
U.S. DEPARTMENT OF COMMERCE
National Institute of Standards and Technology

National PDES Testbed

Report Series

A Guide to Configuration

Managementand file

RevWon Control Sj«tem
for Testbed Users

NATIONAL

TESTBED

fiC

100

.056

//4646

1991

U.s. DEPARTMENT OF COMMERCE
National Institute of Standards and Technology

NISTIR 4646

National PDES Testbed

Report Series

NAnONAL

i
TPRTRFn A OiliHp to Confiaiirafion

Management and the

Revision Control System
for Testbed Users

Scott Bodarl^

u.s. DEPARTMENT OF

COMMERCE

Robert A. Mosbacher,

Secretary of Commerce

National Institute of

Standards and Technology

John W. Lyons, Director

August 21, 1991

NiST-i 14A U.S. DEPARTMENT OF COMMERCE
(REV. 3-90) NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY

BIBLIOGRAPHIC DATA SHEET

1. PUBUCATION OR REPORT NUMBER

NISTIR 4646
2. PERFORMING ORGANIZATION REPORT NUMBER

3. PUBUCATION DATE

AUGUST 1991
4. TITLE AND SUBTITLE

A Guide to Configuratin Managment and the Revision Control System for the Tested Users

S. AUTHOR(S)

Scott Bodarky

6. PERFORMING ORGANIZATION (IF JOINT OR OTHER THAN NIST, SEE INSTRUCTIONS)

U.S. DEPARTMENT OF COMMERCE
NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY
GAITHERSBURG, MD 20899

7. CONTRACT/GRANT NUMBER

8. TYPE OF REPORT AND PERIOD COVERED

9. SPONSORINQ ORQANiZATION NAME AND COMPLETE ADDRESS (STREET, aTY, STATE, ZIP)

Office of the Secretary of Defense
CAL^ Program Office
Pentagon
Washington, DC 20301-8000

10. SUPPLEMENTARY NOTES

11. ABSTRACT (A 20O-WORD OR LESS FACTUAL SUMMARY OF MOST SIGNIFICANT INFORMATION. IF DOCUMENT INCLUDES A SIGNIFICANT BIBUOGRAPHY OR
LITERATURE SURVEY, MENTION IT HERE.)

Product Data Exchange using STEP (PDES) refers to the United States organizational activities

in support of the development of the Standard for the Exchange of Product Model Data (STEP).

These activities have resulted in the creation of large amounts of information and software, which

reside in the PDES File System on the computer systems at the National Institute of Standards

and Technology. The PDES software, documents, and data have been placed under configuration

management using the Revision Control System (RCS), in order to ensure that change to these

items occurs in a controlled manner, and that any service provided by them are done so as

reliably as possible. This document provides instructions for anyone needing to access this

material.

12. KEY WORDS (6 TO 12 ENTRIES; ALPHABETICAL ORDER; CAPITALIZE ONLY PROPER NAMES; AND SEPARATE KEY WORDS BY SEMICOLONS)

Configuration Management; PDES; PDES Toolkit; Revision Control; Software Configuration;

Software Development

IX AVAILABILITY 14. NUMBER OF PRINTED PAGES

X UNUMITED 24
FOR OFFICIAL DISTRIBUTION. DO NOT RELEASE TO NATIONAL TECHNICAL INFORMATION SERVICE (NTIS).

ORDER FROM SUPERINTENDENT OF DOCUMENTS, U.S. GOVERNMENT PRINTING OFFICE,
WASHINGTON, DC 20402.

IX PRICE

AO 3
X ORDER FROM NATIONAL TECHNICAL INFORMATION SERVICE (NTIS), SPRINGFIELD, VA 22161.

ELECTRONIC FORM

J
\

I

Contents

1 Introduction 1

2 Document Conventions 1

3 System Configuration 2

3.1 The ~pdes File System 2

3.2 The Generic Configuration Management Set-up 2

3.3 Additional Notes for Software Developers 3

3.4 File Conventions 4

4 RCS Archives 4

4.1 The Administrative Node 5

4.2 The Revision Tree 6

4.3 The General Description 6

4.4 The Deltas 6

4.5 RCS Reserved Keywords 8

5 Checking Out Files From Archives 9

5.1 Checking Out with Read Access Only 9

5.2 Checking Out with Write Access 10

5.3 Checking Out by Revision or Symbolic Name 10

5.4 Checking Out by Date or Time 11

5.5 Checking Out by State 11

6 Checking Files Into RCS 12

6.1 Checking In 12

6.2 Assigning a Revision Number 12

6.3 Assigning a Date 13

6.4 Assigning a Symbolic Name 13

6.5 Assigning a State 13

7 The RCS Command 14

7 . 1 Manipulating Access Lists 14

7.2 Designating the Default Branch 14

7.3 Locking an Archive 14

7.4 Symbolic Names 15

7.5 Updating Archives 1

5

7.6 Assigning States 15

7.7 Modifying the General Description 15

8 Getting Information About Archives (rlog) 16

9 RCS and other Gnu Software •. 16

9.1 Gnumake 16

9.2 Gnu Emacs 17

10 Glossary 18

11 References 19

Appendix A The Electronic Mailing Lists/Newsgroups 20

111

A Guide to Configuration Management and the Revision Control System for Testbed Users

1 Introduction

Product Data Exchange using STEP (PDES) refers to the United States organizational

activities in support of the development of the Standard for the Exchange of Product Model

Data (STEP). These activities have resulted in the creation of large amounts of information and

software, which reside in the PDES File System, a directory hierarchy called ~pdes on the

computer system at the National Institute of Standards and Technology. The PDES software,

documents, and data have been placed under configuration management [Ressler90] using the

Revision Control System (RCS) [Tichy85], in order to ensure that change to these items occurs

in a controlled manner, and that any services provided by them are done so as reliably as

possible.

This document provides instructions for anyone needing to access this material. Enhancements

to the RCS-based configuration management system will be documented in updates to this

document and via electronic-mail (see Appendix A). A set of configuration management

procedures will be published as another document.

The RCS-based system is intended to handle a variety of objects, including documents,

software, and data. It is assumed that the reader has a basic familiarity with UNIX and an

account on the systems at NIST. It is hoped that this system will be minimally encumbering

while providing as stable and productive an environment as possible. This system is designed

to make life easier for all users, from whom feedback is encouraged.

2 Document Conventions

There are sample command formats and code examples scattered throughout this document, all

of which observe the following conventions:

• That which is to be typed verbatim by the user appears in bold.

• That which is to be typed by the user and is variable appears in boldface italics.

• Verbatim RCS and Unix system messages appear in Helvetica.

• Variable RCS or Unix system messages appear in Helvetica Oblique.

• The Unix system prompt is the percent sign (%, in Helvetica), which wUl precede aU

Unix commands to be typed by the user, but is itself not to be typed.

• Items enclosed in square brackets G are optional.

Note: Certain commercial products are identified in this paper in order to adequately specify configuration

management procedures at NIST. This does not, however, imply recommendation or endorsement by NIST, nor does

it imply that said products are necessarily the best available for their purpose.

The work described in this document was funded by the U.S. Government’s Department of Defense Computer-aided

Acquisition and Logistic Support (CALS) program and is not subject to copyright.

1

A Guide to Configuration Management and the Revision Control System for Testbed Users

3 System Configuration

This section provides an overview of the configuration management environment and detailed

instructions on setting up a local environment, for users needing to access items in '•pdes that

are under configuration management.

3.1 The ^pdes File System

The principal repository for items under configuration management at the Testbed is a

directory hierarchy called ~pdes. This hierarchy contains various entities used in support of the

STEP development effort, including software tools, STEP test data, documents, and various

other types of objects. The exact configuration of ~pdes and its contents tends to change

periodically; these changes will be reflected by updates to this document and by electronic mail

distribution (see Appendix A).

The following is a list of those sub-directories in -pdes that are under configuration

management by RCS. Each sub-directory may contain other sub-directories, which may
themselves contain sub-directories, and so forth.

~pdes/data contains

~pdes/distribute contains

~pdes/docs contains

~pdes/generic.env contains

-'pdes/include contains

~pdes/man contains

~pdes/src contains

'-pdes/bin contains

~pdes/arch/bin contains

step Testing data

packaged software releases

documents

the Testbed generic environment

header files for software tools

the on-line man pages for software tools

the source code for software tools

various executables

architecture-specific executables

All manually generated files (i.e., those not output by some program) in these directories are

managed by RCS, as are some binary executables.

Each directory contains the current, officially-released version of each of its files. Each of these

files should be read-only, and should not be modified directiy.

Each directory also contains a sub-directory called RCS, which contains an RCS archive for

each controlled file. A user who wishes to modify a file must establish a symbolic link between

his own account and the RCS directory, and then check out (into his account) a writable copy

of the file from the appropriate archive. Instructions for doing this constitute the remainder of

this section.

3.2 The Generic Configuration Management Set-up

A user’s home directory must contain a sub-directory named pdes (~/pdes) that is stmctured

like ~pdes. If the user wishes to access a particular file stored in the -'pdes hierarchy, his own
pdes hierarchy must contain copies of all the intermediate nodes. The user’s copy of the file

2

A Guide to Configuration Management and the Revision Control System for Testbed Users

will have the same relative path as the copy in ~pdes, differing only by the inclusion/exclusion

of the slash between the tilde and the pdes.

Once the relevant portion of the pdes hierarchy has been duplicated, the user must establish a

symbolic link from his copy of the file’s source directory to the RCS sub-directory in the

~pdes source directory. For example, if a user wanted to modify the contents of a fictitious

directory called ~pdes/stuff, he would create the configuration illustrated in Figure 3.1, by

typing the following commands (from his home directory):

% mkdir pdes{,/stuff}

% In -s ^pdes/stuff/RCS "^/pdes/stuff/RCS

Figure 3.1 The RCS File-System Coufiguratioii

Once the source directory has been created, the user can check out a copy of the file via RCS
(see Section 5), which extracts a copy of the file from its archive in -pdes and deposits it in the

user’s directory. In the above example, the file would go into -/pdes/stuff. Any modifications

(or testing, in the case of software) to the file occur in the user’s account. After the desired

modifications are made, the file is checked back in as a new revision (see Section 6).

Important: It is critical that each user’s path contain -y^des/bin before the /depot directories.

3.3 Additional Notes for Software Developers

The guidelines and procedures that will govern development of software under configuration

management are being drafted as part of the recently launched Testbed Readiness Program.

They will be published as two separate documents, called “PDES Software Development

Guidelines” and “PDES Software Configuration Management Procedures”. The following

comments are important, however, and are worth mentioning here.

The software tools under configuration management reside in -pdes/src and -pdes/include.

The actual files that compose the tools, and that reside in these directories support

dependencies in other files and are used to build releases; they are write-only, and should never

be modified in the course of development. Each file also has a designated release state, which

will be one of the following: Exp (experimental). Alpha, Beta, or Stable.

3

A Guide to Configuration Management and the Revision Control System for Testbed Users

In addition to the files and the RCS sub-directory, each source directory wUl contain a shell

script called CheckOut, which automatically checks out a read-only copy of the officially-

released version of each file in that directory. The CheckOut script checks out these files

according to their release state (see Section 6.5), and therefore requires updating only when a

new file is added or an existing file changes state (e.g., is promoted from alpha to beta). Here

is an example CheckOut script:

#!/bin/sh

CO -salpha Makefile

CO -sbeta hash.c hash.h

CO -salpha class.c class.h dictionary.c dictionary.h \

error.c error.h linked_list.c linkedjist.h

If the changes to a given file constitute a new release, but the state of the file has not changed,

the developer should move to -'pdes/src/stuff and run the CheckOut script. If the state of the

file has changed, the CheckOut script should be modified to reflect this and then run from the

appropriate directory in -pdes.

3.4 File Conventions

RCS has an automatic keyword-expansion facility (see Section 4.5), and each text file in the

~pdes hierarchy should contain the RCS reserved-word Id. Files containing C code should

contain the string static char rcsid[] = ”Id” ;, so that it will be possible to easily determine

from which version of source code a binary was generated. C header files need only contain the

string /*Id*/. Shell scripts should contain the string #Id. Documents produced with

various publishing systems (e.g., Framemaker or WordPerfect) may also take advantage of this

mechanism, although it is not required. It is important that the Id be in a comment, so that it

is visible on the screen, but not in the printed document.

A revision of a source file that is to be included in a software release should be assigned a

symbolic name (see Section 6.4) indicative of its status, with the hierarchical levels of the

revision number separated by hyphens (e.g., bpr2-l). This will enable check-outs predicated on

the symbolic name. Note that periods are not permitted in symbolic names.

4 RCS Archives

A file configured under RCS is maintained in an archive, which has the same name as the file,

with a ,v appended. An archive is an ASCII text file which contains the revision history and a

complete description of the file. Each version of the file, including the original, is called a

revision. One revision is defined to be the current revision, which means that operations that

do not specify a specific revision will be applied to it. A physical copy of a revision, called a

working-file, can be checked out from an archive. Each revision (except the current revision

—

see section 4.4) is stored inside an archive as a set of changes relative to another revision, called

a delta. An archive contains, in order, an administrative node, the revision tree (implemented

as a linked list), a general description of the archive, and the deltas. The remainder of this

4

A Guide to Configuration Management and the Revision Control System for Testbed Users

section describes the contents of an RCS archive. Those readers who are looking to get started

with development as quickly as possible can skip ahead to Section 5, and refer back to this

section as time or need permits.

The next several sections outline the exact syntax of an RCS archive. Although it is perhaps

outside the scope of a basic users guide, it has been included for two reasons. First, knowledge

of what is contained in archives serves to make the functioning of RCS more intuitive. Instead

of a bevy of commands with multifarious options, RCS can be seen as maintaining a data

structure whose slots can be manipulated in various ways. Also, the information is organized

differently from other available documentation, and some of it is not available in the RCS
documentation.

4.1 The Administrative Node

The first item in an archive is its administrative node, the syntax of which follows:

head [head-num]]

branch [branch-num]]

access [access4ist]’,

locks [lock- list]',

symbols [symbol-list]',

comment [@strmg@];

where

head-num
branch-num

access-list

lock-list

symbols
comment

is the revision number of the current revision.

is the revision number of the root of the default branch of the revision

tree, which means that operations on entire branches (as opposed to

specific revisions) that do not specify their targets will affect the branch

whose root is branch-num; if there is no branch-num, the highest

branch on the trunk (see section 4.2) is the default,

is the access list for the archive. Users mentioned in the list are granted

write access to revisions in the archive. If the list is empty, access is

unrestricted.

is a list of security-status determinants. The lock list for each archive

will always contain the word Strict, which indicates that strict locking is

engaged. Strict locking is a security feature which prevents more than

one writable working-file from being checked out at a time. Strict

locking can be disengaged (see the on-line manual), in which case Strict

will disappear from the locks list. When a writable working-file is

checked out under strict locking, the name of the user who checked it out

is added to the lock list. The name is removed when the revision is

checked back in.

is a list of symbolic names (if any), as defined by ci -n.

is a space reserved for comments.

5

A Guide to Configuration Management and the Revision Control System for Testbed Users

4.2

The Revision Tree

The revision tree consists of a sequence of nodes, each of which represents a delta and contains

a link to its parent. Each node is of the following form:

rev-num

date date-string] author author-name; state state-name;

branches [branch-lisf\;

next [next-rev\;

where

rev-num
date-string

author

state-name

branch-list

next-rev

is the revision number of the node,

is the date the revision was checked in.

is the user who checked in the revision.

indicates what state the archive is in. The set of possible states is user-

definable. Currently, RCS is configured to recognize the following

states: Exp (Experimental), Alpha, Beta, and Stable. All newly created

archives and newly checked-in revisions are designated Exp
automatically, unless another state is explicitly assigned (see sections

6.5 and 7.6).

is a list of the revision numbers that are at the top of any side-branches

of the revision tree that issue from the node.

is the revision number of the node’s parent in the revision tree.

4.3

The General Description

The general description of the archive is entered at check-in time, though it can be modified

later (see section 7.7). It appears as follows:

desc

@[description]@

where description is a textusd description which may or may not span more than one line. The

@ character is the RCS string delimiter.

4.4

The Deltas

The current revision is stored in its entirety. Each other revision is stored as a delta, which

consists of a list of instructions for undoing the changes that were made to the revision. When
a revision is checked out, RCS constructs it by starting at the current-revision node and

traversing the path in the revision tree to the node of desired revision. If RCS is ascending the

tree it follows the instructions in the deltas, which undo changes. If it is descending or moving

laterally in the tree it reverses the instructions in the deltas, thus making changes (see Figure

4.1). A delta is formatted as follows:

6

A Guide to Configuration Management and the Revision Control System for Testbed Users

rev-num

log

@[description]

text

@[contenf\

@

where

rev-num

description

content

is the revision number

is a description of the revision. For the initial revision, it is automatically

set to Initial Revision; for subsequent revisions the user supplies the

description at check-in.

is either the complete text of the revision (if the revision is the current

one) or the instructions on how to construct the revision from the node

that is one closer to the current revision (see figure Figure 4.1). Instruc-

tions are of the form: xr s [t], where x is either a (for add) or d (for

delete), ris the first line to be affected, and S is the number of lines to be

affected. If x is a, the optional argument f is included, containing the text

to be added.

Note the following example:

1.0

log

@ Initial Revision

text

@62 2

aO 1

This is line 1

a2 1

This is line 3

@

1.1

log

@ Lines 1 and 3 removed
text

@This is line 2
This is line 4

This is line 5

@

We can see that revision 1.1 reads:

7

A Guide to Configuration Management and the Revision Control System for Testbed Users

This is line 2

This is line 4

This is line 5

Were we to check out revision 1.0, RCS would build it from revision 1.1 according to the

instructions in delta 1.0. First RCS would delete the second and third lines (d2 2). Then it

would add one line at position 0 (aO 1 This is iine 1) and one more at position 2 (a2 1 This

is iine 3) to give us our initial revision. Note that subsequent instructions do not build on each

other, but refer back to the unrestored revision. Our result:

This is line 1

This is line 2

This is line 3

Figure 4.1: Revision 1.0 would be reconstructed by modifying the text of revision U with the instructions

in deltas 1.2, 1.1, and 1.0, in that order. Revision 1.1.1.3, however, would be obtained by modifying the text

of revision 13 according to the instructions in deltas 13, 1.1, l.l.l.l, 1.1.1.2, and 1.1.1.3, also in order.

4.5 RCS Reserved Keywords

There are certain reserved keyword clauses that can be included in a revision. When a revision

containing them is checked in, the clauses are expanded to include values which reflect

conditions at that particular moment. When next checked out, the values from the previous

check-in will appear in the clauses, but will be replaced by new values when checked in again.

These clauses are useful for maintaining topical information. Each keyword is entered into a

revision enclosed in dollar signs, as follows:

%keyword$

When the revision containing one or more such keyword clauses is checked in, values are

assigned, and the clauses appear as follows:

^keyword: value$

8

A Guide to Configuration Management and the Revision Control System for Testbed Users

For example, if $Date$ were included in a revision which was checked in on September 4,

1990 at 2:52:51 PM, the revision would contain the following string:

$Date: 90/09/04 14:52:51 $

Following is a list of all the permissible keywords and brief descriptions of each. The keywords

are case-sensitive.

Author user who checked in the revision

Date date and time of check-in

Locker user who currently has write-access, if any

Log log message from last check-in

RCSfile name of the archive

Revision revision number

Source name of the archive, including path

State state of the revision

Header set of Source, Revision, Date, Author, State, and Locker

Id set of RCSfile, Revision, Date, Author, State, and Locker

The ident command lists all keyword clauses in a file:

%identfilename

5 Checking Out Files From Archives

The RCS check-out command (co) is used to extract a file firom its RCS archive. This section

provides instruction on important functions one can perform with this command:

- viewing a read-only copy of a file

- accessing a writable copy of a file

- checking out by symbolic name
- checking out by date or time

-checking out by state

For additional information, consult the on-line man pages.

5.1 Checking Out with Read Access Only

To view a file, a check-out (co) command must be issued:

%cofilename

Either the name of the file or the name of the archive (i.e. the ,v is optional) may be supplied.

RCS will then deposit a read-only working-file in the user’s development directory, where it

may be looked at or deleted. Any number of read-only working-files may be checked out at a

9

A Guide to Configuration Management and the Revision Control System for Testbed Users

time to any number of users.

5.2 Checking Out with Write Access

To obtain a writable working-file, the check-out command with the -1 option must be used:

%co -Ifilename

The -1 stands for lock, and a co command which includes it locks the archive so that no other

users can check out writable copies of the file. The lock is removed when the writable copy is

checked back in (see section 6). Note that a file cannot be checked in if the archive is locked,

so if a writable file is checked out and then accidentally deleted, the lock is left in place. To
remove such a lock from the archive, type:

%rcs -ufilename

If a user attempts to check out a writable copy of a revision that another user has locked, RCS
will not allow the check out, but will supply the username of the holder of the lock. The

command res -u can be used to break a lock imposed by someone else. As this somewhat

defeats the purpose of using RCS in the first place, it is not a recommended practice, and should

only be done if absolutely necessary. Injudicious use of res -u can result in the locks getting

out of S)mc, a circumstance that is most undesirable. When a lock is broken, automatic

notification is mailed to the holder of the lock.

A single user can have any number of files checked out and locked simultaneously, and can

also perform repeated check-outs on a single file (without checking it in). Each checked-out

revision is automatically placed in the development directory, and will replace its predecessor

there. If the file to be replaced has been modified, RCS will ask for verification before deleting

it. Care should be exercised, because supplying such verification will erase any changes that

have been made.

Should a file be inadvertently checked out, it can simply be checked back in. RCS will

recognize that no changes have been made and ask Are you sure?. If the answer is no, RCS
will delete the working-file and release the lock.

5.3 Checking Out by Revision or Symbolic Name

In an RCS archive, one revision (usually the most recent one) is defined as the current revision,

and is checked out by default. The -r option with the desired revision number is used to check

out a revision other than the current one:

%co -I -rl.2 some_file.c

The -r option can also be used to check out a working file based on a symbolic name, as

assigned with ci -n (see section 6.4):

10

A Guide to Configuration Management and the Revision Control System for Testbed Users

%co -rsymbolicjname filename

5.4 Checking Out by Date or Time

A revision can be checked out according to the date and/or time it was checked in, with the -d

option. RCS allows considerable variation in the formatting of the -d option, but it is

recommended that users use the following syntax:

%co -d" 15:34 August 20 1990" some file.c

The date-string must be in quotations if it contains spaces. It can contain one or more of the

eight fields described below, in order of precedence:

year. 2- or 4-digit string (e.g. 1990 or 90)

month: the full name or any sufficiently distinct abbreviation thereof, either with

or without a period (e.g. February, Feb., Feb, Fe—an F alone would

not suffice, as it could be confused with Friday)

day. either the number (with respect to the month) or the name (subject to the same

syntactical requirements as the month)

hour. 12-hour notation or military time

minute: number

seconds: number

am/pm: optional

time zone: any (e.g. CDT, EST, PDT)

The fields can be rearranged or omitted. When fields are omitted, those of higher precedence

than the highest supplied are assumed to be current, and those of lower precedence to have the

lowest value possible. For example, if a particular revision is desired, but the user doesn’t recall

its number, the date may be used to retrieve it. If it is known that the revision is, say, the first

one done in August, the following would work:

%co -dAugust some^file.c

The year field is of higher precedence than the month field, so the current year is assumed.

The remaining fields have lower precedence and assume their minimum valid values.

5.5 Checking Out by State

It is possible to assign states to specific revisions (see sections 6.5 and 7.6). The four states that

RCS is configured to deal with are Exp (experimental). Alpha, Beta, and Stable. To obtain a

revision based on state, use the -s option:

%co -sBeta some file.c

If more than one revision has the same state, the most recent one will be chosen.

11

A Guide to Configuration Management and the Revision Control System for Testbed Users

6 Checking Files Into RCS

The RCS check-in command (ci) is used to add a new set of changes to an RCS archive. This

section provides instmction on the important functions one can perform with this command:

- checking in changes

- explicitly assigning a revision number
- assigning a date

- assigning a symbolic name
- assigning a state

For additional information, consult the on-line man pages.

6.1 Checking In

After aU desired modifications have been made, the file must be checked back into the archive.

Issuing a check-in command with no options will increment the level number and create a new
revision. If revision 1 .3 of some_file.c is checked out and modified, checking in as follows wiQ

result in revision 1 .4:

%ci some_file.c

RCS/test.c,v <- test.c

new revision: 1.4; previous revision: 1.3

enter log message:
(terminate with or single ’.’)

»
As shown, RCS will confirm the check-in and prompt for comments. If a user wishes to enter

comments, they must be typed at the » prompt. There is no limit to the number of lines; the

log entry is terminated with either a or a period alone on a line.

6.2 Assigning a Revision Number

Revision numbers define the logical relationships between revisions. Generally, the initial

version of a file entered into a configuration management system (CMS) is called a baseline.

If the baseline is a release as defined in the next paragraph, it should be assigned a revision

number of 1.0. If it is not a release, it should be assigned a revision number of 0.0. The first

digit of a revision number is termed the release number. The second and subsequent digits are

called revision numbers.

A release is that incarnation of a series of versions of an item under configuration management

that is sufficiently changed from its predecessor such that it can be defined as a new conceptual

entity. If the incarnation is the oldest ancestor of the series, it is the baseline, and is of course

different from its predecessor, the empty set. The revision number of a release is generally of

the form jt.O, where x is the release number. Having zero as the revision number reflects that

no changes have yet been made to the release.

12

A Guide to Configuration Management and the Revision Control System for Testbed Users

The revision numbers order the lower-level changes that result in the higher-level ones which

differentiate releases. The revision number for a new release is automatically set to zero and

incremented by one as each subsequent revision is checked in.

RCS permits assignment of a specific revision number to a revision, via the -r option:

%ci -r2.0 some_fiIe.c

6.3 Assigning a Date

The -d option is used to specify the date:

%ci -d" August 30" some_rile.c

6.4 Assigning a Symbolic Name

A symbolic name is a string that can be assigned to a specific revision. The string becomes

functionally equivalent to the revision number. The symbolic name can consist of any

alphanumeric characters except periods. The assignment is done with the -n option:

%ci -ndistribution some file.c

For instructions on removal of a symbolic name, see section 7.4.

6.5

Assigning a State

Every revision has a state. If none is explicitly assigned, the revision is automatically

designated experimental (exp). Other states that RCS recognizes are alpha, beta, and stable.

When a file is designated an alpha release (cf. the forthcoming Procedures Document

mentioned in the introduction), an entry is made in the CheckOut script in the appropriate

directory in ~pdes. The commands in (TheckOut should reference a file by state, and should

therefore only require modification when the file changes state (i.e., fi'om alpha to beta or from

beta to stable). If the changed file is a component in a binary or library, the developer should

rebuild the binaryAibrary and deposit it in ~pdes/arch/bin or ~pdes/arch/lib, as appropriate. The

developer should be sure to delete aU object files after building a library or binary.

A state is assigned with the -s option:

%ci -sAlpha some file.c

13

A Guide to Configuration Management and the Revision Control System for Testbed Users

7 The RCS Command

The res command is used for a variety of functions, most of them administrative in nature.

Some of the functions of res are identical to those performed by ci, but provide the opportunity

to change archive attributes without going through a check-out and subsequent check-in.

7.1 Manipulating Access Lists

Each archive has an access list, though no restrictions are enabled so long as the list is empty.

The -a option is used to add users to the access list of an archive:

%rcs •2iuser_namesfilename

Names on the list should be separated by commas. The -A option is used to duplicate the access

list of one archive for another, as follows:

%rcs -Afilel file2

wherefilel is the source andfile! the destination. Use the -e option to remove names from an

access list:

%rcs ~e[user_names]filename

If no user-names are supplied, the entire access list is deleted. This makes the file available to

everyone (subject, of course, to UNIX security measures).

7.2 Designating the Default Branch

One branch of the revision tree is considered the default branch. Any RCS operations will be

directed at this branch, if none other is indicated. The default branch can be designated as

follows:

%rcs -blrev] filename

The revision number supplied should be that of the top node on the desired branch; if no

revision number is supplied, the highest branch on the trunk is designated the default.

7.3 Locking an Archive

Although the standard way to lock an archive is to use co -1, there may be times when it is

desirable to prevent anyone from modifying a file. One easy way to do this is to lock the archive

as follows:

%rcs ~\[rev] filename

14

A Guide to Configuration Management and the Revision Control System for Testbed Users

To unlock the archive:

%rcs ~\i[rev] filename

7.4 Symbolic Names

To assign a symbolic name to a revision, use either ci -n (see section 6.4) or res -n:

%rcs ’‘nsymbolic_namefilename

To remove a symbolic name, use -n with no argument:

%rcs -n filename

To replace a previously assigned symbolic name with a new one, use -N:

%rcs '‘^new_symbolic_namefilename

7.5 Updating Archives

To delete old and obsolete revisions from an archive, use:

%rcs -orangefilename

where range is of the form [revi][-][rev2]. One revision number alone will result in the

deletion of that revision. A revision number with a trailing hyphen will result in the deletion of

that revision and all that follow it on its branch. A revision number with a leading hyphen will

result in the deletion of that revision and all that precede it on its branch.

This procedure is recommended when appropriate. It frees up physical storage space and

results in cleaner and more efficient archives.

7.6 Assigning States

A revision can be assigned a state with ci -s (see section 6.5) or as follows:

%rcs -sstate[:rev] filename

If no revision is specified, the current one is assumed.

7.7 Modifying the General Description

Each archive has a general description which describes the entity under configuration

management, as opposed to comments on specific revisions. To modify the general description,

use the -t option as follows:

15

A Guide to Configuration Management and the Revision Control System for Testbed Users

%rcs ~i[txtfile]filename

The descriptive text in txtfile will be inserted into the archive. If the argument is left off, RCS
will prompt the user to input the text through the standard input. When finished, terminate the

text with a alone on a line.

8 Getting Information About Archives (rlog)

The rlog command will generate a listing of information from the archive of a particular file:

%rlog smush.c

RCS file: RCS/smush.c,v

Working file: smush
head: 1.2

branch:

locks: strict

bodarky: 1 .2

access list:

symbolic names:
comment leader: "#

"

keyword substitution: kv

total revisions: 2; selected revisions: 2

description:

This file is an ersatz application.

revision 1 .2 locked by: bodarky

date: 1991/03/04 15:27:18; author: bodarky; state: Exp; lines: +10 -11

fixed post-impact re-inflation bug

revision 1.1

date: 1991/02/28 18:39:29; author: bodarky; state: Exp;

Initial revision

9 RCS and other Gnu Software

RCS is distributed by the Free Software Foundation^, which also distributes other software

tools that can interact with RCS. Two of these are discussed in the following sections.

9.1 Gnumake

1 Free Software Foundation

675 Mass Ave.

Cambridge, MA. 02139

USA

16

A Guide to Configuration Management and the Revision Control System for Testbed Users

Make is a generic UNIX utility which can be used to automate the installation of large software

systems. The Gnu version of this tool is called gnumake. No provision for RCS need be made

in a Makefile to be used with gnumake; if a file is referenced in such a Makefile and not found,

gnumake wUl search for an appropriately named RCS archive and, if it finds it, check out the

file automatically.

9.2 Gnu Emacs

Gnu also has its own version of the powerful text editor emacs, called Gnu emacs. Emacs can

be very intimidating and confusing for the novice, and it is recommended that you not attempt

the following instructions unless you are already familiar with it.

When emacs is first invoked, it searches the user’s home directory for a file called .emacs,

which contains user-specific set-up information. The following three lines need to be

somewhere in the file in order for Gnu emacs to properly handle RCS:

(setq find-file-not-found-hooks ’(my-RCS-file))

(autoload ’ci "res’* ”RCS ci/co mode” t)

(autoload ’my-RCS-file ”rcs" " res ci/co mode" t)

When you have an emacs session running, and try to access a file, emacs will generally load it

from the current directory. If the file is not there, emacs will open a new-file buffer with the

name you have provided. When RCS-enabled, emacs will try to locate an appropriately named

RCS archive before it opens a new buffer. If the archive is found, gnu-emacs will check out the

file automatically, after asking you whether you want a read-only or writable copy.

Emacs does not automate check-in. After your modifications are complete, you must issue an

explicit check-in command to register your work in the archive. First type

<Esc>x ci

by holding down the Escape key and pressing lower case x, then releasing both and typing ci,

and then pressing the return key. You will then be prompted to enter a log message. Do so if

you choose, and then type:

by holding down the Control key and pressing lower case c twice. The file will then be checked

into the archive at this point.

17

A Guide to Configuration Management and the Revision Control System for Testbed Users

10 Glossary

Archive: A file containing administrative information for some entity configured under

RCS, the text of said entity, and a set of revision instructions (deltas) detailing all the

modifications that have been made to the entity. An RCS archive can be recognized by a ‘,v’

appended to the file-name.

Current Revision: The current revision is the default target for all operations that do not

specify a revision. It is the only revision in an archive for which the entire text is stored. Note:

the current revision is not necessarily the most recent revision, although it almost always is.

Delta: A complete description of the differences between one revision of a file and its

predecessor in the revision history.

Initial Revision: The first revision of a file, usually the text that is first entered into an RCS
archive. Its revision number is generally 1.0.

Level Number: The second (and any subsequent) field of a revision number.

PDES File System: A dedicated file system (called ~pdes) containing various items which

support PDES. Items stored there include software, documents, test data, etc.

Release: A release is a conceptual entity that consists ofone or more related software items.

In most cases, only one version of each item is included in the release.

Release Number: The first field of a revision number.

Revision: A snapshot in time of a file configured under RCS and under development. A
new revision is created when a modified version of a file is checked into an RCS archive. A
revision is denoted by its revision number.

Revision Number: The identifying number of a revision, establishing its place in the

revision history.

Revision History: The set of all revisions, each of which has a distinct revision number.

The revision numbers are arranged hierarchically, and the release and/or level numbers are

incremented with each subsequent revision.

Revision Tree: The data structure in which the revision history of an archive is stored. The

root node of the tree contains administrative information. It has one child (the sub-root, if you

will), which is the initial version of the file. Subsequent revisions are stored below the sub-root,

either in the tree’s trunk or in side branches (see Figure 10.1):

18

A Guide to Configuration Management and the Revision Control System for Testbed Users

Side Branches

Figure 10.1: A typical revision tree

Side Branch (of a revision tree): A side branch contains revisions with multiple level

numbers (e.g. 1.1.1, 1.1.2, 1.1.2.1, 1.1.2.2, etc.).

Trunk (of a revision tree): The tmnk consists of those revisions with a single level number

(e.g. 1.1, 1.2, 1.3, 1.4, 2.0, 2.1, etc.), which constitute the main path of revision.

Working File: A file that has been checked out of an RCS archive.

11 References

[Clark90]

[McLean91]

[Ressler90]

[TichySS]

Qark, Stephen Nowland, An Introduction to the NIST PDES
Toolkit . NISllK 4336, The National Institute of Standards and

Technology, MD, May 1990.

McLean, Chuck, National PDES Testbed Readiness Program:

Policies and Procedures . Internal Memorandum, March 1991.

Ressler, Sanford, and Katz, Susan, Development Plan:

Configuration Management Systems and Services . NISTTR 4413,

The National Institute of Standards and Technology, MD,
September 1990.

Tichy, Walter F., RCS - A System for Version Control. Purdue

University, Indiana, July 1985.

19

A Guide to Configuration Management and the Revision Control System for Testbed Users

Appendix A The Electronic Mailing Lists/Newsgroups

In order to improve communication between users of the configuration management system

and to facilitate dissemination of information concerning it, two local Usenet newsgroups have

been established at NIST. These newsgroups are also available as electronic mailing lists for

users off-site or anyone who would rather receive mail than read news. The two lists are

pdes.config.discussion and pdes.config.policy. To be added to (or removed from) either

mailing list, send an e-mail message containing your request to the NIST Configuration

Management System Administrator at pdescmsa(a)cme.nist.gov.

The discussion newsgroup is an open forum for general discussion of (or questions about) the

configuration management system. To submit comments or questions to the list, enclose them

in an e-mail message addressed to pdes-config.cme.nist.gov. Your message will appear in the

local newsgroup and be distributed as a mail message to everyone on the list, as will responses

to your message.

The policy newsgroup is a read-only newsgroup for quick dissemination of information, new
policy, and changes to old policy. Only the NIST Configuration Management System

Administrator can send messages to this list; messages from anyone else will be re-routed to

the Administrator.

20

