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Abstract

A technique for generating smooth trajectories of a system is presented. The approach is to find

a dynamical equation with the desired transient behavior and use it as the basis of the control algo-

rithm. It is shown that an appropriate dynamical equation can be obtained by varying the position

and velocity gains of a proportional-derivative control loop over the duration of the movement.

This dynamical equation can be used to generate trajectories on-line with minimal planning. The

resulting manipulator control system responds to path errors in a more reasonable fashion than tra-

ditional approaches to trajectory control since explicit replanning is not required.

Keywords:

robot control, trajectory generation, smoothing, dynamical systems, proportional-derivative con-

trol, articulated mechanisms



1. Introduction

Most manipulator control systems move the robotic manipulator by periodically updating the

attractor of a simple control loop. (The “attractor” is commonly called the “reference” or “com-

mand” signal, however the language of [4] will be adopted here to provide a more geometric inter-

pretation.) The attractor typically consists ofjoint positions, velocities, and accelerations, but may

also involve force or position in Cartesian coordinates [1,2]. The approach of periodically updating

the attractor suffers from the fact that every state through which the manipulator is to pass must be

planned well in advance. Thus, with planning, the manipulator can only take the one preplanned

path from the current state to the goal state. There is no allowance for alternatives based on the sit-

uation at the time of movement.

Researchers have tried many variations on Proportional-Derivative (PD) control to improve its

usefulness for controlling robotic manipulators [2,3]. This paper, in Section 2, reexamines the sim-

ple PD control loop’s transient properties when used without preplanned paths. The technique of

using planned trajectories to modify the behavior of the simple control loop is discussed in Section

3. A new approach to modifying PD controller behavior by using time-varying gains is developed

in Section 4. This approach allows the manipulator to move toward the goal state along a trajec-

tory that maintains the overall smoothness of the motion, as discussed in Section 5. Section 6 dem-

onstrates the algorithm on a two-link planar manipulator by simulation.

2. Manipulator Motion Control

Motion control of robots is commonly achieved by Proportional-Derivative (PD) servo control

loops on each joint [1]. The form of this control is given by

^act
=

( 1 )

where x is the joint position, x is the joint velocity, and Kp, Ky > 0 are the position and velocity

gains. The control output of the PD equation, is the amount of torque to be produced by the

actuator. (This value may be converted into a level of current to be sent to the motor.) The control

equation and the plant (motor and mechanism) form a dynamical system with a point attractor at

the joint position x^j. This means that the system, from any initial position, will approach a neigh-

borhood of the point x= x^j, eventually reaching the neighborhood and staying there [4,5].

The manner in which the attractor is approached is determined by the transient behavior of the

dynamical system. The transient behavior of equation (1) is less than ideal for manipulator control.

Figure 1 shows simulations of the position and velocity profiles of a motion generated by equation

(1) when the plant is a double integrator, i.e. the closed loop equation is

X = Kp{x^-x) -KJ:

The velocity profile for this system is grossly skewed to the left, showing that the majority of the

motion occurs early, but the system slows down and approaches the attractor very slowly at the

end. Thus, to complete a motion within a specified time interval, a much larger than necessary peak

velocity must be generated.

Khatib [2] presented a modification of this dynamical system that would limit the maximum
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velocity. For a desired maximum velocity of the modified system is given by

(2)

where

V min
Vmax

This system still has a point attractor at x= x^j, but the transient behavior has been modified. The

position and velocity profiles of equation (2) are shown in Figure 2. Note that when is large,

the transient behavior of equation (2) will revert to that of equation (1). When is small enough

to influence the behavior of the system, as depicted in the figure, the velocity profile takes on a

somewhat trapezoidal shape with a significantly smaller peak velocity at the expense of a longer

motion duration.

The motions generated by equations (1) and (2) both suffer from a lack of “smoothness”. Hog-

an and Flash [6] propose the use of the mean squared magnitude of the rate of change of accelera-

tion (jerk) as a measure of the smoothness of a movement.

smoothness =
J|

’Jc \^dt (3)

0

By applying a measure such as this, the relative smoothness of different motions can be compared.

For example, for the two motions shown in Figures 1 and 2, the smoothness measures calculated

from (3) are 1,817,214 and 1 1 1,838, respectively, over the interval from zero to two seconds. This

implies that the velocity-limited motion is smoother, in effect trading movement duration for

smoothness. Both of the motions are smooth near the end of the trajectory and “jerky” at the be-

ginning. The amount of jerk is related to the magnitude of the gains. For the example motions

shown in the figures, gains of Kp= 64 and K^= 16 were used.

3. Planned Motion Trajectories

Large initial jerk and slow final movement make PD controller motions less than ideal for gen-

eration of manipulator trajectories. When a robotic manipulator is moved over a large distance, the

motion should be controlled so that the velocity peak occurs in the center of the motion and is not

unreasonably large. To achieve this with a PD controller, planned trajectories are normally used to

guide the system’s transient motion. Thus, for an underlying control algorithm of

- ^) + (4)

a planned sequence of desired trajectory points (x^j, x , x is used to move the system in a desired

motion. By periodically updating (x^j, x ^ ,
x in the control equation, a desired transient behavior
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can be achieved. Thus, a dynamical system with undesirable characteristics is made to behave in a

desirable manner by continuously adjusting its attractor.

One type of planned trajectory used for manipulator control is that of quintic polynomials in

time [1]. The desired motion of the system is given by

xj^t) = ^0 + ^
1
^+

^

2
^^ ‘"^

5
^

Xj^t) = a^ + 2a2t + ^a^t^ + Aa^t^ + 5a^t^

xj^t) = 2^2 + 6^3 r + 12a4r^ + lOa^P

for 0 < t < tf. The coefficients a^ are computed to satisfy the boundary conditions at t=0 and t=tf for

position, velocity, and acceleration. For example, suppose the boundary conditions are x(0)=x^,

X (0) = X (0) = 0, and Xjj(tf)= x ^(tf) = x ^(tf) = 0. Then the coefficients for the quintic polynomial

trajectory are given by [1]

^0 ” -^0

= 0

^2 = 0

10^0

ISjTq

6xo
“5 - "-T (6)

V

Figure 3 shows the position and velocity profiles for a quintic polynomial trajectory with a du-

ration approximately the same as that of Figure 1. A quintic trajectory will be very smooth accord-

ing to the smoothness measure (3), having a value of 814 for the motion of Figure 3. The symmetry

of the velocity profile is an indication of the smoothness of the motion, i.e. the motion is evenly

distributed over time. A double integrator plant and the control algorithm (4) were used to produce

the motion of Figure 3. The control gains were increased to Kp= 1024 and K^= 64, to improve the

tracking of the quintic trajectory. The gains must be increased to a level appropriate for the speed

of the planned motion if the quintic trajectory is to be tracked accurately.

Thus, the control system for a planned trajectory will involve a high-gain PD controller. Such

a control algorithm can create problems. For example, suppose the actual initial position and ve-
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locity of the arm are different from the initial conditions used in computing the coefficients of the

planned trajectory. This situation is depicted in Figure 4. Note that the high-gain PD controller

forces the system quickly back to the planned trajectory. This motion is not smooth. The smooth-

ness measure for the ideal quintic (with initial conditions x(0)= 2.0 and x (0) = 0.0) is 88, while the

smoothness measure for the quintic with incorrect initial conditions of x(0)= 2.2 and x (0)= 0.5 is

8,763,7 14. Thus, if the actual initial conditions deviate from those used in planning, the system will

not be able to produce a smooth movement. This problem arises because the system has the un-

smooth behavior of (1) whenever it is far from the desired attractor.

4. Dynamically Generated Trajectories

Rather than settle for a fixed-gain PD controller of the form

'^act
- -^) +Xd(0

as the basis of manipulator motion, one can try to find an alternative to (1) that provides better tran-

sient behavior. One such alternative is the dynamical system of the form

= K^(t)x + K^(t) (x-x^)
(7 )

Here, x is the plant and K^(t) x + Kp(t) (x - x^) represents the control algorithm. Such a system

can be devised with quintic polynomial trajectories as its “natural” transient behavior.

Consider a dynamical system of the form

(t)x + K
2
{t)x + K^ (t)x = 0 (8)

that is to have a quintic polynomial trajectory from any state x= Xq to the final state x= 0. (Assume

that the desired initial and final velocities and accelerations are zero.) From (5) and (6), we have

x(t) = Xn +
- 10^0

3
15j:o _4 ,

“6^
0.5

t -\- t +

V 7

-^Oxq 60xq -30xq
xit) = —r—C +—

+

f 7 '/

-60^0 180^0 -nOx^
x{t) = —

+

/ 7

(9)

Choose

^1 (0 = bQ + h^t

K
2
(t) = Cq+ C-^t+ C2t^
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(10)
^3 “ ^0 ^

Substituting (9) and (10) into (8) and solving for the unknown coefficients yields

*0=8

*' = T
Co = 1

Cl
=

4r,

C2 =

^0 “

Thus, the dynamical system

-3

2tj

15

2t
f

/o ^ 2 \
f 8 + -r--^r 1

X =
t-t

’/

a: +
t-t

f

(X-Xj)
( 11 )

is obtained, which can also be written as

1
— 12A,^ + 6X, + 8 1 60A,

^ = 7/ rn
‘/

( 12)

where X= V t^. There is a problem with the denominators of gains K^Ct) and Kp(t) in these equa-

tions, however. The function (t -
tf) is zero at t= tf. The gain functions grow toward minus infinity

as t approaches t^, but they can be limited to some reasonable steady state values and held there for

t > tf. Therefore, a system valid for all t > 0 is

X =
max(K^ (0 , -K^^)x + maxiK^ (r) ,

-K^^) {x- x^) ,0<t <t^

-K^^x-K^^ {x-x^). tf<t
(13)

where Kp(t) and K^Ct) are given in equation (11) above.
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Position and velocity profiles of this dynamical system (13) in approaching the point attractor

x= Xjj are shown in Figure 5. Here, gain limits are 1024 and 64. Note that the

transient behavior is a quintic polynomial trajectory, (compare with Figure 3,) and therefore has

the same smoothness properties as the trajectories described in the previous section. This system

also has PD controller steady state behavior.

There are many ways to create time-varying gains that produce quintic polynomial behavior,

although equation (11) may be the simplest. In addition, many different types of transient responses

can be created using the basic system of equation (7). Bullock and Grossberg [7] propose a dynam-

ical system as a model of human motor behavior. This system can be written in the form

x= ( ^-a)x-aG^
.2 A

l^t^J
(x-Xj)

(14)

Here, a and Gq are constants which determine the shape of the transient response [7], and the ve-

locity gain must be limited near t=0. The transient response of this system can be symmetrical, like

the quintic polynomial system, but for many movements the transient response looks more like

at^
x(t)=e than a quintic polynomial. This type of response is somewhere in between the perfectly

symmetrical quintic polynomial motion and the highly skewed response of the PD controller equa-

3

tion (1). A dynamical system providing a response with the shape e'^^ is given by

X = -3at^x-6at(x-x^) (15)

where appropriate limits must be placed on the gains in order for the system to be valid for all t.

The position and velocity profiles of (15) with a= 4 are shown in Figure 6. Compare this figure with

Figures 1 and 5. The smoothness measure for the trajectory in Figure 6 over the two-second interval

is 2025.

5. Smoothness in Dynamically Generated Trajectories

The dynamical system described in equation (13) has quintic polynomial transient behavior.

This system will be referred to here as a dynamic quintic generator, since it produces quintic poly-

nomial-like trajectories without having an explicit representation of the quintic polynomial. The

dynamic quintic generator is a PD controller that uses time-varying gains to smooth out the motion

instead of periodically updating the attractor. This means that the system is not forced to be in a

certain state at a certain time, but rather can choose an arbitrary state that is appropriate for the sit-

uation.

Note that the equation parameters do not depend on the initial position of the system, unlike the

planned trajectory described by equations (5) and (6). The system (13) only depends on the desired

final time t^. In other words, only the duration of the movement need be specified in computing the

coefficients of Kp(t) and K^(t). The resulting gains will provide the correct transient response for

movements over any distance! Figure 7 depicts movements of three different distances using the

functions Kp(t) and Ky(t) computed for t^ 2 s. Note that all the movements finish at time t= 2 s

and have quintic polynomial profiles.
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The dynamic quintic generator finishes on time even when there is a non-zero initial velocity.

A movement from the initial conditions x(0) = 2.2 rad, x (0) - 0.5 rad/s, is shown in Figure 8. These

initial conditions are the same as those used for the quintic simulation depicted in Figure 4. The

value of smoothness measure for the dynamic quintic generator is 499 over this movement, while

it is 8,763,7 14 for the planned quintic polynomial movement. The dynamic quintic generator main-

tains its smoothness properties even when there is variation in the initial conditions.

Another problem area for planned trajectories is switching the goal point during the middle of

the movement. Once it is determined that a new goal point is to be attained, the planner must try to

predict the position, velocity, and acceleration of the system at some time t^. Then the planner must

compute a new plan for the system using the initial conditions at t^ and start the execution of the

new plan at time t^. If the prediction of conditions at t^ is correct then the transition to the new tra-

jectory should be smooth. If the prediction is not correct and the low-level controller is a high-gain

PD controller, then the transition will definitely be jerky.

Since the dynamic quintic generator is not so particular about initial conditions, the transition

to a new trajectory can be done while maintaining motion smoothness. The switch is effected by

simply changing and resetting t to zero. If a finish time for the entire motion other than t^+t^ is

desired, then new coefficients of the gain functions can be determined. Computing new coeffi-

cients only takes four multiplies when using the form of equation (12). Figure 9 depicts a motion

of the dynamic quintic generator with a switch at time 1.5 s. The original goal was x^= 2 rad

which was to be attained 2.0 s from the start of the motion. The switched motion finishes at the new

goal Xjj = 1 rad at time 1.5 + 2.0 = 3.5 s. The motion remains smooth even with the switch in the

middle. The value of the smoothness measure for the entire motion is 288.

6. Simulation of Dynamic Trajectory Generation on Two-Link Manipulator

A simulation of a two-link planar manipulator was performed to demonstrate the applicability

of these ideas to robot manipulator control. The dynamic model for the two-link device was taken

from [1]. The link lengths used are 1.0 m for link 1 and 0.8 m for link 2. The link masses used are

5 kg for link 1 and 2 kg for link 2. The dynamic simulation included all inertia, gravity, centrifugal,

and Coriolis terms, but no frictional disturbances.

To provide an accurate comparison between the PD controller with planned trajectory and the

dynamic quintic generator given by (13), both control algorithms included gravity and inertia com-

pensation. The PD algorithm is

Vr = -6) +K,(Q^{t) - 0) + 0^ (r)

]

+ G (16)

where M is the inertia matrix, G is the gravity vector, and the vectors 0jj(t), 0(j(t), and 0 ^(t) are

the planned trajectory inputs (which are updated every control cycle.)

The dynamic quintic control algorithm is given by

_(m [max{K^ (r) , + rnaxlJC^ (t) , -K^) (0 - 0^) ] + G, 0 < r <
act

[ M[-K^9-K^‘^(Q-QJ]+G, t^<t
( 17 )
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where M is the inertia matrix, G is the gravity vector, and the variable gain functions Kp(t) and

Ky(t) are as in (1 1) or (12).

Note that the centrifugal and Coriolis terms of the dynamic equation are not compensated in

the control algorithms. Thus, these terms will tend to act as a disturbance on the control. If the cen-

trifugal and Coriolis terms were included in the control we would expect the systems to behave as

simulated in the previous sections.

Figure 10 shows the positions of the two manipulator joints during a motion from (0°,0°) to

(120°,45°) in one second. The motions of the PD controller with the planned quintic polynomial

trajectory and the dynamic quintic generator have comparable smoothness. For joint 2, the PD con-

trol with planning has a smoothness measure of 1649, while the dynamic quintic generator’s

smoothness is 1718. Also, the PD controller rejects the disturbances caused by centrifugal and

Coriolis effects. This is due, in part, to the acceleration feedforward term of (16). Without this term,

(16) would cause the joint positions to overshoot badly and not reach steady state within one sec-

ond. In general for the two-link simulations it is found that the dynamic quintic generator does not

exactly produce a quintic polynomial trajectory, but maintains its smoothness and finishes within

the specified time t^.

7. Conclusions

A dynamical system that corresponds to a PD controller with time-varying gains has been de-

scribed. This system produces smooth motion to point attractors which is different from the natural

motion of PD controllers. The system also has advantages over preplanned trajectories fed into

fixed-gain PD controllers, namely, more smoothness over varied initial conditions. The system is

not meant to replace standard PD control for all aspects of movement— there may be many appli-

cations where tracking plans as accurately as possible is the best solution, e.g. welding, machining.

There is some indication that biological motor control systems formulate dynamical systems

for movement based on the task [7,8]. It is not difficult to believe that a dynamical system as com-

plex as a mammalian nervous system would be capable of emulating a variety of dynamical sys-

tems, thereby providing motor control schemes appropriate to the task. An approach to robot mo-

tion which has as its most fundamental basis fixed-gain PD control makes a limiting assumption

about the nature of robot tasks. The uses of new and different control schemes should be considered

with this in mind, rather than evaluating all schemes against the industrial task. Thus, the dynam-

ical systems examined in this paper represent a first step in exploring the more complex bases of

control required for more intelligent behavior.
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Figure 3. Quintic Polynomial Trajectory Figure 4. PD Controller and Planned Quintic with
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Figure 6. Motion of e System
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Figure 7. Dynamic Quintic Generator Motions Figures. Dynamic Quintic Generator with Inexact

Initial Conditions

Figure 9. Quintic Generator with Goal Switch Figure 10. Two-Link Simulation Comparison
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