
Computer Implementation
of a Discrete Set Algebra

Leonard Gallagher

U^. DEPARTMENT OF COMMERCE
National Instituta of Standards

and Tochnology

Computer Systems Laboratory

Database and Graphics Group
Giythersburg MD 20899

U^. DEPARTMENT OF COMMERCE
Robert A. Mosbacher, Secretary

NATK>HAL INSITTUTE OF STANDARDS
AND TECHNOLOGY

QQ
John Lyons, Director

100

.U56

4637

1991

NIST

I

i

I

t

i

I

I

V'

NISTIR 4637

Computer Implementation
of a Discrete Set Algebra

Leonard Gallagher

U^. DEPARTMENT OF COMMERCE
National Institute of Standards

and Technology

Computer Systems Laboratory

Database and Graphics Group
Gaithersburg, MD 20899

July 1991

U^. DEPARTMENT Of COMMERCE
Robert A. Mosbacher, Secretary

NATK>NAL INSTTTUTE OF STANDARDS
AND TECHNOLOGY
iobR W. Lyons, Dirsctor

Computer Implementation

of a

Discrete Set Algebra

Leonard Gallagher

Computer Systems Laboratory

National Institute of Standards and Technology

Gaithersburg, MD 20899

July 1991

Abstract

Large finite sets occur naturally in computer data management. Discrete

elements such as numbers, pointers, icons, and object identifiers all have fixed-

length bit sequence representations that may be viewed as base-two integers.

The efficient storage and manipulation of large collections of such items is a long-

standing problem in computer science. In particular, many data management
algorithms may be specified in terms of set operations (e.g. union, intersection,

crossproduct) on these collections. Often a large set is stored in reduced form for

storage efficiency. A specific problem is then to find efficient algorithms for

performing set operations over the reduced representations. This paper presents

a binary tree storage mechanism for efficient representation of arbitrary sets of

discrete elements taken from a fixed universe. It then develops high-level

algorithms for mapping these sets to and from their tree representations and for

executing set operations directly on the storage representation itself. This

approach provides a method for direct computer implementation of mathematical

models based on Boolean algebras defined over finite sets.

Key words: Algorithm, binary tree. Boolean algebra, data management, data

structure, labeled tree, mathematical model, partial ordering, set operations, set

theory.

References

1 . Len Gallagher, “Computer implementation of an integer set algebra". Unpublished NBS
technical report, January 1983.

2. ISO/IEC CD 11404, “Common language-independent data types (CLID)", Working Draft

#5, document ISO/IEC JTC1/SC22/WG1 1 N233, 9 May 1991.

Table of Contents

1. Introduction 1

2. The SET datatype 2

3. Mathematical formalism 3

4. Data structures 8

5. Tree traversal algorithms 10

6. Forming and displaying sets 12

7. Set operations 15

8. Set predicates 21

9. Cartesian products 22

Appendix 23

>

I

IV

Computer Implementation of

a Discrete Set Algebra

by

Leonard Gallagher

NIST

1. Introduction

Reference [2] proposes a standardized collection of primitive and generator datatypes to be used

for data sharing and application interoperability in a mixed-language programming

environment. One of the proposed generator datatypes is a SET generator that creates a new
datatype whose value space consists of all possible sets of elements from some specified base

datatype with a finite number of elements. This paper is a modification and an enhancement of

[1] that presents a theoretical basis for efficient representation, storage, and manipulation of

data values defined by the SET datatype.

For small sets, the SET datatype can be implemented in a variety of different ways because

efficiency is not a major consideration. For larger sets, such as those that occur naturally in

data management and graphics applications, and in geographic information systems, more

efficient storage structures and operational techniques are required. Discrete elements such as

numbers, pointers, icons, and object identifiers all have fixed-length bit sequence

representations that may be viewed as base-two integers. Thus the problem of implementing

set algebras over such discrete bases reduces to the problem of implementing a set algebra over

the universe of integers defined by fixed-length binary sequences.

Often a large set is stored in reduced form for storage efficiency. A specific problem is then to

find efficient algorithms for performing set operations and evaluating predicates over the

reduced representations. This paper presents a binary tree storage mechanism for

representing sets of integers taken from a fixed universe. It then develops high-level

algorithms for mapping these sets to and from their tree representations and for executing set

operations directly on the storage representation itself. This approach provides a method for

direct computer implementation of mathematical models based on Boolean algebras defined over

finite sets.

Section 2 presents the operations and predicates of the SET datatype defined in [2]. Section 3

introduces a mathematical formalism for representing sets of integers as binary, labeled trees.

Section 4 defines the data structures used to implement and navigate these trees. Sections 5 and

6 specify algorithms for traversing binary trees and for translating between sets and their

labeled-tree representations. Sections 7 and 8 present algorithms for the set operations (i.e.

union, intersection, and complement) and predicates (i.e. element and set containment) by

operating directly on the tree representations without decompression or backtracking. Section

9 considers extensions to handle cross-products. An Appendix defines the mathematical

terminology used in Section 3. All terms in bold face type are defined either in the text or in the

Appendix.

1

2. The SET datatype

The SET datatype generator is specified in [2] as “SET OF <base>” where <base> is any discrete

datatype already known to the implementation. SET creates a new datatype whose value space

consists of values from the power set of the base type, with operations appropriate to a

mathematical set algebra. The power set Is the set of ail subsets of the base type, Including the

empty set and the whole Universe of values from the base type. The SET datatype Is subject to

the following predicates and operations:

Setof(y: base): set of base

An operation that returns the set consisting of the single value y from the value

space of <base>.

Isln(x: base, y: set of base): boolean

A predicate that returns true if the value x is an element of the set y, and

returns false otherwise.

Subset(x,y: set of base): boolean

A predicate that returns true if, for every value v of <base>, lsln(v,x) implies

isln(v,y), and returns false otherwise.

Equals(x,y: set of base): boolean

A predicate that returns true if Subset(x,y) and Subset(y,x), and returns false

otherwise.

Complement(x: set of base): set of base

An operation that returns the set consisting of ail values v from the value space

of <base> such that isin(v,x) is false.

Unlon(x,y: set of base): set of base

An operation that returns the set consisting of all values v from the value space

of <base> such that lsln(v,x) or lsln(v,y).

lntersection(x,y: set of base): set of base

An operation that returns the set consisting of all values v from the value space

of <base> such that lsln(v,x) and lsln{v,y).

Empty(): set of base

A niladic operation that returns the empty set, I.e. the set that consists of no

values from the value space of <base>.

2

Universe(): set of base

A niladic operation that returns the universal set, i.e. the set that consists of

every value from the value space of <base>.

3. Mathematical formalism

Consider an integer set algebra <P(Q); u, n, where, given a positive integer N, Q is the

set of all nonnegative integers from 0 to 2N -1 and P(Q) is the power set of n. The symbol u
is the union operator on P(Q), n the intersection operator, and the complement. We
assume that u, n

,
and satisfy the axioms of a Boolean algebra. The purpose of this paper

is to present a binary tree representation for subsets of Q together with high-level algorithms

for implementing the Boolean operations and forming and displaying sets.

For X € n, the binary sequence representation of X is xi xn where Xj g {0,1} and

N-1

X = z 2' XN.j

i = 0

We define special subsets of Q to be dyadic Intervals as follows. A dyadic interval is denoted

by D(pi,...,pm) where pi e {0,1} and m < N; an integer x is an element of D(pi,...,pm) if Xj

= Pi for 1 < i < m. Under the above description, if N=4, the set Q. is all integers from 0 to

15; the integer 9 is represented by the sequence 1,0, 0,1; the dyadic intervals D(0,1) and

D(1,0,1) represent the sets {4,5, 6, 7} and {10,11} respectively; and the dyadic interval

D(1, 1,0,1) represents the singleton set {13}.

The set T of all dyadic intervals is partially ordered by < where D(pi,...,pm) ^ D(qi,...,qn)

if and only if m < n and pi = qi for i=1,...,m. it is easily seen that set inclusion of sub-

intervals motivates the partial ordering and that under this partial ordering T is a binary

tree of height N. T can also be linearly ordered lexicographically in a way that extends

the partial ordering. That is D(pi Pm) < D(qi,...,qn) if :

1 . m < n and pj = qi for i=1 m
,

or if

2. for some r satisfying 0 < r < min(m,n), pi = qj for i=1 r, pr+i = 0, and

qr+i = 1.

In Figure 1 we give a graphical representation for the case when N = 3 and the set T has 14

elements. Each node is numbered to indicate linear rank, whereas diagonal lines from top to

bottom represent the partial ordering.

3

(1)

D(0)
(8)

D(1)

/ \ / \

/ \ / \

/ \ / \

/ \ / \

/ \ / \

(2) (5) (9) (12)

D(0,0) D(0,1) D(1.0) D(1,1)

/ \ / \ / \ / \

/ \ / \ / \ / \

/ \ / \ / \ / \

(3) (4) (6) (7) (10) (11) (13) (14)

D(0,0,0) D(0,0.1) D(0,1,0) D(0,1,1) D(1,0,0) D(1,0,1) D(1,1,0) D(1,1,1)

Linear and Partial Orderings of T
Figure 1

Given a subset A c we intend to represent A as a labeled subtree o1f T. We begin by

defining a subtree T(A) of T recursively as follows:

1) D(0) G T(A) and D(1) g T(A)

2) If D(pi Pm) e T(A) and D(P 1 Pm) n A ^ 0 and D(Pi »-"»Pm) "'A ^ 0,

then D(pi Pm.O) € T(A) and D(pi Pm*1) ^ 'i'(A)

T{A) inherits both the linear ordering and partial ordering of T, and under the partial ordering

is a subtree of T. The height of T(A) is 1 if A = 0 or if A = The height of T(A) is N
if A is a singleton set or if A contains any element that Is “separated” from other elements of

Q.

Denote by Lt(A) the mapping from the set of nodes, T(A), to the three element set {0, @,1}

defined as follows:

1) Lt(A)(D(Pi,..., Pm)) = 0 if D(P 1 Pm) c -.A

2
) Lt(A)(D(Pi Pm)) = 1 if D{pi Pm) Q A

3) Lt(A)(D(Pi Pm)) = @ Otherwise

Lt(A) is a set of ordered pairs, where the first element from each pair Is a node of T(A) and

the second element is a label from {0,@,1}. The partial ordering of T(A) extends naturally to

Lt(A) (see Appendix) making Lt(A) a {0,@,1}-labeled tree. It is easy to see that there is a one-

to-one correspondence between subsets of Q and labeled trees constructed in this manner.

As an example of set representation by labeled trees, let N = 4 and consider the set A =

{3,4,9,12,13} and its complement -.A = (0,1,2,5,6,7,8,10,11,14,15). Both Lt(A) and

4

Lt(^A) are {0,(2),1}-Iabeled trees of height 4. The graphical representations of A and are

given in Figures 2a and 2b below. The underlying dyadic intervals, D(pi p^), are omitted

from the graphical representation since they can be reconstructed from the position of any node

in the tree.

@
/ \

/ \

/ \

/ \

@ @
/ \ /

/ \ /

0 (2) @
/ \ / \

0 110

\

0

@
/ \

/ \

/ \

/ \

(5) (5)

/ \ / \

/ \ / \

(5) 0 1 0

/ \

0 1

Labeled tree representation of A = {3,4,9,12,13}

Figure 2a

@
/ \

/ \

/ \

/ \

@ @
/ \ / \

/ \ / \

1 @ @ 1

/ \ /\

1 0 0 1

@
/ \

/ \

/ \

/ \

@ @
/ \ / \

/ \ / \@10 1

/\

1 0

Labeled tree representation of ^ A = {0,1,2,5,6,7,8,10,11,14,15}

Figure 2b

From these two tree representations we see that a set and its complement are represented by the

same subtree. Only the labelings differ on the 0 and 1 -labeled nodes. This means that the set

complement operation will have a very straight-forward implementation algorithm.

The linear ordering on T(A) also extends naturally to Lt(A) so a set A can be represented as

a finite list of its labels. For example, the set A graphically represented in Figure 2a above

could be structurally represented by the following list of labels:

A @,@,0,@,0,1,@,@,1,0,0,@,@,@,0,1,0,@,1 ,0

We present an algorithm (Algorithm 4) to show that this procedure is reversible, thus proving

that every subset of Q is represented uniquely as a finite list of the labels {0,@,1} in this

manner.

5

As an additional example, consider the set B ^ {2,3,7,12}. The graphical representations of

B, A n B, and A u B are given in Figures 3a, 3b, and 3c below.

@
/ \

/ \

/ \

/ \

/ \ / \

/ \ / \

0 1 0 @
/\

0 1

/ \

/ \

/ \

/ \

0 @
/ \

/ \

@ 0

/ \

1 0

Labeled tree representation of B = {2,3,7,12}

Figure 3a

@
/ \

/ \

/ \

/ \

(§) 0

/ \

/ \

0 @
/ \

0 1

@
/ \

/ \

/ \

/ \

0 @
/ \

/ \

@ 0

/ \

1 0

Labeled tree representation of A n B = {3,12}

Figure 3b

@
/\

/ \

/ \

/ \

@
/\

/ \

/ \

/ \

@ @ @
/ \ / \ / \

/ \ / \ / \

0 1 @ (g) @ 0

/ \

/ \

1 0

/ \ / \ /\

1 0 0101

6

Labeled tree representation of Au B = {2,3,4,7,9,12,13}

Figure 3c

From the above graphical representations it is easily seen that the structural representations of

the sets B, A n B, and A u B as lists of their labels are as follows:

B <=> @,@,0,1 ,@,0,@,0,1,@,0,@,@,1 ,0,0

AnB <=> @,@,0,@,0,1 ,0,@,0,@,@,1 ,0,0

A u B @,@,0,1,@,@,1 ,0,@,0,1,@,@,@,0,1,0,@,1 ,0

It is often useful to know the relationship between the cardinality of a given set and the length of

its structural representation as a list of labels. From the above we see that the empty set and

the universal set each have have a list representation of length two, i.e. 0 <=> 0,0 and Q <=>1 ,1

respectively. A singleton set representation is of length 2N. In general, the length of the list of

labels necessary to represent a set A, denoted by LENGTH(A), depends on four factors:

1)
The size of the universe (i.e. the value of N)

2)
The cardinality of the set (i.e. CARD(A))

3)
The range of the set -- where range depends on the maximum and minimum

values in the set and is defined as: RANGE(A) = MAX(A) - MIN(A) + 1

4) The distribution of A over its range interval -- where the range interval is

defined as the set (x : MIN(A) < x < MAX(A)}.

The worst case occurs when A is uniformly distributed over its range interval and the set

elements are “separated" as much as possible. For example, the set of even integers or the set

of odd integers over any range would represent the worst case scenario. Using the worst case

assumption, it is not too difficult to show that if m is the smallest integer satisfying

then

m > log 2(RANGE(A)/CARD(A)

LENGTH(A) < 4N + 2(m+1)CARD(A).

In other cases, for example when all points in the set are contiguous, the length of the label

string representation will be substantially less.

7

4. Data structures

The purpose of this section is to provide data structures for representing the integers, dyadic

intervals, labels, and integer sets of the preceding section. We assume the existence of

datatypes BIT and INTEGER, and define other datatypes together with the operations necessary to

incorporate the algorithms of Sections 5 through 7. Whenever possible, data structure

definitions use the terminology of [2].

Binary base integers

Integers are represented both by datatype INTEGER and by datatype BINARY. For a given N,

datatype BINARY is defined to be ARRAY [1 .. N] OF BIT. The assignment operation is used both to

map integer values into binary values and to map components of binary values into bit values.

That is, if X is a binary variable and x is an integer with binary representation xi xn as

defined in Section 3, then X «= x populates the array so that Xj = Xj for 1 < I < N. Also, Z <=

X(i) assigns the i-th bit value of X to the BIT variable Z.

Dyadic intervals

Dyadic intervals are represented by datatype DYADIC, where DYADIC is defined to be STACK OF
BIT : SIZE(0,N). The dyadic interval D(pi Pm) corresponds to the stack pi p^ with pm
as the top of the stack. The operation "Height'' maps dyadic variables with value pi,...,Pm into

the integer m. We observe that Height(D) is always < N and that Height(D) = N if and only if

D is a dyadic interval representing a singleton set. The null stack, represented by 0, is allowed

and has height zero.

Operations on dyadic variables Include Assignment (<=), POP, PUSH, and TOP. The assignment

operation assigns the stack value of one dyadic variable to another. The POP operation maps
dyadic variables with value pi pm into the same variable with new value pi,...,pm-i when

m > 1 ,
and with value equal to the null stack when m = 1 . POP is not defined for the null stack.

The POP operator also returns the top stack bit value and may be used in combination with

assignment, for example Z <= POP(D), to assign the top of D to the BIT variable Z. The PUSH
operation maps a BIT variable Z and a dyadic variable D having value pi,...,pm into the same

variable D but with new value pi,...,pm+i satisfying Pm +1 = Z. We define a third operation,

TOP, which returns the bit value of the top of the stack value for the dyadic variable, but leaves

the stack value itself unchanged.

Predicates on dyadic variables include a check for equality (=) and a check for partial ordering

(<). Two dyadic variables with stack values pi,...,pm and qi qn respectively are equal if

and only if m = n and Pi = qj for i=1,...,n. They satisfy the partial ordering defined in Section

3 if and only if m < n and Pi = q\ for l=1,...,m.

Labels

LABEL is an enumeration consisting of Just three elements: 0, @, and 1 . Since order Is not

important, we define LABEL to be STATE(0,@,1). These elements are the three possible labels

for labeled trees representing a set. In some algorithms, we need a fourth symbol to be the “End

of File” marker that indicates termination of a list of labels. For these algorithms we use the

8

extension mechanism of [2] to define an extended label datatype as LABEL : EXTENDED(EOF).
The only operations on LABEL variables are Assignment (<=), and Equality (=).

List of Labels

The union and intersection set operation algorithms in Section 7 require a "list of labels" data

structure to store and manipulate labels during set processing. Such lists will always be

relatively short, never exceding length 2N, where N is defined in Section 3 and determines

the cardinality, 2N, of the set Universe. We specify a datatype LIST OF LABEL : SIZE(0,2N) to

represent variable length lists of labels under the constraint that no list has length exceeding

2N labels. The null list, represented by 0, is allowed and has size zero. Variables of this type

are internal algorithm processing tools only and never require external representation.

Operations on these lists of labels include PUTFIRST, PUTLAST, GETFIRST, and GETLAST. The

PUT operations append a new label to the “head" or "tail” of the list, respectively. The GET
operations remove the head or tail elements from the list and result in a new list one unit

shorter than the original list. The GET operations may be used together with the assignment

operation to assign the head or tail elements of a label list to a label variable. For example, if

L is the label-list pi pm , then Z <= GETFIRST(L) assigns pi to Z and sets L to

P 2 ,...,Pm- A “Length" operation returns the length of any such list.

Set of integer

We represent integer sets by the datatype SET, where SET is defined to be LIST OF LABEL. A set

variable has as its value a list of labels representing some integer set as constructed in Section

3. The only allowed operations on SET datatypes are the “Head” and “Append" operations

defined for lists in [2]. A set must be in either "read" mode or "build" mode. Head is legal only

when the set is in read mode and Append is legal only when the set is in build mode.

We define two functions mapping set variables into integers. CARD(B) returns the cardinality

of the set represented by B and LENGTH(B) returns the length of the label string . In addition

we define several predicates over set variables. These are discussed in Section 8.

Pointer to set of integer

We require a SET_POINTER datatype that is able to traverse the list of labels of a SET datatype

from head to tail and maintain its position in the set without modifying the set itself. A
setjDointer is initialized to the first position of the label-list representing a set whenever a set

variable for that set is assigned to the set_pointer variable. Because the label-list

representing a set is always traversed from head to tail with no backtracking and because the

label-list is always built by appending just to its tail, the set_pointer is just a virtual

implementation of the “Head" and “Append” operations defined for lists.

Operations on set_pointer variables include Assignment (<=), GETLABEL, and PUTLABEL. The
assignment operation assigns the current set and the current position in that set from one
set_pointer variable to another. GETLABEL corresponds to the “Head" operation for lists. If

bi bm is the value for a set variable B and if the set_pointer PB pointing to B has as its

current position bt, then GETLABEL acts on PB to return the label bt. GETLABEL also sets the

pointer to bt+i when t < m and to End-of-File (EOF) when t = m. GETLABEL is a valid

9

operation only when the set pointed to by the set__pointer variable is in "read" mode. PUTLABEL
is an operation mapping a label variable Z and a setjDointer variable PB pointing to the set

value bi,...,bm into the same variable PB with new set value bi bm+i satisfying bm+i = Z.

PUTLABEL corresponds to the “Append" operation for lists. PUTLABEL is a valid operation only

when the set pointed to by the setjDointer variable is in "build" mode.

Sometimes we have a need to exchange the values of two setjDointer variables. Rather than

Introduce a temporary setjDointer value, we accomplish the two way assignment with an

“Exchange” operation. The result of EXCHANGE(PA, PB) is that the value of PB is assigned to

PA and the value of PA is assigned to PB.

5. Tree traversal algorithms

We describe algorithms for two operations on elements of the tree T defined in Section 3.

Algorithm 1 allows one to “skip over” a subtree of T. That is, if D is a variable of type DYADIC
having as its value a stack of bits representing some node Di of T, then SKIP accepts the Di value

as Input and whenever possible returns to D a stack of bits representing the node D2 of T

satisfying:

1) Di < D2 (i.e. D2 is greater than Di In the linear order)

2) -.(Di < D2) (i.e. Di and D2 are not related in the partial order)

3) Di < D3 < D2 => Di < D3 (i.e. D2 is the next largest node not in the subtree of

Di)

If a node satisfying the above conditions does not exist, then SKIP returns the null stack 0. Less

precisely, we observe that SKIP returns the next largest node that Is not in the subtree

determined by the current node. For example, in Figure 1, SKIP acting on node 2 returns node

5, acting on node 10 returns node 11, acting on nodes 1, 5, or 7 returns node 8, and acting on

nodes 8, 12, or 14 returns the null stack.

The ADVANCE algorithm. Algorithm 2, provides a successor function for traversing the linear

ordering of T. It accepts some D value as Input and, if possible, returns to D the stack

representing the next largest dyadic interval (under the linear ordering for T). Otherwise,

when the largest node has been reached, it returns the null stack.

Algorithm 1

SKIP accepts a node of T and returns the next largest node (under the linear

ordering) that is not in the subtree determined by the given node. If no such node
exists, the null stack is returned.

NODE ^NODE

NODE of type DYADIC
Z of type BIT

begin

while (Height(NODE) > 0)

begin

Z <= POP(NODE)
;

If Z=0 then
begin

PUSH(1, NODE)
;

RETURN
end

end
end

Restatement: POP the stack looking for the first 0 bit and change it to a 1 bit.

If unsuccessful, return the null stack.

1 1

Algorithm 2

ADVANCE accepts a node of T and returns the next largest node (under the linear

ordering). If the given node is the largest node of T, then the null stack is

returned.

NODE ADVANCE ^NODE

NODE of type DYADIC

begin

If Height(NODE) = N
then SKIP(NODE) ** See Algorithm 1

**

else PUSH(0, NODE)
end

Restatement: Return the left node from the next level of the tree. If already at

highest level, get the right node. If already at the right node, SKIP to the next

node at a new level.

6. Forming and displaying sets

We provide two basic algorithms for implementing transformations between integer sets and

their label-list representations. Algorithm 3, named FORMSET, determines the label-list

representation for a singleton set. It is an implementation of the SetOf operator defined in

Section 2 when the base datatype is integer. For a fixed N it accepts an integer x satisfying 0

< X < 2N and outputs the list of labels described in Section 3 for the set {x}. For example,

when N = 4, FORMSET acts on 12 to produce the label-list 0,@,0,(§),@,1,0,0 and acts on 5

to produce the label-list @,0,@,@,0, 1,0,0. The resulting list of labels has length 2N and

contains exactly N 0-labels, N -1 ©-labels, and exactly one 1 -label. The FORMSET
algorithm taken together with the UNION algorithm (Algorithm 5) provides a method for

building up set representations one element at a time.

The DISPLAY algorithm. Algorithm 4, is the major tool for transforming a label-list set

representation into a sequence of integers. It traverses the tree T of dyadic Intervals and

determines whether or not an interval contains elements of an underlying set. Whenever an

interval does not contain elements of the set, the algorithm employs SKIP to bypass all

subintervals of that interval. If an interval contains elements of the set, the algorithm employs

ADVANCE to systematically check subintervals. Then, whenever a singleton Interval containing

an element of the set is isolated, the EVALUATE function (4.1) is employed to return the single

integer element of that interval. The integer is put Into an output sequence and the algorithm

continues its traversal of T. The advantage of this algorithm is that it reads through the bit

string representation only once and produces all elements (in ascending order) of the

underlying set.

Algorithm 3

FORMSET accepts an integer x and returns the label-list representation for {x}.

The label-list will always be of length 2N, and will contain exactly N 0-

labels, N -1 @-labels, and one 1 -label.

^XSETFORMSET

X of type INTEGER
X of type BINARY
NODE of type DYADIC

XSET of type SET

PX of type SET_POINTER

begin

Put XSET into "build" mode ;

PX <^= XSET

;

Xc=x; NODE<=0;
PUSH(0, NODE)

;

** Form the initial dyadic interval
**

while NODE ** Exit when node is null
**

if TOP(NODE) = X(Height(NODE)) then **
Is x in NODE **

begin

If Height(NODE) < N then **Not a leaf node**

begin

PUTLABEL((S), PX);

PUSH(0. NODE)
end

else **lf leaf node**

begin
PUTLABEL(1. PX);

while Length(XSET) < 2N **Fill with O’s**

PUTLABEL(0, PX);

NODE<=0 **Set exit flag**

end
end

else

begin

PUTLABEL(0, PX)
;

SKIP(NODE) ** Algorithm 1
**

end
end

Note: The FORMSET algorithm is easily extended to accept as input a variable of type DYADIC
and to output the label-list of the set determined by that dyadic interval.

Algorithm 4

DISPLAY accepts a label-list representation for some set as input and returns an

output sequence containing the integer elements of the set.

STRING DISPLAY ^ ELEMENTS

STRING of type SET
PS of type SET_POINTER
ELEMENTS of type USTOF INTEGER
NODE of type DYADIC

MARK of type DYADIC

Z of type LABEL

begin

Put STRING into "read” mode ;

PS <= STRING;
NODE <t= 0

;

PUSH(0,NODE) ;

while NODE ^ 0
begin

Z «= GETLABEL(PS)
;

\i then

PUSH(0, NODE)
else If Z = 0 then

SKIP(NODE)
else

begin
MARK «= NODE;
SKIP(MARK);
while NODE ^ MARK

begin
while Height(NODE) < N **Get next leaf**

PUSH(0. NODE);
Append(ELEMENTS. EVALUATE(NODE));**Function 4.1**

SKIP(NODE) **Algorithm 1
**

end
end

** Form the initial dyadic Interval
**

** Exit when node is null
**

Get next interval

Not overlapping Interval

Set contains interval

1 4

end
end

Function 4.1

EVALUATE accepts a dyadic variable of height N (i.e. representing a singleton

integer set) as input, and returns the integer itself. The value of the input

variable is left unchanged.

^ INT

NODE, BINREP of type DYADIC

INT, J, K of type INTEGER

begin

BINREP <^= NODE ;

INT <= 0 ;

for J = 0 to N-1

begin

K POP(BINREP)
;

INT INT + K * 2**J

end
end

Restatement: Read BINREP from bottom to top as the binary representation of

the desired integer. Multiply by the appropriate power of two and sum the

products.

NODE

7. Set operations

The basic operations of a set algebra are union, intersection, and complement. Other operations

like set difference and symmetric difference are defined in terms of the basic three. To this end

we present algorithms for union, intersection, and complement. For reasons of efficiency,

however, it is sometimes helpful to have separate algorithms for each operation used often in

any application. It is easily seen that a separate algorithm for set difference differs only

slightly from the algorithm for intersection and that a separate algorithm for symmetric

difference combines some aspects of union and intersection.

These algorithms are similar and all use the main idea of Algorithm 4. That is, the algorithm

traverses the tree T of dyadic intervals checking whether or not the result of the set operation

intersects the current interval. If the interval intersects both the result and its complement,

then a @ is put on its label-list representation. If the interval is a subset of the result, then a

1 is put on its label-list representation . If the interval is disjoint from the result, then a 0 is

put on its label-list representation. In each case the alternative is determined by checking the

input labels representing the set or sets upon which the set operation operates. The main

advantage of this approach is that each label-list is traversed only one time from beginning to

end; at no time is it necessary to backtrack or re-read labels. This makes it possible to take

advantage of parallel processing architectures when evaluating complex set expressions.

Algorithm 5

UNION accepts label-list representations for two sets and returns the label-list

representation for their set union. The two input lists are left unchanged.

A

B
UNION

A, B.C of type SB-
PA, PB, PC of type SET POINTER
Z1

,
Z2, Z of type LABEL

NODE, MARK of type DYADIC
BUFFER of type LIST OF LABEL : SIZE(0,2N)

begin

Put A and B into "read” mode ;

Put C into "build” mode ;

PA<=A; PB<=B; PC^C;
NODE 0; MARK <= 0 ;

BUFFER <t= 0
PUSH(0,NODE);
while NODE 0 ** Exit when node Is null

**

begin
Z1 <= GETLABEL(PA);
Z2 <= GETLABEUPB);
if (Z1 = 0 and Z2 = 0) then

begin
while (BUFFER ^0) PUTLABEL(GETFIRST(BUFFER), PC);

PUTLABEL(0, PC);

SKIP (NODE)
end

else if (Z1 = @ and Z2 = @) then

begin
APPEND(@, BUFFER); ‘‘Algorithm 5.1“

ADVANCE (NODE)

end
else if (Z1 » 1 or Z2 = 1) then

begin
if Z1 ^ 1

then begin EXCHANGE(PA, PB); Z <= Z1 end

else Z <= Z2
;

If BUFFER = 0
then PUTLABEL(1, PC)

else APPEND(1, BUFFER) ;
“Algorithm 5.1“

MARK «= NODE;
SKIP (MARK);

if Z = @ then

begin
ADVANCE (NODE);

while NODE MARK
If GETLABEL{PB) = (2)

then ADVANCE (NODE)

else SKIP (NODE)
end

else SKIP (NODE)
end

else If (Z1 =0 or Z2 = 0) then
begin

If Z1 then EXCHANGE(PA, PB)
;

MARK NODE;
SKIP (MARK);

APPEND ((2), BUFFER); ‘‘Algorithm 5.1“

ADVANCE (NODE)

;

while NODE ^ MARK
begin

Z<^GETLABEL (PB);

If Z = 0 then
begin

while (BUFFER 0)

PUTLABEL(GETFIRST(BUFFER), PC);

PUTLABEL (0, PC);

SKIP (NODE)
end

else

begin

If (BUFFER = 0 and Z=1)

then PUTLABEL(1, PC)

else APPEND(Z, BUFFER)
;

“Alg 5.1“

If Z = @
then ADVANCE (NODE)

else SKIP (NODE)

end
end

end
end ;

while (BUFFER ;^0) PUTLABEL(GETFIRST(BUFFER), PC)

end

For set difference and symmetric difference we can use the separate algorithms discussed above

or we can apply the following algebraic identities:

Set Difference A - B = A n ^B
or

Symmetric Difference A©B = (A - B) u (B - A)

Algorithm 5.1

APPEND acx^epts a single label and a variable length list of labels and returns a

modified variable length list. The list is modified so that any would be trailing

sublist of the form @,1,1 is replaced by 1 and any would be trailing sublist of

the form @,0,0 is replaced by 0.

Z

LIST

—
APPEND

/

Z of type LABEL
LIST of type LIST OF LABEL : SIZE(0,2N)

begin

if (Z = @ or Length(LIST) < 1) then
PUTLAST (Z, LIST)

else If Z = GETLAST (LIST) then

begin
GETLAST (LIST);

APPEND (Z, LIST)

end
else

begin
PUTLAST (@, LIST);

PUTLAST (Z, LIST)

check for match

remove @ label

recurslve call

replace @ label

end
end

Restatement: An @ label is simply concatenated to the end of the list;

otherwise, if the label to be added is identical to the last element of the list, then

the last two elements of the list are replaced by the label to be added,

recursively.

Algorithm 6

INTERSECTION accepts label string representations for two sets and returns the

label string representation for their set intersection. The two input lists are left

unchanged.

> c

A. B.C of type SET
PA, PB, PC of type SET_POINTER
Z1, Z2, Z of type LABEL
NODE, MARK of type DYADIC

BUFFER of type LIST OF LABEL : SIZE(0,2N)

begin

Put A and B into "read" mode
;

Put C into "build" mode ;

PA<^A; PB<^B; PC ^ C;

NODE 0; MARK 0 ;
BUFFER <t= 0

PUSH(0,NODE);
while NODE?t0 ** Exit when node is null

**

begin
Z1 <t= GETLABEL(PA);
Z2 <?= GETLABEL(PB);
if (Z1 = 1 and Z2 = 1) then

begin
while (BUFFER ^0) PUTLABEL(GETFIRST(BUFFER), PC);

PUTLABEL(1, PC);

SKIP (NODE)
end

else if (Z1 = @ and Z2 = @) then

begin
APPEND((§), BUFFER); “Algorithm 5.1“

ADVANCE (NODE)

end
else If

(
Z1 = 0 or Z2 = 0) then

begin

if Z1 ^ 0

then begin EXCHANGE(PA, PB); Z Z1 end
else Z <= Z2 ;

if BUFFER = 0
then PUTLABEL(0, PC)

else APPEND(0, BUFFER)
;

“Algorithm 5.1“

MARK <= NODE;
SKIP (MARK);

if Z = @ then

B

begin
ADVANCE (NODE);

while NODE ^ MARK
if GETLABEL(PB) = @

then ADVANCE (NODE)

else SKIP (NODE)
end

else SKIP (NODE)

end
else if (Z1 s 1 or Z2 = 1) then

begin

if Z1 ^ 1 then EXCHANGE(PA, PB)
;

MARK <= NODE;
SKIP (MARK);
APPEND ((§>, BUFFER); ‘^Algorithm 5.r*
ADVANCE (NODE)

;

while (NODE MARK)
begin

Z <= GETLABEL (PB);

if Z = 1 then
begin

while (BUFFER ^ 0)

PUTLABEL(GETFIRST(BUFFER). PC);

PUTLABEL (1, PC);

SKIP (NODE)
end

else

begin

if (BUFFER = 0 and Z=0)

then PUTLABEL(0, PC)

else APPEND(Z, BUFFER) ;
**Alg 5.V*

if Z = @
then ADVANCE (NODE)

else SKIP (NODE)
end

end
end

end
;

while (BUFFER ^0) PUTLABEL(GETFIRST(BUFFER), PC)

end

20

Algorithm 7

COMPLEMENT accepts a label string representation for a set and returns the

label string representation for its complement. The input string is left

unchanged.

A COMPLEMENT

A, B of type

PA, PB of type

Z of type

SET
SET_POINTER
LABEL : EXTENDED(EOF)

begin

Put A into "read” mode ;

Put B into "build" mode ;

PA<=A; PB<=B;
Z<t=GETU\BEL(PA);
while Z ^ EOF

begin
if Z = @ then

PUTLABEL (@, PB)

else if Z = 0 then
PUTLABEL (1, PB)

else

PUTLABEL (0. PB);

Z GETLABEL (PA)

end
end

8. Set predicates

The Boolean set predicates, i.e. set equality, element of, and set inclusion, can be evaluated from

the basic operations FORMSET, UNION, INTERSECTION, and COMPLEMENT as follows:

1) A = B is true if and only if the label-list representations of A and B are identical,

i.e. the lists are of the same length and have identical labels at each position.

21

2) A B is true if and only if there exists a label in the label-list representation of A
that differs from the label In the corresponding position of the label-list

representation of B.

3)
X £ A is true if and only if {x} n A = {x}, which can be evaluated using FORMSET
and INTERSECTION.

4) X £ A is true if and only if {x} n -.A = {x}, which can be evaluated using FORMSET,
COMPLEMENT, and INTERSECTION.

5)
A c B Is true if and only if A n B = A, which can be evaluated using INTERSECTION.

9. Cartesian products

Suppose X and Y are two discrete datatypes that have been used as the “base” sets, i.e. the

Universes, for constructing two set algebra datatypes, SET OF X and SET OF Y, respectively, and

suppose A Q X and B c Y are Instances of these datatypes. Since relationships, orderings,

mappings, and operations on A and B can always be represented as subsets of Cartesian

products, it is often useful to be able to represent the Cartesian product, A x B, or subsets of

this product, in a format compatible with the representation of A and B themselves, i.e. as a

list of the labels {0, @, 1}. We desire some integrated method for dealing efficiently with

subsets of X X Y or A x B so that projections such as { x
|
<x,y> £ R c A x B} or other set

theoretic operations can be processed by direct manipulation of the string representations

without need for expansion to full display as elements of X, Y, or X x Y.

One method for representing an ordered pair <x,y> is to interleave the binary representations

of X and y. For example, if x = xi,...,xn and y = yi yn, then <x,y> could be represented

by the binary sequence xi,yi ,...,Xn,yn- Under this method, the length in bits of the binary

sequence representing <x,y> is twice as long as the sequences representing x or y. The

advantage of this approach is that the dyadic intervals defined in Section 3 of this paper are

square or double-square regions in X x Y. It follows that contiguous, rectangular shaped

regions in X x Y have efficient labeled tree representations.

Other methods for such representations, and efficient algorithms for set processing, are topics

for future consideration.

22

Appendix

The purpose of this appendix is to define the mathematical terminology used in the text of this

article. Sets and membership of sets are taken as primitives along with the axioms of set theory

and the rules of logic. All structures are defined in terms of sets.

An ordered pair is denoted by <x,y> and is the two element set {{x},{x,y}}.

Given sets A and B the Cartesian product of A and B is the set:

A X B = {<x,y> : X G A and y e B }

A binary relation on A X B is any subset of A X B. The notation aRb denotes that <a,b> is an

element of the binary relation R.

A function from A to B, denoted by f:A B or by just f, is a binary relation on A X B

satisfying:

Domain Coverage 1) For every x e A there exists a y e B such that <x,y> e f.

Single-Valued 2) If <x,y> g f and <x,z> g f then y = z. If <a,b>G f then b is denoted by

f(a).

A unary operation on A is any function from A to A.

A binary operation on A is a function from A X A to A. If u:A ^ A is a unary operation,

then the element u(a) is often denoted by ua or by a raised to the exponent u. If *:AXA A
is a binary operation, then x*y denotes the element *(<x,y>).

A Boolean algebra is a tuple (A,-j-,*,-n) where A is a set containing distinguished elements 0

and 1, -I- and * are binary operations on A, and is a unary operation on A. A Boolean algebra

must satisfy the following conditions for all x, y. and z in A:

Idempotent 1) X + X = X X * X = X

Associative 2) x+(y+z) = (x+y)+z x*(y*z)=(x*y)*z

Commutative 3) x+y = y+x X '<
II

'< X

Absorptive 4) x+(x*y)=x x*(x+y)=x

Distributive 5) x*(y+z)=(x*y)+(x*z) x + (y*z) = (x + y)*(x + z)

Null Element 6) X + 0 = X X * 0 = 0

Universe 7) X -h 1 = 1 X II X

Complement 8) X + -nX = 1 X
* -nX = 0

The power set of A is the set of all subsets of A. It is denoted by P(A). The power

under set operations of union, intersection, and complement is a Boolean algebra with

distinguished elements equal to A and the null set.

23

A partial ordering is a pair (A, where A is a set and < is a binary relation on A satisfying

the following conditions for all x, y, and z € A:

Reflexivity 1)

Antisymmetry 2)

Transitivity 3)

X < X

X < y and y < x imply x = y
X < y and y < z imply x < z

A linear ordering is a pair (A, <) where A is a set and < is a binary relation on A

satisfying the following conditions for ail x, y, and z e A:

Trichotomy 1) x ^ty implies x<y or y<x
Separability 2) x<y Implies x^ty

Transitivity 3) x<y and y<z imply x<z

A well ordering is a linear ordering (A, <) which satisfies the additional condition:

First Element 1) For every non-empty subset B ^ A there exists an x € B satisfying

X ^ y => X < y for all y 6 B.

Every finite linear ordering is a well ordering.

in a partially ordered set (A, <) the predecessors and the descendants of an element x are:

Pred(x) = { y : y g A and y ^ x }

Descd(x) = { y : y g A, x ^ y, and x < y }

A tree is a partial ordering with the additional property that the set of predecessors of any

element is well ordered. That is, for a partial ordering (T, <); if <(z) is the set

{<x,y>: x,y g Pred(z), x < y, and y },

then (T, <) is a tree if and only if (Pred(z), <(z)) is a well ordering for all z g T.

Elements of a tree are called nodes.

Terminal nodes are nodes x for which Descd(x) is empty.

The height of a finite tree is the maximum cardinality of any predecessor set. That is:

Height(T) = Max{ Card(Pred(x)) : x g T }

The level number of a node is denoted by Level(x), where Level(x) = Card(Pred(x)).

The i-th level of a tree is the set of all nodes having level number equal to i.

The child descendants of a node x in a tree T are defined as:

Child(x) = { y : x ^ y and Level(y) = Level(x)-»-1
}

Child descendants are often linearly ordered to distinguish relative position. This could be

accomplished by maintaining an underlying linear ordering of T which induces a linear

ordering on each Child(x).

A binary tree is a tree with the property that for every node x, either x is a terminal node

or the set Child(x) has cardinality two. Elements of Child(x) in a binary tree are often

distinguished as either Left or Right.

An S-labeling of a tree (T, is a function where S is a set of labels. The partial

ordering < of T extends to Lj as follows: If t < t' in T then <t,s> < <t',s'> in Lj. Under

this induced partial ordering, (Lj, is a tree with many of the same properties as (T, <), and

is thus defined to be the labeled tree corresponding to the labeling of T.

25

NIST-1 14A

(REV. 3-90)

U.S. DEPARTMENT OF COMMERCE
NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY

BIBLIOGRAPHIC DATA SHEET

1. ^BUCATION OM HEPOMT NUMBEf^
NISTIR 4637

2. PCAFORMINQ OROAMIZATION REPORT NUMBER

POBUCATION DATE

JULY 1991
4. TITLE AND SUBTITLE

Computer Implementation of a Discrete Set Algebra

5. AUTHOR(S)

Leonard Gallagher

6. PERFORMINQ OROANIZATION (IF JOINT OR OTHER THAN NIST, SEE INSTRUCTIONS)

U.S. DEPARTMENT OF COMMERCE
NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY
QAJTHERSBURa, MO 20699

7. CONTRACT/QRANT NUMBER

8. TYPE OF REPORT AND PERIOD COVERED

9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (STREET, aTY, STATE, ZIP)

10. SUPPLEMENTARY NOTES

11. ABSTRACT (A 20O-WORO OR LESS FACTUAL SUMMARY OF MOST SIGNIFICANT INFORMATION. IF DOCUMENT INCLUDES A SIGNIFICANT BIBUOQRAPHY OR
LITERATURE SURVEY, MENTION IT HERE.)

Large finite sets occur naturally in computer data management. Discrete elements such as

numbers, pointers, icons, and object identifiers all have fixed-length bit sequence
representations that may be viewed as base-two integers. The efficient storage and
manipulation of large collections of such items is a long-standing problem in computer
science. In particular, many data management algorithms may be specified in terms of

set operations (e.g. union, intersection, crossproduct) on these collections. Often
a large set is stored in reduced form for storage efficiency. A specific problem is

then to find efficient algorithms for performing set operations over the reduced
representations. This paper presents a binary tree storage mechanism for efficient
representation of arbitrary sets of discrete elements taken from a fixed universe. It

then develops high-level algorithms for mapping these sets to and from their tree repre-
sentations and for executing set operations directly on the storage representation itself.

This approach provides a method for direct computer implementation of mathematical models
based on Boolean algebras defined over finite sets.

12. KEY WORDS (6 TO 12 ENTRIES; ALPHABETICAL ORDER; CAPtTALiZE ONLY PROPER NAMES; AND SEPARATE KEY WORDS BY SEMICOLONS)

algorithm; binary tree; Boolean algebra; data management; data structure; labeled tree;

mathematical model; partial ordering; set operations; set theory

13. AVAJLABIUTY

UNUMITED

FOR OFFICIAL DISTRIBUTION. DO NOT RELEASE TO NATIONAL TECHNICAL INFORMATION SERVICE (NTIS).

ORDER FROM SUPERINTENDENT OF DOCUMENTS, U.S. GOVERNMENT PRINTING OFFICE,

WASHINGTON, DC 20402.

ORDER FROM NATIONAL TECHNICAL INFORMATION SERVICE (NTIS). SPRINGFIELD. VA 22181.

14. NUMBER OF PRINTED PAGES

31

IS. PRICE

A03

ELECTRONIC FORM

i

i

\

(

d

I

I

)•

