
t’ NIST
REFERENCE PUBLICATIONS

Applied and nistir 46i5

Computational

Mathematics

Division

NAT L INST. OF STAND & TECH R.I.C.

A11103 71E151

Computing and Applied Mathematics Laboratory

Portable Vectorized Software for Bessel

Function Evaluation

Ronald F. Boisvert and Bonita V. Saunders

June 1991

QC

—

100

U56

/M615

1991

U.S. DEPARTMENT OF COMMERCE
National Institute of Standards and Technology

Gaithersburg, MD 20899

Portable Vectorized
Software for Bessel
Function Evaluation

Ronald F. Boisvert
Bonita V. Saunders

DEPARTMENT OF COMMERCE
National Institute of Standards

and Technology

Computing and Applied Mathematics
Laboratory

Applied and Computational Mathematics

Division

Gaithersburg, MD 20899

June 1991

U^. DEPARTMENT OF COMMERCE
Robert A. Mosbacher, Secretary

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
John W. Lyons, Director

Portable Vectorized Software for Bessel Function

Evaluation

Ronald F. Boisvert and Bonita V. Saunders*

Computing and Applied Mathematics Laboratory

National Institute of Standards and Technology

Gaithersburg, MD 20899

June 19, 1991

Abstract

A suite of computer programs for the evaluation of Bessel functions and modified

Bessel functions of orders zero and one for a vector of real arguments is described.

Distinguishing characteristics of these programs are that (a) they are portable across a

wide range of machines, and (b) they are vectorized in the case w'hen multiple function

evaluations are to be performed. The performance of the new programs are compared

with software from the FNLIB collection of Fullerton on which the new software is

based.

Keywords: Bessel function, hyperbolic Bessel function, mathematical software, mod-

ified Bessel function, order zero and one, portable software, special function, vectorized

softw’are.

1 Introduction

Bessel functions of real argument and integer order are among the most commonly occurring

special functions of applied mathematics, and most software libraries contain routines for

their evaluation. One of the most successful collections of routines for evaluating these and

other special functions is the FNLIB package developed by Wa\Tie Fullerton at the Los

Alamos National Laboratories in the late 1970s [9]. One of the most important features of

FNLIB is its portability. Parameterized by the PORT machine constants [8], FNLIB codes

are regularly used on machines from IBM PCs to Gray Y-MPs. Versions of these codes have

found their way into several well-known libraries such as the IMSL SFUN/LIBRARY [10],

and the SLATEC Common Math Library [2]. They are also available from netlib [6].

“Electronic mail: boisvert@cam.nist.gov and saunders@cam.nist.gov, respectively

2 Boisvert and Saunders

More recently, increased attention has been paid to the development of algorithms and

software which take advantage of vector processors. On such machines, for example, special

versions of many standard Fortran math functions are available, so that the compiler can

vectorize loops such as the following.

DO 10 1=1,

M

Y(I) = EXP(X(I))

10 CONTINUE

The ability to vectorize such loops is crucial in many applications.

In this paper we describe a set of Fortran-callable subprograms which extend this func-

tionality to the Bessel functions Iq, Ii, Jo, Ji, Kq, Ki, Yq, and Yi. This has been done by

producing modified versions of the FNLIB routines BESIO, BESIl, BESJO, BESJl, BESKO,
BESKl, BESYO and BESYl, as well as their double precision versions. The new routines

maintain the portability of FNLIB with the advantage of being vectorizable in cases when

multiple function evaluations are required. In Section 2 we review the basic design of the

FNLIB routines. In Section 3 we discuss various issues involved in the vectorization of these

algorithms. This is followed by a short description of the user interface of our implemen-

tation in Section 4. Finally, in Section 5 we describe the testing of the new software, and

evaluate its performance on various scalar and vector processors.

2 Design of FNLIB
FNLIB is a substantial collection of software, including more than 200 Fortran subprograms.

Double precision versions are available for most codes. Primary design criteria for the de-

velopment of the package were portability and maintainability. In some cases, other criteria

such as speed and accuracy were relaxed slightly in order to maximize the primary criteria

[9]. For example, FNLIB routines are rarely accurate to the last bit, although they are al-

most always accurate to within a factor of 10 times the machine precision. This is certainly

sufficient for the vast majority of applications. The fact that these routines have remained

popular for more than 10 years, and have been trivially ported to many machines which did

not exist when they were initially developed attests to the success of the basic design.

FNLIB is based upon approximation by truncated Chebyshev series expansions [7].

Such approximations have many well-known properties: they are widely applicable, they are

nearly best in the minimax sense, the error is easy to estimate, they provide variable accu-

racy approximations, and they are more stable to evaluate than conventional polynomials.

Because of these properties, such approximations have been the basis for many algorithms

for the evaluation of special functions.

The basic formula for the construction of the routines in FNLIB, which we paraphrase

from [9], follows.

Recipe for Constructing FNLIB Routines

1. Store Chebyshev coefficients in DATA statements.

Coefficients of all required Chebyshev expansions accurate to 16 digits axe stored in sin-

Vectorized Bessel Function Software 3

gle precision routines. 31 digits in double precision routines. This range ensures sufficient

accuracy for most computers.

2. Initialize.

This is done only on the first call of each routine.

(a) Calculate legal argument hounds.

Illegal argument regions aue those where the function is undefined, the result would

overflow or underflow, or range reduction cannot be performed accurately enough. The

PORT machine constants are used to determine bounds applicable to the current ma-

chine.

(b) Determine correct number of expansion coefficients.

The error committed in truncating a Chebyshev series is bounded by the sum of the

absolute values of the discarded coefficients. One can use this to estimate the error

committed by using fewer and few’er terms. In this way the length of the series can be

selected to match the precision of the machine.

3. Check input argument for validity.

The function argument is compared against bounds computed during initialization. Both

fatal errors and w'arnings are provided. Warnings are issued for underflowed results, for

example, while fatal errors are issued in cases wffiere no result can be returned, such as where

the result overflows. Errors are issued using the PORT error handler [8j.

4. Compute the approximation.

The basic computation is the evaluation of a truncated Chebyshev series. It is not reasonable

for a single series to be accurate over the whole argument range. Thus, the argument range

is broken up into several subintervals (usually three or four), each with its own series. Once

the appropriate subinterval has been determined, the computation proceeds as follow’s.

(a) Preprocess argument.

The argument is mapped to the interval [-1,1].

(b) Evaluate Chebyshev series.

This is done using a three-term linear recurrence due to Clenshaw [3].

(c) Postprocess result.

The series value is finally corrected for form or interval, if necessary,

3 Vectorization for Multiple Arguments

In this section we describe how routines with the above design may be extended for the

case of evaluation at multiple arguments. Three opportunities for improving performance

exist: (1) reduction of subprogram call overhead, (2) vectorization of pre- and postprocessing

phases, and (3) vectorization of Chebyshev series evaluation. The emphasis on this paper is

on (2) and (3).

The vectorization of function evaluation routines for multiple arguments seems quite

simple at first — one sim^ply apphes the scalar algorithm to the vector of arguments. Ln-

fortunately, this fails because the range of possible input arguments is diffided into several

4 Boisvert and Saunders

siibintervals, each of which is handled differently. Since we cannot assume that the input

arguments have been sorted in any way, the core of the algorithm proceeds as follows.

For each argument range:

Gather arguments from this range into a temporary vector.

Compute the approximation for these arguments in vector mode.

Scatter results back into resultant vector.

Clearly, the vector lengths will depend upon the distribution of input arguments, and, in

general, will be less than the total number of arguments.

To illustrate this transformation we consider the following linestatement from the FNLIB
routine BESIO^.

IF ((Y .GT. XSML) .AND. (Y .LE. 3.0))

+ BESIO = 2.75 + CSEVL(Y*Y/4. 5-1.0, BIOCS, NTIO)

This line illustrates how one particular argument range is handled. The approximation in

this case is simply 2.75 plus the Chebyshev series sum returned by the utility CSEVL. BIOCS

is an array of Chebyshev series coefficients and NTIO is the number of coefficients. The
corresponding vector code is more complex.

CALL WGTLE (M , Y , XSML , 3 . OEO , N , INDX)

IF (N .GT. 0) THEN

CALL WGTHR(N,Y,YCMP,INDX)

DO 20 J=1,N

TCMP(J) = YCMP(J)**2/4.50E0 - 1 . OEO

20 CONTINUE

CALL WCS (N , TCMP , B I OCS , NTI 0 , ZCMP , BO , B 1 , B2

)

DO 30 J=1,N

ZCMP(J) = 2.750E0 + ZCMP(J)

30 CONTINUE

CALL WSCTR (N, ZCMP, INDX, F)

ENDIF

Here there are M arguments in the array Y for which the function is to be evaluated with

result returned in the array F. WGTLE returns an array INDX of the N indices of elements of

the vector Y that are between XSML and 3. These are gathered by the routine WGTHR into

YCMP. The 20 loop preprocesses the argument array. WCS evaluates the same Chebyshev

series as CSEVL, except for a vector of N arguments stored in the array TCMP. BO, Bl, and B2

are work arrays of length M. The 30 loop postprocesses the result of the series evaluation,

and then WSCTR puts the result into the appropriate positions of F. The preprocessing and

postprocessing phases are trivially vectorizable, while the routines WGTLE, WGTHR, and WSCTR

represent utility operations which are also vectorizable.

^This statement hcis been modified slightly from the original code to simplify the presentation.

Vectorized Bessel Function Software 0

Next we consider how the evaluation of truncated Chebyshev series is vectorized. First

we review how the series is evaluated in the scalar code. Given an argument x and a set of

Chebyshev coefficients c,, z = 1, . .
. ,

n, the following algorithm due to Clenshaw evaluates

1

f(^)
- -xCiToix) + c,+ir,(a;).

*= 1

Algorithm 1 : Clenshaw Recurrence — Scalar Version

0. Initialize

(3 ^ 0

'y ^ 0

1. Recurrence for series

for i = n step —1 to 1 do :

a <r—

1 ^ ^
(3 ^ 2x7 — ct + Ct

2. Last term; result is in f

f ^ (0-a)l2

When we have a vector of arguments, Xj^ j = 1, . .
.

,

m, it is clear what should be done:

X, a, /?, 7 ,
and / become vectors and all assignments are loops that run for j = 1, . .

.

,m.

When this is done, however, the recurrence loop has two unnecessary vector copies. These

can be eliminated when the loop on i is unrolled to a level of three. This is illustrated in the

following vector version of the above algorithm; note that three temporary vectors of length

m are required in addition to the input vector x and the output vector /.

Algorithm 2 : Clenshaw Recurrence — Vector Version

0. Initialize

k ^ n mod 3

(3j ^ 0 for j - l,...,m

7j
^ 0 for j = l,...,m

fj 2xj for j =

1. Recurrence for series (unrolled)

for i = n step — 3 to 1 + k do :

^ fj 03 - 7j + c, for j = 1, . .
.

,

m
7j ^ fjocj - (3j + c,„i for j = 1, . .

. ,
m

^3 ^ f3l3 ~ ^3 + c«-2 for J = 1, . .
. ,
m

2. Last term; cleanup for n not divisible by three

6 Boisvert and Saunders

Table 1: User-callable VFNLIB subprograms.

VFNLIB
Single Double Description

FNLIB
Single Double

VIO DVIO Evaluates Iq for a vector of arguments. BESIO DBESIO

VII DVIl Evaluates U for a vector of arguments. BESIl DBESIl

VJO DVJO Evaluates Jo for a vector of arguments. BESJO DBESJO

VJl DVJl Evaluates Ji for a vector of arguments. BESJl DBESJl

VKO DVKO Evaluates Kq for a vector of arguments. BESKO DBESKO

VKl DVKl Evaluates Ki for a vector of arguments. BESKl DBESKl

VYO DVYO Evaluates Yo for a vector of arguments. BESYO DBESYO

VYl DVYl Evaluates Yi for a vector of arguments. BESYl DBESYl

if
(

A: = 0)
then

h ^ (0]
--a,)/2 for j =

elseif
(
k = 1)

then

- m -7j + Cl for J

h ^ (qj
--7,)/2 for j =

elseif
(
k = 2)

then

^ fji^j -7; + C2 for j = l,...,m

Ij — + Cl for J

h ^
(7j

--A)/2 for J

endif

The loop on i repeatedly utilizes four vectors which can remain in vector registers for

the entire computation. Unrolling the loops in this way yields a 20% to 25% improvement

in the overall performance of our software on the Cray.

4 The Vector Codes

Using techniques described in the section above, we have produced portable vectorized rou-

tines for evaluating the following Bessel functions of real argument and orders zero and one:

lo, Ii, Jo, Ji, Ko, Ki, Yo, and Yi [1]. Since our codes employ the basic algorithms of- FNLIB
retooled for a vector environment we have called our collection of codes VFNLIB. Although

we have produced new user-callable versions of only a small portion of the original FNLIB,

the techniques which we have used can be readily applied to many of the remaining FNLIB
routines.

VFNLIB includes the 16 user-callable Fortran subprograms which are listed in Table 1.

Each has an identical calling sequence.

CALL name (M, X, F, WORK, IWORK, INFO)

Vectorized Bessel Function Software
I

X is an array containing the M arguments for which the function is to be evaluated. The results

are returned in the corresponding positions of the array F. WORK and IWQRK are workspace

arrays. IWQRK is of length M, while WORK is of length 7M. INFO is a return code. Both single

precision and double precision versions of each function are provided.

We have elected to provide an error return code parameter rather than issue all error

messages through an error handler as is done by FNLIB. Error conditions are indicated by

a nonzero return code INFO. Fatal errors are indicated by INFO > 0, while w’arnings have

INFO < 0. If any argument leads to a fatal error then no results are returned. Fatal error

conditions are: M < 0, function undefined for an argument, a result overflows, an argument

so large that accurate argument reduction is not possible. In the last three cases the index

of the first offending argument is returned in IWORK(l). A warning is issued when any result

underflows; the corresponding function value is set to zero in this case.

We have used a separate procedure to handle errors detected in lower-level routines. An
example is that an n-term Chebyshev series is to be evaluated for n < 1. Such errors are

not caused by improper user input and should never occur during the normal use of these

routines. (The exception is when the array WORK is too short and the code overwrites other

data.) The only reasonable thing to do in these cases is to issue a fatal error message and

halt the program. This is done by calling an very simple error-handling routine WFERR.

A list of all subsidiary routines included in VFNLIB is given in Table 2. All codes

are written in standard Fortran 77. A number of common operations such as vector index

compression, vector gather and vector scatter are used in VFNLIB. These operations are the

most likely to lead to compiler vectorization failures. Although they each vectorize on both

the Convex and the Cray Y-MP, they did not vectorize on the Cyber 205, for example. As a

result, we have encapsulated these operations into low-level utilities which, if necessary, can

be replaced by processor-dependent utilities.

5 Evaluation

5.1 Portability and Accuracy

Since VFNLIB represents a vectorization of a subset of FNLIB, our first goal is to assure

that VFNLIB routines return the same results as the corresponding FNLIB routines. A
test program that is distributed with the package compares each function with its FNLIB
counterpart for approximately 23,000 arguments, verifying that the two differ by no more

than five times the machine epsilon. (Relative difference is used for function values greater

than one, absolute difference for those less than one.) This code was run on three separate

computer systems: Sun SPARCstation 1+ (Sun OS 4.0.3) using Sun Fortran 1.3.1 (options

-fast -03), Convex C-120 (Convex Unix 4.2 release 9.0) using Convex fc version V6.1 (option

-02), Cray Y-MP2/216 (UNICOS 6.0) using cf77. In each case available options were used

to check for conformance to ANSI X3.9-1978 FORTRAN.
Some additional testing was done to verify that both sets of routines were indeed pro-

ducing correct function values. Ideally, function routines return results with relative error

near the machine precision. This is rarely the case in practice. The accuracy of the VFNLIB

8 Boisvert and Saunders

Table 2: Internal VFNLIB subprograms.

VFNLIB FNLIB
Single Double Description Single Double
WIO DWIO Evaluates Iq for a vector of arguments.

WIl DWIl Evaluates Ii for a vector of arguments.

WJO DWJO Evaluates .Jq for a vector of arguments.

WJl DWJl Evaluates Ji for a vector of arguments.

WKO DWKO Evaluates Kq for a vector of arguments.

WKl DWKl Evaluates Ki for a vector of arguments.

WYO DWYO Evaluates Yq for a vector of arguments.

WYl DWYl Evaluates Yi for a vector of arguments.

WCS DWCS Evaluates a given Chebyshev series for a

vector of arguments.

CSEVL DCSEVL

IWCS IDWCS Determines number of terms necessary to

compute a given Chebyshev series to a

INITS INITDS

given accuracy .

WNGT DWNGT Determines if elements of a vector are

greater than a given scalar.

WNLE DWNLE Determines if elements of a vector are less

than or equal to a given scalar.

WGT DWGT Index compression. Given a vector x,, and

scalars a and 6, this constructs an array of

indices j for which Xj > h.

WLE DWLE Index compression. Given a vector x,, and

scalars a and 6, this constructs an array of

indices j for which Xj < b.

WGTLE DWGTLE Index compression. Given a vector x,, and

scalars a and 6, this constructs an array of

indices j for which a < xj < b.

WGTHR DWGTHR Vector gather.

WSCTR DWSCTR Vector scatter.

WFERR Processes a fatal error message. SETERU

IlMACH IlMACH Returns integer valued machine dependent

constants. From PORT [8].

IlMACH IlMACH

RIMACH DIMACH Returns real valued machine dependent

constants. From PORT [8].

RIMACH DIMACH

Vectorized Bessel Function Software 9

routines was assessed by evaluating each function for four to five thousand arguments on
the Cray Y-MP with both FNLIB and VFNLIB and then comparing the results with those

computed in extended precision using Mathematica [11]. In most cases the results returned

by FNLIB and VFNLIB have relative error less than about 10 times the machine epsilon

(1.4 X 10“^‘‘in single precision, 1.0 x 10“^^ in double precision). Two notable exceptions to

this behavior occur for the functions Jo, Ji, Yq, and Yi, which we describe below.

Cancellation at function zeros. These functions are oscillatory, and cancellation errors in

the evaluation of the Chebyshev series lead to a loss of relative accuracy in the neighborhood

of their zeros (except for Ji(0) = 0). In these cases the absolute error remains less than about

10 times the machine epsilon.

Argument reduction for sine and cosine. For large arguments, these functions are

computed as A(x’)^(^(x)), where .4 and 9 are given by Chebyshev series, and ^ is a sine or

cosine. Since 9(x) is of the same size as x, the sine or cosine of a large argument must be

computed when x is large. Argument reduction within the sine and cosine procedures can

lead to loss of precision for large x.

5.2 Efficiency

The chief motivation for using VFNLIB is the prospect of improved computation rates on

vector processors. To assess the advantage of using VFNLIB, we compare the use of VFN-
LIB routines (“vector codes’’

)
with repeated calls of corresponding FNLIB routines (“scalar

codes”). We compare the codes on the three systems described in Section 4: Sun SPARC-
station 1+ ,

Convex C-120, and Cray Y-MP2. The first is a scalar workstation, the second a

vector minisupercomputer, and the third an 2-processor vector supercomputer (although we

only use one processor in these tests). We include the Sun to demonstrate the portability

of the software, as well as to show that use of VFNLIB need not degrade performance on

on scalar processors. All tests were performed in single precision (the Sun and Convex are

32-bit machines while the Cray is a 64-bit machine).

The computation in the innermost loop of the vectorized codes is the evaluation of

Chebyshev series using the algorithm of Section 3. In Table 3 we list the computation

rate in megaflops for evaluating a single Chebyshev series for 2000 arguments using both

scalar and vector codes. The subprograms CSEVL and WCS were used for this purpose. The

theoretical peak rate for the Convex and Cray are 40 and 333 megaflops, respectively, while

the corresponding Linpack benchmark runs at 6.5 and 90 megaflops [5]. In light of these

figures, the observed rate for vectorized Chebyshev series evaluation on the Convex and Cray,

15 and 1S2, respectively, are seen to be quite reasonable.

Unfortunately, as we have seen, there is more to the computation of Bessel functions

than the evaluation of Chebyshev series. Overhead must be paid for the gathering and

scattering of vector elements, as well as for various error checks. It is easy to assess the

effect of this overhead on the Cray Y-MP using its hardware performance monitor. Table 4

lists the measured asymptotic computation rate in megaflops for each user-callable function.

To obtain this data, we evaluated each function for 19 different sets of 2000 arguments,

10 Boisvert and Saunders

Table 3: Asymptotic Performance of Chebyshev Series Evaluation (Megaflops)

Machine Terms Scalar Vector

Sun SPARC 1-f 7 1.8 2.9

Convex C-120 7 1.2 15.0

Cray Y-MP2 20 12.7 182.1

Table 4: Asymptotic Performance of Bessel Functions on Cray Y-MP (Megaflops)

Function lo ii Jo Ji Ko Ki Yo Y,

Scalar 9.0 8.7 10.6 10.4 7.8 8.0 9.1 9.0

Vector 148.7 142.4 164.5 160.9 162.8 159.3 172.0 170.0

each with a different argument distribution. Comparing Table 3 and Table 4 we see that

computation rates for full Bessel function evaluation decline only 7 to 22 percent over raw

Chebyshev series evaluation.

Another measure of performance is speedup, the ratio of scalar to vector times for

multiple function evaluation. Actual speedups depend upon the distribution of arguments.

We compare the scalar and vector codes for vectors of length 2000 distributed in 19 different

ways among three different argument ranges. The test includes cases where all arguments

are in a single range as well as cases where only one per cent of the arguments are in a

given range. Table 5 lists minimum, average, and maximum speedups observed with the

single precision codes on each computer. The speedups for the Convex are in the range of

4.4 to 9.6 while the speedups on the Cray are in the range 13.9 to 23.0. (The entry labelled

“Convex C-120 with VECLIB” will be explained shortly.) It is also interesting to note that

the vectorized codes run faster than the scalar codes on the Sun in most cases.

The average speedups for the Cray Y-MP given in Table 5 are somewhat better than

one might predict from the computation rates given in Table 3. In contrast, the speedups for

the Convex are not as large as one might predict. To investigate this further we generated

an execution profile of the subroutine VIO evaluating Iq for a vector of length 2000 with

X, = 1 for all i. The first two columns of Table 6 show the percent time spent by the

Cray and the Convex on four different activities. The innermost loop of the computation is

Chebyshev series evaluation, which is where more than half the computation occurs on the

Cray. However, on the Convex, more than half the time is spent doing index compression;

although the compiler does “vectorize” the index compression loops, the resulting code does

not perform very well.

In VFNLIB operations such as index compression and gather/scatter have been isolated

in low-level utility routines so that they can be easily replaced on systems whose Fortran

compilers cannot adequately vectorize them. On the Convex the index compression and

gather/scatter loops may be replaced with calls to VECLIB library which has been optimized

Vectorized Bessel Function Software 11

Table 5: Asymptotic Speedups (Scalar time / vector time)

Machine lo Jo Ji Ko Ki Yo Yi
Sun SPARC l-j- Min 1.0 1.0 1.1 1.1 1.0 1.0 1.2 1.2

Ave 1.1 1.1 1.2 1.2 1.2 1.2 1.3 1.3

Max 1.2 1.2 1.4 1.2 1.3 1.4 1.6 1.5

Convex C-120 Min 4.4 5.2 5.5 4.6 7.6 7.3 7.9 7.9

Ave 5.8 5.9 6.4 5.6 8.0 8.0 8.4 8.5

Max 6.5 6.2 6.8 6.0 8.3 9.1 9.3 9.6

Convex C-120 Min 6.2 7.5 6.6 5.8 8.2 9.1 8.6 8.0

with VECLIB Ave 7.9 7.9 7.3 6.6 9.8 9.6 9.2 8.6

Max 8.8 8.2 7.6 7.0 10.9 10.4 10.3 9.7

Cray Y-MP2 Min 16.2 15.3 14.5 13.9 20.8 20.9 14.8 14.9

Ave 17.8 16.8 16.0 15.3 21.5 21.6 19.6 19.8

Max 20.7 19.9 21.5 20.4 22.6 23.1 23.4 23.0

Table 6: Percent Time Spent by VIO on Various Activities

Activity Cray Convex Convex with VECLIB
Chebyshev series evaluation 57.7 22.8 34.8

Pre- and post- processing 12.1 10.2 15.8

Index compression 20.0 50.2 20.2

Gather/scatter 5.2 9.7 17.9

12 Boisvert and Saunders

Table 7: Short Vector Speedups (Scalar time / vector time)

Machine length lo ii Jo Ji Ko Ki Yo Yi
Sun SPARC 1 + 2 0.5 0.5 0.5 0.5 0.6 0.6 0.6 0.6

20 1.2 1.0 1.0 1.2 1.2 1.2 1.1 1.2

Convex C-120 2 0.2 0.2 0.2 0.2 0.3 0.3 0.2 0.2

20 1.8 1.8 1.8 1.6 2.2 2.3 2.0 2.2

Cray Y-MP2 2 0.4 0.4 0.4 0.4 0.5 0.5 0.4 0.5

20 3.6 3.5 3.5 3.4 4.6 4.5 4.0 4.0

Table S: Short Vector Break-even Point (Vector time = scalar time)

Machine lo ii Jo Ji Ko Ki Yo Y,

Sun SPARC 1 + 12 12 14 10 8 8 7 7

Convex C-120 10 10 10 11 8 7 9 8

Cray Y-MP2 5 5 5 5 4 4 5 5

for use on the Convex [4]. When this is done the entries in the third column of Table 6 are

obtained. This is is a more reasonable distribution, although the gather/scatter operations

now occupy a larger percentage of time than on the Cray. Using the modified version of

VFNLIB’s utilities on the Convex leads to the the improved scalar/vector speedups labelled

“Convex C-120 with VECLIB” in Table 5.

The tests that we have performed thus far assess the performance of the codes for

very long vectors. It is also important to assess the penalty for using the vectorized codes

when vector lengths are short. Table 7 lists sample speedups for each function on the three

machines for vectors of length 2 and 20. Arguments for these tests are distributed over two

argument subranges so that internal vector lengths are actually half that hsted in the table.

As one would expect, the vector codes run slower in each case when very few function values

are requested. For vector length 2 the vector code runs twice as long on the Sun and the

Cray, and five times as long on the Convex. Table 8 lists the vector length for which the

speedup is 1, i.e., the break-even point after which the vector codes are faster. The breakeven

point is in the range 4-5 for the Cray, 7-11 for the Convex, and 7-14 for the Sun.

6 Conclusion

We have described a suite of portable Fortran subprograms, VFNLIB, for computing the

Bessel functions of real argument and integer order. The codes are a modification of rou-

tines from Fullerton’s well-known FNLIB package. The new routines allow users to specify

an array of arguments at which to evaluate the functions, and the algorithms have been

changed to allow effective vectorization when this is the case. Speedups of from 13 to 22

Vectorized Bessel Function Software 13

over use of the original FNLIB have been observed for the VFNLIB codes on the Cray Y-MP.
Modest speedups were also observed on the Sun SPARCstation l-p, a scalar workstation.

The vectorization techniques employed in VFNLIB extend to many other FNLIB routines.

Disclaimer

Identification of commercial products in this paper does not imply recommendation or en-

dorsement by NIST.

References

[1] M. Abramowitz and 1. A. Stegun, editors. Handbook of Mathematical Functions with

Formulas, Graphs, and Mathematical Tables. U. S. Government Printing Office, Wash-

ington, D.C., 1964.

[2] B. L. Buzbee. The SLATEC common mathematical library. In W. R. Cowell, edi-

tor, Sources and Development of Mathematical Software, pages 302-318. Prentice-Hall,

Englewood Cliffs, N.J, 1984.

[3] C. W. Clenshaw. A note on the summation of Chebyshev series. M. T. A. C., 9:118-120,

1955.

[4] Convex Computer Corporation, Richardson, TX. CONVEX VECLIB User’s Guide,

third edition, October 1988.

[5] J. J. Dongarra. Performance of various computers using standard linear equations

software. Computer Science Department Report CS-89-85, University of Tennessee,

August 1990.

[6] J. J. Dongarra and E. Grosse. Distribution of mathematical software via electonic mail.

Comm. ACM, 30:403-407, 1987.

[7] L. Fox and I. B. Parker. Chebyshev Polynomials in Numerical Analysis. Oxford Uni-

versity Press, London, 1979.

[8] P. A. Fox, A. D. Hall, and N. L. Schryer. Algorithm 528: Framework for a portable

library. ACM Trans. Math. Softw., 4:177-188, 1978.

[9] L. W. Fullerton. Portable special function routines. In W. Cowell, editor, Portability of

Numerical Software, volume 57 of Lecture Notes in Computer Science, pages 452-483.

Springer-Verlag, New York, 1976.

[10]

IMSL Inc., 2500 CityWest Blvd., Houston, TX 77042-3020. SFUN/LIBRARY: FOR-
TRAN Subroutines for Evaluating Special Functions, April 1987. Version 2.0.

14 Boisvert and Saunders

[11] S. Wolfram. Matheinatica, A System for Doing Mathematics by Computer. Addison-

Wesley, Redwood City, CA, 19SS.

NIST-1 14A

(REV. 3-90)

U.S. DEPARTMENT OF COMMERCE
NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY

1. PUBUCAT10N OR REPORT NUMBER
NISTIR 4615

BIBLIOGRAPHIC DATA SHEET
2. PERFORMING ORGANIZATION REPORT NUMBER

3. PUBUCAT10N DATE
JUNE 1991

4. TITLE AND SUBTITLE

Portable Vectorized Software for
Bessel Function Evaluation

5. AUTHOR(S)

Ronald F. Boisvert and Bonita V. Saunders
6. PERFORMING ORGANIZATION (IF JOINT OR OTHER THAN NIST, SEE INSTRUCTIONS)

U.S. DEPARTMENT OF COMMERCE
NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY
GAITHERSBURG, MO 20699

7. CONTRACT/GRANT NUMBER

8. TYPE OF REPORT AND PERIOD COVERED

9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (STREET, CITY, STATE, ZIP)

10.

SUPPLEMENTARY NOTES

11.

ABSTRACT (A 200-WORO OR LESS FACTUAL SUMMARY OP MOST SIGNIFICANT INFORMATION. IF DOCUMENT INCLUDES A SIGNIFICANT BIBUOQRAPHY OR
LITERATURE SURVEY. MENTION IT HERE.)

A suite of computer programs for the evaluation of Bessel functions and modified
Bessel functions of orders zero and one for a vector of real argumants is described.
Distinguishing characteristics of these programs are that (a) they are portable
across a wide range of machines, and (b) they are vectorized in the case when
multiple function evaluations are to be performed. The performance of the new
programs are compared with software from the FNLIB collection of Fullerton on which
the new software is based.

12.

KEY WORDS (6 TO 12 ENTRIES; ALPHABETICAL ORDER; CAPITALIZE ONLY PROPER NAMES; AND SEPARATE KEY WORDS BY SEMICOLONS)

Bessel function; hyperbolic Bessel function; mathematical software; modified Bessel
function; order zero and one; portable software; special function; vectorized
software

13. AVAILABILITY 14. NUMBER OF PRINTED PAGES

UNUMITED

FOR OFFICIAL DISTRIBUTION. DO NOT RELEASE TO NATIONAL TECHNICAL INFORMATION SERVICE (NT1S).

ORDER FROM SUPERINTENOENT OF DOCUMENTS, U.S. GOVERNMENT PRINTING OFFICE,
WASHINGTON, DC 20402.

15. PRICE

A02
X ORDER FROM NATIONAL TECHNICAL INFORMATION SERVICE (NTIS), SPRINGFIELD,VA 22161.

ELECTRONIC FORM

M

