holding the current matches

* Output: the user's directional command is decoded and action is
* taken based upon it
*

*/

browse (input , nummatch/ curmatch, usrquery, querymatches, full record/ pminfo)
int *curmatch/ *nummatch;

”

char input

;

struct MANAGEINFO *pminfo;
struct QUERY querymatches

[]

;

struct INFO usrquery[];
struct REC full_record[]

;

{

int row, col;
int i;

/* get current screen cursor position */
getyx(general, row, col);

/* take action based upon user's command */
switch (input)

{

case UPARROW:
if (row > FIRSTROW)

{

^curmatch = *curmatch - 1;
wmove

(general , row-2, col);

>

break;
case DOWNARROW:

if ((row < LASTROW) && (*curmatch < (*nummatch-l)))

{

*curmatch = *curmatch + 1;
wmove (general, row+2, col);

}

break;
case LEFTARROW:

if (col > MINVIEW)
wmove

(
general , row, col-1);

break;
case RIGHTARROW;

if (col < MAXVIEW)
wmove

(
general , row, col+1);

else if (col == MAXVIEW)
move__line (*curmatch, c[uerymatches)

;

break;
case END: /* user requests off the screen information

move_line (*curmatch, querymatches)

;

break;
case HOME: /* restore screen to default position */

restore__line (’curmatch, querymatches)

;

break;
case ENTER: /* user requests to see detailed info on a record */

if(*nummatch 1= 0)

{

inc__detail_count (usrquery (0)

.

year , pminfo)

;

disp_rec (*curmatch, querymatches, full__record, pminfo);
/* once the user is done, restore screen to browse mode */

restore_scr (’nummatch, *curmatch,usrc[uery,c[uerymatches, full_record)

>

break;
case PAGEUP:

^nummatch = view_prev_matches (querymatches, full_record,
curmatch, ’nummatch) ;

break;

case PAGEDOWN

:

*nummatch = view_next__matches(querymatches, full_record,
curmatch, *nummatch);

break;

>

}

t*
* Clear the old Query information, and place a copy of it in
* the next array slot so if the user wishes it can be retrieved
*

* Input: structure holding the query information
*

* Output: Main query array is cleared, and the storage query array
* contains the last query
*

*/

clrquery (usrquery , first)
struct INFO usrquery[);
int first;

{

int i;

/* copy the last query information to storage array
if (! first

)

{

strcpy (usrquery [1]
.
year , usrquery [0]

.
year)

;

strcpy (usrquery [1] . ird , usrquery (0] . ird)

;

strcpy (usrquery [1] . lastname , usrquery [0] . lastname)

;

strcpy (usrquery [1] . initials, usrquery [0] . initials)

;

strcpy (usrquery [1) . ssno , usrquery (0] . ssno)

;

strcpy (usrc[uery[1] . sp_ssno, usrquery
[0] . sp_ssno)

;

strcpy (usrquery [1) . sei , usrquery [0) . sei)

;

>

/* clear the main c[uery array
for(i =0; i < 3; i++)
usrquery [0]. year [i)

=0;

for(i =0; i < 3; i++)
usrquery [0] . ird [i] = 0;

for(i =0; i < 8; i++)
usrquery [0]. lastname [i] = 0;

for(i =0; i < 3; i++)
usrquery[0] .initials [i] = 0;

for(i =0; i < 10; i++)
usrc[uery

[0] . ssno[i] = 0;

for(i =0; i < 10; i++)
usrquery[0] . sp_ssno[i] = 0;

for(i =0; i < 6; i++)
usrc[uery

[0]
. sei

[
i

]
= 0;

/* close the database filter
$close recptr;

>

/**/
/* */
/* Small Functions Called by main() */
/* */
/**/

/•

* Determine the user number of the current user (by tty port)
* This is used to allow access to files, and for management information
*

* Output: user number is returned to the calling function
*/

int get_user_no (

)

{

char *tty, *ttyname();
int user;

tty = ttyname(O); /* return where the standard out is going */
user = *(tty+9) - 64; /* get rid of "/dev/tty4" and point to letter */

/* 64 = @ - the ascii character before 'A' */

return (user)

;

>

r
* Initialize the MI information structure
*

* Input: global structure minfo holding the management data

* Output: all values are set to 0 (not ANSI compiler)
*

*/

init__mi (pminfo)
struct MANAGEINFO *pminfo;

{

pminfo->logtime =0;
pminfo->logcount = 0;
pminfo->C[t88 = 0;

pminfo->qt89 = 0

pminfo->qc88 = 0

pminfo->qc89 = 0

pminfo->dc88 = 0

pminfo->dc89 = 0

pminfo->pc88 = 0

pminfo-->pc89 = 0

}

* Increment the login count
*

*/

inc_log_count (pminfo)
struct MANAGEINFO *pminfo;

{

pminfo->logcount++

;

}

/*
* start the timer for the login length
*

*/

start_log_timer (pminfo)
struct MANAGEINFO *pminfo;

{

pminfo->ltimerl = time((long *) 0);

>

/*
* End the timer for the login length
*

*/

end_log_timer (pminfo)
struct MANAGEINFO *pminfo;
{

long int timer;
long int min;

pminfo->ltimer2 = time((long *) 0);
timer = pminfo->ltimer2 - pminfo->ltimerl

min = (long int) (timer/ 60) + 1;
pminfo->logtime += min;
>

/*
* Increment the query count

*/

inc_query_count
(year , pminfo

)

char year
[]

;

struct MANAGEINFO ^pminfo;
{

if (year [1] == '8')

pminfo->qc88++

;

else if (year [1] == '9')

pminfo->qc89++

;

}

/*
* Start the timer for the query length
*

V
Start_query_timer (pminfo

)

struct MANAGEINFO *pminfo;

{

pminfo->qtimerl = time((long *) 0);

>

I*
* End the timer for the query length
*

*/

end_query_timer (year
,
pminfo)

struct MANAGEINFO *pminfo;
char year

[]

;

{

long int timer;
long int min;

pminfo->qtimer2 = time((long *) 0);

timer = pminfo->qtimer2 - pminf0”>qtimerl

;

min = (long int) (timer/60) + 1 ;

if (year

[

1]
== ' 8 ')

pminf0“>qt88 += min;
else if(year[l) == '9')

pminfo->qt89 += min;
>

/*
* Increment the detail count
*

*/

inc_detail_count (year
,
pminfo)

char year
[]

;

struct MANAGEINFO *pminfo;

{

if (year

[

1]
== ' 8 ')

pminfo->dc88++

;

else if (year [1] == '9')

pminfo->dc89++

;

}

/*
* Increment the print count
*

*!

inc_print_count (year ,
pminfo

)

char year
[]

;

struct MANAGEINFO ^^pminfo;

{

if (year

[

1]
== ' 8 ')

pminfo->pc88++

;

else if(year[l] == '9')

pminfo->pc89++

;

>

/*
* Write the management data to the disk
*

* Input: the user number
*

* Output: Management information is written to a disk file
*

*/

write_mi_stats (user
,
pminfo)

int user;
struct MANAGEINFO *pminfo;

{

FILE *fopen(), *mi;
char filename [20]

;

struct MANAGEINFO tmp;

/* Create mi_file for this user */
sprintf (filename, "%s%d", "mi_info.", user);

/* Check to see if file exists, if so — read in the current stats */
mi = fopen (filename. "r") ;

if (mi 1= NULL

{

fscanf (mi.

)

"%d%*c". &tmp. logtime)

;

fscanf (mi. "%d%*c"

,

&tmp. logcount)

;

fscanf (mi. "%d%*c"

,

&tmp. qt88)

;

fscanf (mi. "%d%*c"

,

&tmp. qt89)

;

fscanf (mi. "%d%*c". &tmp. qc88)

;

fscanf (mi. •'%d%*c"

,

&tmp. qc89)

;

fscanf (mi. ••%d%*c”

,

&tmp.dc88)

;

fscanf (mi. "%d%*c"

,

&tmp. dc89)

;

fscanf (mi. •’%d%*c". &tmp.pc88)

;

fscanf (mi. "%d%*c". &tmp.pc89)

;

/* Add new statistics */
pminfo->logtime += tmp. logtime;
pminfo->logcount += tmp. logcount

;

pminfo->qt88 += tmp.qt88;
pminf0“>qt89 += tmp.qt89;
pminfo->qc88 += tmp.gc88;
pminfo->qc89 += tmp.qc89;
pminfo->dc88 += tmp.dc88;
pminf0”>dc89 += tmp.dc89;
pminfo->pc88 += tmp.pc88;
pminfo->pc89 += tmp.pc89;
>

fclose(mi)

;

/* Open the file destroying old data if any, and write new data */

mi = fopen(filename, "w");
fprintf(mi, "%d\n'', pminfO“>logtime)

;

"%d\n”, pminfo->logcount)

;

"%d\n", pminfo->c[t88

)

''%d\n", pminfo->C[t89)

"%d\n", pminfo->qc88

)

"%d\n", pminfo->qc89

)

"%d\n", pminfo->dc88)
”%d\n", pminfo->dc89

)

"%d\n'', pminfo->pc88

)

”%d\n", pminfo->pc89

)

fprintf (mi,
fprintf (mi,

fprintf (mi,
fprintf (mi,
fprintf (mi,

fprintf (mi,
fprintf (mi,

fprintf (mi,

fprintf (mi,
fclose(mi)

;

}

/* *

/* Functions Called by Get_Query() *

/* *

/************************^*********^*^******

/

/

/

/

/

/*
* Determines if the user has entered an invalid year
*

* Input: Array containing the year as a string
*

* Output: True if the year is invalid, false if not
*

*/

invalid_year (year

)

char year
[]

;

{

int different;

different = strcmp("88"
,
year);

if (different

)

different = strcmp("89", year);

if (different)
return (TRUE)

;

else
return (FALSE)

;

}

/*
* Determines if the user has entered an invalid IRD

* Input: Array containing the IRD as a string
*

* Output: True if the IRD is invalid, false if not
*

*/

invalid_ird (ird

)

char ird[];

{

int irdint

;

irdint = atoi(ird);
switch (irdint

)

{

case 1:

case 2:

case 3:

case 4:

case 5:

case 6:

case 11
case 21
case 23
case 31
case 35
case 36

case 38
case 39
case 41
case 42
case 43
case 45
case 46
case 47
case 48
case 51
case 52
case 54
case 55
case 56
case 57

case 58
case 59
case 61
case 62
case 63
case 64
case 66
case 71
case 72
case 73
case 74
case 81
case 82
case 83
case 84
case 85
case 86
case 87
case 88
case 91
case 92
case 93
case 95
case 96
case 99

return (FALSE)

;

default:
return (TRUE)

;

}

}

/*
* interprets the users input and acts upon it

* input: character entered by the user
* structure to hold query information
*

* output: action is taken depending upon the character passed
*/

interp (input , usrquery)
char input

;

struct INFO usrquery[];
{

int row, col;

/* obtain current xy coordinates */
getyx

(
general , row, col);

/* take action according to the user's input */

switch (input

)

{

case UPARROW:
case DOWNARROW:
case LEFTARROW:
case RIGHTARROW:

proc__arrow (input , row, col)

;

break;
case PAGEUP: /* display year and IRD from the last query */

disp_string(general, ROWTAX, MINCOL, usrquery [1] .year)

;

disp_string(general, ROWIRD, MINCOL, usrquery [1]. ird)

;

strcpy (usrquery [0]
.
year , usrquery [1]

. year)

;

strcpy (usrquery [0] . ird , usrquery [1] . ird)

;

wmove(general, ROWLAST, MINCOL);
wrefresh(general)

;

break;
case TAB: /* Tab to the next field */

switch (row)

{

case ROWTAX:
wmove (general , ROWIRD, MINCOL);
break;

case ROWIRD:
wmove (general , ROWLAST, MINCOL);
break;

case ROWLAST:
if (col >= COLINI)

wmove (general , ROWSSN, MINCOL);
else

wmove (general, ROWINI, COLINI);
break;

case ROWSSN:
wmove (general, ROWSP, MINCOL);
break;

case ROWSP:
wmove

(general , ROWSEI , MINCOL)

;

break;
default:

wmove
(
general , ROWTAX , MINCOL)

;

break;

}

break;
case BACKSPACE:

del_char (row, col, usrquery);
break;

default:
input = toupper (input)

;

add_char (input , row, col, usrquery);
break;

}

I*
* Processes an arrow key that is

* Input: user's directional key
* current row and column
*

* Output: cursor is moved in the
* entry
*

*/

entered at the query screen

of cursor

direction indicated by the user s

proc^arrow (input , row, col)
char input

;

int row, col;

{

switch (input

)

{

case UPARROW:
if (row > ROWTAX) /* If not at the top of the query area */

{

/* Move to the previous field */
if((row == ROWINI) && (col >= COLINI

))

wmove(general, ROWLAST, MINCOL)

;

else if (row == ROWSSN)
wmove

(
general , ROWINI, COLINI);

else
wmove (general, row-2, MINCOL);

>

wrefresh
(
general) ; /* refresh the screen */

break;
case DOWNARROW:

if (row < ROWSEI) /* If not at the bottom of the query area */

{

/* Move down to the next field */
if((row == ROWLAST) && (col < COLINI)

)

wmove (general, ROWINI, COLINI);
else
wmove (general , row+2, MINCOL);

}

wrefresh
(
general) ; /* refresh the screen */

break;
case LEFTARROW:

if (col > MINCOL) /* If not at the far left of the query area */

wmove (general, row, col-1); /* Move to the left */
wrefresh (general)

;

break;
case RIGHTARROW:

if (col < MAXCOL) /* if not at the far right */
wmove (general, row, col+1); /* Move to the right */

wrefresh
(
general)

;

break;

}

>

/*
* Process a backspace character by deleting the last character
* in the query array
*

* Input: current row and column of cursor
* array with user's query
*

* Output; last character is deleted from screen and from correct
* query array
•k

V
del__char (row, col, usrcjuery)

int row, col;
struct INFO usrquery[);
{

switch (row)

{

case ROWTAX:
if ((col > MINCOL) StSc

((col-MINCOL) < 3))
{

/* delete character from screen */
wmove(general, row, col-1);
waddstr (general ,

" -
")

;

wmove(general, row, col-1);
wrefresh

(
general)

;

usrc[uery[0] .year
((col-1) -MINCOL] = 0;

>

break;
case ROWIRD:

if ((col > MINCOL) && ((col-MINCOL) < 3))
{

/* delete character from screen */
wmove(general, row, col-1);
waddstr (general, ”-");
wmove

(
general , row, col-1);

wrefresh (general)

;

usrquery [0] . ird[(col-1) -MINCOL] = 0;

>

break;
case ROWLAST:

/* In entry area? */

/* delete character */

/* In entry area? */

/* delete character */

if (col < COLINI
)

/* In last name area? */
if (((col-MINCOL) < 8) &Sc (col > MINCOL)) /* In entry area? */

{

/* delete character from screen */

wmove
(
general , row, col-1);

waddstr
(
general ,

" -
")

;

wmove
(
general , row, col-1);

wrefresh (general)

;

usrc[uery[0] . lastname[(col-1) -MINCOL] =0; /* Delete Char */

>

else /* In initials area */
if (((col-COLINI) < 3) && (col > COLINI)) /* In entry area? */

{

/* delete character from screen */
wmove (general, row, col-1);
waddstr (general, *’-”);

wmove
(
general , row, col-1);

wrefresh
(
general)

;

usrquery [0]. initials ((col-1) -COLINI]
= 0; /* Delete char */

}

break;
case ROWSSN:

if(((col - MINCOL) < 10) StSc (col > MINCOL)) /* In entry area? */

{

/* delete character from screen */
wmove (general , row, col-1);
waddstr (general ,

" -
")

;

wmove (general, row, col-1);
wrefresh (general)

;

usrquery[0] .ssno((col-1)-MINCOL] = 0; /* Delete character */

}

break;
case ROWSP:

if(((col - MINCOL) < 10) SiSc (col > MINCOL)) /* In entry area? */

{

/* delete character from screen */

wmove (general, row, col-1);
waddstr (general ,

"-");

wmove (general, row, col-1);
wrefresh (general)

;

usrquery [0] . sp_ssno [(col-1) -MINCOL]
= 0

;

>

break;

/* Delete character */

case ROWSEI:
if(((col - MINCOL) < 6) && (col > MINCOL)

)
/* In entry area? */

{

/* delete character from screen */
wmove(general, row, col-1);
waddstr (general ,

" -
"

)

;

wmove(general, row, col-1);
wrefresh (general

) ;

usrquery[0] .sei[(col-1) -MINCOL] = 0; /* Delete character */

>

break;

}

}

/*
* Add a character to the query array and place it on the screen. Filters
* to accept only letters, decimal numbers, spaces, aprostropes, dashes or
* periods. Other characters are disregarded
*

* Input: User entered character
* current row and column of cursor
* structure holding query
*

* Output: character is placed on the screen and in the currect query
* array, if it is a valid input
*

*/

add_char (input , row, col, usrquery)
char input

;

int row, col;
struct INFO usrquery[);
{

switch (row)

{

case ROWTAX:
if((col-MINCOL) < 2)

{

usrquery [0] .year [col-MINCOL) = input;
waddch

(
general , input)

;

if((col - MINCOL) == 1)
wmove

(
general , ROWIRD, MINCOL);

>

break;
case ROWIRD:

if((col-MINCOL) < 2)

{

usrquery[0] .ird[col-MINCOL] = input;
waddch (

general , input)

;

if((col - MINCOL) == 1)

wmove (general, ROWLAST, MINCOL);

>

break;
case ROWLAST:

if (col < COLINI)

{

if((col-MINCOL) < 7)

{

usrquery [0]. lastname [col-MINCOL]
= input;

waddch (
general , input)

;

if((col - MINCOL) == 6)

wmove
(general , ROWINI, COLINI

)

;

>

}

else
{

if((col - COLINI) < 2)

{

usrquery[0] .initials [col-COLINI] = input;
waddch

(general , input)

;

if((col - COLINI) == 1)
wmove

(general , ROWSSN, MINCOL)

;

>

>

break;
case ROWSSN:

if((col-MINCOL) < 9)

{

usrquery[0] .ssno(col-MINCOL] = input;
waddch

(
general , input)

;

if((col - MINCOL) == 8)
wmove(general, ROWSP, MINCOL);

>

break;
case ROWSP:

if((col - MINCOL) < 9)

{

usrquery[0) .sp__ssno(col-MINCOL] = input;
waddch (general, input);
if((col - MINCOL) == 8)

wmove(general, ROWSEI, MINCOL);
}

break;
case ROWSEI:

if((col - MINCOL) < 5)

{

usrquery[0] . sei[col-MINCOL] = input;
waddch

(
general , input)

;

}

break;
}

>

/

/

/

/

/

/

* * ^
* Functions Called by Select__Matches ()

*/
* * j
****ifk************'k*'kititit*ft*ititie'kitit*itftit*itifkfcickitfiit*iiit***ic*itit’k*fe*’k-k*ie*****1c****icl

*

* Assign a set of user files to hold the current data

* Input: Multidimensional Array to hold names assigned to the user
* user number of the current user
*

* Output: Array is filled with the user files

V

user)assign_user_flies (dbase,
char dbase [20] [10]

;

int user;

{

switch (user

)

{

case 1:

case 2:

case 3:

case 4:

case 5:

case 6:

case 7

:

case 8:

strcpy (dbase [0] ,
"

strcpy (dbase [1] ,

"

strcpy (dbase[2] ,

"

strcpy (dbase [3] ,
"

strcpy (dbase [4] ,

"

strcpy (dbase [5] ,
"

strcpy (dbase [6] ,

"

strcpy (dbase [7] ,

"

strcpy (dbase [8] ,

"

strcpy (dbase [9] ,
"

strcpy (dbase [10]

,

strcpy (dbase [11]

/

strcpy (dbase [12]

,

strcpy (dbase [13]

,

strcpy (dbase [14]

,

strcpy (dbase [15]

,

strcpy (dbase [16]

,

strcpy (dbase [17]

,

strcpy (dbase [18]

,

strcpy (dbase [19]

,

break;
default:

disp__err ("Invalid
endwin()

;

exit
()

;

break;

one")

;

two ")

;

three")

;

four")

;

f ive ")

;

six")

;

seven")

;

eight")

;

nine")

;

ten")

;

"eleven")

;

"twelve")

;

"thirteen")

;

"fourteen")

;

"fifteen")

;

"sixteen")

;

"seventeen")

;

"eighteen")

;

"nineteen")

;

"twenty")

;

User — Please go to an authorized Terminal");

>

>

/*
* Request that the files on the jukebox be downloaded to the
* user files
*

* Input: user number
* query information
* flag for type of search
*

* Output: messages are exchanged with the file handler, and the
* correct data is copied to the user files
*

*/

req_user_data(user , queryinfo, exact)
struct INFO cpjeryinfo

[]

;

int user, exact;
{

$ char disknum[5];
$ char sidenum[5];
$ char jukenum[5];
$ char files [10];
$ char query [1000];

char filename [20]
[10]

;

char mountdir [15]

;

char querylast [15] , lastlen[3];
char queryinit [7]

;

int count, initsearch, len;
int jnum, dnum, snum, i;

/* Determine if searching on initials or not */
if (strlen(queryinfo(0] . initials) > 0)

initsearch = TRUE;
else

initsearch = FALSE;

/* Determine length of last name and set up last name for c[uery */
len = strlen(queryinfo[0) . lastname)

;

sprintf (lastlen, "%d", len);
sprintf (queryinit , "%s%s%s", queryinfo(O) . initials, "\'"');

sprintf (querylast , "%s%s%s", queryinfo
[0]. lastname, "\"'');

/* setup query */
stcopy("select filenm, disk, side, juke from i", c[uery)

;

stcat
(
queryinfo[0] . ird, query);

stcat (c[ueryinfo [0] .
year , cjuery)

;

if
(

(initsearch == FALSE) && (exact == FALSE))

{

stcat (" where fname[l,", query);
stcat (lastlen, query);
stcat("] = ", query);
stcat (querylast, c[uery)

;

stcat (" or lname[l,", query);
stcat (lastlen, query);
stcat("] = ", query);
stcat

(
querylast

,
query)

;

stcat (" or ", query);
stcat (querylast

,
query);

stcat (" between fname and Iname", query);

}

if ((initsearch == FALSE) && (exact == TRUE))

{

stcat (" where ", query);
stcat (querylast, query);
stcat (" between fname and Iname", query);

}

if ((initsearch == TRUE) && (exact == TRUE))

{

stcat (" where fname <= ", query);
stcat (querylast , query)

;

stcat (" and Iname >= ", query);
stcat (querylast

,
query);

stcat (" and Iname > fname", (juery);

stcat (" or fname = ", query);
stcat (querylast ,

query)

;

stcat (" and Iname = fname and ", query);
stcat (queryinit , query);
stcat (" between finit and linit", cpaery)

;

}

if((initsearch == TRUE) && (exact == FALSE))

{

stcat (" where fname[l,", query);
stcat (lastlen, c[uery);

stcat("] = ", c[uery)

;

stcat (
querylast ,

query)

;

stcat (
" and Iname > fname", query);

stcat (" or lname[l,", query);
stcat (lastlen, query);
stcat(") = ", query);

stcat
stcat
stcat
stcat
stcat
stcat
stcat
stcat
stcat
stcat
stcat
stcat

}

(querylast, query)

;

(" and Iname > fname or fname[l,", query);
(lastlen, cjuery) ;

("]
= ", query)

;

(querylast, query);
(" and Iname = fname and ", query);
(queryinit, query);
(" between finit and Unit", query);
(" or ", query);
(querylast, query);
(" between fname and Iname", query);
(" and Iname not matches fname", query);

if (queryinfo [0]. year [1]
== '8')

$database ind88;
else

$database ind89;
if (sqlca. sqlcode

)

{

disp_err("ERROR OPENING DATABASE");
endwin

()

;

exit
()

;

>

$prepare query_id from $query;
if (sqlca. sqlcode

)

{

disp_err("ERROR PREPARING THE QUERY ID");
endwin

()

;

exit
()

;

}

$declare rptr cursor for query_id;
if (sqlca. sqlcode)
{

disp_err("ERROR DECLARING THE QUERY ID");
endwin

()

;

exit
()

;

}

$open rptr;
if (sqlca. sqlcode)

{

disp_err("ERROR OPENING THE QUERY");
endwin ()

;

exit ()

;

>

count = 0

;

while (sqlca. sqlcode != SQLNOTFOUND)
{

$fetch next rptr into $files, $disknum, $sidenum, $jukenum
if (sqlca. sqlcode != SQLNOTFOUND)

{

if (count < 20)

{

stcopy(files, filename [count])

;

for(i = 0; i < 10; i++)
if (filename [count][i]

== ' ')

{

f ilename [count][i]
= 0;

break;

}

}

count++

;

>

$close rptr;

if (count < 21)

{

jnum = atoi
(
jukenum)

;

dnum = atoi (disknum)

;

snum = atoi (sidenum)

;

clrwin(ERRORMSG)

;

disp_string{errormsg, 2 , 10, "Requesting Disk from jukebox");
wrefresh(errormsg)

;

req_disk(user , jnum, dnum, snum, mountdir)

;

clrwin(ERRORMSG)

;

disp_string(errormsg, 2, 10, "Copying User files");
wrefresh(errormsg)

;

copy_f iles (user , mountdir, filename, count);
cIrwin (ERRORMSG)

;

disp_string (errormsg, 2, 10, "Decompressing Files");
wrefresh(errormsg)

;

ret__disk(user
,

jnum, dnum, snum);
decomp_files (user , count);
cIrwin (ERRORMSG)

;

disp_string(errormsg, 2, 10, "Retrieving Matches");
wrefresh(errormsg)

;

}

return (count)

;

}

/*
* Request that the disk with the data be mounted
*

* Input: Jukebox number
* Disk number
* Side of Optical disk
* Array to hold the directory name that the disk was mounted to
*

* Output: A drive is allocated, mounted, and the directory is returned
*

req_disk(user
,
jukenum, disknum, sidenum, mountdir)

char mountdir(];
int jukenum, disknum, sidenum;
int user;

{

struct MSGACK msgack, *pmsgack;
struct MSGBUF message, *pmessage;
int queueid, ackid, res;

pmessage = Scmessage;
pmsgack = ^msgack;

ackid = msgget(KEy3, 0);
c[ueueid = msgget(KEyi, 0);
if (

(queueid < 0)
| |

(ackid < 0))

<

disp_err ("CANNOT COMMUNICATE WITH HANDLER — PLEASE ALERT COMPUTER ROOM")

endwin ()

;

exit ()

;

>

pmessage->mtype = MOUNT;
pmessage->user = user;
pmessage->juke = jukenum;
pmessage->disk = disknum;
pmessage->side = sidenum;
res = msgsnd(queueid, pmessage, MSGLEN, IPC_NOWAIT)

;

if (res < 0)

{

disp_err("CANNOT COMMUNICATE WITH HANDLER — PLEASE ALERT COMPUTER ROOM")
endwin ()

;

exit()

;

>

msgrcv (ackid, pmsgack, ACKLEN, ACK+user, WAIT);
strcpy (mountdir ,

pmsgack->mtdir)

;

}

/*
* Copies the necessary files from the jukebox to the user's files
*

* Input: User Number
* Directory to which the drive is mounted
* Array containing the files to copy
* Count of files to copy
*

* Output: Files are copied from the jukebox to the hard drive
*

*/

copy__files (user , mountdir, filename, count)
char mountdir[], filename [20] [10]

;

int count, user;

char sourcefile [50]

;

char destf ile [50]

;

char basename [20] [20]

;

int i;

char command [125];
char direct [5]

;

strcpy (basename [0]

,

strcpy (basename [1]

,

strcpy (basename [2]

,

strcpy (basename [3]

,

strcpy (basename [4]

,

strcpy (basename [5]

,

strcpy (basename [6]

,

strcpy (basename [7]

,

strcpy (basename [8]

,

strcpy (basename [9]

,

strcpy (basename [10

]

strcpy (basename [11]
strcpy (basename [12

]

strcpy (basename [13

]

strcpy (basename [14

]

strcpy (basename [15]
strcpy (basename [16

]

strcpy (basename [17

]

strcpy (basename [18

]

strcpy (basename [19

]

"one")

;

"two")

;

"three")

;

"four")

;

" f ive ")

;

"six")

;

"seven")

;

"eight")

;

"nine")

;

"ten")

;

, "eleven")

;

, "twelve");
, "thirteen"

)

, "fourteen")
, "fifteen");
, "sixteen");

, "seventeen"
, "eighteen")
, "nineteen")
, "twenty");

) /

sprintf (direct , "%d", user);
for(i =0; i < count; i++)

{

strcpy (sourcefile,
strcat (sourcef ile,
strcat (sourceflie,
strcat (sourceflie ,

mountdir)

;

filencune[i])

;

*'
. dat . z ”

)

;

strcpy (dest file

,

strcat (destfile,
strcat (destf ile,
strcat (destfile,
strcat (destfile.

"/usr/pilot/ junk/*'

)

direct)

;

basename [i])

;

•'
. dat . z ”

)

;

strcpy (command

,

strcat (command,
strcat (command

,

strcat (command

,

system (command

)

"cp ");
sourcef ile)

;

.. ..j.

destfile)

;

strcpy (sourcefile

,

strcat (sourcefile,
strcat (sourcef ile,
strcat (sourcef ile

,

mountdir)

;

filename[i])

;

" . idx. z"
)

;

strcpy (destfile

,

strcat (destf ile,
strcat (destf ile,
strcat (destfile,
strcat (destfile.

"/usr/pilot/ junk/"

)

direct)

;

basename[i])

;

" . idx. z"
)

;

strcpy (command

,

strcat (command,
strcat (command

,

strcat (command

,

system (command

)

}

"cp "
)

;

sourcefile)

;

" '•);

destfile)

;

/*
* Decompress the Database files
*

* Input: User Number
* Count of the files
*

* Output: Files are decompressed
*

decomp__files (user , count)
int count, user;

{

char command [125]

;

char basencune[20] [20]

;

char name [20] [20]

;

char direct [5)

;

char sourcefile [50]

;

char destf ile(50]

;

int i;

strcpy (basename[0] , "one _100")
8trcpy(basencune[1] , "two 101")
strcpy (basename(2] , "three 102")

strcpy (basename(3] , "four 103")
strcpy(basename[4] , "five 104")

strcpy (basename

[

strcpy (basename

[

strcpy (basename

[

strcpy (basename

[

strcpy (basename

[

strcpy (basename

[

strcpy (basename

[

strcpy (basename

[

strcpy (basename

[

strcpy (basename

[

strcpy (basename

[

strcpy (basename

[

strcpy (basename

[

strcpy (basename

[

strcpy (basename

[

5]

, "six 105");6]

, "seven 106");
7]

, "eight 107");
8]

, "nine 108");

9]

, "ten 109");
10]

, "eleven_110"

)

11]

, "twelve_lll"

)

12]

, "thirteell2"

)

13]

, "fourteell3"

)

14]

, "f ifteenll4"

)

15]

, "sixteenll5"

)

16]

, "seventell6"

)

17]

, "eighteell7"

)

18]

, "nineteell8"

)

19]

, "twenty_119"

)

Strcpy (name

[

0],
strcpy (name

[

1].
strcpy (name

[

2],
strcpy (name

[

3],
strcpy (name

[

4],
strcpy (name

[

5],
strcpy (name

[

6]/
strcpy (name

[

7],
strcpy (name

[

8],
strcpy (name

[

9],
strcpy (name

[

10]
strcpy (name

[

11]
strcpy (name

[

12]
strcpy (name

[

13]
strcpy (name

[

14]
strcpy (name

[

15]
strcpy (name

[

16]
strcpy (name

[

17]
strcpy (name

[

18]
strcpy (name

[

19]

"one")

;

"two")

;

"three")

;

"four")

;

"five")

;

"six")

;

" seven")

;

"eight")

;

"nine")

;

"ten")

;

, "eleven");
, "twelve");
, "thirteen");
, "fourteen");
, "fifteen");
, "sixteen");
, "seventeen");
, "eighteen");
, "nineteen");
, "twenty");

"%d", user);
count; i++)

sprintf (direct

,

for(i =0; i <

{

strcpy (command

,

strcat (command,
strcat (command

,

strcat (command

,

strcat (command

,

strcat (command

,

system (command

)

strcpy (command

,

strcat (command,
strcat (command

,

strcat (command

,

strcat (command

,

strcat (command

,

system (command

)

strcpy (sourcef ile

,

strcat (sourcef ile

,

strcat (sourcefile,
strcat (sourcef ile,
strcat (sourcef ile.

"unpack "
)

;

"/usr/pilot/ junk/")

;

direct)

;

namfie
[
i])

;

".dat.z 2> /dev/null")

"unpack "
)

;

"/usr/pilot/ junk/")

;

direct)

;

name [i])

;

".idx.z 2> /dev/null")

"/usr/pilot/ junk/"

)

direct)

;

"/");
name [i])

;

" .dat")

;

strcpy (destf ile,
strcat (destf ile,
strcat (destf ile,
strcat (destf ile.

" /usr/pilot /user")

;

direct)

;

" . dbs")

;

•7 ")

;

strcat (destf ile. basename[i]);
strcat (destf ile. " .dat")

;

strcpy (command

,

"cp ");
strcat (command

,

sourcefile);
strcat (command

,

" ");

strcat (command

,

destfile)

;

system (command)

;

strcpy (sourcef ile, "/usr/pilot/ junk/
strcat (sourcef ile, direct) f

strcat { sourcef ile, "/");
strcat (sourcef ile, name[i]);
strcat (sourcef ile, ".idx") 9

strcpy (destf ile

,

"/usr/pilot/user")

;

strcat (destf ile. direct)

;

strcat (destf ile. " .dbs")

;

strcat (destf ile.
strcat (destf ile. basename

[

i]);
strcat (destf ile. ".idx")

;

strcpy (command

,

"cp ");
strcat (command

,

sourcefile);
strcat (command

,

..j.

strcat (command

,

destfile)

;

system (command)

;

>

strcpy (command, "rm /usr/pilot/ junk/"

)

strcat (command , direct)

;

strcat (command, "/ ");
strcat (command, "* .*");
system (command)

;

}

/*
* Return a mounted disk when finished

* Input: Request number
*

* Output: A drive is returned
*

*/

ret_disk(user
/ jukenum, disknum, sidenum)

int jukenum, disknum, sidenum;
int user;

{

struct MSGBUF message, *pmessage;
int queueid, res;

pmessage - &message;
queueid - msgget(KEYl, 0);
if (queueid < 0)

<

disp_err(” CANNOT COMMUNICATE WITH HANDLER — PLEASE ALERT COMPUTER ROOM")
endwin()

;

exit
()

;

}

pmessage->mtype = UNMOUNT;
pmessage-->user == user;
pmessage->juke = jukenum;

pmessage->disk = disknum;
pmessage->side = sidenum;
res = msgsnd(queueid, pmessage, MSGLEN, IPC_NOWAIT);
if (res < 0)

<

disp__err ("CANNOT COMMUNICATE WITH HANDLER — PLEASE ALERT COMPUTER ROOM");
endwin

()

;

exit
()

;

}

/*
* Check to see if the last name is to be searched as an exact
* match, or as a prefix
*

* Input: last name string
*

* Output: exact search (TRUE) or prefix search (FALSE)
*/

int check_search_type (last

)

char last
[]

;

{

int exact = FALSE;
int j = 0

;

/* check to see if the user has specified a search for the exact */

/* of the last name, by placing a period at the end of the string */
while (last

[j)
!= 0)

{

if(last[j) == '.')

{

exact = TRUE;
last[j] = 0;

j—

;

}

j++;

}

return (exact)

;

}

/**
/* *

1
* Functions Called by Display_Matches ()

*

/*
/**

/

/

/

/

/

/*
* Display the header information
*

* Input: Structure holding the query information

* Output: Header is displayed for the user

*/

view_header (usrguery

)

struct INFO usrquery[];

* array containing the browse information on the matches
*

*/

restore_line (curmatch, querymatches

)

int curmatch;
struct QUERY querymatches

[]

;

{

int row, col, i, j;
char buffer[25];

/* clear the current row */
getyx(general, row, col);
clearline (general , row);

/* display the rightmost part of the string */
disp__string (general , row, 2, querymatches [curmatch]. lastname)

;

disp_string (general , row, 10, querymatches [curmatch]. initials)

;

space_ssn (buffer, querymatches [curmatch] . ssno)

;

disp_string(general, row, 15, buffer);
disp_string (general , row, 28, querymatches [curmatch] . sei)

;

space_ssn(buf fer
,
querymatches (curmatch] . sp_ssno)

;

disp^string
(
general , row, 36, buffer);

disp_string(general, row, 50, querymatches [curmatch] . sp_sei)

;

/* Display the last name */

wmove(general, row, 57);
if (strlen (querymatches (curmatch] .fullname) > 20)

{

for(j = 0; j < 20; j++)
buffer[j] = querymatches (curmatch] . fullname

(j]

;

buffer [20] = 0;
waddstr

(general , buffer)

;

>

else
waddstr (general, querymatches [curmatch] .fullname)

;

wmove (general , row, 2);
wrefresh

(general)

;

>

/*
* Move the line to the left to view the remainder of the full name
* field
*

* Input; current match number
* array containing the browse information on the matches
*

*/

move_line(curmatch, querymatches)
int curmatch;
struct QUERY cjuerymatches []

;

{

int row, col, i, j;
“

char viewssn[12];

/* clear the current row */

getyx (general , row, col);
clearline (general, row);

/* display the rightmost part of the string */

disp__string (
general , row, 4, c[uerymatches [curmatch]. sei)

;

space_ssn (viewssH/ querymatches [curmatch] . sp ssno);
disp_string

(
general , row, 10, viewssn)

;

disp_string(general, row, 22, queryinatches[curmatch].sp_sei);
disp_string(general, row, 28, querymatches[curmatch].fullname);
wrefresh

(
general)

;

>

/*
*

* Display Selected Record in Detail

* Input: current match number
* arrays holding the current set of matches
*

* Output: window with detailed information

*

*/

disp_rec (curmatch, querymatches, full_record, pminfo)
struct QUERY querymatches []

;

struct REC full_record
[]

;

struct MANAGEINFO *pminfo;
int curmatch;
{

int j , i ;

char input

;

char viewssn [12];

/* Bring up the detail window */
show_panel (pdetail)

;

clrwin(DETAILWIN)

;

/* Display name */
disp_string(detail, 2, 2, "Name : ");
waddstr (detail, querymatches [curmatch] . fullname)

;

/* Display Address */
disp_string (detail , 3, 2, "Address: ");

waddstr (detail , full_record [curmatch] . st_add)

;

disp_string(detail, 4, 12, full_record[curmatch] . city_st)

;

waddstr (detail ,
" ");

waddstr (detail , full_record[curmatch] . zip)

;

/* Display Column Headings */
disp string (detail. 6, 4, "Name")

;

disp_string (detail

,

6, 14, "SSN")

;

disp_string (detail

,

6, 27, "NESEB")

;

disp_string (detail

,

6, 33, "NESEF")

;

disp_string (detail

,

6, 39, "WAGES")

;

disp string (detail

,

6, 45, "SEI")

;

disp_string (detail

,

6, 52, "YEARQU")

;

disp string(detail. 6, 60, "ST")

;

disp string (detail

,

6, 64, "DLN/EIN IND CD");
disp string(detail. 7, 2,

for(j = 0; j < 37; j++)
waddstr (detail

,

_..) .

/* Display First row */

disp_string (detail , 8, 2, querymatches [curmatch]. lastname)

;

disp string (detail , 8, 10, cfuerymatches [
curmatch]. initials) ;

space ssn(viewssn, querymatches [curmatch] . ssno)

;

disp_string (detail , 8, 14, viewssn);

disp_string(detail, 8, 21, full_record[curmatch] .neseb)

;

disp__string(detail, 8, 33, full__record
(
curmatch

] . nesef) ;

disp_string(detail, 8, 39, full_record [curmatch] .wages)

;

disp_string(detail, 8, 45, querymatches [curmatch]. sei)

;

disp_string(detail, 8, 52, querymatches [curmatch] .year)

;

waddstr (detail, full_record[curmatch] .month)

;

waddstr (detail , full_record [curmatch] . option_cd)

;

waddstr (detail, full_record[curmatch] .se_quar)

;

disp_string(detail, 8, 60, querymatches [curmatch] . ird)

;

disp_string(detail, 8, 64, full_record[curmatch] .din)

;

/* Display second Row */
di8p_string(detail, 9, 5, full_record[curmatch] . iwp)

;

disp_string (detail, 9, 8, full_record[curmatch] .err_code)

;

space__ssn(viewssn, querymatches [curmatch] .sp_ssno)

;

disp_string (detail , 9, 14, viewssn);
9, 27, full_record[curmatch] . sp_neseb)
9, 33, full_record [curmatch] .sp_nesef)
9, 39, full__record

[
curmatch]. sp__wages)

9 , 45 ,
querymatches

[
curmatch

]
. sp__sei

) ;

9, 52, full_record[curmatch] .date)

;

9, 64, full_record [curmatch] .ein) ;

9, 74, full_record [curmatch]. ind_cd)

;

disp_string (detail

,

disp_string (detail

,

disp^string (detail

,

disp_string (detail

,

disp_string (detail

,

disp_string (detail

,

disp string (detail.

disp_string(detail, 14, 18, '*ENTER=PRINT RECORD ESC=BROWSE SCREEN");

j* Wait for user to hit ESC, indicating done */

input = wgetch (detail)

;

while (input != ESC)

{

if (input == ENTER)
{

inc__print__count (querymatches [
curmatch] .

year ,
pminfo)

;

print_rec(curmatch, full_record, querymatches);
}

input = wgetch (detail)

;

>

/* Hide the detail box */

hide__panel (pdetail)

;

}

/*
*

* Print Selected Record
*

* Input: current match number
* arrays holding the current set of matches
*

* Output: detailed information is sent to printer
*

*

*/

print_rec (curmatch, full_record, cjuerymatches

)

struct REC full_record[]

;

struct QUERY querymatches
[]

;

int curmatch;
{

/* Turn on the local printer (all output now goes to printer */

system ("tput mc5");

!/ send the record to the printer

printfC'Name : %s\n", querymatches[curmatch].fullname);
printf ("Address: %s\n", full_record[curmatch] . st_add)

;

printf{" %s %s\n\n",
full_record[curmatch] .city_st, full_record[curmatch] .zip)

;

printfC'Name SSN NESEB NESEF WAGES SEI YEARQU ST DLN/EIN IND CD\n”);
printf (\n")

;

printf ("%-8s%--3s%-10s%-6s%-6s%-6s%-6s%-2s%-2s%-3s%s%-3s%-14s\n"

,

guerymatches [curmatch] .lastname, querymatches [curmatch] . initials,
querymatches [curmatch] . ssno , full_record [curmatch] . neseb

,

full_record [curmatch] . nesef , full_record [curmatch

]

querymatches [curmatch] . sei
,
querymatches [curmatch

]

full_record[curmatch] .month, full_record[curmatch]
full_record [curmatch] . option^cd,
querymatches [curmatch] . ird, full record [curmatch] .din)

;

.wages

,

year,
, se quar,

printf (
" %-3s%-3s%lls%6s %-6s%~6s%-6s%-10s%-10s%-5s\n\f " ,

full_record[curmatch] .iwp, full_record[curmatch] .err_code,
querymatches [curmatch] .sp_ssno, full_record[curmatch] .sp_neseb,
full_record [curmatch] .sp__nesef , full_record[curmatch] .sp_wages,
querymatches [curmatch] . sp_sei, full_record[curmatch] .date,
full_record [curmatch] . ein, full_record [curmatch] . ind_cd)

;

/* return the output to the screen */

system ("tput mc4")

;

>

/*
* restore screen to the browse view

* Input: number of matches in memory
* current match number
* users cjuery information
* arrays holding match information
*/

restore_scr (nummatch, curmatch, usrquery, querymatches, full_record)
int nummatch, curmatch;
struct INFO usrquery[];
struct REC full_record[]

;

struct QUERY querymatches []

;

{

int pgmatch, rownum;

/* Display the header information */

view_header (usrquery)

;

/* Display current page of matches */

disp_screen(querymatches, nummatch)

;

/* Move cursor to correct line on screen */

rownum = (curmatch * 2) + 6;

wmove
(
general , rownum , 2)

;

>

/**
/*

/* General Functions

* * * * j

*/
*/

/* ^

*/

Z***/

/*
* Insert space in an social security number between the segments
* of numbers (xxx xx xxxx), and store the new array in a temporary
* buffer
*

* input; buffer to place spaced ssn in
* ssno string to space
*

* Output: temp buffer is filled with spaced ssno
*

V
space_ssn(temp, ssno)

char temp
[]

;

char ssno
[]

;

{

int j;

for(j = 0; j < 3; j++)
temp[j] = ssno[j];

temp [3]
= '

'

;

for(j = 3; j < 5; j++)
temp[j+l] = ssno[j];

temp [6]
= '

'

;

for(j = 5; j < 9; j++)
temp[j+2] = ssno[j];

temp [11] = 0;

}

/*
* Move to a specified location on the screen and output a character
* or character string
*

* input; window in which to display the string
* row and column at which to start the string
* string to display
*

* output; string is placed on the screen
*!

disp_string(win, row, col, str)
int row, col;
WINDOW *win;
char str

[]

;

{

wmove(win, row, col);
waddstr(win, str);

}

I*
* Display
*

* Input;
*

* Output

;

an Error Message

Message to display in the error box

The message is displayed

V
disp_err (msg)

char msg
[]

;

{

char input

;

/* Bring up the error panel and place the message in it */
show_panel (perrormsg)

;

clrwin(ERRORMSG)

;

disp_string(errormsg, 2 , 10, msg);
wrefresh(errormsg)

;

/* wait until the user indicates that they saw the message */
input = wgetch(errormsg)

;

while (input 1= ESC)
input = wgetch (errormsg)

;

/* hide error message and return to query entry */
hide_panel (perrormsg)

;

}

/*
* Display a Wait Message

* Output: The wait message is displayed

V
disp_wait

(

)

{

/* Bring up the error panel and place the message in it */
show_panel (perrormsg)

;

clrwin(ERRORMSG)

;

disp_string(errormsg, 2, 10, "PLEASE WAIT — RETRIEVING DATA");
wrefresh(errormsg)

;

}

/*
* Remove a Wait Message
*

* Output: The wait message is removed from the screen
*

*/

rem_wait
(

)

{

/* hide error message and return to query entry */

hide_panel (perrormsg)

;

>

/*
* clears a window to end of line at the specified row
*

* Input: window in which to clear the row
* row to clear
*

* Output: The specified row in the specified window is cleared
*/

clearline (win, row)
WINDOW *win;
int row;

{

int i

;

for(i = 0; i < 80; i++)
disp^string (win, row, i, " ");

box (win, 0, 0)

;

>

/*
* Display matches currently in memory
*

* input: array containing browse information on matches
* number of matches in memory
*

* output: a screen of matches is displayed
*

*/

disp_screen(querymatches, num)
struct QUERY querymatches

[]

;

int num

;

{

int i, row, col;
char buffer[21];

/* clear the screen of old matches
for(i = 6; i < 21; i++)
clearline(general, i);

/* move to the top of the screen, just below the header
wmove(general, 4,2);
for(i = 0; i < num; i++)

{

/* go to next line
getyx(general, row, col);
row = row+2

;

/* add browse fields
disp_string(general, row, 2, querymatches[i] . lastname)

;

disp_string(general, row, 10, querymatches [i] . initials)

;

space_ssn (buffer
,
querymatches [i] . ssno)

;

disp_string(general, row, 15, buffer);
disp_string (general , row, 28, querymatches [i). sei)

;

space_ssn (buffer , c[uerymatches
[i) . sp_ssno)

;

disp_string(general, row, 36, buffer);
disp_string(general, row, 50, querymatches

[
i]. sp__sei)

;

/* display the first 20 characters of the full name
wmove

(
general , row, 57);

if
(
strlen

(
querymatches [i]. fullname) > 20)

{

strncpy (buffer
,
querymatches [i). fullname, 20);

buffer[20] = 0;
waddstr

(
general , buffer)

;

>

else
waddstr (general

,
querymatches [i] . fullname)

;

>

/* Add user directional prompts */
disp_string

(
general , 23 , 4,

”ESC=QUERY SCR ENTER=DETAIL SCR PGUP/PGDN=SCROLL END/HOME=SHIFT REC")

;

/* Move to the first row and display the matches */
wmove (general , 6, 2);
wrefresh(general)

;

}

/*
* The next set of matches is loaded to memory, if it exists
*

* Input: arrays to hold the matches
*

* Output: the next set of matches is stored in memory
*

*/

int load_matches
(
querymatches , full_record)

struct QUERY querymatches
[]

;

struct REC full_record
[]

;

{

int i
, j ;

/* Get a match from the file */
for(i =0; i < MATCHSCR; i++)

{

$fetch next recptr into $retrvar . lastname, $retrvar. initials

,

$retrvar . ssno, $retrvar .neseb, $retrvar . nesef , $retrvar .wages

,

$retrvar . sei, $retrvar
.
year , $retrvar .month, $retrvar . se_quar

,

$retrvar .option_cd, $retrvar . ird, $retrvar .din, $retrvar . full_name,
$retrvar . iwp, $retrvar .err__code, $retrvar . sp_ssno, $retrvar . sp_neseb,
Sretrvar . sp_nesef , $retrvar . sp_wages, $retrvar . sp_sei,
Sretrvar .date_rcvd, $retrvar .ein, $retrvar. indeed, $retrvar . st_add,
Sretrvar . city_st, $retrvar . zip;

/* If no matches exist, exit the loop */

if (sqlca. sqlcode == SQLNOTFOUND)
break;

/* Copy the match from the host variable to the array */

stcopy (retrvar . lastname
,
querymatches [i] . lastname)

;

stcopy (retrvar . initials ,
querymatches [i] . initials)

;

stcopy (retrvar . ssno
,
querymatches [i] . ssno)

;

stcopy (retrvar . neseb , full_record (i] . neseb)

;

stcopy (retrvar . nesef , full_record [i] . nesef)

;

stcopy (retrvar . wages , full_record [i] . wages)

;

stcopy (retrvar . sei
,
querymatches [i] . sei)

;

stcopy (retrvar
.
year

,
querymatches [i]

.
year)

;

stcopy (retrvar .month, full_record [i] .month)

;

stcopy (retrvar . se^quar , full_record [i] . se_quar)

;

stcopy (retrvar . option_cd, full_record [i] .option_cd)

;

stcopy (retrvar . ird
,
querymatches [i) . ird)

;

stcopy (retrvar . din , full_record [i] . din)

;

stcopy (retrvar. full_name, querymatches [i] . fullname)

;

stcopy (retrvar . iwp, full_record(i] . iwp)

;

stcopy (retrvar . err_code , full_record [i] . err_code)

;

stcopy (retrvar . sp_ssno
,
querymatches [i) . sp_ssno)

;

stcopy (retrvar. sp__neseb, full_record[i] . sp_neseb)

;

stcopy (retrvar . sp_nesef , full_record [i] . sp_nesef)

;

stcopy (retrvar . sp_wages , full_record [i] . sp_wages)

;

stcopy (retrvar . sp^sei ,
querymatches [i] . sp_sei)

;

stcopy (retrvar .date__rcvd, full_record[i] .date)

;

stcopy (retrvar.ein, full_record[i] .ein)

;

stcopy (retrvar . ind__cd, full_record
[i]

. ind ed);
stcopy (retrvar. st__add, full_record

[
i] . st add);

stcopy (retrvar.city_st, full__record
[
i

)
. city st);

stcopy (retrvar . zip, full_record[i] . zip)

;

/* return the number of matches found */
return (i)

;

}

/*
* The previous set of matches is loaded to memory, if it exists
*

* Input: arrays to hold the matches
*

* Output: the previous set of matches is stored in memory
*

*/

int load__prev_matches (querymatches, full__record)
struct QUERY querymatches

[]

;

struct REC full__record
[] ;

{

int i
, j ;

/* Get one match from the data file */
for(i = 1; i <= MATCHSCR; i++)

{

$ fetch previous recptr into $retrvar . lastname, $retrvar. initials,
$retrvar . ssno, $retrvar . neseb, $retrvar.nesef , $retrvar .wages,
$retrvar . sei, $retrvar .year , $retrvar .month, $retrvar . se__quar

,

$retrvar .option__cd, $retrvar . ird, $retrvar .din, $retrvar . full__name,
$retrvar . iwp, $retrvar .err__code, $retrvar . sp_ssno, $retrvar. sp__neseb,
$retrvar . sp_nesef , $retrvar. sp_wages, $retrvar . sp__sei,
$retrvar . date_rcvd, $retrvar .ein, $retrvar . ind__cd, $retrvar . st_add,
$retrvar . city_st , $retrvar . zip;

/* If no matches exits, exit the loop */

if (sqlca. sqlcode == SQLNOTFOUND)
break;

j* Copy the match from the host variable to the arrays */

stcopy(retrvar. lastname, querymatches [MKTCHSCR - i]. lastname)

;

stcopy(retrvar. initials, querymatches [MATCHSCR - i] . initials)

;

stcopy (retrvar . ssno, qpaerymatches [MATCHSCR - i].ssno);
stcopy(retrvar. neseb, full__record[MATCHSCR - i). neseb);
stcopy (retrvar. nesef, full_record[MATCHSCR - i].nesef);
stcopy (retrvar .wages, full__record[MATCHSCR - i], wages);
stcopy (retrvar . sei, querymatches [MATCHSCR - i).sei);
stcopy (retrvar .year, c[uerymatches [MATCHSCR - i].year);
stcopy (retrvar. month, full_record [MATCHSCR - i). month);
stcopy (retrvar. se_quar, full__record[MATCHSCR - i),se_quar);
stcopy (retrvar .option__cd, full__record[MATCHSCR - i] .option__cd)

;

stcopy (retrvar . ird, querymatches [MATCHSCR - ij.ird);
stcopy (retrvar .din, full_record [MATCHSCR - i].dln);
stcopy (retrvar . full__name, querymatches [MATCHSCR - i) . fullname)

;

stcopy (retrvar . iwp, full__record [MATCHSCR - i].iwp);
stcopy (retrvar . err__code, full__record [MATCHSCR - i] . err_code) ;

stcopy (retrvar . sp_ssno, querymatches [MATCHSCR - i).sp_ssno);

stcopy (retrvar . sp_neseb , full__record[MATCHSCR — i]
. sp__neseb)

;

stcopy (retrvar . sp_nesef , full__record[MATCHSCR — i] . sp__nesef)

;

stcopy (retrvar . sp_wages, full_record [MATCHSCR - i] . sp_wages)

;

stcopy (retrvar . sp_sei/ querymatches [MATCHSCR - i].sp_sei);
stcopy (retrvar.date_rcvd, full_record [MATCHSCR - ij.date);
stcopy (retrvar . ein, full_record[MATCHSCR - i].ein);
stcopy (retrvar . ind_cd, full_record [MATCHSCR - i].ind_cd);
stcopy (retrvar. st_add, full_record [MATCHSCR - i].st_add);
stcopy (retrvar . city_st, full_record [MATCHSCR - i].city_st);
stcopy (retrvar . zip, full_record [MATCHSCR - ij.zip);

}

return (i - 1)

;

}

y***********************************r**********************************

j
*

/* Windowing Functions *

/* *

y***

/*
* Create a Window
•k

/

/

/

/

/

* Input: length of window
* width of window
* start point of window
*

* Output: window is created
*/

WINDOW * create (length, width, y_start, x_start)
int length, width, y_start, x_start;
{

WINDOW *win;

/* create the window */
win = newwin (length, width, y_start, x_start);
return (win)

;

>

/*
*

* setup the windows to be used - create them and set their parameters
*

* input: None (window and panel pointers are global)
*

* output: Windows are created and set to correct settings
*

*!

setup_windows
(

)

{

WINDOW * create ();

/* Create the background, detail, and error message windows */

detail = create(16, 80, 5, 0);
general = create(25, 80, 0, 0);
errormsg = create(5, 80, 7, 0);

/* Generate a panel pointer for the windows and hide the */
/* detail and error message windows */
pgeneral = new_panel (general)

;

pdetail = new_panel (detail)

;

perrormsg = new_panel (errormsg)

;

hide_panel (pdetail)

;

hide_panel (perrormsg)

;

/* Set up the windows so that the characters are not echoed */
/* onto the screen as they are typed, and the function keys */
/* are returned as a single character, not an escape sequence */
noecho ()

;

keypad
(
general , TRUE)

;

keypad (detail, TRUE)

;

keypad (errormsg , TRUE)

;

/* set the input to non buffering (does not wait for carriage */
/* return to be available to the program) */

cbreak()

;

/* Do not flush the tty driver buffer when an interrupt key is *

/* hit by the user. The first argument (window) is ignored, so *

/* this is set up for all windows, not just "general” *

intrflush (general , FALSE);

/* Make the cursor more visible (large flashing rectangle) *

curs_set (2)

;

/* These functions should be added when debugging so that a *

/* time out message is not received when ESC is hit. However *

/* they will conflict with receiving a plain ESC when running *

/* so should not be used on a normal basis *

/* notimeout (general, TRUE);
notimeout (errormsg , TRUE)

;

notimeout (detail, TRUE); */

}

* Clear the window
*

* Input: window to clear
it

* Output: window is cleared
*

*1

Irwin (win)
int win;

{

int i , j ;

/* if window is the background window */

if (win == GENERALWIN)

chg_text (GENERALWIN)

;

for(j = 0; j < 25; j++)
for(i =0; i < 80; i++)
disp_string(general, j, i, " ");

box (general, 0, 0);
wrefresh

(
general) ;

}

/* if window is the detail window */

else if (win == DETAILWIN)

{

chg_text (DETAILWIN)

;

for(j = 0; j < 16; j++)
for(i =0; i < 80; i++)
disp_string(detail, j, i, " ");

box (detail, 0, 0);
wrefresh(detail)

;

>

/* if window is the error message window */

else if (win == ERRORMSG)
{

chg_text (ERRORMSG)

;

for(j = 0; j < 5; j++)
for(i =0; i < 80; i++)
disp_string (errormsg, j, i, ” ");

box (errormsg, 0, 0);
wrefresh(errormsg)

;

>

* Change the color of the text in the current window

* input: current window
*

*/

chg_text (win

)

int win;

{

if (win == GENERALWIN)
wattrset

(general , A_NORMAL)

;

else if (win == DETAILWIN)
wattrset (detail , A_BOLD);

else if (win == ERRORMSG)
wattrset (errormsg , A__BOLD)

;

/*
* Program to create a database file from the indexing
* information created to locate IRD files on an optical disk
*

* index .ec
^

* by Natalie Willman
*

* April 2 , 1991
*

*/

/* Define statements */
#define TRUE 1

#define FALSE 0

/* Include Files */
$include sqlca;
#include <stdio.h>
#include <string.h>

struct INDEXINFO
{

char first [8]

;

char last [8]

;

char file [10]

;

char disk[3]

;

char side[2];
char juke[2];
};

/*
* Main Program

V
main

(

)

{

struct INDEXINFO record, *precord;
char filenm[30], tablename [15] , ird[3], filelong [30]

;

FILE *split, *fopen();
char ch;

/* Set up pointers */
precord = ^record;

printf ("Enter the IRD: \n\n");
scanf ("%s%*c" , ird);

printf ("Enter the Disk # the data is stored on: \n\n")

;

scanf ("%s%*c"
, precord->disk)

;

printf ("Enter the Side of the disk: \n\n");
scanf ("%s%*c"

, precord”>side)

;

printf ("Enter the Jukebox the in which the disk will reside:
scanf ("%s%*c"

, precord->juke)

;

/* Open the database */

$ database eas;
if (sqlca. sqlcode

)

printf ("ERROR\n")

;

\n\n")

;

$ create table i0188

(fname, Iname);

(

fname char (7),
Iname char (7),'

filenm char (9)

,

disk char (2)

,

side char(l),
juke char(l)
);

$ create index i0188 on i0188
strcpy {tablename, "i0188");

strcpy (filenm, "startend. ")

;

strcat (filenm, ird)

;

split = fopen (filenm, "r");
ch = fscanf (split, ''%s%s%s%*c" ,precord-->f irst,precord->last, filelong)

;

strcpy (precord->f ile, &filelong[8])

;

while (ch != EOF)
{

printf ("Indexing file %s ...\n\n", preeord->f ile)

;

/* read in and add records to index table */

add^rec (tablename, precord);

ch = fscanf (split, "%s%s%s%*c’'
,
precord->f irst

,
precord->last , f ilelong)

;

strcpy (precord->f ile, &filelong[8])

;

>

>

/*
* Read in the records and convert
* the data to .dbs format
*

V
add_rec (tablename, precord)

struct INDEXINFO *precord;
char tablename

[)

;

{

$char firstnm[8];
$char lastnm[8];
$char flnm[10);
$char diskno(3];
$char sideno[3];
$char jukebx[3];

/* Copy to a host variable - bug in Informix */

stcopy (precord->f irst , firstnm)

;

stcopy (precord->last , lastnm)

;

stcopy (precord->f ile, flnm)

;

stcopy (precord->disk, diskno);
stcopy (precord->side, sideno)

;

stcopy
(
precord-> j uke , j ukebx)

;

/* Insert record into database */

$ INSERT INTO i0188 (fname, Iname, f ilenm, disk, side, juke)

VALUES (Sfirstnm, $lastnm, $flnm, $diskno, $sideno, $jukebx);

if (sqlca. sqlcode)

{

printf ("ERROR occured! - Number %d\n", sqlca. sqlcode)

;

,3 -y

i-
, -k^iXq-vf ..^'J-'-

.-
;

; _
*

'^J sl*.’Cift’i i«-^i '

. ; > ,

'

,
ul'

'
• xpvg. 3 ,'t'>oj

!'

I jj-'
« * vj’‘ « •

.# tQcXud# y * ’ >

tW<5Sx,fW. .-‘dlf ! ta-V*'!.

#C^fine ^ rx4s7l:

;' .r.-4Ct V c;^
?

'

-
'

-

iTt •:
;

•

-
;

int. '^-i'j-.'..

I i.f*t «V44*’’;

^ Int

fR.«. ‘
I ;

i
itTt j«$, •. '.is^f

xne C^-V ,

•

i(n'9i5f^ • i)p. 'il i >
'

»

s

tciX ^ .’!55^;y'j«t;x>Liiv;j, •:• 1

rwfi ^ • -' / #

Lf;r*-!^ *?

pi intf l*'*a*JU l.J f- V^rr- t .,. t
^

r » .

i . ,
' • C) ^-

J
(
"Tv .,j./i fiat ^.<?^-.' /•«'(

f'
(tii3 ,

ws-tffJV* ;

ifU’i. < r

,

^
•

'

,

i

.

(** ••4^ -^idt irei ?pv<» uta^v^w

I

* Program to kill message queues created by device handler
*

* killq.c
* by Natalie Willman
*

* April 2 , 1991

*/

#include <sys/types . h>
#include <sys/ipc.h>
#include <sys/msg.h>

#define KEYl 1234L
#define KEY2 5678L
#define KEYS 2345L

struct MSGBUF
{

long mtype;
int user;
int juke;
int disk;
int side;

>

main
(

)

{

int id, id2, id3

;

int res;

id = msgget{KEYl, 0);
id2 = msgget(KEY2, 0);
ids = msgget(KEY3, 0);

res = msgctl(id, IPC__RMID, (struct MSGBUF *) 0);
if (res < 0)

{

printf ("could not remove queue l\n");

>

res = msgctl(id2, IPC_RMID, (struct MSGBUF *) 0);
if(res < 0)

{

printf ("could not remove queue 2\n");

>

res = msgctl(id3, IPC_RMID, (struct MSGBUF *) 0);
if(res < 0)

{

printf ("could not remove queue 3\n");

>

Print mi.c
*

* by Natalie Willman
* June 13, 1991
*

* This program will retrieve management information files
* created by the pilot user interface and generate
* statistics of performance
*

*/

^include <stdio.h> /* standard input/output header file
#include <string.h> /* String manipulation functions

struct

{

long

MANAGE INFO

int logtime;
long int logcount

;

long int C[t88

;

long int qt89

;

long int qc88

;

long int qc89

;

long int dc88

;

long int dc89;

long int pc88

;

long int pc89

;

} input

;

struct MI

{

long int totlog;
long int totallogs [5]

;

long int totacctime;

float avgacc;

long int totqc

;

long int qc88

;

long int qc89

;

long int totqt

;

long int qt88

;

long int qt89;

float totavggt;
float avgqtSS;
float avgqt89;

long int totdc;
long int dc88;
long int dc89;

long int totpc;
long int pc88;
long int pc89;

} output

;

I*
* Main Prograun

V
inain(

)

{

FILE ’*ffopen(), *mi, *curfil;
char filename [20]

;

int i;

for(i = 1; i < 5; i++)

{

/* open each of the station mi files */
sprintf (filename, '’%s%d", "mi_info.", i);
curfil = fopen(filename, "r");
if(curfil == NULL)

{

printf ("File %s does not exist\n", filename);
printf(”Not able to generate Management Information\n")

;

exit()

;

}

else
{

/* Read
fscanf

(

fscanf

(

fscanf

(

fscanf

(

fscanf

(

fscanf

(

fscanf

(

fscanf

(

fscanf

(

fscanf

(

fclose

(

in statistics gathered by the user interface */

curfil,
curfil,
curfil,
curfil,
curfil,
curfil,
curfil,
curfil,
curfil,
curfil,
curfil)

%d%*c". &input . logtime)

;

%d%*c". fitinput . logcount)

;

%d%*c". &input.qt88)

;

%d%*c"

,

&input.qt89)

;

%d%*c"

,

&input.qc88)

;

%d%*c". ficinput .qc89) ;

%d%*c". &input.dc88)

;

%d%*c". &input.dc89)

;

%d%*c". &input.pc88)

;

%d%*c". fitinput. pc89)

;

/* Calculate total logins and login count by station */
output .totlog = input . logcount + output .tot log;
output .totallogs [i) = input. logcount;

/* Calculate total login time, and total query count */

/* and query count for each year (88 and 89) */

output .totacctime = output .totacctime + input . logtime;
output. totqc = output. totqc + input. qc88 + input. qc89;
output. qc88 = input. qc88 + output. qc88;
output. qc89 = input. qc89 + output. qc89;

/* Calculate total query time, and query time for each year */

output . tot(jt = output, totqt + input. qt88 + input. qt89;
output. qt88 = output. qt88 + input. qt88;
output. C[t89 “ output. qt89 + input. qt89;

/* Calculate total detail count, and detail counts for each year */

output. totdc = output. totdc + input. dc88 + input. dc89;
output. dc88 = output. dc88 + input. dc88;
output. dc89 = output. dc89 + input. dc89;

/* Calculate total printout count, and printout counts for each year */

output. totpc = output. totpc + input. pc88 + input. pc89;
output. pc88 = output. pc88 + input. pc88;
output. pc89 = output. pc89 + input. pc89;

>

}

/* Calculate averages of login time, total query time, and query */

f* time for each year */

output. avgacc = (float) output . totacctime/ (float) output . totlog;
output. totavgqt = (float) output .totqt/ (float) output .totqc;
output.avgqt88 = (float) output. qt88/ (float) output.qc88;
output.avgqt89 = (float) output. qt89/ (float) output. qc89;

/* Open output file and print statistics to it */
mi = fopen ("mi_stats" , "w")

;

fprintf(mi, "\n\n\n\n");
fprintf(mi, "\t\t\tManagement Information Printout\n\n\n")

;

fprintf(mi, "\t\tTotal Accesses to the System
for(i =1; i < 5; i++)

fprintf(mi, "\t\tTotal Accesses from Station %d
fprintf(mi, "\n\n");
fprintf(mi, "\t\tTotal Access Time in minutes
fprintf(mi, "\t\tAverage Access Time in minutes

%10d\n", output . totlog)

;

= %10d\n'' , i, output. totallogsf

%10d\n", output .totacctime)

;

%10 . 3f\n\n\n" , output . avgacc)

;

fprintf(mi, "\t\tTotal Queries
fprintf(mi, "\t\tTotal Query Time in minutes
fprintf(mi, "\t\tAverage Query Time in minutes

%10d\n", output .totqc)

;

%10d\n", output.totqt)

;

%10 . 3f \n\n\n’' , output .totavgqt)

fprintf(mi, ’'\t\tTotal 1988 queries
fprintf(mi, ”\t\tTotal 1988 query time in minutes
fprintf(mi, "\t\tAverage 1988 cjuery time in minutes

%10d\n", output. qc88)

;

%10d\n”, output
.
qt88)

;

%10 . 3f \n\n\n” , output. avgqt88)

;

fprintf(mi, "\t\tTotal 1989 queries
fprintf(mi, "\t\tTotal 1989 query time in minutes
fprintf(mi, "\t\tAverage 1988 query time in minutes

%10d\n", output
.
qc89)

;

%10d\n", output . qt89)

;

%10. 3f\n\n\n" , output . avgqt 89)

;

fprintf(mi, "\t\tTotal detail records
fprintf(mi, "\t\tTotal 1988 detail records
fprintf(mi, ''\t\tTotal 1989 detail records

%10d\n", output.totdc)

;

%10d\n", output . dc88)

;

%10d\n\n\n", output . dc89)

;

fprint f (mi, ”\t\tTotal printed records
fprintf(mi, "XtXtTotal 1988 printed records
fprintf(mi, "XtXtTotal 1989 printed records
fclose(mi)

;

}

%10dXn", output .totpc)

;

%10dXn", output.pc88)

;

%10dXnXnXn", output .pc89)

;

sep. c

/*
*

*

* by Natalie Willman
*

* This program dividies an EASEAR file into smaller files of
* 300 record^. The records are logically separated into files
* by IRD, with a file only containing one IRD. The program
* also creates an indexing table that contains the starting
* last name and initials and the ending last name and initials
* of each file of records.
*

*/

/* Include files */

#include <stdio.h>
#include <string.h>

/* Define statements */
#define TRUE 1

#define FALSE 0

/*
*

* MAIN PROGRAM

*/

main(

)

{

int i, j, count, filenum, irdint, searchint, previrdint;
char filename [30] , searchird [3]

;

char f ilenm[20] , output[15], filestr[10];
char record [235], errfile[20]7
char ch, ird[3], last [10], init[4], previnit[4];
char prevlast [10] , resp, namef ile [20]

;

FILE *dat, *temp, *err, *name, *fopen();
int rec, reccount, end, filect;
int result, totalrec;

printf ("Enter the IRD for which to search: \n\n");
scanf ("%s%’^c" , searchird);
printf ("\n")

;

strcpy (resf ile, "ird.");
strcat (resf ile, searchird);

/* open the name file and print blank spaces for the initial last name */

sprint f (namef ile, "%s%s", "startend.", searchird);
name = fopen (namef ile, "w")

;

fprintf (name, " ");

fclose (name)

;

/* set up once only variables */

reccount = 0;
filect = 1;
prevlast [0] = 0;
previnit[0] =0;

do

{

printfC'Make sure that the source disk is mounted as read-only\n’')

;

printfC’in Drive 2 and that the destination disk is mounted\n’') ;

printf(*’as read/write in drive l\n\n");

/* Retrieve Information on the files to analyze */
printf ("Enter the Total number of files to search: \n\n");
scanf ("%d%*c" , &count);
printf ("\n\n")

;

printf ("Enter the file number with which to start: \n\n");
scanf (

"%d%’*fc"
, &filenum)

;

printf ("\n\n")

;

sprintf (filename, "%s%d", "/drive2/", filenum)

;

I* Analyze each of the files */
end = filenum + count;
for(i = filenum; i < end; i++)

{

printf ("Analyzing File %s ...\n", filename);

I* Open the file to read */
dat = fopen (filename, "r");

/* Set the counter variables to 0 */
rec =0;
totalrec = 0;
previrdint = 0;

ch = fgetc(dat);

j* Read in each of the records in the file */
do

{

/* setup first character */
record[0] = ch;
last(0] = ch;

/* Read in the record - 234 characters long */

for(j = 1; j < 234; j++)

{

record[j) = fgetc(dat);
/* Test for error condition */

if(record[j] == EOF)

<

sprintf (errf ile, "%s%s", "err.", searchird);
err = fopen(errfile, "a");
fprintf (err , "Error on record %d, file %s\n" ,totalrec+l, filename)
fclose(err)

;

}

ch = record
[j)

;

/* store the lastname,
if(j == 1)

last[l] = ch;
if(j =>= 2)

last [2] = ch;
if(j == 3)

last [3) = ch;
if(j == 4)

last [4] - ch;
if(j *= 5)

last [5] = ch;
if(j == 6)

{

last (6) = ch;
last (7) = 0;

initials. and ird to separate variables */

}

if(j =- 7)

init[0] = ch;
if(j == 8)

{

init[l] = ch;
init[2] =0;
}

if(j == 44)
ird[0] = ch;

if(j == 45)

{

ird[l] = ch;
ird[2] = 0;

>

/* Add EOL character and increment the record count */
record[234] = 0;
totalrec++

;

/* check to see that one of the IRD's is not EOF characters, */
/* and that we are at an IRD later than or equal to our search */
/ * ird *

/

irdint = atoi(ird);
searchint = atoi (searchird)

;

searchint—

;

if ((ird[0] != EOF) && (irdint > searchint)
)

{

/* compare the current ird with the ird for which we are searching */
result = strcmp(ird, searchird);
/* if they are the same, increment record count. If the record */
/* count is greater than 300 start a new file of records */

if (result == 0)

{

if(reccount == 300)

{

f ilect++;
name = fopen(namef ile, "a");
fprintf (name, "%s %s %s\n", prevlast, previnit, f ilenm)

;

fprintf (name, "%s %s ", last, init);
fclose(name)

;

reccount = 0;

>

reccount++

;

/* Open the output file and write the current record */

sprintf (filestr , "%d", filect);
sprintf (f ilenm, "/drivel/");
strcat (f ilenm, ird);
strcat (f ilenm, filestr);

temp = fopen (f ilenm, "a");
if(record[0] != EOF)

fprintf (temp, "%s", record);
fclose (temp)

;

/* copy the current last name to the previous last name */

strcpy (prevlast , last);
strcpy (previnit , init);

else /* If the current ird is greater than the search ird, exit */

{

printf ("Exiting on file %s, ird %s\n\n", filename, ird);

name = fopen(namef ile, "a");
fprintf (name, ”%s %s %s\n", prevlast, previnit, filenm)

;

£close(name)

;

fclose(dat)

;

exit ()

;

>

}

/* If the IRD is less than our search IRD, skip over the record */
else

{

if(irdint 1= previrdint)
printf { "skipping ird %d\n\n", irdint);

}

/* set the previous IRD integer variable equal to this IRD integer */
previrdint = irdint;

/* weed out BOB characters */
if(rec == 135)

{

ch = fgetc(dat);
rec = 0;

}

else
rec++;

/* Get next character and check it for EOF */
ch = fgetc(dat);
}

while (ch 1= EOF);

/* close the data file */
fclose(dat)

;

/* Create the next file name */
sprintf (filename, "%s%d", "/drive2/", i+1);

}

/* ird may be split over two tapes, so may wish to switch */

printf ("Do you wish to switch tape disks? (y/n)\n\n");
resp = getchar();
getchar

()

;

/ open the name file and complete the last entry and start */

/* a new one */

filect++;
name = fopen(namef ile, "a");
fprintf (name, "%s %s %s\n", last, init, filenm);
fprintf (name, "%s %s ", last, init);
fclose (name)

;

reccount = 0;

>

while
((resp == 'y')

|| (resp == 'Y'));

>

1

NIST.114A U.S. DEPARTMENT OF COMMERCE
(REV. 3-90) NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY

1. PUBUCATION OR REPORT NUMBER

NISTIR 4654

BIBLIOGRAPHIC DATA SHEET
2. PERFORMING ORGANIZATION REPORT NUMBER

3. PUBUCATION DATE

AUGUST 1991
4. TITLE AND SUBTITLE —

Development of an Optical Disk System for the
Automated Retrieval of EASEAR Records

5. AUTHOR(S)

Natalie Willman
6. PERFORMING ORGANIZATION (IF JOINT OR OTHER THAN NIST. SEE INSTRUCTIONS)

U.S. DEPARTMENT OF COMMERCE
NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY

7. CONTRACT/GRANT NUMBER

GAITHERSBURG, MD 20899 8. TYPE OF REPORT AND PERIOD COVERED

Final
9 . SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (STREET, CITY. STATE, ZIP)

Social Security Administration
6401 Security Boulevard
Baltimore, MD 21235

10. SUPPLEMENTARY NOTES

11. ABSTRACT (A 200-WORO OR LESS FACTUAL SUMMARY OF MOST SIQNIFICANT INFORMATION. IF DOCUMENT INCLUDES A SIGNIFICANT BIBUOQRAPHY OR
LITERATURE SURVEY. MENTION IT HERE.)

The Social Security Administration (SSA) maintains records of the yearly wages earned by
every person in the United States. Each year, approximately 2.5 gigabytes of data are
collected on self-employed wage earners, and 47 gigabytes of data are collected on other
wage earners. The records are currently stored on over 110,000 rolls of microfilm. It
takes over 400 scouts to retrieve information needed by the professional staff. Often, the
needed roll of film is missing from the file due to being currently in use, misfiled, or
misplaced. In addition, the information obtained from the microfilm is not always the
most current, and decisions are sometimes based on obsolete data. Advances in peripheral
mass storage technology during the 1980s (e.g. magneto-optic recording) now allow for
alternate approaches to data storage and retrieval. It is believed that an automated
retrieval system would provide a more accurate, timely, and cost effective means of
retrieving information.

The pilot application detailed in this document is intended to demonstrate the feasibility
of a full scale automated records retrieval system, to study the impact of an automated
system on the users, and to gain insight into the factors which would impact the design of
a full scale system.

12. KEY WORDS (6 TO 12 ENTRIES; ALPHABETICAL ORDER; CAPITALIZE ONLY PROPER NAMES; AND SEPARATE KEY WORDS BY SEMICOLONS)

automated retrieval system; magneto-optic media; optical disk jukebox; optical disk media;

pilot system

13. AVAILABILITY 14. NUMBER OF PRINTED PAGES

UNUMITED
147FOR OFFICIAL DISTRIBUTION. DO NOT RELEASE TO NATIONAL TECHNICAL INFORMATION SERVICE (NTIS).

ORDER FROM SUPERINTENDENT OF DOCUMENTS, U.S. GOVERNMENT PRINTING OFFICE,
WASHINGTON, DC 20402.

15. PRICE

X ORDER FROM NATIONAL TECHNICAL INFORMATION SERVICE (NTIS), SPRINOnELD,VA 22161. AO 7

ELECTRONIC FORM

. * f

' h

i:
r

