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NEW CONCEPTS OF
PRECISION DIMENSIONAL

MEASUREMENT FOR
MODERN MANUFACTURING

DENNIS A. SWYT

Precision Engineering Division

National Institute of Standards and Technology'

Gaithersburg, Maryland 20899

I. INTRODUCTION

A hallmark of modem products is the high precision of the dimensions of their

functional parts — high, that is, compared to that of their less-modern

contemporaries. Since the Industrial Revolution, such has been the case.

Modem products of the last century included certain factory-produced small

arms, the precision of whose parts allowed them to be interchangeably

assembled in the then-new system of mass production. Modem products of

this century are video cassette recorders, the precision of whose parts allows

read-write heads to be aerodynamically flown over the recording medium at

microscopic altitudes.

Since it is modem products which sell best, for U.S. manufacturing firms

seeking to compete better against evermore sophisticated foreign producers,

the ability to realize precision higher than that of their competitors is essential.

Precision, however, is relative not only to the capabilities of the competition,

but also to the size of the functional parts in question. Comparable degrees

of high precision are a common end for a wide range of manufacturers, from

producers of the very large, such as commercial aircraft, to producers of the

very small, such as nanoelectronic devices.
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This chapter presents a new scheme for the analysis of the dimensional

capabilities of measuring machines and machine tools aimed at the realization

of higher degrees of precision in the manufacture of dimensioned parts.

Successive sections deal with the range and types of dimensional

measurements, their relation to the basic unit of measure, the means for

making such measurements, and the errors associated with them. Application

of these principles is illustrated by a detailed analysis of the use of a laser-

based coordinate measuring machine for the measurement of a physical part.

Also included is an indication of how the identical analysis may be applied to

a machine tool which shapes such parts.

II. THE SCOPE OF DIMENSIONAL MEASUREMENTS

Manufacture of today’s most modem products requires the ability to carry out

precise dimensional measurements over a wide scope, one which includes

subtly different types and astonishingly different scales. Dimensional

measurements of all types and scales, however, are expressed in terms of the

basic unit of length.

A. The Range of Dimensional Measurements

The range over which precision dimensional measurements for the character-

ization of manufactured goods are made today spans nearly twelve orders of

magnitude, segmented into relatively well recognized regimes:

1. The Macro-Scale

On the large-size end of the range are products which are not so much
manufactured as constructed, that is, large-scale products often assembled on
site rather than manufactured on line. Macro-scale products such as ships,

aircraft, and spacecraft can have longest dimensions of the order of a hundred

meters.

2. The Mid-Scale

In the mid-size of the range are products the parts of which are manufactured

and assembled in the familiar factory environment, including a host of

commonplace products from automobiles to machine screws. Mid-scale

products have characteristic dimensions of the order of multiple- to fractional-

meters.
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3. The Micro-Scale

On the conventional small-size end of the range are products which are

manufactured within special machines such as optical, electron-beam, and x-ray

lithography systems. Less familiar products such as ultra-large-scale-integration

(ULSI) microelectronic devices. Micro-scale products have characteristic

dimensions often of less than a micrometer.

4. The Nano-Scale

Just emerging now is technology for the manufacture of products of the "nano-

scale,” including nanoelectronic (as opposed to microelectronic) transistor-type

devices 100 times smaller than those in present commercial production and

mechanical devices such as ultra-miniature pumps capable of implantation into

blood vessels and automatically metering out drugs. Nano-scale structures and

devices have features composed of small numbers of atoms and molecules and

have characteristic dimensions of the order of nanometers (10‘^m or 40

billionths of an inch). Achievement of high precision in dimensional

measurements at the nanometer scale demands utmost attention to physical-

scientific, engineering and metrological principles [1].

B. The Types of Dimensional Measurements

In the characterization of today’s most modem manufactured products,

precision dimensional measurements are carried out not only over a wide range

of dimensions but over a range of types, each of which, while intimately related

to the others, has a uniquely distinct role in measurement.

1. Position

a. Geometrical Concept of Position: In geometry, position is the location of a

point relative to either: another point, such as the origin of a one-dimensional

coordinate system; a line, such as an axis of a two-dimensional coordinate

system; or a plane, such as the reference surface in a three-dimensional

coordinate system. For a three-dimensional cartesian system, the formally

explicit expression for geometric position is a vector quantity:

P ^p{xx,yy,zz) (1)

where x, y, and z represent the coordinates along unit vectors x, y, z relative to

the (suppressed null-vector) origin of the coordinate system.
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b. Physical (Concept of Position: In physics, position is the location in space of

a physical body. In the rigid-body approximation, where the configuration of

that body is fully specified by six generalized coordinates (three linear and

three rotational) corresponding to its six degrees of freedom, position is given

by the three linear coordinates. Note that since both a rigid body and a

reference frame have the same six degrees of freedom, locating a body relative

to a reference frame is fully equivalent to locating one rigid body relative to

another. In a three-dimensional cartesian system, the formally explicit

expression for physical position is a vector quantity:

P = P (XX, YY, ZZ) (2)

where X, Y, and Z represent the coordinates of the location of one physical

body relative to the location of another physical body which acts as the

reference frame of the coordinate system.

c. Measurement Concept ofPosition: In measurements, position is the assigned

numerical value of the length of path between the single point which describes

the location of a physical body and the origin, axis, or plane of the one-, two-,

or three-dimensional coordinate system expressed in terms of the standard unit

of measure. In a three-dimensional cartesian system, the formally explicit

expression for measurement position is a vector quantity:

P = P ( XX, YY, ZZ) (3)

where X, Y, and Z, expressed in meters, represent the coordinates of the

location of one physical body relative to the location of another physical body

which acts as the reference frame of the coordinate system. Measurements of

position are made, for example, in precision surveying of geodetic coordinates

relative to control points and in measurements of the locations of points on
objects by means of coordinate measuring machines.

2. Displacement

a. Geometrical Concept of Displacement: In geometry, there is nothing fully

equivalent to displacement. However, the physical notion of displacement does

involve the geometrical notion of translation, where translation is the

transformation of a point at one position into a point at a different position by

means of the operation:

t = Pt-Po (4)
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where t is the vector of translation and and pi are the initial and final

position vectors of the point.

b. Physical Concept ofDisplacement: In physics, displacement is the change in

location in space of a physical body with time, that is, its movement from one

location to another, and is described by:

r = i>, (to - p. (to, (5)

where T is the translation representing the change in position with time of a

single body from position i^o(ti) at time one to position -Pf(t2) at time two.

c. Measurement Concept ofDisplacement: In measurements, displacement is the

assigned numerical value of the length of path between the location of a

physical body at an initial time and its location at a final time expressed in

terms of the standard unit of measure. In a three-dimensional cartesian

system, the formally explicit expression for measured displacement D,

expressed in meters, would be a vector quantity:

D = Pf (to - P, (t2), (6)

where the difference between Po(tO and Pf(t2) represents the change in

location, between times one and two, of one physical body relative to the

location of another physical body (which acts as the reference frame of the

coordinate system). Measurements of displacement are made, for example, in

the characterization of the travel of a stage by means of a laser interferometer,

where the stationary parts of the interferometer comprise the body which

defines the reference frame.

3. Distance

a. Geometrical Concept of Distance: In geometry, distance is the separation

between two points. In a three-dimensional cartesian system, the formally

explicit expression for geometric distance would be a scalar quantity:

d = I p, (x^ yi/, z,z) - P2 (x^ yyy, 22Z) I
, (7)

where x, y, and z represent the values of measured coordinates relative to the

usually-suppressed null-vector origin of the coordinate system.
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b. Physical Concept ofDistance: In physics, distance is the separation in space

of the locations of two objects. In a three-dimensional cartesian system, the

formally explicit expression for physical distance would be a scalar quantity:

d = I P,(X^ Y,Z Z,Z) - P2(X^ Y2Z Z2Z) I
, (8)

where d is the distance between two bodies located at positions Pi and P2

respectively.

c. Measurement Concept ofDistance: In measurements, distance is the assigned

numerical value of the length of path between the location of one physical

body and the location of another, expressed in the standard unit of measure.

A formally explicit expression for measured distance, expressed in meters,

would be a scalar quantity:

d = I P, (t,) - V, (t,) I

, (9)

where Pi(ti) and P2(ti) represent the locations of two different bodies at the

same time. Measurements of distance are made, for example, in the center-to-

center separation of engine cylinders and microelectronic circuit elements and

in the calibration of the spacings of the successive graduations of various types

of what are usually called "length scales," ranging from hundred-meter-long

survey tapes to micrometer-long "pitch" standards for optical- and electron-

microscope measurement systems.

4. Extension

a. Geometrical Concept ofExtension: In geometry, extension is the line segment

between two points which lie on a surface which is topologically equivalent to

a sphere such that all points on the line segment near the surface are either

interior to or exterior to the surface. Equivalently, extension is the line

segment connecting two points on a surface which have exterior normals with

components that are anti-parallel. A formally explicit expression for physical

extension e is:

e = I r„(t) - rb2(tlf+180°) I, (10)

where and rb2(t|r+180*) represent the locations of points on a surface

having exterior normals 180* apart.
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b. Physical Concept of Extension: In physics, extension is the amount of

physical space that is occupied by, or enclosed by, a material object. A
formally explicit expression for physical extension is:

E = \
- RU^+180°) I, (11)

where i?bi(^) and J?b2('l^+180*) represent respectively the locations of the

opposite-facing boundaries of the physical object which, for convenience, may
be expressed in terms of a vector radius from the centroid of the body.

c. Measurement Concept of Extension: In measurements, extension is the

assigned numerical value of the length of path between the location of one

boundary of a material object relative to the location of another opposite-

facing boundary, expressed in terms of the standard unit of measure. A formal

expression for measured extension is:

e =
l Pbi(il;)-Pb2(tl^4-180^) I (12)

where e is the extension and Pbi and Pb2 represent the locations of opposite-

facing boundaries of an object. Extension-type dimensions of objects include

height, width, diameter, and also "length”. Measurements of extension are

made in general to achieve physical fit between mating parts. Prototypical

examples of extension measurements are those in the automotive industry

wherein the outside diameter of piston rings and the inside diameter cylinder

walls are measured to insure slip fit. For analogous reasons, extension

measurements are also made in the microelectronics industry on critical

elements of microcircuit devices. Table 1 below summarizes key aspects of the

various types of dimensional measurements just described.

In familiar terms, each type of "length" relates to a different, but interrelated,

concern. For example, the "length" of an automobile (i.e. its extension)

describe how big a parking space is needed, the "length" of a racetrack (i.e.

its distance) describes how far it is between start and finish lines, and the

"length" of a stage’s travel (i.e. its displacement) describes how far its carriage

can move.
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Table 1. Description of the Quantity and Nature of the Length of

Path To Be Measured for Each of the Four Dimensional

Measurement Types

Dimension Quantity The Length of Path Is That Between:

Position Vector P The location in space of a single object

and an origin of coordinates (equiva-

lent to a second, reference object)

Displacement Vector D The change in location of one object

from time ti to time t2

Distance Scalar d The locations of two objects

Extension Scalar e The locations of opposite-facing boun-

daries of an object

III. THE BASIS OF DIMENSIONAL MEASUREMENTS

What "lengths” of all scales and types have in common is that each is measured

and expressed in terms of a unit of length. For that unit to be the internation-

ally standard unit of length, a formal definition must be operationally realized

and transferred.

A. Realization of the Unit of Length

The function of a unit of length is to provide a metric for the physical space

in which dimensional measurements are to be made. The function of a

standard unit of length is to provide a metric which can be used in common in

international science and trade.

1. The Formal Definition of the Meter

By treaty, the standard of length used in international science and trade is the

meter. The meter is part of the International System of Units (SI) and is

referred to as the fundamental, or SI, unit of length. Since 1983, the formal

SI definition of the meter as the unit of length has been:
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'"The meter is the length ofpath travelled by light in vacuum in

the time interval 1 / 299 792 458 of a second'' [2].

No longer based on lines scribed on a platinum-iridium "meter” bar (as it was

from 1887 until 1960), the meter today is the distance which light travels in free

space in (approximately) three billionths of a second.

2. The Derived Nature of the Meter

The new definition of the meter makes it in effect a derived quantity governed

by the length-time relation:

L = c-T, (13)

where L is the defined unit of length, c is the defined constant speed of light,

and T is the defined unit of time. The second is the SI unit of time and is

defined in terms of a fixed number of counts of the frequency of oscillation of

specific atomic states of a cesium-beam atomic clock.

3. The Operational Realization of the Meter

The meter is operationally realized through a chain of intercomparisons of the

frequencies of various microwave-, infrared- and visible-wavelength lasers,

based on the relationship of the frequency of electromagnetic waves and their

wavelength:

f • X, = C
, (14)

where f is frequency, is vacuum wavelength, and c is value of the speed of

light (that is, 2.99792458 • 10* m/sec). Based on this relationship, the ultimate

limit on the uncertainty associated with the realization of the meter is that of

the cesium clock, which is 10*^*- At present, for dimensional measurements

access in principle to the frequency cesium-beam atomic clock is through a

chain of intercomparisons of wavelengths of microwave, infrared and visible

sources by which the frequency of visible-wavelength lasers is determined.

B. The Transfer of the Metric to Physical Objects

In practical dimensional measurements, the means by which the SI unit of

length as the metric of physical space is transferred to measurements of

physical objects - fi'om automobile piston rings to microelectronic circuit

elements — is through a system which successively involves visible light of

known wavelength, displacement interferometry using that light, coordinate
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measurement systems based on that interferometry, and measurements on

ph
5
^ical objects using such coordinate measurement systems.

1. Visible Light of Known Wavelength

For dimensional measurements, the practical primary standard of length today

is the vacuum wavelength of the 633-nm red-orange line of an iodine-

absorption-stabilized helium-neon laser. One may realize the Sl-unit-based

wavelength, to a particular accuracy, by buying a commercial helium-neon laser

stabilized to a corresponding degree.

2. Displacement Interferometry

The means by which propagating laser light, which defines the metric of

physical space, is coupled to dimensional measurements in that space is

through interferometric measurements of displacement.

The prototypical displacement interferometer is the two-beam, Michelson

interferometer. The Michelson interferometer consists of a laser light source,

beam splitter, fixed reflector (either a plane mirror or retroreflector), moving

reflector and detector. In this type of interferometer the translation of the

moveable reflector, which must be parallel to the axis of propagation of the

laser light, is measured in terms of whole and fractional numbers of fringes

generated by the interference of the beams in the stationary and moving arms

of the interferometer.

The typical displacement interferometer of today employs the heterodyne

principal for measuring the change in optical phase between the two beams by

having one frequency-shifted with respect to the other. A widely-used

commercial heterodyne interferometer employs a two-frequency laser and the

displacement of a plane mirror or retroreflector is measured by means of two

channels of detectors, doublers, counters, subtractors and a calculator [3].

By whatever means the phase difference between the reference and moving-

mirror beams is measured, the operational link between the Sl-unit-carrying

wavelength of visible light and a displacement measurement is through the

interferometer equation:

D = Li - L2 = NXo / 2n„ • cos0, (15)

where D is the displacement, Li - L2 is the change in length (i.e., extension)

of the interferometer cavity, Xo is the vacuum wavelength of the laser light

used, N is the real number describing the counted integer-order and measured

fringe-fraction of the interference, n^ is the index of refraction of the medium,

and 0 is the angle between the optical axis of the interferometer and the
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direction of propagation of the incident light. In multi-pass fringe-fractioning

interferometers:

D = MA.O / 2nmK • cos9, (16)

where M is the counted integer-order and measured fringe-fraction of the

interference, m is the number of passes of the light through the interferometer,

and K is the number of electronic sub-divisions of the interference fringes

(typically a power of two ranging from 16 to 1024 depending on the system).

For the high-resolution commercial heterodyne interferometer system

described above, the limit of resolution, that is, the least count in displacement

measurement is about k /400 or 1.5 nm. Under development now at NIST is

a specially optimized heterodyne interferometer intended to realize a least

count of twenty times higher, that is, k /8000 or 0.07 nm.

Note that, as described here, in a laser displacement-interferometry system, it

is the value of the vacuum wavelength of the laser light which provides the

metric of physical space as the fundamental unit of length. It is the overall

interferometer system doing the subdivision of fringes which provides the

"scale,” that is, the metric-less subdivisions of that unit. In common usage,

however, displacement-measuring devices, such as interferometer systems, are

often called "scales" and perform both of the functions described here:

subdividing the axes (that is, providing the scale for an axis) and carrying the

metric (that is, providing the standard unit of length, relative to which the

"scales" have somehow been appropriately calibrated).

3. The Coordinate Measurement System

After the wavelength of laser light and displacement interferometry, the next

link to dimensional measurements of physical objects is a coordinate

measurement system. A coordinate measurement system is necessary for the

measurement of "position," that is, the location of a single point in space.

To establish a coordinate system, one must establish the means for realizing

the geometry for physical space, including: axes (one, two, or three depending

on the dimensionality of the system desired; an origin (the null-vector point

from which radiate the axes of the coordinate system); a scale along each ofthe

axes (that is, the graduation of each axis into subdivisions); and a metric (that

is, a single measure of distance in the space of the reference frame to which

the graduations of the axes relate).

In modem, automation-oriented manufacturing, the means by which the

geometry of the coordinate measurement system is realized and precision
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dimensional measurements are made, is the coordinate measuring machine

(CMM). A coordinate measuring machine embodies a coordinate system by

means of its essential functional components, which are its frame, scales,

carriages and probes as outlined in Table 2.

Today’s high-performance three-dimensional coordinate measuring machines

take on a wide variety of forms depending on the specific way in which each

of these functional components is embodied. Frames can be of the bridge or

cantilever-arm type. Scales can be ruled-glass optical encoders or enclosed-path

laser interferometers. Carriages can be translating and rotating tables and

moving bridges. Probes can be touch-fire or analog mechanical-contact types

or capacitive, optical, or machine-vision non-mechanical-contact types.

Table 2. The Principal Functional Components of a Coordinate

Measuring Machine (as well as of a Machine Tool)

Frame The frame is the geometry-generating structure,

which is the means for embodying the origin, axes,

and angular relationships which comprise a

coordinate system.

Scales The scales are the displacement-measuring devices,

which are the means for realizing the metric-based

graduations along each axis of the frame.

Probe The probe is the sensor system, which is the means
for linking the boundary of the object to be

measured to the frame and scales; in a machine tool,

the "probe" is a material-moving element rather than

a material-locating element as it is in a measuring

machine.

Carriage The carriage is the complete motion-generating system,

which is the means for translating the object to be

measured relative to the probe, frame and scales.

Whatever particular form a coordinate measuring machine takes on, its

fundamental function is to provide measurements of locations in space, that is,

of position. However, just as a manufacturer wants to buy holes not drills,

users of CMMs in manufacturing want measurements of dimensions of objects,

such as those of their products, not coordinates of locations in space.
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4. The Physical Object To Be Measured

The terminus of the series of linkages, which allow dimensional measurements

on physical objects in terms of the SI unit of length, is the object itself. Now
there are two different kinds of features on objects corresponding respectively

to the distance-type and the extension-type of dimensional measurements

described above.

a. Distance-Type Features of Objects: Distance-type features, include, for

example, the center-to-center spacings of cylinders of an automobile or spacing

of left-edges of successive microcircuit elements. While, in fact, always to some
degree extended, distance-type features are treated as extensionless points.

Thus, the distance between automobile cylinders is measured in terms of their

centroids. Similarly, the distance between the moon and the earth is center to

center. Measurements of distance type features are inherently, in effect, point

to point.

b. Extension-Type Features of Objects: Extension-type features include, for

example, the diameters of the automobile cylinders or the widths of the

microcircuit elements. This type of feature must be treated as made up of

boundaries that must be approached from opposite directions as in calipering,

in which one locates two points, one on each and measures the "distance"

between them. However, it is in the essential nature of extension measure-

ments that these boundaries are opposite facing. As \vill be seen below, it is the

practical and theoretical difficulty in locating properly such boundaries that

makes extension the most difficult type of dimensional measurement.

• • •

In sum, successful measurement of, for example, the diameter of an automobile

cylinder or the width of a microelectronic element in terms of the SI unit of

length requires dimensional measurements of each type in succession:

displacement, position, distance, and, finally, extension. The measure of

success in this succession of measurements at each level and in total is accuracy

achieved.

C. Standards-Imposed Limits to Accuracy

The accuracy in practical dimensional measurements depends on the

availability of standards for the calibration of the measuring machines by which

measurements are made. Attainable accuracy is ultimately limited by national

standards laboratories in measurements involving a realization of the meter.
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displacement interferometry, reference coordinate measuring machines, and

calibrated artifacts.

1. The Limit of Realization of the Meter

The ultimate limit to accuracy in practical dimensional measurements is the

accuracy with which national standards laboratories can realize the definition

of the meter. At present that limit is the uncertainty with which the visible

wavelength of the iodine-stabilized HeNe laser is known, that is, 10'^ compared

to the 10’^^ of the atomic clock. The meter as the unit-of-length metric of that

space can be accessed directly then through the vacuum wavelength of the

HeNe laser. Table 3 below shows the effective wavelength and uncertainty

associated with HeNe lasers stabilized by various means.

Table 3. Comparison of the Value and Associated Fractional

Uncertainty of the Vacuum Wavelength of Helium-Neon
Lasers of Various Degrees of Stabilization

Wavelength Value Uncertainty Type of
Stabilization

632. 991 nm 10 Free-running

632. 9914 10-7 Any one of a

number of

632. 99139 10-* opto-electronic
techniques

632. 991398 10’ Iodine Absorption

Cell

As indicated in Table 3, the fractional uncertainties ( AX/A. ) associated with

commercially available HeNe lasers range from the 10’^ of a free-running

device, through the 10*'^ specified stability of certain commercial lasers, and 10-*

short-term stability of some such devices, up to the 10'^ accuracy of the visible

wavelength of the iodine-stabilized laser as defined in the documents associated

with the definition of the meter and realized in laboratory devices.
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2. The Limit of Displacement Interferometry

After the ultimate limit to accuracy of dimensional measurements imposed by

the realization of the meter in terms of the wavelength of visible light, the next

limit to that accuracy is the degree to which measurements of displacement can

be made by means of optical-wavelength interferometry.

Based on work by national standards laboratories, the limit to the accuracy

of interferometric displacement measurements at a displacement of a meter is

estimated to be: 10*^ in air uncompensated for pressure, temperature and

humidity; 10''^ in fully compensated ambient air, and lO** in standard dry air.

Based on results by a variety of workers, a reasonable estimate for the practical

limit for displacement interferometry in vacuum is

3. The Limit of Coordinate Measurement

The next factor to limit the accuracy of dimensional measurements after the

realization of the meter and displacement interferometry is the ability to

embody a coordinate system in a measuring machine. At present, the highest-

accuracy coordinate measurement is achieved by national standards laborato-

ries on special-purpose one- and two-axis measuring machines.

At the U. S. National Institute of Standards and Technology, a machine for

the calibration of line scales over the range 1 pm to 1 m has associated with

it a total uncertainty of measurement Ut given by:

Ut = 10 nm + lO*”^ • s,
, (17)

where s^ is the separation of any two graduations on the scale. At one meter,

the positional error of this machine is approximately TIO""^ [4]. For a two-

axis machine used for the calibration of grid plates up to 600 mm square, the

corresponding positional error in routine use is 0.5 pm, corresponding to about
5-10-^ [5].

Currently unmet is the need in the microelectronic industry for an accuracy

of 50nm accuracy over 250 mm, that is, 2TO [6]. Because of a trend to

even more stringent requirements, for the regime of nanotechnology, there is

under development at the NIST a "Molecular Measuring Machine" [7], which

is a planar 50-by-50 mm xy-coordinate measuring machine (with a 100 pm z-

axis) which has a design-goal positional capability of:

Ut = 1 nm = lO"* @ 70 mm. (18)
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4. The Limit of Physical Artifact Standards

The limiting error in many practical dimensional measurements is the accuracy

of artifact standards (that is, physical objects), dimensions of which have been

calibrated by a national standards laboratory or by a secondary laboratory

referenced to it. Accuracies representative of various types of artifact standards

calibrated by NIST are shown in the Table 4 below.

Table 4. The T^pe, Range, and Accuracies of Some Dimensional

Standards Calibrated by the NIST

Dimensional Std Type

Survey Tapes d

Gauge Blocks d

Line Scales d

Photomask Lines e

Polymer Spheres e

Thin-Film Steps d

Range

1 mm to 300 m
1 mm to 0.5 m
1 pm to 1 m
0.5 pm to 20 pm
0.3 pm to 3 pm
0.02pm to 10 pm

Accuracy

5.0 pm + lO'^ • d

0.025 pm to 0.15 pm
0.01 pm + lO'"^ • d

0.05 pm
0.01 pm
0.003 pm to 0.2 pm

Note that because of their idiosyncratic nature and the intractability of dealing

with the very object-specific boundary-location errors, NIST calibrates

extension-type objects, such as integrated-circuit photomask linewidths [8],

only when the national interest justifies the major long-term theoretical and

experimental effort required.

Note also that while NIST provides measurement services for calibrations of

distance and extension (which involve associating the unit of length with

locations on physical objects), it does not calibrate displacement or position

(which involve associating the unit of length with a device-based process [9].

IV. ASSESSING DIMENSIONAL MEASUREMENTS

As suggested earlier, manufacture of modem products demands dimensional

measurements of not only exceptional precision, that is, the closeness together,

but also of exceptional accuracy, that is, closeness to a true value [10].

Especially in high-technology products including, for example, microwave

resonators for communication systems and x-ray optics for microelectronic
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lithography, accuracy is required because the dimension of device features is

dictated not just by design convention but by the laws of physics. As a result,

dimensions of features must not only be very close to a value but to the value.

This section looks at the assessment of dimensional measurements in terms

of statistical characterization of error, formal-theoretical characterization of

error, compounding of error and standards-imposed limits of error.

A. Statistical Characterization of Error

Physical measurement is itself a process, like manufacturing, which produces

output. The output of a measurement process is numbers, that is, the

measurement results. The quality of these numbers can be assessed and

characterized by means of measurement statistics in terms of precision and

accuracy. The manufacture of modem products demands dimensional

measurements that are of both high precision and high accuracy, however one

chooses to describe that combined state.

1. Precision-vs-Accuracy

a. Precision: As a concept, precision conveys the notion of closeness together.

As such, it is the principal figure of merit for the achievement of higher quality

in the sense of lower variability. Precision is conventionally represented

numerically in terms of the standard deviation from the mean for a number of

measurements presumed to be randomly drawn from a large population

describable by a Gaussian distribution function. The standard deviation for a

single such measurement Oi is given by:

Oi = [ (Ji
- . 1)

]i/2,
(19)

where and the summations Si are over the number of

measurements n. Where Oj is a measure of the precision of one measurement,

o„ is a measure of the precision of the mean of n measurements and is given

by:

On = Oi / n^^. (20)

Precision is given in terms of either one-, two- or three-sigma values for single

measurements, corresponding respectively to confidences of 68.3%, 95.5%, and

99.7%. National standards laboratories typically use 3on for characterizing

dimensional standards which they calibrate. Instrument manufacturers often use

2on for characterizing dimensional-measurement devices which they sell.
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b. Accuracyi As a concept, accuracy conveys the notion of closeness to a true

value. As such, accuracy is the principal figure of merit for the achievement of

interchangeability of components and physical operation in high-technology

devices. In those situations, actual not relative dimensions determine functional

performance. Accuracy is conventionally represented numerically in terms of

an estimate of the maximum that a measurement would likely be different from

a true or standard value. In metrological terms, accuracy is the estimate of the

degree to which measurements are free from systematic error and is represent-

ed by the term s.e.

2. Error or Total Uncertainty

The metrological term for a combined measure of precision and accuracy is

uncertainty or error. Total uncertainty includes a fully-described estimate of

systematic error and fully-described measure of precision. NIST, along with a

number of the national standards laboratories of other countries, typically uses

the three-sigma of the mean in the assignment of a total uncertainty given by:

Ut = s.e. + 3o„. (21)

Obviously, informed judgment must be made in how to sum and combine

systematic and random error contributions. For example, the magnitudes of

systematic errors may be added algebraically, that is, as signed quantities, if the

signs are definitely known or arithmetically, that is, without signs, if not.

Random errors may be added in quadrature if known to be uncorrelated or

arithmetically if not.

Throughout this chapter, the term "error” is used synonymously with

uncertainty Uj as described above and is denoted by the Greek character delta,

upper case (A) for total-type and lower (ft) for type-specific.

3. Additive-Multiplicative Representation

Dimensional-measurement errors from different sources can be either additive

in nature, that is, appearing as incremental off-set, or they may be multiplicat-

ive, that is, appearing as a length proportional. Total error can be of the form:

AC = A + B • C, (22)

where A is the additive error and B the multiplicative.
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a. Added and Multiplicative Components: Given a system in which errors from

a number of sources are to be combined to estimate the total error in a length-

based dimensional measurement of a given type, then:

A(! = (E6{^) + (SS^Bi) •<!, (23)

where A now is the sum Sj over individual additive contributions and B the

sum Sj over individual multiplicative contributions SCsb where A, and Bj can be

comprised of either or both systematic errors and random errors.

b. Manufacturers* Statements of Accuracy: Many commercial producers of

measuring machines conventionally quote an accuracy for the performance of

their products in additive-multiplicative form, as in, for example:

AL = 2pm + [
L(mm)/500mm

]
pm, (24)

which means that over the Im-travel of the machine, the accuracy of single

measurements of position would range from a minimum of2pm to a maximum
of 4pm.

B. Formal-Theoretical Characterization of Error

Simple assessments and statements of accuracy which put errors into the

simple additive-multiplicative form lump two types of additive errors, constant

off-sets and non-linearities, and provide an inadequate basis for identification

of the sources of error. For diagnostic purposes, the better approach is to

consider the most general case, that of a dimensional measuring system that

produces output which includes linear and non-linear terms in the form:

= a + (1 +b) • fit + c(fit"), (25)

where fiob, is the measured value, fit is the true length, a and b are constants

and c(fit“) is the sum of all non-linear terms. The error in measured values Afi

is then given by:

Afi = fiob, -
fit
= a + b •

fit + c(fit“). (26)

Each of the error components a, b and c describes a specific type of error

source and is a measure of the degree to which the measurement system has

realized a fundamental requirement of measurement.
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1. The Fundamental Axioms of Measurement

For dimensional measurements to yield physically meaningful results, they must

conform to axiomatically fundamental requirements given in the Philosophical

Foundations of Physics by Rudolf Carnap [11] and provided a more
accessible account by Simpson [12]. These axiomatic requirements are that

a measuring system must be able to rank order objects along the dimension of

measurement and to reproduce properly the unit, the zero, and the scale of

that dimension.

a. The Rank-Order Operator, The rank-order operator is the overall procedure

by which objects or processes being measured are ordered and assigned values

of the quantity being measured. In length-based dimensional measurements,

the ordering operator is equivalent to a comparison of two objects involving,

in effect, a translation in physical space. Each type of dimensional

measurement, however, requires its own particular realization of that ordering

operator. As a result, displacement, position, distance, and extension each

constitutes its own measurement dimension which must be operationally tied

to the dimension of physical space.

b. The Unit: The unit is the rank-order greater of two objects or states of the

physical system assigned a defining numerical value of the quantity being

measured. The unit is one of the two points required to specify what is

axiomatically a linear system. In length-based dimensional measurements which

conform to international standards, the unit is the SI unit of length. In practical

dimensional measurements today, the unit of length is an internationally-

accepted value for a well-defined wavelength of an iodine-stabilized HeNe laser

as discussed above in Section IIIA.

c. The Zero: The zero is the rank-order lesser of the two objects or states of the

physical system assigned a defining numerical value of the quantity being

measured. In effect, the zero is the other of the two points required to specify

the linear system. Implied by the definition of the unit of length is that the

zero of measurement has an assigned numerical value of zero (that is, I I

s 0) and that the zero of length of dimensional measurements is the length of

the path in space which light traverses in the zero interval of time.

In practical dimensional measurements, the zero corresponds to the physical

zero-vector origin of coordinates which must be practically realized in each of

the different dimensional types. For example, in l2iser interferometry, the zero

of displacement is the initial optical-path difference between the reference

beam and moving-mirror beam, one which must remain constant during

subsequent translation of the mirror in order to prevent loss of origin of
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displacement. In coordinate measuring machines, the zero of position is the

initial location of the tip of the probe relative to the interferometer reflector,

which must remain constant as the probe is moved about to prevent loss of

origin of position.

d. The Scale*. The scale is the set of equal graduations into which the difference

between the unit and the zero is divided. In effect, the scale is the condition

of linearity under which differences in dimensions are equal, that is, the

difference between one pair of objects is the same as the difference between

another pair. Operationally, the scale is the means for measuring in increments

smaller than the unit.

In practical dimensional measurements, the scale is the combination of a

physical transducer and a linearization algorithm by which linear interpolations

between known points can be carried out. For example, in displacement

interferometry, the scale is generated by interpolating between fringes using an

assumed sinusoidal function ofwaveforms for the linearization algorithm. Non-
linear transducers such as capacitance gauges - when used in conjunction with

suitable mathematical models of their responses -- can also be used to generate

the required linear scale.

• • •

In sum, the axioms of measurement define the requisite elements of a

measurement system, each of which must be operationally realized to achieve

meaningful results. The first axiom— the rank-order operation— defines the

dimension of measurement, such as temperature, time, voltage, or, in this case,

each of the four types of length. The other three axioms are the means by

which numerical values are associated with measurements of that dimension.

Table 5 below shows explicitly the form of the axiom errors for each of the

dimensional types.

2. Analysis of Error in Terms of the Axioms

Associated with each of the latter three axioms of measurement is a specific

t5q)e of error with specific, fixable causes. Errors of the unit, the zero and the

scale correspond respectively to the terms in Eq. 26 with a equal to the error

of the zero, b to the error of the unit, and to the error of the scale, that

is, the sum of all non-linear terms.

a. Error ofthe Zero*. Errors of the zero occur for measurement systems which

have a properly linear relation of measured value to true value, Cob« to but

have a non-zero value at = 0, that is;
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Table 5. The Matrix of Errors by Measurement Axiom and Dimen-
sional Type in General Form

Dimensional Error of

Type the Zero

Displacement

Position ap

Distance ad

Extension ae

Error of Error
of

the Unit the
Scale

bo -D Cd(D
“)

bp -P Cp(P*)

bd -d c,(d‘)

be • e c.(e")

^ob. = ^, + a (27)

and ACj = a.

An error of the zero arises, for example, due to a shift in the origin of

coordinates in the course of a dimensional measurement.

b. Error of the Unit, Errors of the unit occur for measurement systems which

— while having a properly linear relation of measured value to true value —
have a non-unitary slope, that is:

^ob. =(l+b)*C, (28)

and = b • Cf

Error of the unit corresponds, for example, to an erroneous value of

wavelength in displacement interferometry or a constant misalignment of

coordinate and object axes.

c. Error ofthe Sccde: Errors of the scale occur for measurement systems which

have a non-linear relation of measured value to true value, that is:

AC, =c(Ct*). (29)
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Error of the scale represents failure of the interpolation scheme to divide the

difference between the unit and the zero into strictly equal intervals, that is, the

degree to which the system is nonlinear. The measurement system is linear,

if given four objects (i.e., four displacements, positions, distances or extensions)

for which the true difference between pairs is the same, the measured

differences are also the same. Error of the scale is, by definition, the inequality

in those differences, that is:

{ ^obsl
• ®obs2) ( ^obi3 •

^ob84 ) (30)

when ( ^ti
-

^t2 ) = (
-

^t2 ) •

That the error of the scale corresponds to a non-zero value of the coefficient

c(J,") can be seen when the non-linear response of a dimensional measurement

system is given a specific form, such as the quadratic:

«ob. = a + (l+b) •
{, + c«,2

. (31)

Evaluation of Eq.30 at four values of Ct, denoting the differences in the pairs

of true values by Aj, and substitution into Eq. 26 leads to the result:

A(» =c ‘((la-du) -Ai. (32)

An error of the scale arises, for example, from to faulty interpolation of fringes

in interferometry or uncompensated nonlinearities in LVDT or capacitive

displacement measuring devices.

d. Errors of ZerOy Unit and Scale: In summary, the axiom-specific errors for the

general case that Cob. = a + (1 +b) • are given by:

= AC, + AC. + AC, = a + b • + c(Ct“) (33)

where: a corresponds to AC,, the error in realizing the zero; b corresponds to

AC«, the error in realizing the unit; c corresponds to AC,, the error in realizing

the scale; and C is any one of the four dimensional measurement types.

V. PRINCIPAL SPECIFIC SOURCES OF ERRORS

Errors in dimensional measurements are particular to each of the different

types and, since each succeeding type is dependent on that which precedes it,

total error increases as one proceeds from the displacement, position and

distance to the extension of objects.
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A. Error in Displacement Interferometry

The type of dimensional measurement most directly linked to the SI unit of

length and the basis for all subsequent types of dimensional measurements is

displacement by laser interferometry, that is, the measurement of a linear

change of location in space with time of a single object, in this case, the moving

mirror of the interferometer. The measure of the limit of this ability is

displacement uncertainty or error, 5D. Errors in measurement of displacement

by laser interferometry are associated with each of the terms in Eq. 15.

1. Error of Wavelength in Vacuum

The uncertainty in the wavelength in vacuum of the laser light depends on the

type of stabilization used in its construction. As indicated in Table 3 above,

uncertainty in the vacuum wavelength of the 633-nm red-orange line of the

helium-neon (HeNe) lasers widely used in dimensional metrology range from
10'^ for unstabilized lasers down to 10'^® for iodine-stabilized ones.

2. Error of Index of Refraction of Medium n

The uncertainty in the wavelength in medium of the laser light depends on the

index of refraction of the medium through which the light propagating in the

interferometer passes.

a. Error of the Index ofAmbient Ain Since index of refraction of a gas is a

function of its temperature, pressure, humidity and composition, without

compensation for actual variations in those parameters the upper limit of

uncertainty for interferometric displacement measurements in ordinary ambient

air can be large: for example, an index error of 10'*^ would result from any one

of the following variations: a one degree Centigrade change in temperature, a

2.5 mm Hg change in atmospheric pressure, or an 80% change in relative

humidity [13].

b. Error of the Index of Compensated Standard Ain Errors associated with the

index of refraction of the ambient medium can be reduced by compensation

achieved by measurement of the index of the actual ambient air or by

calculation of the index of standard dry air. The Edlen formula is an interna-

tionally agreed upon equation for the calculation of the index of refraction of

standard air as a function of wavelength, air temperature, air pressure and

relative humidity [14].

With compensation, the lower limit of uncertainty for practical laser

displacement interferometry in ambient air is estimated to be about 1.2 * lO*"^
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[15]. The uncertainty in the Edlen formula itself for the index of refraction

of standard dry air is estimated to be 5 • 10** [16]. Operation of an

interferometer in vacuum eliminates this source of error.

c. Error ofIndex ofRefraction in the Dead Path: So-called "dead path" error is

due to improper compensation for the difference in the lengths of the optical

paths of the two interfering beams at the zero-displacement position of the

system when index-altering environmental changes occur during the course of

the displacement measurement. For commercial systems which use sensor-

based index compensation, dead-path errors are largely compensated for in

software, leaving a residual error of 1.4 • 10*^ times the dead-path distance.

3. Error in Fringe-Fractioning

Errors in realizing a scale by means of displacement interferometry arise from

various sources in the process of the generation, subdivision and counting of

the interference fringes. Representative of such errors are those which arise

in widely-used displacement interferometers of the polarization beam-splitting

type. The principal sources of error in this type of system are those associated

with electronic subdivision, polarization mixing, thermal drift and dead path

[17],

a. Error in Electronic Subdivision: The inherent half-wavelength resolution of

interferometers, corresponding to the spacing of the alternating light and dark

of the fringes, can be extended by a variety of electronic fringe-interpolation

schemes, each of which has its own limiting resolution which contributes an

additive, least-count error. Operating at 633 nm, certain commercial

polarization heterodyne interferometer systems have least counts in electronic-

subdivision, depending on the whether used with retro-reflectors or plane

mirrors, of A./32 (approximately 20 nm) and A./64 (approximately 10 nm)
respectively.

b. Error from Polarization Mixing: Less-than-perfect separation of the

polarization states of the interfering beams in polarization-type interferometers,

due to leakage of one component into the other, produces a non-linear error

in displacement measurement with such systems. Such error varies as a

function of change in optical path with a periodicity of the wavelength of the

laser source with an amplitude specific to an individual interferometers. For

one commercial linear interferometer system, the peak-to-peak phase error was

found to be 5.4® corresponding to approximately 5 nm.
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c. Error from Thermal Drift: Changes in temperature within the optical

components of the interferometer system, which produce a differential change

in path optical length between the interfering beams, give rise to drift type

errors in displacement measurement. This environmentally induced error is less

for temperature-controlled systems and those which are specifically designed

to deal with this source of error. An example of the latter has a quoted thermal

error of 40 nm/C®, twelve times better than a conventional plane-mirror system

with its 0.5 pm/C® [12].

4. Error in Alignment of Interferometer

Finally, constant angular misalignment between the interferometer and the

incident light gives rise to an error (derived from the basic interferometer

equation):

5De = D • (-02/2), (34)

where 5De is misalignment contribution to the displacement error, D is the

measured displacement, and 50 is the small angle of misalignment between the

axis of interferometer (the normal to the parallel faces of the interferometer

mirrors) and the axis of propogation of the incident laser light.

• • •

In sum, this section has looked at sources of errors in the type of dimensional

measurement most directly linked to the SI unit of length, those of laser

displacement interferometry by the best available form of that technique,

polarization-type heterodyne interferometry.

B. Error in Coordinate-Position Measurement

After displacement, the type of dimensional measurement next most directly

linked to the SI unit of length and inherent in subsequent types is position, that

is, measurement of the location of a single point relative to a coordinate

system. The measure of the limit of the ability to measure position is position

error, 5P. Errors in position measurements are associated with each of the

functional components of the coordinate measurement system as embodied by

a coordinate measuring machine: the scales, frame, carriage and probe.
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1. Error In Relation to Displacement Scales

Lack of commonality of origin and co-linearity of axes of the coordinate-

position measurement system and the displacement system, which supplies the

metric and scale subdivisions, gives rise to two types of errors specific to

positional measurement.

a. Misalignment ofMirror Translation: Constant angular misalignment between

the axis of the displacement measurement and the axis of the coordinate

system gives rise to "cosine error,” which is governed by the relationship:

P = D / cos a (35)

where D is the displacement, P is the coordinate position being assigned by the

measurement and a is the angle of misalignment between the two. For a

displacement generated by an interferometer system, a is the angle between

the axis of translation of the moving mirror and the optical axis of the

interferometer (i.e., the normal to the parallel faces of the reference and

moving mirrors). For a small angle, the cosine error contribution to

coordinate-position error, a multiplicative error, is given by:

6Pe = D • ( -a2/2). (36)

Cosine error arises, in effect, when the axis of the displacement vector and axis

of the coordinate vector are rotated with respect to each other but have a

common origin. [Note that the errors due respectivelt to misalignment of

interferometer and light (Eq.34) and misalignment of mirror translation and

interferometer (Eq.36) are of the same sign while that due to misalignment of

object and mirror translation (Eq.40) is opposite (Appends A)].

b. Abbe Error, Abbe error can arise when the axes of the displacement vector

and the coordinate vector do not share a common origin and they rotate with

respect to each other, that is, tilt, during the course of the displacement. Abbe
error is governed by the relationship:

D = P + O. • sin (|> (37)

where D is the measured displacement, P is the coordinate being assigned by

the measurement, O* is the lateral distance between the displacement and

coordinate axes (called the Abbe offset), and (j> is the angle of tilt which occurs

during the course of the displacement measurement. For small angles, the

27



Abbe error contribution to coordinate-position error, which is an additive, is

given by:

6P, == O, • (38)

2. Error Related to Carriage Motion

Carriage-associated position-measurement error occurs in measuring machines

in which the motion-generating system (which translates the object relative to

the reference frame) is the same as the displacement-measuring system (which

measures that translation) as, for example, in a machine which uses the same

lead screw both to move a carriage and to measure its position. For such

machines, carriage-associated errors include backlash and hysteresis, both of

which are direction-dependent and result in loss of origin of the coordinate

system.

3. Errors Related to Reference-Frame Geometiy

Limitations in the mechanical structure of a coordinate measuring machine give

rise to positional errors associated with the machine’s coordinate axes and their

angular relationships. Since the reference frame of a coordinate measuring

machine must consist of one highly-planar reference surface for each

coordinate axis with each of these planes angularly oriented with respect to the

others in a constant and well known way, the errors associated with reference

frame geometry are complex.

Characterization of the positional errors in a 3D CMM requires dealing with

twenty-one degrees of freedom based on six degrees per axis (three

translational plus three angular, including roll, pitch and yaw) plus the three

angular orientations of the axes with respect to each other. Specialized matrix-

based models and measurement algorithms for characterizing positional errors

in coordinate measuring machines and machines tools have been developed

[18,19] and standardized techniques adopted [20].

4. Error Related to the Probe

Limitations in the mechanism for linking the object to be measured to the

machine’s coordinate measurement system give rise to positional errors

specifically associated with the machine’s probe. Probe-specific errors are of

two types, depending on whether the probe is designed to carry out only

functions of a probe as a simple sensor or a probe as a measuring machine.

a. Positional Error of Probe-as-Senson Positional errors of a probe-as-sensor

arise to the degree that it fails to carry out its primary function, that of

28



detecting - in a binary sense of "here" or "not here" - the boundary of an

object, such as to locate it relative to the coordinate system of the machine.

Positional errors of probe-as-sensor include what in touch-trigger mechanical-

contact probes is called "pre-travel," that is, the displacement of the probe tip

after contact with the object but before the probe signals that contact. Such

error arises, for example, from variations in bending of the probe structure and

the threshold response of the mechanical-to-electrical transducer.

b. Positional Error of Probe-as-Measuring-Machinei Positional errors of a

probe-as-measuring-machine arise in, for example, "analog probes," which are

designed not only to carry out the primary function of linking machine and

object, but also to provide an output signal proportional to the displacement

of the probe tip on contact with the object. Positional errors of analog probes,

being as they are miniature measuring machines attached to a larger machine

include: 1) errors of the probe as a sensor; 2) errors of the probe as a

measuring machine (including those associated with scale, frame, and carriage);

and 3) errors associated with the orientation of the probe as one coordinate

system with respect to another.

• • •

In sum, this section has looked at sources of errors in measurements of

position, which after displacement, is the next most directly linked to the SI

unit of length. As indicated, position error deals with the ability to measure

location of points in space and are associated with each of the functional

components of a coordinate measuring machine by which such position

measurements are made.

C. Error in Distance Measurement

After displacement and position, the type of dimensional measurement next

most directly linked to the SI unit of length is that of distance, that is,

measurement of the separation of two successively located point-like features

on material objects. The measure of the limit of the ability to measure

distance is distance error, 6d. Errors specific to measurements of distance are

associated with the probing, angular alignment and environmental-dependence

of separation of distance-type features of the object
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1. Distance Error from Feature Probing

Errors of feature probing arise from variations in the size, shape and material

of the individual point-, line- and plane-like features, the separation of which

is being measured in a distance measurement. Such variations limit the ability

to reproducibly locate features with a probe. Errors associated with such

variations are assessed in terms of the repeatability with which the probe of a

particular coordinate measuring machine can be set on a particular feature.

2. Misalignment of Object and Coordinate Axes

Misalignment between the object being measured and a coordinate axis of the

measuring machine gives rise to cosine error governed by the relationship:

d = 1 Pi - P2 I
• cos Y, (39)

where Pi and P2 are the measured coordinate positions of the point-like

features, d is the distance being measured and y is the angle of misalignment

between the coordinate axis and that of the object itself. For a small angle, the

cosine error contribution to distance error is given by:

6d, = d • (+y2/2). (40)

3. Error from Object Environment

Apart from the effects of changes in the environment on displacement-

measuring devices and the measuring machine itself, such environmental

changes give rise to errors associated with the object itself, including those

cissociated with thermal expansion, mechanical distortion and contamination.

a. Error from Object Thermal-Expansion: Distance error due to thermal

expansion of the object can be due to different temperatures for the whole

object or different temperatures for two positions on the object. In either case,

variation in the dimensions of the object with temperature are governed by the

equation:

p = - (Ad / O / AT, (41)

where p is the coefficient of linear thermal expansion of the material and Ad/do

is the fractional change in the "length" of material for a difference in

temperature AT. Note that since thermal expansion is defined in terms of the
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change in length (either between distance-type features or extension-type

boundaries), it is inherently a distance-type property given by:

6dT = p * AT. (42)

b. Errorfrom Object Distortion: Distance error can also arise from any other

factor which, in effect, distorts the object by altering the relative separation of

features of the object. Such factors include any local or overall mechanical

distortion of the object due, for example, to fixturing of the object on the

measuring machine; and any gain or loss of material on one feature with

respect to the second due, for example, to contamination or wear.

In sum, this section has looked at sources of errors in measurements of

distance is, which after displacement and position, the next most directly linked

to the SI unit of length, such errors being associated with measurement of the

separation of two point-like features of material objects.

D. Error in Extension Measurement

The type of dimensional measurements operationally farthest removed from

the primary realization of the SI unit of length is that of extension. The
measure of the limit of the ability to measure extension is extension error, 6e.

Most specific to the measurement of extension-type features of objects, such

as the inside diameters of holes and the outside diameters of plugs, is error

associated with locating a single boundary and error associated with locating

one boundary relative to another one.

1. Error in Location of a Single Boundary

a. Error in Reducing a 3D Surface to a Point: Errors occur in measuring the

location of a real boundary because a material object is not an ideal

geometrical surface being intersected by a line such as to define a point.

Instead that boundary is a rough three-dimensional surface being contacted by

a finite-area probe. Estimates of the contribution to boundary-location errors

for specific object-probe combinations may be made based on measurements

of surface roughness, which involves statistical averaging over surface irregulari-

ties. Boundary-location errors due to surface roughness can be comparable to
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the roughness itself, which for a highly-polished steel surface, for example, can

be of the order of 0.05 pm.

b. Error in Compensation ofProbe-Object Interactioni Errors occur in measuring

the position of a single boundary as a result of any uncompensated off-set

between the location of the probe and the location of the surface which the

probe signals. For example, in locating the boundary of a machined part with

a mechanical stylus, single-boundary-location errors occur due to incomplete

compensation for both: the finite radius of the probe and its finite penetration

into the part. Analogous errors occur in locating the boundary of a microcircuit

element with the beam of an electron microscope.

Compensation for probe-object interaction, such as the deformation of a part

by a mechanical stylus and penetration into the bulk of a material by an

electron beam, can only be done by fundamental theoretical modelling of the

specific probe and object involved. Of necessity, such modelling has been

done, for example, for high-accuracy optical- and electron-microscope

calibrations of photomask linewidth standards for use in the microelectronics

industry
[
21 ].

• • •

In sum, error in boundary location is a vector having a magnitude (associated

with, for example, the finite roughness of the surface, the finite extent of the

probe and the finite depth of penetration of the object by the probe) and a

direction, positive or negative, relative to the axis of coordinate measurement.

2. Error in Location of Two Boundaries

In measurements of extension, errors in the location of one boundary combine

as vectors with errors in the location of the second boundary— that is, one of

opposite orientation— and the results are non-canceling, as indicated by:

5, = 6Pm + 6Pb2, (43)

where 6 Pbi i^ the error in the location of the first boundary and 6Pb2 is the

error in the location of the second.

For the case that the boundary-location error is the same for the two

boundaries, that is, where the magnitude of 6 Pbi equals that of 5Pb2, the error

in extension measurement due to the combination of the two boundary-location

errors is:

5e = 26Pb, (44)
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where the minus sign is for outside-caliper measurements (as in the diameter

of a plug) and the plus sign is for inside-caliper measurements (as in the

diameter of a hole) when the boundary-location errors are due, in effect, to

"penetration” (positive or negative) of the object by the probe.

An example of a positive boundary-location error is that due to the finite

radius of a mechanical probe (that is, the extension of the probe tip along the

axis of measurement). An example of a negative boundary-location error is

probe pre-travel (that is, the finite displacement of the probe along the axis of

measurement after mechanical contact with the object, but before the probe

transducer crosses a threshold and signals).

Additive boundary-location errors are unique to extension-type measure-

ments. In measurements of displacement, position and distance, the boundaries

involved face in the same direction and boundary-location errors cancel, that

is:

5PD,P,ord = 5Pb- 5Pb ^ 0. (45)

E. Compounding of Error in Measurement Types

A final aspect of assessing accuracy in practical dimensional measurements

involves a look at the cascading nature of the errors in the succession of the

dimensional measurement types. This cascading, that is, accumulation, of

errors is shown formally below, where A represents the total uncertainty of the

type of measurement and 5 represents the type-specific error in that total.

In this notation, the total error in displacement measurement AD a function

of 6D, which is all the displacement-specific errors described in Section IVA,

plus AXo, which is the error specific to the metric-carrying vacuum wavelength

of laser light source, and is given by:

AD = AD(5D,5Xo). (46)

Similarly, the total error in position measurement Ap a function of 5p, which

is all the position-specific errors described in Section IVB, plus AD, which is

the total error in displacement measurement, and is given by:

Ap = Ap(5p,AD) (47)

= Ap(5p,6D,5A.o).

And again, the total error in distance measurement. Ad, a function of the total

error in position measurement, plus all the distance-specific errors described

in Section IVC above, and is given by:
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Ad = Ad(6d,Ap) (48)

= Ad(6d,5p,5D,6A.o)

Finally, the total error in extension measurement, Ae, a function of the total

error in distance measurement, plus the extension-specific errors described in

Section IVD above, and is given by:

Ae = Ae(6e,Ad) (49)

= Ae(6e,6d,5p,6D,6A.o)

As is indicated by this formal analysis, the accuracy of each type of dimensional

measurement depends on — and is limited by the total error of the

preceding type, as well as by the sum of its own type-specific errors.

In sum, measurements of extension are the most difficult in which to achieve

accuracy because they inherit all the errors of the successive displacement,

location and distance measurements upon which they are based and, addition,

are subject to intractable boundary-location errors to which the others are not.

VI. ERROR-BUDGET EXAMPLE

All of the considerations of accuracy assessment discussed above can be taken

into systematic account in the assessment of the errors in a particular

dimensional measurement system by compilation of an error budget for the

measuring system in question. In this example, a simple sum-over-errors is used

to estimate the total worst-case error; other means for estimating the most

likely errors have been described [22].

The example considered here is measurement of an extension-type object on
a laser-interferometer-based single-axis coordinate measuring machine. In this

example, the overall system a function of a stabilized HeNe laser, a commercial

heterodyne interferometer system, a machine frame with a moving carriage, a

touch-fire probe, and a lOOmm-long steel rod, the length of which is to be

measured, all within a normal atmospheric environment.

Table 6 below shows a compilation of the contributions to the overall

accuracy of measurement of the specified object with the hypothetical

coordinate-measuring-machine system described. The organization of the error

budget follows the sequence of the type scheme used throughout the chapter.
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In the table, and d^Bi represent, respectively, additive and multiplicative

contributions to the type-specific errors. The values are estimates of the

relative size of error contributions from the various sources. In the following

sections, each of the individual contributions to the type-specific errors for this

hypothetical example are discussed in turn.

A. Displacement Errors

In this example the errors in the laser-interferometric measurement of the

displacement derive from displacement-specific errors associated with each of

the parameters in the basic interferometer equation plus the error associated

with the vacuum wavelength of the laser light.
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Table 6. Error-Budget Example: An Analysis of a Measurement of

the Extension of a lOOmm-Long Object with an Interferome-

ter-Based Coordinate Measuring Machine

Error Contribution by Source 5«ai hi

Interferometer Least Count 5Nt 0.005pm
Beam-Polarization Mixing 0.002pm

Machine-Path Atmosphere SOp. 10 ppm
Compensated SOp. 0.15 ppm

Optics Thermal Drift 0.02 pm
Dead-Path Compensated Snap 0.015pm
D-vs-A. Alignment se,. 0.05 ppm

Sum of D-Specific Errors 6D 0.042pm 0.20 ppm
Vacuum-Wavelength Error 6A.O 0.02 ppm
Displacement Error Total AD 0.042um -1- 0.22 ppm

P-vs-D Alignment SP* 0.05 ppm
Carriage Abbe Tilt 6Pp 0.24 pm
Probe Setting 5Pp 0.50 pm

Sum of p-Specific Errors 5P 0.74 pm 0.05 ppm
Displacement Error Total AD 0.042pm 0.22 ppm
Position Error Total A^ 0.782um + 0.27 ppm

O-vs-P Alignment 6d^ 1.5 ppm
Thermal Expansion 6dp 1.0 ppm
Point-Feature Definition 6d. 0.10 pm

Sum of d-Specific Errors 6d 0.10 pm 2.5 ppm
Position Error Total Ap 0.782pm 0.27 ppm
Distance Error Total Ad 0.882um + 2.77 ppm

Arbitrarily Located Bndry Sen 1.0 pm
Compensated Sep, 0.1 pm

Shape-Averaged Boundary 6Cbm 0.2 pm

Sum of e-Specific Errors 5e 0.3 pm
Distance Error Ad 0.882pm 2.77 ppm
Extension Error Total Ae 1.182um + 2.77 ppm
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1. Fringe-Fraction Error 50^

The contributions to displacement-specific measurement error are due to

errors in determination of the change in the order of interference with the

translation of the interferometer reflector:

N = i + f, (50)

where N is a real number which is the sum of the counted order i and

measured fringe fraction f. Practically, the total error in N is associated with

error in interpolating between fringes, that is:

6N = 6f. (51)

In this example, the contributors to error in fringe-fractioning are the 5nm due

to the least count of interferometer and the 2 nm due to the mixing of the

polarization states of the interfering beams.

2. Index-of-Refraction Error 5D„

Contributions to displacement-specific measurement error arise from variations

in the indices of refraction along the optical paths of the interfering beams due

to changes in environmental conditions. The variation in phase between the

two beams as a function of variations in the individual indices of refractions in

each of the segments of the reference- and moving-arm beams is given by:

5A(t) = (271/A.,)
[ Si 6nri •

(!„ - Sj 5n„i •
(!„i ], (52)

where S, indicates a sum over the i number of optical-path segments nj •
^i in

each of the arms. In this example, the principal segments of the overall optical

path include the CMM machine-axis path along which the moveable reflector

is translated, the dead path, and the interferometer-optics path, that is, the

glass through which the light passes.

a. Machine-Path Atmosphere: The first and major source of index-of-refraction

errors is the variation of the atmospheric air along the displacement path. The
following show the changes in temperature, pressure, and relative humidity

each of which gives rise to a displacement error of lO*^:

dn^T = 1 ppm / VC
ftn^p = 1 ppm / 2.5 mm Hg (53)

ftn^H = 1 ppm / 80% ARH.
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In this example, a ±0.5®C change in temperature, a ±25 mm change in

pressure, and a ±10% change in relative humidity combine to produce a

multiplicative error of about 10 ppm. With measurement of the changes and

compensation for them, this is reduced to 0.15 ppm.

b. Interferometer-Optics Thermal Drifti The second source of index of refraction

error is change in the temperature of the glass components of the interferome-

ter through which the light in the two beams passes. In this example, optics

thermal drift error is 0.02 pm.

c. Deed-Path Compensation: A last source of index of refraction error is change

in temperature, pressure, and humidity of the dead-path (the difference in the

interferometer arms at the starting point of the machine-axis path). In this

example, compensation has reduced dead-path error to 0.015 pm.

3. Interferometer-Axis Alignment Eiror

The contribution to displacement-specific measurement error due to the

angular misalignment 0ti between the axis of the interferometer and the axis of

propagation of the incident light is, for a small angle of misalignment, given by:

dDeti - D • (- 0,2/2). (54)

For an angular alignment corresponding to a lateral displacement of one-tenth

the spot size of a 3mm-beam at the one-meter travel of the measuring machine

stage, 0, = 3x10'^ radians and the resulting error 6Da, is 0. 05 ppm.

4. Sum of Displacement-Specific Errors 5D

In this example, the total displacement-specific error 6D is the sum of the

errors due to fringe-fractioning, index of refraction, and angular misalignment

of translation-propagation axes and is given by:

5D == EiSDi

= (USD^i) + (S6DBi)*(! (55)

= 0.042 pm + 0.20 ppm • D .

At a displacement of 100 mm (corresponding to the extension of the object

being measured), the sum of the displacement-specific errors is:
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SDjoo = 0.062 Jim = 0.62 ppm @100 mm (56)

5. Vacuum-Wavelength Error

The contribution to the total displacement measurement error AD due to the

error in the value of the vacuum wavelength of the laser is:

- D, (57)

which for the highly stabilized commercial laser of this example is 2-1 O'*. Thus,

6Dxo = 0.02 ppm • D. (58)

6. Total Displacement Error AD(6D,5A.o)

As indicated, combining the displacement-specific error 6D with the error in

the vacuum-wavelength of the laser source yields the total displacement

error AD over the one-meter travel of the measuring machine stage, that is:

AD = 6D + 5A.O

= (SSDai) + (SSDbO • H + (5 V>.o) • (59)

= 0.042 Jim + 0.22 ppm • D

For a displacement measurement corresponding to length of the 100-mm-long

object, the total error in the displacement measurement is:

AD = 0.064 Jim = 0.64 ppm @ 100 mm. (60)

B. Error in Position Measurement AP

In this example the errors in the coordinate-measuring-machine measurement

of position derive from errors associated with the geometrical relationships

among the scale, frame, carriage and probe of the CMM and the setting ability

of the probe itself.

1. Misalignment of Coordinate and Displacement

The contribution to position-specific measurement error due to the angular

misalignment 4) between the axis of translation of the mirror and the axis of the

interferometer is, for a small angle, given by:
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5?^, = D • (. 4)2/2). (61)

For an angular misalignment of 4)ti=
3*10'^ radians, the resulting error is:

6P
4,

= 0.05 ppm • P. (62)

2.

Carriage Abbe Tilt

The contribution to position-specific measurement error due to a difference in

angle of tilt of a non-zero-length probe between two positions (Abbe error) is,

for a small angle:

6P. = O. • p. (63)

In this example, for a distance between the axis of the probe and the axis of

the displacement measurement of 50 mm and for a change in tilt of 1 arc

second, the Abbe error contribution to coordinate-position error, which is an

additive, is:

6P. = 0.24 pm. (64)

3. Probe Setting

The contribution to position-specific measurement error due to probe setting

is a meaisure of the ability of an individual probe to reproducibly locate

unvarying, uni-directionally approached, probed features. Since a location

measurement requires the probe to trigger twice (once at the location of the

origin and once at the location being measured, an estimate of the error in

probe-setting based on the 2o setting of a good-quality commercial probe

operated in the touch-trigger mode is:

6Pp = 2 * 0.25 pm = 0.50 pm. (65)

4. Sum of Position-Specific Errors 5p

In this example, the total position-specific error 5P is the sum of the errors due

to coordinate-scale misalignment, Abbe error, and probe setting.

6P = S 5Pi

= 0.74 pm + 0.05 ppm • d (66)

= 0.745 pm @ 100mm
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5. Total Position Error AP(5P,AD)

Combining the position-specific errors, 6p, with the total displacement error,

AD, over the one-meter travel of the measuring machine stage yields:

AP = 6P + AD = 0.782 pm + 0.27 ppm • P. (67)

For a position corresponding to length of the lOOmm-long object, the total

error in the position measurement is:

APioo = 0.809 pm = 8.1 ppm @ 100 mm (68)

C. Error in Distance Measurement Ad

In this example the errors in the coordinate-measuring-machine measurement

of distance derive from distance-specific errors associated with the object

alignment, temperature and distance-type features, plus the error in position

measurement.

1. Object-Axis/Probe-Path Alignment

The contribution to distance-specific error due to the angular misalignment y
between the axis of the object and the axis of coordinate measurement, that

is, the path of the probe, is, a small angle, given by:

6d^ = d • ( + y2/2). (69)

For an angular misalignment of 0.1® (corresponding to a lateral distance of less

than 0.2 mm over the 100mm length of the object):

Sdy = 1.5 ppm • d . (70)

Note that this error due to misalignment of object and coordinate axis (Eq.40)

is opposite in sign to that due to misalignment of interferometer and light

(Eq.34) and misalignment of mirror translation and interferometer (Eq. 36).

2. Object Thermal Expansion

The contribution to distance-specific error due to the difference in temperature

AT between the object to be measured and a reference temperature (such as

that of the CMM) is determined by the linear thermal expansion coefficient p

for the object according to the thermal expansion equation:
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= p * AT • d (71)

For the a steel object in this example, p is 10 ppm/°C, which for temperature

difference AT of 0.1®C gives:

Sd^T = 1.0 ppm X d. (72)

3. Object Point Definition

The contribution to distance-specific measurement error due to object point

definition is a measure of the ability to associate with the object features which

can be characterized as points, the position ofwhich points can be reproducibly

located by a variability-free probe. In this example, the estimate of a practical

lower limit for error associated with locating points on real objects (twice that

for defining a single point) is estimated to be:

6d. = 0.10 pm. (73)

4. Sum of Distance-Specific Errors 5d

In this example, the total distance-specific error 5D is the sum of the errors

due to coordinate-scale misalignment, Abbe error, and probe setting.

5d =2 6di = 0.10 pm + 2.5 ppm • d. (74)

At a distance of 100mm corresponding to the extension of the object being

measured, the sum of the distance-specific errors is:

fidioo = 0.35 pm = 3.5 ppm @ 100 mm. (75)

6. Total Distance Error Ad(5d,Ap)

Combining the sum of the distance-specific errors, 5d, with the total position

error, Ap, over the one-meter travel of the measuring machine stage 5delds:

Ad = 6d + Ap = 0.882 pm + 2.77 ppm x d. (76)

For a distance corresponding to the length of the 100-mm-long object, the total

error in the distance measurement is:

Ad = 1.109 pm = 1.1 ppm @ 100 mm. (77)
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D. Error in Extension Measurement Ae

In this example, the errors in the coordinate-measuring-machine measurement
of extension derive from extension-specific errors associated with boundary

location and definition, plus the error in distance measurement.

1. Boundary-Location Errors

Boundary-location error in extension measurements represents the systematic

failure of the probe to signal the proper location of the material boundary of

the object and is of the form:

5, = 6Pb„ (78)

where the minus sign is for outside-caliper measurements, the plus sign is for

inside-caliper measurements, and 6Pbx is positive for location of the arbitrary

boundary behind the material boundary.

a. Location of Arbitrary Boundary, Various phenomena give rise to the

direction-dependent boundary-location errors inherent to extension measure-

ments which individually contribute to the aggregate effect and SPb,. In this

example, there is the probe radius (that is, the finite extension of the probe tip

along the axis of measurement) and the probe pre-travel (that is, the finite

displacement of the probe along the axis of measurement after mechanical

contact with the object is made, but before the probe transducer crosses a

threshold and signals). Assuming that the gross effects of probe radius and pre-

travel are eliminated by pre-characterization of the probe, there remain the

extension-specific sources of error due, for example, to deformation of the

object by mechanical contact and variation of pretravel of the probe with the

direction of approach to the object

Given a three-dimensional touch-trigger probe with a specified pre-travel

variation over 360® in the X-Y plane of ± 0.5 pm, the extension-specific error

is taken to be:

6ebx = 2 * 0.5 pm = 1.0 pm. (79)

b. Compensated Boundary Location', The contribution to extension-specific

error due to location of an arbitrary boundary can in some situations be

compensated by an empirical procedure while in the majority of cases a

theoretical model of the probe-object interaction is required. In the example

being followed here, the probe is assumed to have a residual direction-

dependent variation in pretravel of:
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debt = 0.1 |im. (80)

3. Average-Material-Boundary Location

Extension-specific error due to average-boundary location is associated with

local variation in the position of the material boundary of the object such that

it has no single extension.

In the example being followed here, the steel block is assumed to have a

surface-finish peak-to-valley of0.1 pm (0.067pm RMS) whichwhen mechanical-

ly probed leads to a contribution to extension-specific error:

debt = 0.2 pm. (81)

4. Sum of Extension-Specific Errors de

In this example, the total extension-specific error 6D is the sum of the errors

associated with mislocation of a detected boundary relative to a material

boundary and mislocation of a material boundary relative to some simple

geometrical shape used to describe the object.

de - S 6ei ~ debt + (82)

= 0.2 pm + 0.1 pm = 0.3 pm

Note that extension-specific error is a purely additive error, independent of the

magnitude of the extension.

5. Total Extension Error Ae(5e,Ad)

Combining the sum of the extension-specific errors 6e with the total distance

error Ad yields the total extension error:

Ae = 6e + Ad = 1.182 pm + 2.77 ppm • d (83)

For the lOOmm-long object, the total extension error, computed and rounded

to a significant figure, is:

Aeioo == 1.459 pm

- 1.5 pm = 15 ppm @ 100 mm. (84)
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£. Summary and Analysis of Errors

This error-budget analysis ~ carried out for the case of a commercial-quality

displacement-interferometer-equipped coordinate measuring machine used to

measure the length of a polished, parallel-faced, lOOmm-long, steel block -

illustrates issues specific to the example as well as ones associated with

precision dimensional measurements in general. The specific numerical results

may be summarized and then analyzed in terms of their relative type-

hierarchical, additive-multiplicative, and axiom-specific behaviors.

1. Summary of Numerical Results of Analysis

Table 7 below summarizes results specific to the hypothetical example being

examined. Tabulated are errors specific to the type and total errors for each

type, on both an incremental (±5C) and a fractional (±5^/5) basis. For

comparison, also shown (in italics) is the error in the vacuum wavelength of the

laser which provides the reference to the SI unit of length.

Table 7. Summary of Total Errors by Dimensional Type in the

Example of the Laser-Interferometer-Based CMM Mea-
surement of Extension of a 100mm Block

Dimensional Type-Specific Error Total-Error in Type

Type Add Mult Add At Mult

Extension 0.3 pm 1.462 pm 14.62 ppm
Distance 0.35 pm 3.5 ppm 1.102 pm 11.02 ppm
Position 0.75 pm 7.5 ppm 0.812 pm 8.12 ppm
Displacement 0.06 pm 0.6 ppm 0.062 pm 0.62 ppm
Wavelength 0,002 iim 0.02 ppm

2. Analysis of Results

The particular results of the CMM/extension-measurement example illustrate

a number of more general patterns in dimensional measurements including: a

hierarchy of accuracies, dominance by additive errors and multiplicative errors

at the short end and long end of the range respectively, and the minimal

contribution of laser-wavelength error to total error.
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a. Hierarchy ofAccuracies Among the Types: The last column, which gives the

total error AC/C by type, illustrates the inherent loss of accuracy as one moves
through the progression of types of dimensional measurements. Note that the

accuracy of the displacement measurements is down by an order of magnitude

from that of the reference wavelength. The accuracy of position is down by

another order from there, while the accuracy of distance and extension down
another factor of two or three further from there. These trends in these

relationships are general. On the extremes, displacement measurements always

have the best and more readily obtained accuracy and position and distance

are intermediate, while extension measurements always have the lowest

accuracy and the most dearly bought.

b. The Additive-Multiplicative Errors: The second and third columns, which give

the type-specific errors, and 6 C/C respectively, illustrate the additive-vs-

multiplicative character of errors in the different types. On the extremes, the

extension-specific errors are purely additive, which means they dominate at

short lengths. In contrast, the displacement-specific errors are almost purely

multiplicative, which means they dominate at long ranges.

For the hypothetical CMM of the example, these trends are further

illustrated by Table 8 which shows errors in ranges of 10 and 1000 mm. Note

especially in the table the near-pure additive 1.2 pm (121 ppm) error in

extension at 10 mm compared to the near-pure multiplicative 0.26 ppm (0.26

pm) error in displacement at 1000 mm.

Table 8. Total Error by Dimensional Type at Ranges of 10, 100 and 1000

mm in the Example of the Laser-Interferometer-Based CMM
Measurement of Extension of a Block

Dimension Error @ 10 mm Error @ 100 mm Error @ 1000 mm

Extension

Distance

Position

Displcmnt

1.2 pm /121 ppm
0.9 pm / 91 ppm
0.08 pm / 8 ppm
0.04 pm / 4 ppm

1.5 pm / 15 ppm
1.2 pm /II ppm
0.11 pm / 1 ppm
0.06 pm / 0.6 ppm

3.9 pm / 4 ppm
3.6 pm / 3.6 ppm
0.35 pm / 0.35 ppm
0.26 pm/ 0.26 ppm
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2. Axiom-Type Matrix Analysis of Results for the CMM Example

The error-budget for the CMM measurement of the 100mm block serves to

illustrate the use of the axiom-type matrix of errors for the analysis of the

performance of the overall system of machine, object, and techniques for the

achievement of precision dimensions. Table 9 shows in the type-vs-axiom

matrix format of Table 5 the results of the CMM-extension error budget

summarized in Table 6. Also shown, in italics, are examples of the matrix

elements not illustrated by the CMM-extension example.

Table 9. The Axiom-Type Error Matrix for the Example of the Laser-

Interferometer-Based CMM Measurement of Extension

Dimension Error of Zero Error of Unit Error of Scale

Displacement Dead-Path

Thermal-Drift

Least-Count

Laser Wavelength

Mirror-Path Index

Cosine I-vs-L

Polarization Mixing

Grad in MP Index

BendingofMP Ways

Position Probe-Tilt Abbe
Probe-Setting

Cosine T-vs-I Grad in Table Temp

Distance Point-Definition Cosine O-vs-T

Object T-Expansion

Bending of Object

Extension Arbitrary Bndry

Matl-Av-Bndry

Backlash

Thickness-Dependent Approach to Probe

Probe ”Penetration"' Resolution Limit

a. Errors in the Zero ofEach Type: As indicated in Table 9, each of the types

of dimensional measurements in the CMM-block example has associated with

it a type-specific error of the zero corresponding to a shift of the effective

origin of that type. In the displacement measurement, there are the

uncompensated change in the index of refraction of the dead-path, the

movement of the effective optical-path location of the interferometer reference

due to thermal drift, and the uncertainty in the location of the zero due to the

least-count of the interferometer system. In the position measurement, there

are the non-cumulative change in the location of the position origin due to the

tilt of the probe relative to the displacement axis (Abbe error) and the

uncertainty in its location due to variations in probe-setting. In the distance

measurement, there is the uncertainty in objects geometry which limits
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reduction to centroids, that is, points. Finally, in the extension measurements,

there are the arbitrariness of the boundary located relative to the material

boundary and the variation of the location of the material boundary about its

mean. While not in the example, backlash corresponds to an error of the zero

of extension because it only appears with the bi-directional approach to the

object.

b. Errors in the Unit ofEach Type: Similarly, as indicated in Table 9, each of

the types has associated with it a type-specific error of the unit (65^), that is,

error proportional to the first-order of the dimension measured. In

displacement, there are the error in the value of the vacuum wavelength of the

laser, in the index of refraction of the path of the moveable mirror, and the

angle of misalignment between the axis of the interferometer (I) and the

direction of propagation of the incident light (L). In position measurement,

there is the angle of misalignment between the axis of translation of the mirror

(T) and the axis of the interferometer (I). In distance measurement, there is

angle of misalignment between the object (O) and the probe-path, which for

a rigid-body system is the same as the axis of translation of the mirror (T).

While not discussed in the example, an error in the unit of extension can also

arise due to any dependence of the effective "penetration’ of the probe

(positive or negative) on the thickness of the object.

c. Errors in the Scale ofEach Type: Finally, as indicated in Table 9, for each

dimensional type, there are t
5
^e-specific nonlinearities corresponding to errors

of the scale (6Cgi). In the displacement measurement, there is the intermixing

of the reference- and measuring-beams due to their imperfect separation by

polarization states which leads to a non-linearity in the interpolation between

fringes. While not in the example, other conditions lead to errors of the scale.

In displacement measurements, these include a gradient in the index of

refraction along the interferomter mirror path (MP) as well as any lateral

bending of the mechanical ways which support the mirror along that path; in

position measurements, a gradient in the temperature of the part of the

machine which supports the object to be measured; in distance measurements

a bending of the object; and in extension measurements, an approach to the

resolution limit of the probe.

• • •

In sum, this analysis of the hypothetical case of the use of a laser-interferome-

ter-based coordinate measuring machine for measurement of the length of a

part has shown the nature and types of the errors that can arise in that specific

example. What the example illustrates is that the use of the axiom-type matrix

of errors provides as a complete, self-consistent scheme for systematically
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partitioning and analyzing such errors. The approach is, however, more
generally useful.

3. Application of Type-Axiom Error Matrix to Manufacturing Operations

The axiom-type matrix just applied to the characterization of the dimension-

measurement process applies equally to the characterization of the dimension-

generation process, that is, the manufacture-to-design of a dimensionally-

specified product.

a. ”Machine Tool" versus "MeasuringMachine"*, Machine tools for the generation

of dimensioned forms and measuring machines for the characterization of

dimensioned forms share the elements of frame, carriage, scale and "probe,"

where the formers’s probe is for changing the location of material and the

latter’s "probe" is for ascertaining where the material is located. This

commonality is shared by all such "machine tools" — whether metal-cutting

lathes, ion-beam milling machines, or photolithographic step-and-repeat

cameras— and all such measuring machines —- whether they be coordinate

measuring machines, measuring microscopes, or micrometer calipers. As such

machine tools and measuring machines must conform to the same axiom-type

system to carry out their essential functions.

b. Example of Extension Errors in Milling: All the errors indicated in Table 9

for the CMM measurement of a block are also manifest in machine-tool-based

manufacture of dimensionally specified products.

Consider briefly, for example, the use of a laser-interferometer-based milling

machine for the manufacture of a multiple-finned turbine-blade fan where the

part design calls for the machining of equally spaced fins of identical tapering

cross-section. In general the machine will be subject to all the sources of error

identified in Table 9. Even under the conditions that the machine can generate

a cutter path that conforms ideally to the part design (that is, can generate

displacement, position and distance perfectly), errors of extension can still

occur. Under certain conditions of tool-force and material-stiffness, deflection

of the fin by the cutter will vary in proportion to the thickness of the fin at the

point of cutting, resulting in error in the material form even for an errorless

cutter-path. Thus, while the spacing between fins is perfect (corresponding to

no errors of the unit, the zero and the scale in distance), the error in the cross-

section of each fin would have a "cooling-tower" shape corresponding to errors

in each of the zero, unit and scale of extension and fully analogous to the

arbitrary boundary, thickness-dependent probe-penetration and limit-of-

resolution errors indicated in Table 9.
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VII. CONCLUSION

This chapter on precision dimensional measurements for modem manufactur-

ing has presented a new scheme for the assessment of dimensional error, both

in measurement processes and in manufacturing processes. The scheme is

based on a matrix of dimensional types and measurement axioms which forms

a complete, self-consistent system for assessing dimensional error. The scheme

has been illustrated by a case-study of a coordinate measuring measurement

of an extended object, with the type-axiom related errors indicated as being

similarly manifest in manufacturing processes such as the milling of turbine

blades. This type-axiom matrix should provide a useful means for the exposure

of error, the diagnosis of its cause, and the means of practical elimination

through more effective design of machines, processes and techniques for the

manufacture of products with precisely dimensioned forms.
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Appendix A. Errors in Dimensional Measurements Due to Angular

Misalignments of System Elements

Accuracy of measurement of dimensions of physical objects by means of a

coordinate measurement system based on a laser displacement interferometer,

such as the prototypical interferometer shown schematically in a plan-view

representation here, depends upon
precise alignment of the axes of the

laser, interferometer, translating mir-

ror, and the object. Errors in mea-

surements of displacement, position,

and distance (and/or extension) arise

respectively from misalignment of

pairs of axes— interferometer and

laser, translating mirror and interfer-

ometer, and object and translating

mirror, as described individually and

in combination below.

Fixed Mirror

Laser

Source

Refiector

Translation
Object

1
//

' "

2!
;

'

Light

Propagation

Detector

1. Misalignment Error Specific to Displacement

N Mirror Normals

K Light Propagation

For light ofwavelength propagating in medium ofindex

of refraction n in a direction K at angle 0 to the axis of

the interferometer (defined by the normals N to the

reference and moveable reflectors), the change in spacing

of the interferometer mirrors. As, is related to the observed

change in fringe order number, Am, by the interferometry

equation:

D = As = Am • XJ2n • cos0 . (Al)

Note that misalignment between the axis of the interferometer and the axis of

propagation of the incident light constitutes an error of the metric or unit of

displacement relative to that of the light.

2. Misalignment Error Specific to Coordinate Position

For a moveable or ’’measuring” reflecting surface (plane mirror or retroreflector)

which translates at an angle (j) relative to the axis N of the parallel-plate

interferometer, the translation T is related to the change in spacing As of the

interferometer by the "cosine-error" equation:
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P • cos(t) = T • cos(|) = As . (A2)

Note that misalignment of the axis of translation of the

measuring element of the interferometer relative the axis

of the interferometer constitutes an error of the metric

or unit of position (coordinate) relative to that of the

displacement.

3. Misalignment Error Specific to Object-Distance

ir
,

. . . Finally, given an object with features with an axis O oriented
rans ation is

angle y relative to the direction of translation of the

measuring mirror ofthe interferometer, the relation of the

T distance between features on the object and the translation

of the mirror is given by the equation:

O Object Axis d = T • cosy . (A3)

Note that the misalignment of the axis of the object and that of the translation

of the measuring mirror constitutes an error in the metric or unit of distance

relative to that of position.

4. Combined Misalignment Error in Distance

For a system in which there are all three misorientations described above,

the relation of the distance between features on the object and the observed

change in the fringe order number is given by:

d = (Am • A.O • cosy) / (2 • n • cos0 • cos4>). (A4)

5. Explicit Form for Misalignment Error

Given the sign convention that the observed distance dob, is the algebraic sum
of the true distance dt^e plus the error term Ad, then:

Ad — dob, “ ^trme

= d - d(0,(|),y) (A5)

= (Am • XJ2n) • [
1 - {cosy/(cos0 • cosif))}]

T Mirror Translation

0

N Mirror Normals
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Under the conditions that the angles 0, 4), and y are each small, successive

substitution of the approximations cosx « 1 - xV2 and 1/(1 - x^) « 1 + x^ into

Eq. A5 leads to:

Ad « (Am • )iJ2n) •
[
1 - {(1 - y"/2)/(1 - e72)<l - <|)72)}] (A6)

« (Am • XJ2n) •
[
1 - {(1 - y72)<1 + 072)<1 + <|)2/2)}] ,

which with multiplication and retention of terms of the lowest order yields the

final result:

Ad « (Am • XJ2n) • ( + 0^ + (j>2 - y^)/2 (A7)

Note that since the first and second terms are negative and the third term is

positive, the overall error in distance due to angular misalignments can be either

positive or negative and the measured distance can be either greater than or

less than the actual.
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