
U.S. DEPARTMENT OF COMMERCE
National Institute of Standards and Technology

A111D3 73M331

omputer
Systems

Laboratory

NISTiR 4630

Performance Evaluation
of Hypercube Applications:
Using a Giobai Clock and
Time Diiation

Robert D. Snelick

U.S. DEPARTMENT OF COMMERCE
National Institute of Standards and Technology
Computer Systems Laboratory

Advanced Systems Division

Gaithersburg, MD 20899

©
COMPUTER MEASUREMENT

RESEARCH FACILITY

FOR HIGH PERFORMANCE
PARALLEL COMPUTATION

BF JUiy 1991

-QC —
100

.056

4630

1991

C.2

Partiaily sponsored by
• Defense Advanced Research Projects Agency
• Department of Energy

V-

NISTIR 4630

1

Performance Evaluation of Hypercube Applications:
Using a Global Clock and Time Dilation

4^50

Robert D. Snelick

Advanced Systems Division

Computer Systems Laboratory

National Institute of Standards and Technology

Gaithersburg, MD 20899

Partially sponsored by

* Defense Advanced Research Projects Agency

® Department of Energy

U.S. Department of Commerce, Robert A. Mosbacher, Secretary

National Institute of Standards and Technology

John W. Lyons, Director

July 1991

TABLE OF CONTENTS

Page

1. Introduction 2

2. Time Dilation Background 3

2.1 Previous Results 4

3. A Communication Benchmark Set 4

3.1 High Interdependencies: A Ring Model ...4

3.2 Low Dependencies: Random Communication (RQ Model 5

3.3 Local Dependencies: A Mesh Model 6

4. Analysis and Interpretation 7

4.1 Elements of Performance Variation 7

4.2 Method 8

4.3 Analysis of Time Dilation 9

5. Results 10

5.0.

1 CM-Ring 12

5.0.

2 CM-Mesh 13

5.0.

3 CM-RC 14

5.0.

4 CP-Ring 14

5.0.

5 CP-Mesh 15

5.0.

6 CP-RC 15

5.1 Summary of Results 15

6. Summary and Conclusion 17

6.1 Acknowledgments 17

7. References 18

8. Appendix A 19

8.1 Performance Data for Ring .19

8.2 Performance Data for Mesh 20

-m-

8.3 Performance Data for RC

Performance Evaluation of Hyp
Using a Global Clock ana

Robert D. Snelick

The speed of communication is very important in the performance of

programs for loosely-coupled machines. A precursory study introduced an

emulation technique called time dilation [1] that investigated the effects of

communication speeds by varying the ratio of two parameters: communication time

and computation time. The analysis of this technique was based on local

measurements of a node’s system resource utilization. A problem for loosely-

coupled systems with local clocks is that observations cannot directly resolve

communication delays into l(^cal and physical transport contributions. This work

separates the communication component of a program (via a global clock) into two

states: logical and physical delays. True measurements calibrate the indirect

dilation method for a sharper, quantitative interpretation, that it does not otherwise

have.

Time dilation, coupled with low perturbing global measurement, provides an

environment that offers insight for the development and analysis of concurrent

algorithms and architectures. Measurement of communication service states

indicates categorically sources of delay in the communication structure. The
observables are applied to evaluate a set of example hypercube applications. Since

the analysis is based upon system resources, which are invariant across all

hypercube programs, it forms a reliable base for comparison. Results demonstrate

that improvement to infrequent system states can cause significant changes in

program behavior. This is most apparent for synchronous algorithms.

Key words: communication; emulation; global clock; hypercube;

measurements; performance; resource usage; service states; time dilation.

No recommendation or endorsement, express or otherwise, is given by the National Institute of Standards

and Technology or any sponsor for any illustrative items in the text. Partially sponsored by the Elefense

Advanced Research Projects Agency, 1400 Wilson Boulevard, Arlington, Virginia 22209 under ARPA
Order No. 7223, April 15, 1987.

1, Introduction

Performance evaluation of loosely-coupled multiprocessors is critical for exploring

parallel program characteristics and parallel architecture behavior. In loosely-coupled

multiprocessors, synchronization and data sharing are achieved by explicit message pass-

ing. Therefore, the speed of communication is very important in the overall performance

of such machines. Current methods of investigating the effects of communication speeds

are modeling and simulation. We can evaluate the performance of hypercube applica-

tions by integrating measurement procedures and a performance evaluation technique

that were inspired by a hybrid measurement system [5]. A precursory study introduced a

technique called time dilation [1] that investigated the effects of communication speeds

by varying the ratio of two parameters: communication time and computation time. This

technique was based on local measurements of a node’s system resource utilization. A
problem for loosely-coupled systems with local clocks is that observations cannot direct-

ly resolve logical and physici ttansport connibutions for communication delays. This

left the interpretation and analysis of the technique clouded with obscurities. This work

separates the communication component of a program (via a global clock) into two ele-

ments: logical and physical delays. True measurements give the indirect dilation method

a sharper, quantitative interpretation. In addition, quantif5dng sources of performance de-

lay provides the programmer insight on the efiSciency of his algorithm and highlights op-

portunities for improvement. This information is unavailable with local time.

The time dilation experiments and event tracing were performed on our specially in-

strumented iPSC/1. Four primary types of performance data, referred to as system ser-

vice states, are captured to provide the information needed to analyze applications. As
mentioned, the communication component of the program is separated into two states:

logical and physical transport delays. Other service states measured to aid in the evalua-

tion of hypercube applications are the time for user computation and overhead. Over-

head is the time for il remaining activities excluding logical delays, physical delays, and

user computation.

The test programs are three synthetic benchmarks that outline several broad applica-

tion modes by communication dependencies. The benchmarks provide a parameter set

that allows the user to adjust the computation-communication balance of the algorithm.

This allows testing across a spectrum of communication dependencies and computation-

communication granularities. Six example applications are presented that demonsttate

the virtue of this technique. The benchmarks are not essential for this study—they are

used to illustrate effects. The main emphasis of this study is the test method.

Our measurement approach accurately characterizes the system-level resource usage
of a particular application. These characterizations simplify the task of evaluating hyper-

cube applications. The information is important in quickly uncovering potential

bottlenecks, as well as highlighting good algorithmic features. The tests also reveal

salient features of the architecture (such as message retransmissions) that do not lend

themselves easily to modeling or simulation. Coupled with the dilation experiments, this

system service measurement approach provides an environment which will offer insight

-2-

into the development and analysis of concurrent algorithms and architectures. Since the

analysis is based upon system resources, which are invariant across all hypercube pro-

grams, it forms a reliable base for comparison [4]. Thus the method is suitable to all hy-

percube applications.

2. Time Dilation Background

Computation and communication form a natural dichotomy on loosely-coupled mul-

tiprocessor resources, since with each node the processor has to hancUe both duties.

Modeling and simulation are common techniques used to estimate machine performance

based on the speed of these resources. The accuracy of the resulting performance esti-

mates is often questionable, since such techniques cannot usually take into account all of

the system detail—they become intractable in effort. Any real, hardware implementation

of a multicomputer immediately fixes the speed of its resources, and can only yield a sin-

gle point on the performance curve. An emulation technique, time dilation, appears to

make physical transport faster through slowed computation. Time dilation provides an

accurate method of investigating the performance of a given program on a variety of the

physical transport speeds of a real machine. Time dilation is implemented by allowing

the user to increase, or dilate, the computational portion of the code by a specified factor,

thereby creating the appearance that the communication speed has increased in relation-

ship to the rate of computation.

To perform time dilation experiments, the operating system of the machine under in-

vestigation must be instrumented with code to perform the dilation function. This addi-

tional operating system code relies on a high-speed clock to measure accurately and

quickly the computation and communication intervals. The high speed clock is provided

by our Loosely-coupled TRAce Measurement System (LTRAMS). LTRAMS is a hybrid

performance measurement tool that, among other things, provides a readable clock accu-

rate to one microsecond [5]. The implementation of time dilation is described in [1].

To utilize time dilation the user first runs an application with a dilation factor of one

(no change), and then runs the application with other dilation factors, all greater than

one. The overall time for the application to complete each run is "normalized" by divid-

ing the time obtained from the run by the dilation factor for that particular run. The
difference in normalized times gives an indication to what extent a faster transport sys-

tem would benefit a particular application.

-3 -

2,1 Previous Results

In a previous study, local clocks were used to obtain performance data for a hyper-

cube application tested with time dilation. The clocks captured the node’s local service

demand components, which were separated into four partitions: receive time, send time,

computation time, and communication interrupt time. With this framework, time

dilation’s evaluation offered some insight on performance, but could not directly resolve

logical and physical transport contributions for communication delays. Resource utiliza-

tion components, organiz^ in this way, lacked detail. For example, most of the perfor-

mance acceleration originated from the receive time component, but its constituents

could not be distinguished. The emphasis for the remainder of this text is a more detailed

measurement of communication delays (as well as other system service states) and the

role they play in characterizing hypercube applications. This work also extends the set

of applications tested with dilation.

3e A Communication Benchmark Set

This section describes three synthetic communication benchmarks used in the exper-

iments to follow. The programs delineate several broad application modes by communi-
cation dependencies [2], [3]. The benchmarks provide a parameter set that can be used

to adjust the computation-communication balance of the ^gorithm.

3,1 High Interdependencies, A Ring Model

The synthetic ring benchmark models applications which exemplify global process

dependencies. Molecular dynamics codes have computations of this character. The
communication patterns for the Ring are given in Figure 1. Data message flow in the

ring is uni-directional.

The program works as follows: A synthetic ring with nearest neighbor connections

is created with N logical nodes. Each node (process) will originate a given number of

messages, and additionally, process all other messages passing by. Each message makes
a complete circuit around the ring, while being processed synAetically by each node.

Once a message returns to its originator, it is removed from the ring network. Another

message will be sent until that node has sent all of its messages. When all nodes have

processed all of their messages the program is complete.

The ring provides a set of parameters that allows the user to simulate a wide range of

application settings. The list of parameters includes the number of nodes in the ring,

message length, the number of messages, and computation per datum. Communication in

the ring is semi-synchronous, with messages being acknowledged within the program on

a one-to-one basis. This flow control limits the number of messages piling up on a given

node, thus preventing buffer overflows. For this algorithm all communications (i.e., mes-

sages) M'e between physically neighboring nodes on the hypercube.

N12 N13 N14 N15

I I I

NO

— N4

— N8

N12

NO N1 N2 N3

Figure 2. Random Communication Patterns. Hguie 3. Mesh Communication Patterns.Hguie 1 . Ring Communication Patterns.

3.2 Low Dependencies: Random Communication (RC)
Model

Another synthetic benchmark for process communication depicts computational ob-

jects (nodes) that can be scheduled nearly independently (hereafter, RC, for Random
Communication). This circumstance might be radiation transport, or within a computer

system, storage scavenging on linked lists. It represents the other end of the interdepen-

dency spectrum from the ring. The algorithm implements a pool of n logical nodes

(processes), from each of which random messages are initiated, dispatched, received and

processed. The communication patterns for this algorithm are shown in Figure 2. Each
node in the graph has n-l edges, each of equal weight in the logical structure.

Each node is initialized with an equal amount of data, hence the workload is initially

balanced. Nodes process some workload and randomly distribute other chunks of their

workload to other nodes. In general the algorithm works as follows: A node begins and

continues processing its data until it is notified within its work set (via a special value) to

pass some of it on or until it finishes that set of data. When it must yield part of its

present work set, it randomly chooses (based upon data values) a destination node and

determines how much to dispatch. While the node is processing its workload it will

periodically check its message queue for more work. If there are pending message(s) the

-5-

node receives the message(s) and schedules its added workload. Note, that as long as a

node has work to do, it can continue processing. It is not dependent on messages from

other nodes (i.e., the algorithm is largely asynchronous). However, it periodically checks

its queues to prevent buffer overflow. Flow control is handled by limiting the number of

messages a node can send out before it receives an acknowledgement of those messages.

Whenever the node completes all of its current assigned data, it initiates a termination

message. It then sits idle awaiting a message, which can be a data message (new work)

or a termination message. Once all nodes have communicated that the entire workload

has been processed, results are recorded and the pool of nodes is dissolved.

Parameters for this benchmark include the number of nodes, message length, compu-

tation per datum, and frequency of message originations (work dispatching). The latter

two parameters are used to adjust the computation-communication granularity of the al-

gorism.

3.3 Local Dependencies: A Mesh Model

A middle ground in the interdependency spectrum has models in which the next state

is a function of a small number of neighboring processes. The model chosen to represent

this has a two-dimensional mesh structure with nearest neighbor communication depen-

dencies (Figure 3). A description of the algorithm follows.

An N by M mesh with toroidal (wrap-around) connections is created with N*M logi-

cal nodes. Each node in the mesh communicates with four nearest neighbors and has a

well-defined structure with a North-South-East-West pattern of communication. In the

test examples to follow, N=M.

The program iterates state-by-state, and each state has two distinct phases, communi-
cation and computation. The communication phase does information exchanges and
node synchronization. The computation phase defines the amount of computation per-

formed by each node (process) between synchronizations. The mesh program stops after

performing a given number of state iterations. Communication places a global constraint

on the overall computations. A node (process) needs values obtained from the previous

states of its nearest neighbors to continue; this fact prevents it from outdistancing its

neighbors. The algorithm proceeds in a lock-step (synchronous) fashion. The distinction

between a synchronous and asynchronous algorithm can be an important application at-

tribute in analyzing results for time dilation experiments.

-6-

Parameters for the mesh include the number of computation-communication steps,

message length, and computation calculations per datum. For these experiments, the

mesh is mapped perfectly so that its logical structure matches the underlying physical

structure (i.e., nearest neighbor communication is pre-dominant at the physical level).

4e Analysis and Interpretation

4.1 Elements of Performance Variation

Programs on an iPSC-1 hypercube can use either asynchronous or synchronous com-
munication protocols (not to be confused with the classification of an algorithm). Our
test set uses the latter. The synchronous protocol has two latency components, logical

delay and physical delay. Logical delay is defined as the time the destination node ini-

tiates a receive request until the source node issues the send command. This does not in-

clude the time it tices for the message transfer nor any other delays. If the source node

issues a send command before the destination node initiates a receive request, there is no

logical delay. Logical delays can indicate algorithmic bottlenecks. Physical delay is the

time a message takes to travel over the physical medium from sender node to recipient.

It does not include other delays such as packet formation, buffer allocation, queuing de-

lays at other nodes, etc. This distinction does not change for multiple packet messages.

The packet is the element of measurement, not the message. So, multiple packet mes-

sages and multiple hop messages are reduced to the packet level, and just the time for

each packet is accumulated. Physical delay includes the time for user level packets as

weU as acknowledgement packets initiated by the system. Together, logical and physical

transport latencies indicate whether a poorly performing application needs a new algo-

rithm (less logical delay) or faster interconnection hardware (less physical delay). Other

service state data measured to aid in the evaluation of hypercube applications are the

time for user computation and overhead. User computation is composed of application

computation and operating system services (not associated with communication). It does

not include the time for interrupts to handle communication tasks. Overhead is the time

for all remaining activities not included in logical delay, physical delay, and user compu-
tation. Overhead includes such activities as formation of packet headers, buffer alloca-

tion, communication system interrupts, and time loss due to message retransmissions.

The last element, message retransmission, can be an important source of performance

variation for this particular architecture.

-7-

Two scenarios of message retransmission exist If a failure (which causes a re-

transmission) occurs and the receiving process queue is long enough such that the sequel

retransmission is received before the receiving process queue is exhausted, the re-

transmission has minimal effect on algorithm (synchronization) performance. If, on the

other hand, the receiving process queue is exhausted and the process is forced to wait for

the retransmitted message, synchronization is skewed. Performance degradation can be

substantial from frequent message retransmissions. When the receiving process is sub-

ject to a retransmission it may be delayed by a factor of 100 or more for the reception of

that message. Such delay can have adverse effects on the performance of an application.

This effect on the communication structure, algorithmically and architecturally is easy

for us to measure, but is difficult to account for in techniques such as modeling and simu-

lation. Salient features such as this should be apparent to programmers of such architec-

tures.

4.2 Method

The implementation and measurement of time dilation were performed on our spe-

cially instrumented 16 processor iPSC-1 hypercube system. The measurement system

provides time tracings, as well as, a readable clock accurate to one microsecond. Our
performance analysis is based on event driven measurements. Each processor in the sys-

tem has an instrumentation board that captures local trace information. Global timing is

achieved by using a global reset to synchronize all counters. Each measurement board

gets its tick from a common clock, thus preventing drift. Data then can be paired across

nodes to obtain a global sense of timing. Direct global timings are more expensive than

local timings (i.e., in terms of the complexity of obtaining measurements and space re-

quirements). Local timings can be simple and inexpensive, for example, a set of accumu-
lator registers to capture average resource utilization. Local timing is very useful in ob-

taining performance data [4], but cannot resolve performance variation in a global

domain. Global timing can provide performance detail unobtainable through local tim-

ing. A global event trace can be used to reconstruct the state of the entire system. Our
performance measurement procedure relies on global timings. The time dilation tech-

nique uses local clocks.

Logical and physical delay state information is first traced locally (via operating sys-

tem events) at each node and then matched up across nodes to obtain the interval time.

User computation is obtained locally at each node by direct measurement. Overhead is

calculated by subtracting these elements from overall execution time of the node. Ser-

vice state time is the average time for N nodes (the test programs are homogeneous). The
number of retransmissions are obtained by counting special operating system events

which designate when a message is retransmitted.

-8-

Other elements of performance variation for overhead (such as intermpts for han-

dling communication tasks and other communication activities) can be further subdivid-

ed using the measurement system, but their resource consumption is of little consequence

in the evaluation of hypercube applications. Thus, they are grouped into overhead. The
benefit gained in obtaining a finer detailed event-trace did not justify the expense. This

set of performance parameters is an adequate basis to study sources of performance vari-

ation.

4e3 Analysis of Time Dilation

To evaluate results of time dilation, a normalized time (Tp) is defined as the average

node service time (T) for a component (e.g., logical delay equals the average logical de-

lay for N nodes) divided by the dilation factor (D). The dilation factor (D) is equivalent

to the emulated speedup of the physical transport system. E is the overall execution time

of the dilated program and is the normalized program time.

T E
7b = — and ^

In theory, normalized time gives a measure of what a component’s time, such as logical

delay, or the overall execution time of the program will be on a machine with a faster

physical transport system. T/j is a generic term for our system service states: logical de-

lay (L/)), physical delay (F/j), user computation (f//)), and overhead {Od), Application

performance is summarized in the following equation:

Ed ~ Lq + Pj) •¥ Uj) + Od

Another measure that is useful is the speedup of the application for a given D. This

is obtained by dividing Ei (£ j is the overil execution time of an undilated program) by

Ed with a D greater than one.

El
Speedup = —- {where D >1)

Ed

-9-

5. Results

To illustrate results, each benchmark is tested with two parameter settings. One
parameter setting investigates communication intensive applications while the other in-

vestigates computation intensive applications. The relative gram of computation to com-
munication along with the progr^n system service occupancy is given for each experi-

ment in table L The computation-communication grain size gives the number of data

items processed (integer multiplication in these examples) between communication in-

teraction points. User computation, logical delay, physical delay, and overhead are given

as percentages of overall program time. These percentages are recorded from undilated

programs. A prefix of CM (communication intensive) or CP (computation intensive) is

attached to each algorithm to aid explanation in comparing the experiments. In addition,

a sufBx is attached to distinguish a given dilation factor for the test For example, CM-
RC-2 refers to an experiment for the random communication benchmark with a low
computation-communication grain size, ran with a dilation factor of 2.

Test

Program

Comp-Comm
Grain

User

Computation

Logical

Delay

Physical

Delay

Overhead

Delay

CM-Ring 128 17.1% 51.8% 4.8% 26.3%

CM-Mesh 640 22.0% 36.0% 3.4% 38.6%

CM-RC 383 87.1% 6.5% 0.6% 5.8%

CP-Ring 12,800 88.0% 7.3% 0.9% 3.8%

CP-Mesh 102,400 94.7% 0.7% 1.0% 3.6%

CP-RC 17,430 51.5% 48.4% 0.0% 0.1%

Table I. Computation-Communication Grain Size and Component Demands.

Tables A1 through A6, in Appendix A, show the performance data for the aforemen-
tioned test set. The tables present data for each of the programs with dilation factors

ranging from one to sixteen. The data shown are for one trial run and are typical in-

stances of other similar test results. That is, the variation from one run to another is

minimal. The first column gives the normalized elapsed time for the program. The
next four columns indicate normalized time for user computation (U^j), logical delay

(Ld), physical delay (Pd)^ and overhead {Od) state occupancies. Other observations that

give insight into the analysis are also included in the tables. %LM is the percent of mes-
sages that had some logical delay (i.e., % of messages with logical delay > 0). The aver-

age logical delay per logical message {Aq) is given next. It gives an indication of how
long, on average, a node waits for a message, when it is required to wait (zero enmes are

discarded) for a message. Aq is a normalized statistic. Max Log gives the maximum de-

lay a node waited for any one message. The numbers for Max Log are actual measure-
ments; that is, they are not normalized. TM is the total number of user messages for the

experiment. The number of retries is a sum of message retransmissions that occur for all

nodes.

CM-Ring and CM-Mesh showed significant performance improvement with the fas-

ter transport system (D > 1 experiments). These programs are very sensitive to A
even though Pq is small. The sensitivity slope of Eq versus Pq indicate that a minor im-

provement to a state occupancy {Pd) can alter program behavior significantly. Figure 4

illustrates the slopes (denoted as mi and m 2) for Eq versus P^ for CM-Ring and CM-
Mesh for the dilation interval of 1 and 2.

Figure 4. Slopes (mi , m 2) ofEd vs. Pd for CM-Ring and CM-Mesh.

As shown, the impact can be quite dramatic; slopes of 18.95 and 27.13 are observed for

CM-Ring and CM-Mesh, respectively. Hence, modification of state occupancies, regard-

less of their relative magnitude, can cause significant changes in program behavior. This

is most apparent for synchronous algorithms (e.g.. Ring and Mesh).

Another important factor that contributes to the increased performance seen with the

dilation experiments is the decreased frequency of message retransmissions as a faster

physical transport is emulated. CM-Ring and CM-Mesh show performance increases of

232% and 246%, respectively. The computation intensive counterparts of these applica-

tions offer little improvement with dilation. The logical characteristics of the RC bench-

mark limit its performance with either computation-communication granularity setting.

The two regions of application settings show contrasting results. CM-RC exhibits small

logical delays even though it is burdened with frequent communication. Since RC is

only slightly dependent on external calculations to continue processing, it is relatively

immune from the adverse effects of synchronization. With CM-RC the communication

frequency is high enough so that all processors are kept busy and load balance remains.

CM-RC represents a case of a communication intensive application that runs efficiently

on this particular architecture. However, CP-RC experiences serious load imbalances

that severely hinder its performance. Even though significant logical delay exists, a fas-

ter transport system will not help, because the logical delay is inherent into the algorithm

and not in the system as seen in CM-Ring and CM-Mesh. Because of this imbalance,

nodes sit idle awaiting data for long stretches of time. CP-RC is an inefficient application

and is a candidate for redesign. Therefore, in both cases RC will not benefit from a faster

- 11 -

transport system. Next, each experiment is examined more closely and subtle features of

each are pointed out.

ScOol CM-Ring. CM-Ring shows significant performance improvement with a faster

transport system. This is evident because CM-Ring- 1 spends 83% of its time doing non-

user computation work. With a transport system that is twice as fast, CM-Ring-2 execu-

tion time accelerates by 46%. 67% of this comes from logical delay reduction, 5%
comes from physical transport improvement, and the remaining 28% originates from the

reduction in overhead delays. The reductions in logical and overhead delay are aided by

the decrease in message retransmissions. Retransmissions are nearly cut in half. Figure

5 graphically illustrates results of CM-Ring for dilation factors from one to sixteen.

20-

16-

Normalized
”

Time g „ \

\

— program time

logical delay

0 . 0 . user time— overhead delay

physical delay

(from top to bottom)

4-

0-

0 2 4 6 8 10 12 14 16

Dilation Factor (D)

Figure 5. Normalized Component Time for CM-Ring.

Normalized times are plotted for the four system service states and overall execution

time. This graph indicates where the performance acceleration originates. As clearly

shown, most benefits are realized up to D equals 4, whereupon a computation-

communication balance is reached and performance acceleration is no longer prominent.

From CM-Ring-2 to CM-Ring-4 message retransmissions are reduced further by a factor

of 4. Logical delay is reduced by another 56% (3.83 s to 1.70 s) whereas program time is

accelerated by another 34%.

Note that even though it is the physical transport that is being enhanced, it directly

contributes little to overall performance improvement. However, the enhanced physicd

transport (i.e., the dilation process) causes a reduction in the number of message re-

transmissions which then lessens logical and overhead delays. This relationship is

exemplified in the following linear estimator (Equation 1) for Ep.

Ed = U + ~ + b^MR) + bo Eq. (1)

- 12-

+ .024563(M/?) + 1.5498 Eq. (2)

A

Ed ~ 2.89 +

U is the mean user service time for the particular experiment and MR is the number
Fi

of message retransmissions. is the physical transport delay for a program run with a

dilation factor of one, P i ,
divided by the anticipated dilation factor D, Physical transport

delay in itself can be predicted by a simple linear regression model if the number of

packets and the size of the packets are known. bi(MP) + gives the logical and over-

head delays of the program as a function of the number of message retransmissions.

Equation 2 is an estimator for the CM-Ring example given in Table Al.

Another interesting point for CM-Ring is that shortens with a faster transport sys=

tern. For CM-Ring- 1 the average wait is 16.4 ms and stablizes at just over 1 ms for

higher dilation factors. So, even though there is an increase in messages with logical

waits (%LM), the wait period for each is much shorter with the faster transport system.

This may be an indication that synchronization is improving. The nodes are waiting

more often for message originations, but have shorter wait periods. Ring is the only

model where the number of messages with a logical wait increases.

5c0.2 CM-Mesh. Overall results from CM-Mesh are similar to those found in CM-Ring.
Ring and Mesh are similar in that they both have synchronous communication structure.

CM-Mesh-2 shows a performance acceleration of 46% over CM-Mesh- 1. However, un-

like CM-Ring, only 42% of the increase is seen from logical delay improvements,

whereas 54% comes from other overhead sources. As with CM-Ring, a major source of

performance acceleration originates from the decreased number of message retransmis-

sions. Figure 6 shows the relationship between the number of message retransmissions

and Eq, Lq, and P/j.

Figure and Oq versus Message Retransmissions for CM=Mesh.

As shown, the resource usage of these states decrease as the number of retransmissions

- 13-

become less frequent. Unlike CM-Ring, the number of messages with logical delay de=

creases significantly as shown in table A3 for CM-Mesh (i.e., 40% to 3%). This indicates

that synchronization is greatly improved with the faster transport system.

5.0.3 CM"RC. CM-RC is a communication intensive application that did not show
significant improvements with a faster transport system. Even though the computation-

communication rate is low (communication intensive), this does not translate to large

logical delays as seen in CM-Ring and CM-Mesh. As mentioned, in RC a node is not en-

tirely dependent on messages from other nodes to continue processing; it is semi-

asynchronous. As long as a node has work to do it can isolate itself from other nodes in

the set. Only when it has completed its current workload will it be dependent on other

nodes to continue. So if the workload in the network remains relatively balanced, this al-

gorithm can run efficiently. This is an example of a good algorithm-architecture match

for a communication intensive application.

CM-RC has statistical characteristics distinct from those of the other communication

intensive applications studied. Since receives are algorithmically asynchronous in RC,
message retransmissions are less invasive than in the Ring or Mesh. As a result, over-

head for CM-RC makes up only 6% of the undilated program. Also the percentage of

messages with logical delay is very small. For this algorithm, it is an indication of good
load balance. That is, most of the time data was available to process. However, when
CM-RC is required to wait for data, it waits for longer periods of time than CM-Ring or

CM-Mesh. This reflects the structure of the algorithm. Aq did not vary as much as in the

other communication intensive examples. Maximum logical delay is substantially

higher, once again a reflection of the algorithm.

The CM-RC example indicates a good match between algorithm and architecture. A
faster transport system will not benefit the performance of this type of application

significantly. It is important for RC that the communication frequency is kept high

enough to keep all processors busy, while at the same time not starving them for work or

overrunning them with too much communication. The latter (extreme) case is not con-

sidered.

5o0o4 CP“Ring. As expected for a mostly computationally bound program, like CP-Ring,

the normalized components show little change with (Elation. User computation time

makes up the majority of the overall execution time. Since the communication com-
ponents demand little processing in such an application, clearly only slight benefit is

derived from a faster transport system.

The speedup for this example is negligible. No matter how much the communication
system is enhanced, this application stands little chance for improvement. Since the

computation load is high, the speed of the processor or more parallelism is the logical

choice of investigation for performance improvement.

- 14-

5.0.

5 CP-Mesh. Results from CP-Mesh mirror those found in CP-Ring. However, a few

differences do occur but seem to have little impact on results. The number of message re-

transmissions remains fairly constant with dilation. CP-Mesh indicates that light but con-

centrated communication traffic affects the communication system adversely. Recall that

each node in Mesh requires four messages per communication step. It is not evident in

this case that performance degradation results.

5.0.

6 CP-RC. Results from CP-RC differ significantly from CP-Ring and CP-Mesh.

Although the computation-communication granularity is high (computation intensive) for

CP-RC, a large percentage of its overall execution time is spent in logical communica-

tion wait states. For example, in CP-RC- 1 logical delays make up 48% of the overall ex-

ecution time. Logical delay is reduced only sightly in CP-RC-2, and physical and over-

head delays are insignificant. As a result, this application shows little improvement with

a faster transport system. Note that the number of total messages is small and the number
of messages with logical delays is even smaller, although the wait duration for each is

very large. In fact, for CP-RC- 1 Aq is 2.8 seconds and the maximum logical delay is in

excess of 14 seconds. This work starvation clearly indicates a load imbalance. The user

can conclude from this information that too many nodes are idle too often; maybe the ap-

plication should be redesigned.

Message retransmission is not a problem for CP-RC since communication traffic is

minimal. For the example test set, retransmissions have been closely linked to communi-
cation congestion at each node. Retransmissions can be very costly or irrelevant to ap-

plication performance. More importantly, architecture characteristics like this should be

apparent to programmers. Measurement instrumentation provides a means to detect such

idiosyncrasies. Modeling and simulation may have difficulties in doing the same, since

the effects are highly non-linear.

5cl Summary of Results

Figure 7 illustrates the speedup curves for our example applications. Communica-
tion intensive applications with synchronous communication (CM-Ring and Cm-Mesh)
show good speedup with the time dilation technique. Even though the Ring and Mesh
differ in program structure, their response to the faster transport system are basically the

same. RC shows little speedup in either instance.

- 15-

4 -

3-

Speedup 2 —

1 -

0 -

0 2 4 6 8 10 12 14 16

Dilation Factor {Dfactor)

cm-nng
q>-ring
cm-mesh
cp-mesh
cm-rc
q>rc

*1—

r

Figure 7. Speedup Curves for the Example Test Set.

A minor modification to a state occupancy, regardless of its resource usage magni-

tude, can significantly impact program behavior. The sensitivity slope for program

elapsed time {Eq) versus physical delay {Pd) demonstrates this. The distinction of the

logical communication structure of the algorithm (synchronous or asynchronous) can be

important for determining the response to state occupancy modifications. Another im-

portant factor which contributes to the increased performance seen with the dilation ex-

periments is the decreased frequency of message retransmissions as a faster physical

transport system is emulated. The volume of traffic in the communication network has a

direct relationship to retransmissions. A system that is relatively immune from this prob-

lem may react more conservatively to dilation. This highlights the importance of all

communication components of the system.

Application Paradigms

Ring, Mesh (Synchronous) RC (Asynchronous)

Communication

Intensive

= large logical delay

- nice speedup

- application benefits firom faster transport

- small logical delay

- little improvement

- good match between algorithm-architecture

- need faster cpu or more parallelism

Computation

Intensive

= small logical delay

- little improvement

- good match between algorithm-architecture

- need faster cpu or more parallelism

- large logical delay

- little improvement

- inefficient algorithm

- consider algorithm redesign

Table n. Summary of Results.

Table II is an amalgam of results previously discussed. It highlights potential prob-

lem areas, as well as good architectural and algorithmic features. The table also suggests

areas that should be considered for performance improvement. The results do not neces-

sarily apply to all or any other hypercube applications. However, the results do demon-
strate that this method of performance evaluation can extract revealing performance

differences. Since the analysis is based upon system resources, which are invariant

across all applications, it forms a reliable base for comparison. Thus the method is

- 16-

fundamental for the study of all hypercube applications.

6. Summary and Conclusion

Time dilation provides an accurate method for investigating the performance of an

application using a variety of physical transport speeds. Measuring sources of communi-
cation delay in a global domain reveals performance data that are important in the

analysis of loosely-coupled machine applications. Together, time dilation and communi-
cation delay measurement provide an environment that offers insight for the development

and analysis of concurrent algorithms and architectures. Logical and physical transport

latencies indicate whether a poorly performing application needs a new algorithm (less

logical delay) or a faster interconnection hardware (less physical delay). Other algo-

rithmic and architectural characteristics are revealed with our performance evaluation

measurements. These runtime statistics should be available to programmers so that

necessary steps can be taken to improve their programs.

6.1 Acknowledgments

The original design sketch for time dilation was proposed by Gordon Lyon. He also

read earlier versions of the text and suggested numerous details for improvement. John

Antonishek implemented time dilation and instrumented the operating system so that

event tracing could be performed.

- 17-

7o References

[1] Antonishek, J. and Snelick, R. "Emulation through Time Dilation." Proceeding, Fifth

Distributed Memory Computing Conference, DMCC5, Charleston, S.C., 1990, 8pp.

[2] Lyon, G. Design Factors for Parallel Processing Benchmarks. Jour, of Theoretical

Computer Science April, 1989, 175-189.

[3] Lyon, G. and Snelick, R. Architecturally-Focused Benchmarks with a Communica-
tion Example. NISTIR 89-4053, March 1989, 38pp.

[4] Lyon, G. Capturing Some Practical Distributed-Memory Run-Time Statistics. NIS-
T^ 4418 revised, December 1990, 12pp.

[5] Roberts, J., Antonishek, J. and Mink, A. Hybrid Performance Measurement Instru-

mentation for Loosely-Coupled MIMD Architectures, The Fourth Conference on Hy-
percubes, Concurrent Computers, and Applications, Monterey, CA, March 1989.

8. Appendix A

8.1 Performance Data for Ring

D Ed Ud Ed Pd Od %LM Ad Max Log TM Retries

1 17.86 3.05 9.25 0.86 4.70 25 16.4 81.0 35808 482

2 9.71 3.05 3.83 0.43 2.40 43 3.9 121.9 35808 242

4 6.43 2.90 1.70 0.22 1.61 46 1.7 245.4 35808 58

6 6.20 2.89 1.64 0.14 1.53 45 1.6 331.4 35808 63

8 5.67 2.84 1.25 0.11 1.47 46 1.2 397.3 35808 39

10 5.62 2.84 1.24 0.09 1.45 45 1.2 471.4 35808 47

12 5.60 2.82 1.23 0.07 1.48 43 1.3 509.2 35808 41

14 5.29 2.79 0.98 0.06 1.46 44 1.0 689.4 35808 37

16 5.38 2.81 1.09 0.05 1.43 45 1.1 1064.7 35808 41

unit s s s s s % ms ms coimt count

Table Al. Performance Data for CM-Ring.

D Ed Ud Ld Pd Od %LM Ad Max Log TM Retries

1 28.05 24.68 2.06 0.24 1.07 21 30.3 123.6 5088 385

2 26.25 24.62 0.94 0.12 0.57 25 11.9 81.5 5088 297

4 25.12 24.57 0.20 0.06 0.29 36 1.8 87.8 5088 78

6 25.01 24.56 0.16 0.04 0.25 40 1.3 80.8 5088 3

8 24.96 24.57 0.12 0.03 0.24 36 1.0 80.1 5088 9

10 24.99 24.57 0.16 0.02 0.24 38 1.3 289.3 5088 45

12 24.94 24.57 0.12 0.02 0.23 35 1.1 366.6 5088 22

14 24.96 24.56 0.16 0.02 0.22 43 1.2 566.8 5088 23

16 24.90 24.55 0.13 0.02 0.20 45 0.9 368.4 5088 3

unit s s s s s % ms ms count count

Table A2« Performance Data for CP-Ring.

- 19-

8«2 Performance Data for Mesh

D Eq Ud Ld Pd Od %LM Ap Max Log TM Retries

1 18.91 4.16 6.80 0.65 7.30 40 10.7 90.1 25600 862

2 10.23 4.10 3.16 0.33 2.64 40 4.9 81.1 25600 647

4 6.72 4.07 1.11 0.16 1.38 28 2.5 93.3 25600 462

6 5.88 3.99 0.30 0.11 1.48 13 1.4 119.6 25600 343

8 5.67 3.97 0.15 0.08 1.47 10 0.9 66.6 25600 298

10 5.62 3.96 0.14 0.07 1.45 7 1.2 503.9 25600 206

12 5.52 3.95 0.04 0.05 1.48 5 0.5 60.4 25600 231

14 5.54 3.96 0.04 0.05 1.49 6 0.5 54.1 25600 189

16 5.46 3.95 0.01 0.04 1.46 3 0.3 43.9 25600 157

unit s s s s s % ms ms count cotmt

Table A3. Performance Data for CM-Mesh.

D Ed Up Lp Pd Op %LM Ap Max Log TM Redes

1 23.13 21.91 0.16 0.23 0.83 6 13.6 54.9 3200 167

2 22.22 21.85 0.07 0.11 0.19 3 10.1 70.3 3200 123

4 21.99 21.84 0.02 0.06 0.07 3 3.2 48.4 3200 184

6 21.91 21.83 0.01 0.04 0.03 2 23 73.5 3200 195

8 21.90 21.84 0.01 0.03 0.02 3 13 58.4 3200 144

10 21.88 21.84 0.00 0.02 0.01 3 0.7 45.5 3200 96

12 21.87 21.83 0.00 0.02 0.01 3 0.8 65.7 3200 149

14 21.87 21.83 0.00 0.02 0.01 3 0.6 46.9 3200 94

16 21.86 21.83 0.00 0.01 0.01 2 0.6 42.5 3200 112

unit s s s s s % ms ms count count

Table A4. Performance Data for CP-Mesh.

=20=

8.3 Performance Data for RC

D Eo Ud Ed Pd Oq %UA Max Log TM Retries

1 24.85 21.65 1.61 0.16 1.43 3 75.0 405.4 13374 92

2 23.91 21.50 1.36 0.08 0.97 2 68.1 1280.0 13384 46

4 23.56 21.39 1.21 0.04 0.86 2 63.3 1635.2 13277 18

6 23.18 21.34 1.00 0.03 0.81 2 63.7 2795.9 13092 16

8 23.13 21.32 1.00 0.02 0.79 2 57.8 3261.3 13008 8

10 23.30 21.31 1.19 0.02 0.78 2 63.2 6267.9 13028 5

12 23.19 21.31 1.09 0.01 0.78 2 63.3 6402.5 13027 7

14 23.09 21.30 1.03 0.01 0.75 2 59.5 4994.5 12871 7

16 23.13 21.31 1.05 0.01 0.76 2 63.1 8127.3 13014 10

unit s s s s s % ms ms count count

Table AS. Performance Data for CM-RC.

D Ed Ud Ed Pd Od %LM ^D Max Log TM Retries

1 31.30 16.11 15.16 0.00 0.03 36 2852.7 14,073.0 235 0

2 31.12 16.10 15.00 0.00 0.02 39 3334.4 20,645.7 187 0

4 29.47 16.10 13.36 0.00 0.01 36 2814.1 67,405.8 211 0

6 31.26 16.10 15.15 0.00 0.01 38 2491.2 111,404.2 194 0

8 29.02 16.10 12.92 0.00 0.00 34 3234.0 112,248.7 188 0

10 29.42 16.10 13.32 0.00 0.00 32 3580.7 168,348.6 186 0

12 28.57 16.10 12.46 0.00 0.00 33 3215.5 171,732.2 190 0

14 28.33 16.10 12.23 0.00 0.00 33 3106.0 196,953.2 189 0

16 28.33 16.10 12.22 0.00 0.00 33 3103.5 225,059.4 189 0

unit s s s s s % ms ms count count

Table A6. Performance Data for CP-RC.

=21 -

y .f

S K: ‘
fj

Y "'I' f.j

p»' rv;j#‘'^- ^.’V.,»] |inl<
!

(;,nT .M'.'. «I (' ';-Tv5J^
r,. ; ! '.^

'-•

V", VI I •/
: ‘'"Vi 'V-

'

' • ^t.T''i4B.j'E

±ai£U
“KETi, -n

^ V’ i : » ^ •

.; mj J'W
T

, 1 -itJir
i-T r .‘T^- "iv

*
': u :0I1

!•"'*’•
'; :. Ll^»r.-lfjVjE3t. I '1 ’ t

NIST-1 14A

(REV. 3-89)

U.S. DEPARTMENT OF COMMERCE
NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY

1. PUBLICATION OR REPORT NUMUt R

Nl.'lTIK dt. 10

BIBLIOGRAPHIC DATA
2. PERFORMING ORGANIZATION RkPORI NUMIll M

3. PUBLICATION DATE
IIILY 199 1

4. TITLE AND SUBTITLE

Performance Evaluation of Hypercube Applications: ILilng .a (11 ob.i 1 (1 1 ock .111(1 T 1 me 1) 1 1 .i 1 Ion
S. AUTHOR(S)

Robert D. Snelick
6 . PERFORMING ORGANIZATION (IF JOINT OR OTHER THAN NIST, SEE INSTRUCTIONS)

U.S. DEPARTMENT OF COMMERCE
NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY
GAITHERSBURG, MO 20899

7 . CONTRACT/GRANT NUMBER

«. TYPE OF REPORT AND PERIOD COVI Ml D

9. SPONSORINQ ORQANIZATION NAME AND COMPLETE ADDRESS (STREET, CITY, STATE, ZIP)

Defense Advanced Research Projects Av,ency

1400 Wilson Boulevard
Arlington, VA 22209

10. SUPPLEMENTARY NOTES

DOCUMENT DESCRIBES A COMPUTER PROGRAM; SP-18S, FIPS SOFTWARE SUMMARY, IS ATTACHED.

11. ABSTRACT (A 200-WORD OR LESS FACTUAL SUMMARY OF MOST SIGNIFICANT INFORMATION. IF DOCUMENT INCLUDES A SIGNIFICANT HIHllOGRAl'My OR
UTERATURE SURVEY, MENTION IT HERE.)

The speed of communication is very Important In the perffirmance oi program;; for loorjely

coupled machines. A precursory study Introduced an emulation technlpm* called time
dilation fl] that investigated the effects of commun i cat 1 on sfuooj.s hy varying the r.if lo

of two parameters: communication time and ccjmputatlon time. Tin* analysis oi i h I ;»

technique was based on local measurements of a node’s system resourrc* utilization, A

problem for loosely-coupled systems with local clocks Is that observation;; rannol
directly resolve communication delays Into logical and i>hyHlcal transpcjrt (-(si t r 1 l)u i 1 on;;

.

This work separates the communication cornpfjnent of a jirograrn ^vla a glol);il f*l(j(l'; Into
two states: logical and physical delays. True measurement;; calibrate t h«- Indlrert
dilation method for a sharper, quantitative Interpretat l(;n , tliat It does not otln-rwl.se

have

.

Time dilation, coupled with low perturbing global measurement, provldio; /in env I ronr/x-n t

that offers insight for the development and analysis of concurr<:nt algorithms and
architectures. Measurement of communication service states Indicates categorically
sources of delay In the communication structure. The observables are ap(>ll<5fi to
evaluate a set of example hypercube applications. Since the analysis is based upon
system resources, which are invariant across all hypercubr* programs, It iormn a

reliable base for comparison. Results demonstrate that Improvement to lnfrequ<;nt
system states can cause significant changes In program behavlf;r. Tfj 1 s Is most
apparent for synchronoiis algorithms.

12. KEY WORDS (« TO 12 ENTRIES; ALPHABETICAL ORDER; CAPITAUZE ONLY PROPER NAMES; AND SEPARATE KEY WORDS BY SEMICOLONS)

communication; emulation; global clock; hypercube; measurements
;
per f f;rmance

;

resource usage; service states; time dilation

13. AVAILABIUTY 14, NUMBER or PRINTED PAO(S

X UNUMITED
29

FOR OFFICIAL DISTRIBUTION. DO NOT RELEASE TO NATIONAL TECHNICAL INFORMATION SERVICE (NTIS),

ORDER FROM SUPERINTENDENT OF DOCUMENTS, U.S. GOVERNMENT PRINTING OFFICE,
IS PRICE

WASHINGTON, DC 20402
AO'i

X ORDER FROM NATIONAL TECHNICAL INFORMATION SERVICE (NTIS), SPRINGFIELD, VA 22181,

ELECTRONIC FORM

=SF.

atMttfJlcJwijo -f i 30R3Mla^%
ottf- HIT?. >. r’’y&OJOWW*>‘C3/»Ae;;f.AOVbi,'IiTO

ciraa iftmluSUoiib c»|m
'

aUlTTrSMUAMOlTAW

4
.*«*'* is!

T33wa oiH€>Ap?;"Di m9

T»

•jTirW r U»Mkt7nf ',

cfoA^cXlu ^jg^J bfm j^^oXO Xft4i^P'

g

fifJ: vdXfij'iMvH 0^14^1 ftv3 ft^anauhollifftl
J.I.^I - 1.] f^M I

—•• ‘>- ''-pin ir — ll^llll^ liS i mrnm l ll iiti— tr— *^nr ., i i (

S..j^

'

','^1

HS

<4o5fS355^fV\>

m
sgi

%

: j 4 :ia ^ :>iievfcA f
^

, .- £ k'^'SfVitl uc4 no«4tW 00*'^ i

H
?5:

43lXaft2 «(1

"Tf”
fe

'
'

’ E ' i<'

s

vja

eO,SSl A ”
. iTpagiiil’Wfc

S:

rt!i“iiifrf»ftT?m(00 ft>:rt4«HDO<J 'nv

4srfi^rllaEtio' - - i ' '• '>« Aj

st^rl^' .
4asi4,fcrioft«: ^TqooD

crJ;J.Ry 5^3 ‘^-'d' I'H
JJ{3:s.J3iafttft«l QV3;5q

A - ,p.7;fl:j.t^!;iJyV9:3'xo^5^ ft: 1^ -ffO 86W ai/pix?/li)93
__

1^
ol

3ci^;rJtiaJ- ^T-^. •a4rt,:|^a'^£'Mw V;<&i' * t«.
^

t ift>f^ ow^

^ nj i 7 ’*

p,444A^ >«l<!Hrt>3 croJfc3%ltt^
"

; iri5nte»!

.4 4iri,oii^ .<iijrj5W<i8e»y

V’’ ?i' H' ^ .'. .; ?g. '

;[,.

®

f^^iram^TrySBSia
,j^

^^fti:4j|l ;£eol'tA3lctii«’j<s4»

jf

n/ .,-4f

^v. L‘;s ®r
. -as^' H

...
' 4air}4> sbfvw ^spggrjB-j^

ijffTTyr'
' '“ '

/V' „
• ' *6’’'**'

•
' tt ; V I

'^|B|t®

; 'I.

.

/' ;, - .“ ,“=
'

"

,
'

tf.-

'

' 4»-#E-W***tWIHW»a3lP:/’. " fl!

•^f^. ab^ftie w»>ti»rfrAy..<^»<i abkm
i

r- rjjit, - ir

'V'
‘*'"^'^•^4’^''-

' "

In

^J"^' V' ^’m'I m

*1

