
Real-Time Model-Based
Tracking Combining
Spatial and Temporal
Features

Karen Chaconas
Intelligent Controls Group

Marilyn Nashman
Sensory Intelligence Group

U.S. DEPARTMENT OF COMMERCE
National Institute of Standards

and Technology

Robot Systems Division

Bldg. 220, Rm. B124
Gaithersburg, MD 20899

U.S. DEPARTMENT OF COMMERCE
Robert A. Mosbacher, Secretary

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
John W. Lyons, Director

—QC

100

.056

//4610

1991

NIST

Real-Time Model-Based
Tracking Combining
Spatiai and Temporal
Features

-T
Karen Chaconas
Intelligent Controls Group

Marilyn Nashman
Sensory Intelligence Group

U.S. DEPARTMENT OF COMMERCE
National Institute of Standards

and Technology

Robot Systems Division

Bldg. 220, Rm. B124
Gaithersburg, MD 20899

June 1991

U.S. DEPARTMENT OF COMMERCE
Robert A. Mosbacher, Secretary

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
John W. Lyons, Director

i

\

Real-time Model-Based Tracking

Combining Spatial and Temporal Features

Karen Chaconas

Marilyn Nashman

National Institute of Standards and Technology

Robot Systems Division

Gaithersburg, MD 20899

Abstract

This paper describes a method for tracking moving image features by combining spatial and

temporal edge information with model based feature information. The algorithm updates the two-

dimensional position of object features by correlating predicted model features with current image

data. The results of the correlation process are used to compute an updated model. The algorithm

makes use of a high temporal sampling rate with respect to spatial changes of the image features

and operates in a real-time multi-processing environment. Preliminary results demonstrate suc-

cessful tracking for image feature velocities between 1.1 and 4.5 pixels every image frame.

1. Introduction

The ability to track an object visually during arbitrary motion is an important part of interacting

with the environment. Humans adeptly recover three-dimensional structure of an object from its

rigid-body motion in order to accomplish manipulation, locomotion, and object recognition [6].

Motion and edge information are known to be important cues to the recovery of object stmcture.

Understanding the relative motion between an object and an observer aids not only in the recovery

of object structure but also provides useful information required to interact with the objects. In or-

der to visually track an object, the object’s orientation and positfon must be rapidly updated. In six

degree-of-freedom robotic applications, real-time camera images can provide a dense stream of

data from which to extract object features and recover rigid body motion.

An object’s three-dimensional structure can be reconstructed from the projection of its motion

Page 1

onto a sequence of two-dimensional images [22]. Two methods for measuring visual motion are

detection of spatio-temporal intensity changes and feature tracking [18]. The measurement of spa-

tio-temporal intensity changes can be accomplished using correlation models, energy filters [1] [4],

or gradient techniques [2] [13]. These algorithms provide a description of two-dimensional image

motion as a result of changes in intensity in the image. They require additional information from a

world model in order to differentiate between intensity differences due to changes in viewer motion

and intensity changes produced by object motion with respect to a light source. The class of algo-

rithms that measure visual motion by tracking features provides a means to directly measure phys-

ical motion in the world. These algorithms, however, have the disadvantage of requiring feature

correspondence between images.

By combining the feature tracking approach with model-driven techniques, the feature tracking

process is constrained and the correlation of features between frames is simplified. This results in

a computationally inexpensive and accurate system. This paper describes an approach designed to

achieve these goals and the implementation of this approach in the Intelligent Controls Group

(ICG) laboratory at the National Institute of Standards and Technology. The next section discusses

model-based feature tracking methods and, in particular, the two-dimensional tracking method we

use. Section 3 details the implementation of the algorithm in our lab. The fourth section quantifies

the accuracy and speed of this algorithm in preliminary experiments by tracking a planar target,

and the final section discusses the implications of these results.

2. Model-based Feature Tracking

Model-based feature tracking correlates image features with object model features to take ad-

vantage of model information. Correlation between extracted features and an object model can be

performed in either a two-dimensional [9] or three-dimensional [12] [19] frame-of-reference. A

useful survey of work done using these methods can be found in [20]. Three-dimensional tracking

involves comparing a set of two dimensional features extracted from an image to a three-dimen-

sional model. In the most general case, this means solving the three-dimensional recognition prob-

Page 2

lem for each successive image frame. The three-dimensional position and orientation of the feature

are computed by analyzing images taken at different positions. Correspondence of features be-

tween image frames is determined, and the three-dimensional feature position is computed and

matched to the model. This process is time consuming computationally expensive.

A more efficient way of using a three-dimensional frame of reference for model matching in-

volves computing only the changes in structure position and orientation between image frames

[20]. The set of extracted two-dimensional features that must be matched with a three-dimensional

model is thus reduced. By projecting the model into image frame coordinates, the search space is

further reduced since the approximate location of each model feature in the two-dimensional image

frame is known. The information extracted and used to update the model is usually quite accurate,

and since all surfaces of the object model are available, problems of changing viewpoints or occlu-

sion are handled. However, the computational complexity of these algorithms prevent their use in

real-time applications.

The model-based feature tracking approach where the matching occurs in two-dimensions is a

less complex alternative to the tracking problem. It assumes the ability to process a continuous se-

quence of two-dimensional images in real-time [9]. Zero or one-dimensional features such as ver-

tices, centroids, or edge segments are extracted and matched to a two-dimensional projection of the

model. Analogous to the three-dimensional case, the process is simplified by computing motion

features which represent the changes in position and orientation between image frames. Since the

temporal sampling rate is high, there is little change in position and orientation between successive

frames and the correlation between observation and model is simplified. The two-dimensional

model is continually updated based upon the most recent observation. Tracking in two dimensions

continues exclusive of additional information as long as the object motion is continuous. A model

update obtained from three-dimensional information is required if there is occlusion or a change of

direction causing loss of two-dimensional information. In general, two-dimensional feature track-

ing is an inexpensive method of correlating observations with model information and is well-suited

for real-time applications [20].

Page 3

Figure 1. Model-based Feature Tracking Algorithm

The approach in our lab is based on model-based feature tracking in two dimensions. There are

two phases to the method that are used: initialization and tracking. During initialization, an opera-

tor defines the position of the object features in the image at the point where tracking is to begin.

In our preliminary experiment, a planar object is attached to a pendulum that is constrained to two-

dimensional motion and tracked while it is swinging. A sequence of camera images that demon-

strates this motion is digitized and stored. This sequence is used as input to our algorithm and pro-

vides us with repeatable motion for our experiments. Since the path is repeatable, the operator can

select the feature points, which are the object comers, from any one of the images in the sequence.

Tracking begins when all features selected by the operator are within an acceptable distance from

the extracted image comers. Successful tracking continues while the extracted image features re-

main within a predefined distance from the predicted comers. Tracking is lost when this distance

is exceeded.

Figure 1 depicts an overview of the algorithm during the tracking phase. In this figure, I(x,y)j

Page 4

refers to the intensity function at a pixel located at position (x,y) at time t. Motion and edge features

from a sequence of images are correlated with model information. Model-based tracking involves

segmentation and correlation of observed data with model data and the prediction of the model po-

sition at the next time interval.

During the segmentation phase, optical flow and edge orientation are extracted from an incom-

ing sequence of images. This information represents the temporal and spatial edge information re-

spectively. The image flow results from changes in intensity between frames and a temporal dif-

ferencing algorithm is used to measure these changes. Incoming images are smoothed using a

Gaussian convolution, G*, to diminish the effects of spurious noise in the image. Two temporally-

consecutive, smoothed images are subtracted from each other in order to detect any change in in-

tensity due to motion between the frames (Equation 1).

^I(x,y) = G* (x,y)j-G* (x,y)j^j [1]

All non-moving features in the image disappear in this difference image since the grayscale value

of a pixel in the second frame is being subtracted from the identical grayscale value in the first

frame. The resulting optical flow image is thresholded to produce a binary image. This operation

results in a segmented scene reflecting changing intensity values between successive images. How-

ever, motion segmentation occurs whether the changing intensity is due to relative motion between

the camera and the object or between the object and a light source and can therefore be an ambig-

uous basis for segmentation.

By requiring object features in an image to adhere to consistent spatial as well as temporal

properties, the segmentation of features is more robust. Edges are also extracted during the seg-

mentation process to provide additional information. Spatial orientations of edge points are com-

puted directly from the sequence of input images. This information is used to determine the spatial

orientations of the image motion points. Since the positions of the edge points on the object change

between frames, a dense set of edge points is extracted from the sum of two temporally-consecu-

Page 5

tive, smoothed images. A two-dimensional spatial gradient operator is applied to all points (x,y) in

the image. The actual direction, 6, of each point in the image is defined to be perpendicular to the

direction of the gradient of the intensity function f(x,y) at that point:

0 = atan
(Vyf) (x,y)

(Vxf) (x,y) [2]

Since the edge extraction and the motion extraction operations are performed in parallel on the

same input images, this provides the advantage of having edge orientation information for most

motion pixels.

The next step, correlation of the extracted motion points with the model edges, makes use of

the segmentation information. Each motion pixel is either labelled or discarded depending on its

similarity to the model. The labelling process is based on two criteria. The fu-st criterion is the two-

dimensional spatial proximity of a motion point to the model lines.The second criterion is the sim-

ilarity of direction of the edge at the location of this motion with the angular direction of the model

line.

The description of each line in the model includes the slope-intercept form of the line, the co-

ordinates of the endpoints of each line segment, and the angular direction of the line. The first step

in the correlation process compares the angular direction of the model line with the edge direction

of the candidate motion point to determine if the angular disparity is within an acceptable range:

l^model ^datal
^ ^ [3]

If this condition is satisfied, the distance d is computed between the point at image coordinate (xj,

yj) and each of k lines used to define the object model using equation [4]:

d =
Ak^i + B^yi + Ck

(A^ + Bk)
1/2 [4]

where (Aj^jc-l- -I- Cj^) is thegeneral form for thek^ line in the model.

Page 6

The minimum distance between the image motion point and each of k model lines is used to de-

termine if that point is less than a distance threshold, from the line. The point is labelled as be-

longing to the model line segment it best matches when both the spatial proximity and orientation

conditions are satisfied.

After the motion points are segmented, a line-fitting technique is used to update the two-dimen-

sional position of each model line. The line-fitting technique uses a least-squares linear regression

which minimizes the squared error in either the x or y direction. The equations that compute slope,

m, and the y intercept, b, of the best fitting line through the n points (xj,yj) when minimizing the x

direction error are:

m = i i i

nX(x?)-(Xxi)^
i i [5]

(Xyi)
i i i i

i i

[6]

Minimizing the least square error in the x direction presents a problem as the line being fit ap-

proaches vertical. As this happens, the denominator in equation [5] approaches zero, and the fit be-

comes less accurate. A more accurate fit takes this into account and minimizes errors in both x and

y. Comparison of the standard deviation of the x coordinates to that of the y coordinates gives a

measure as to whether the line is more horizontal or more vertical. A larger standard deviation in

X means the line tends toward the horizontal. When the standard deviation of the y coordinates is

larger, a linear regression of x on y is used since the line is more vertical. In this case, the equation

for the slope and intercept of the fitted line is given by

If the standard deviation of x coordinates is less than a predefined threshold value, the line is con-

sidered to be vertical, and therefore the slope is undefined.

Page 7

n(Sy?)-I(yi)^
i i

i i i

[7]

- ((X’^i) (Xy^- (Xy.) (X^iy.))
b = ^ i i i [8]

i i i

The computed lines are intersected to determine the two-dimensional comer positions of the

object model. Each comer point (x^., y^.) is computed by solving for the intersection of the two fitted

lines which contain the comer as an endpoint. The distance between the computed comers and the

model comers is used to determine the proximity of the results with the prediction. If the resulting

distance is within an acceptable limit, e, then a successful match has been detected (Equation [9]):

J ^ model k ^ X model k ^ ^ ^

When the distance exceeds e, tracking is lost; distances less than e indicate tracking. When track-

ing is successful, the comers are filtered using an exponential smoothing filter [17] to predict the

comer positions at the next time interval. Each comer is filtered independently of the others since

the object motion isn’t necessarily parallel to the image plane and the comers will move at differ-

ent rates in the image plane. The filtering of each comer is done using a weighted average of the

current and all past positions of that comer with exponentially decreasing weights (Equation 10).

(x,y); = a(x,y)j+ (1 -a) (x,y)j [10]

In this equation, (x, y) ^
is the filtered comer position and (x, yjjis the unfiltered comer position.

The value of (x, y) ^
before any previous iterations is set to the position of the comer when track-

ing is initially begun. The smoothing constant, a, is in the range 0 < a < 1 and, in our case, is cho-

sen to be 0.2. The comer is filtered again using equation 11.

If

The value of (x, y) ^
before any previous iterations is also set to the position of the comer when

Page 8

[11](x,y), = a(x,y)j+ (1 - a) (x, y)^

tracking is initially begun. After the filtered values are determined, the predicted comer position

(x,y)t+i is computed using equation [12].

(x.y),
+ i

= (2+j^)(x,y)'-(l+j-^) (x,y)"
[12]

The predicted model information is used to segment the extracted image flow information at time

t+1. Predictions are computed each execution cycle regardless of whether updated observed cor-

ners are available. This allows predicted positions to be sent to the correlation process continual-

ly, though the spacing between successive positions decreases while no new data are being

observed. Figure 2 shows the relative frequency with which predicted data are generated as com-

pared to data extracted from incoming images over a period of about 1 second. Since the results of

the tracking algorithm are used as feedback in a real-time system, the implementation of this algo-

rithm must be fast enough to be stable. Section 3 describes the approach we use.

3. Implementation

Processing in the integrated vision testbed in the ICG laboratory is accomplished using a pro-

grammable real-time image processor, the Pipelined Image Processing Engine (PIPE)^ [5] and a

Page 9

Figure 3. Implementation of Model-Based Feature Tracking Algorithm

Page 10

multiprocessor system as shown in Figure 3. In this figure, the large grey rectangles represent how

the software processes are distributed on this hardware. The incoming images from a CCD camera

are digitized by PIPE to provide 8-bit grayscale images that are 242x256 pixels in size. The images

are processed by lookup tables, neighborhood operators, and arithmetic logic units that are defined

in the PIPE application program. Smoothing, temporal integration, and edge and motion detection

are performed on the grayscale images as described in equations [1] and [2]. The Iconic-to-Sym-

bolic Mapper (ISMAP) stage ofPIPE converts information from an image format to a symbolic list

and is used to store the binary motion image as a list of pixel positions. In addition, the correspond-

ing edge direction values are stored in the ISMAP iconic buffer where they are mapped onto the

memory of one of the microprocessors via a specialized PIPE-VME interface board. Figure 3 dis-

plays these pipelined processes as black parallelograms.

The remaining software processes operate in real-time in the multiprocessing environment.

They are implemented within the hierarchical sensory-interactive robot control system in our lab

[7] [10] [15] [16] [21] that is defined in the NASA/NBS Standard Reference Model for Telerobot

Control System Architecture (NASREM) [3]. The control system is composed of three parallel sys-

tems that cooperate to perform telerobot control (Figure 4). The task decomposition system breaks

down objectives into simpler subtasks to control physical devices. The world model supplies in-

formation and analyzes data using support modules. It also maintains an internal model of the state

of the environment in the global data system. The sensory processing system monitors and analyz-

es sensory information from multiple sources in order to recognize objects, detect events and filter

and integrate information. The world model uses this information to maintain the system’s best es-

timate of the past, current, and possible future states of the world. The processes are labeled ac-

cording to their functional role in the NASREM architecture as sensory processing (SP), world

modeling (WM), or task decomposition (TD) modules. Each device or sensor of the telerobot has

a support process in each of the three columns of the control system. For example, the task decom-

1. Commercial equipment and materials are identified in this paper in order to adequately specify the experimental pro-

cedure. Such identiHcation does not imply recommendation or endorsement by NIST, nor does it imply that the materi-

als or equipment identified are necessarily the best for the purpose.

Page 11

SENSORY WORLD TASK

Figure 4. The NASREM Architecture

Page 12

position functions associated with planning the actions for processing camera data reside in the task

decomposition hierarchy; the world modeling functions for supporting those plans reside in the

world model hierarchy, and the image processing techniques required for executing those plans re-

side in the sensory processing hierarchy. The world modeling support modules communicate asyn-

chronously with the task decomposition and sensory processing systems. Data flows bidirection-

ally between adjacent levels within any given hierarchy. The interfaces to the sensory processing

system allow it to operate in a combination of bottom-up (data driven) and a top-down (model driv-

en) modes. Bottom-up processing involves the extraction ofknowledge from sensory data, and top-

down processing is used to correlate predicted information from the world model with extracted

information from the environment. The interfaces between the sensory processing system and the

world model allow updated information to be sent to the world model and predicted information

or sensory processing parameters to be sent to the sensory processing system.

The implementation is based on the concept of cyclically executing modules which serve as the

computational units for the NASREM architecture [11]. After initialization, all computations are

performed by cyclically executing processes that communicate via global read-write interfaces.

Each unit acts as a process which reads inputs, performs computations, and then writes output.

Such a process always reads and executes on the most current data; it does not wait for new data

to arrive since reliable cyclic execution requires that a module be able to read or write data with

minimal delay. Reading and writing involve the transfer of data between local buffers and buffers

in global memory. System software has been written to prevent data corruption during these trans-

fers.

Three cyclically-executing software processes execute the model-based feature tracking algo-

rithm. These reside on two of the three microprocessor boards. The remaining software process

performs communication with PIPE. The PIPE communication process is a cyclically executing

process which polls PIPE status, reads the ISMAP output produced by PIPE, and writes it to the

appropriate common memory locations that it shares with the segmentation process. Though the

amount of data transferred is large, on the order of hundreds to thousands of pixels every cycle of

Page 13

60 Hz, the direct memory accessing provides a high rate of accessibility to the symbolic data. The

execution time for this process takes an average of 90 ms on a 68020 processor for about 1400 mo-

tion pixels, an average sample for our tests described in the following sections. The correlation

steps described in equations [3] - [4] and the line-fitting described in equations [5] - [8] are com-

putationally intensive. The processing times for these operations depend on the number of motion

points. This process requires high bandwidth, and for this reason, the correlation and line-fitting

process executes on a dedicated 68030 microprocessor at an average rate of 1 10 ms per execution

cycle. Since the execution time is greater than that of the PIPE communications process, it always

has new data at the beginning of its execution cycle. The resulting lines are written to a common

memory buffer shared with the process which computes the comers of the observed object. This

process computes all of the object comers in 2.1 ms and then updates the buffer shared with the

filtering and prediction process. The filtering and prediction in equations [10] - [12] are used to

obtain all of the comers in the predicted model, and this process executes in 3. 1 ms. These process-

es are combined on one board, a 68020 processor since their total execution time is small compared

to the other processes.

4. Results

A preliminary set of experiments to determine how accurately this model-based feature track-

ing algorithm can track an object was mn for the case of simple translational velocity. In these ex-

periments, a planar, rectangular object was mounted on a pendulum as shown in Figure 5. The pen-

dulum is released at different heights to provide image motion at differing velocities. The only a

priori knowledge about the object is the image positions of the four comers at an arbitrary point

during the path of the pendulum that are used as a starting point for tracking as described in section

2. These points establish a cmde model and are necessary to establish when the object has initially

been matched. Once the observed data matches the initial model, the object is tracked by the single-

Page 14

camera vision system in the manner previously described.

Figure 5. Experimental Scenario

In order to quantify the accuracy with which the model predicts the position of the observed

data, the distance between the model comers and the actual comers is computed. This difference

is used to determine the accuracy of the fit between the predicted and the observed data at varying

object velocities. The accuracy of the tracking algorithm is also affected by the threshold parame-

ters used. The threshold used in equation [4] controls the labelling of motion pixels and determines

how closely the data can be correlated to the model. The threshold used to match the model comers

to the observed comers in equation [9] determines how closely the model must match the observed

data before tracking is lost. Our experiments consisted of three cases of varying object velocity.

Velocity is measured in the image plane as the distance that an object feature moves between cam-

era frames. The velocities tested are 1.1 pixels per frame, 3.9 pixels per frame, and 4.5 pixels per

frame. For each velocity, the correlation threshold is tested at four values, 3 pixels, 5 pixels, 10

pixels and 15 pixels. In addition, the comer matching threshold is tested at 32 pixels, 26 pixels and

20 pixels. In all, twelve sets of data were collected for each velocity. Each set of data consists of

200 error measurements.

The threshold parameters were varied for three different object velocities measured in the im-

Page 15

age plane. Table 1 summarizes the results of experiments for the three velocities at varying corre-

lation thresholds. The comer threshold remains constant at 20 pixels. Tables 2 and 3 are similarly

organized except that the comer thresholds are set to 26 pixels and 32 pixels, respectively. Contin-

uous tracking was performed successfully for all cases over a period of 200 iterations. By compar-

ing the tables, it can be seen that the threshold used to determine successful tracking described in

equation [9] does not play a significant role. Table 1 shows that for each object velocity, the mean

error increases as the correlation threshold increases. This is a result of the fact that as the distance

threshold is relaxed, there is a greater chance of misclassifying motion pixels. This effect is notice-

able at faster velocities since there are more motion pixels available for processing. Also it can be

seen that at distance thresholds of 3 and 5 pixels, the tracking error decreases with increasing ve-

locity. This can be attributed to the value chosen for the smoothing constant a described in equa-

tions [10] - [12] which provides predictions more closely matching the observed data at a velocity

of 4.5 pixels per 60 Hz. It is not clear that this trend would continue for higher velocities using the

same smoothing constant. At distance thresholds of 10 and 15 pixels the tracking error increases

as the velocity increases. This is caused by a greater number of motion pixels being present at high-

er velocities compounding the effect of the relaxed threshold. Similar conclusions can be drawn by

analyzing Tables 2 and 3.

Page 16

Distance Threshold for Correlation

Velocity C = 3.0 ^ = 5.0 o•oII oII

1.1 0.302 0.338 0.335 0.407

3.9 0.045 0.096 0.096 1.151

4.5 0.009 0.024 1.174 1.368

Table 1. Mean Data Error Using Comer Threshold e = 20

Distance Threshold for Correlation

Velocity C = 3.0 oII o•oII
V-/*

^ = 15.0

1.1 0.301 0.313 0.357 0.407

3.9 0.110 0.108 0.052 0.052

4.5 0.009 0.005 1.177 1.368

Table 2. Mean Data Error Using Comer Threshold e = 26

Distance Threshold for Correlation

Velocity II o C = s.o ooII oII

1.1 0.302 0.313 0.348 0.407

3.9 0.031 0.109 0.097 1.160

4.5 0.001 0.003 1.174 1.273

Table 3. Mean Data Error Using Comer Threshold e = 32

Page 17

5. Conclusions

The method described in this paper successfully tracks moving image features by correlating a

combination of extracted spatial and temporal edge information with an object model. The use of

spatial information in the form of edge point orientations constrains the correlation process since

motion points whose orientation is outside the orientation tolerance are discarded. This provides

the advantage of being able to track an object in an unconstrained environment. Since a feature

point has to be moving and in the correct orientation and position to be matched to the object mod-

el, other features can be in the field of view without being considered as part of the object. Another

advantage of this algorithm is that the predicted model information can vary from the extracted im-

age features up to 15 pixels and still track successfully. This is an improvement over algorithms

that base correlation only on local properties. Preliminary results demonstrate successful tracking

for image feature velocities between 1.1 and 4.5 pixels between image frames.

In the future, we plan to expand the modelling capability of our system to handle the appear-

ance and disappearance of object features. By using a three-dimensional model we will be able to

predict the most stable set of features to track for a given object pose. Modelling the motion of the

object will enable us to provide pose predictions in the absence of sensory data. We also plan to

continue the experiments on model-based feature tracking and to extend the scope of our algo-

rithms to include processing on a stereo set of cameras [8]. Knowledge of the two-dimensional po-

sition of the same feature as viewed from two cameras will enable us to determine the position and

orientation of the object in world-space using range from triangulation. This capability will allow

us to supply feedback information to a manipulator system to aid in tasks involving tracking or

grasping a moving part.

6. References

[1] Adelson, E. H., J. R. Bergen, "Spatio-temporal Energy Models for the Perception of Motion,"

Journal of the Optical society ofAmerica A, Vol. 2, No. 2, February, 1985, pp. 284-299.

[2] Albus, James S., Tsai-Hong Hong, "Motion, Depth, and Image Flow," IEEE Robotics andAu-

Page 18

tomation Conference, Cincinnati, OH, May 13-18, 1990.

[3] Albus, J. S., H. G. McCain, R. Lumia.,’'NASA/NBS Standard Reference Model for Telerobot

Control System Architecture (NASREM)," NIST Technical Note 1235, Gaithersburg, MD,

July, 1987.

[4] Allen, Peter K., "Real-time Motion Tracking Using Spatio-Temporal Filters," Proceedings of

the DARPA Image Understanding Workshop, Palo Alto, TX, May 23-26, 1989.

[5] Aspex, Inc., "PIPE—An Introduction to the PIPE System," New York, 1987.

[6] Bolles, Robert C., H. Harlyn Baker, David H. Marimont, "Epipolar-Plane Image Analysis: An

Approach to Determining Structure from Motion,"!nternational Journal of Computer Vision,

Vol. 1, 1987, pp. 7-55.

[7] Chaconas, K., M. Nashman, "Visual Perception Processing in a Hierarchical Control System",

NIST Technical Note 1260, Gaithersburg, MD, March, 1989.

[8] Chaconas, K., "Range from Triangulation Using An Inverse Perspective Method to Determine

Relative Camera Pose," NIST Internal Report 4385, Gaithersburg, MD, August, 1990.

[9] Crowley, James L., Patrick Stelmaszyk, Christopher Discours, "Measuring Image Flow by

Tracking Edge-Lines," Proceedings ofthe 2nd International Conference on Computer Vision,

1988, pp. 658-664.

[10] Fiala, J., "Manipulator Servo Level Task Decomposition," NIST Technical Note 1255, NIST,

Gaithersburg, MD, October, 1988.

[11] Fiala, J. "Note on NASREM Implementation," NIST Internal Report 89-4215, Gaithersburg,

MD, December, 1989.

[12] Gennery, Donald B., "Tracking Known Three-Dimensional Objects," Proceedings ofthe Na-

tional Conference on Artificial Intelligence, Pittsburg, PA, August 18-20, 1982, pp. 13-17.

[13] Horn, B. K. P., B. Schunk, "Determining Optical Flow," Artificial Intelligence, Vol. 17, 1983,

Page 19

pp. 185-203.

[14] Jenkin, M., J. K. Tsotsos, "Applying Temporal Constraints to the Dynamic Stereo Problem,"

CVGIP, 33, 1986, pp. 16-32.

[15] Kelmar, L. "Manipulator Servo Level World Modeling," NIST Technical Note 1258, NIST,

Gaithersburg, MD, March, 1989.

[16] Lumia, R., Fiala, J., Wavering, A., "The NASREM Robot Control System and Testbed," 2nd

Inti. Symp. on Robotics & Automated Manufacturing, Albuquerque, NM, November, 1988.

[17] Montgomery, D. C., L. A. Johnson, and J. S. Gardiner, "Forecasting & Time Series Analysis,"

Second Edition, McGraw-Hill, New York, 1990.

[18] Spetsakis, Minas E., John Aloimonos, "Closed Form Solution to the Structure from Motion

Problem from Line Correspondences," Proceedings of the National Conference on Artificial

Intelligence, 1987, pp 738-743.

[19] Thompson, D. W., J. L. Mundy, "Model-based Motion Analysis - Motion from Motion," Ro-

botics Research: The Fourth International Symposium, R. C. Bolles and B. Roth, eds.. The

MIT Press, Cambridge, MA, 1988, pp. 229 - 235.

[20] Verghese, Gilbert, Charles R. Dyer, "Real-time Model-Based Tracking of Three-Dimensional

Objects," Computer Sciences Technical Report #806, University of Wisconsin - Madison, No-

vember, 1988.

[21] Wavering, A., "Manipulator Primitive Level Task Decomposition," NIST Technical Note

1256, NIST, Gaithersburg, MD, October, 1988.

[22] Waxman, Allen M., Kwangyoen Wohn, "Image Flow Theory: A Framework for 3-D Infer-

ence from Time-Varying Imagery," LSR-TR-1, Boston University, January, 1986.

[23] Waxman, Allen M., Jian Wu, F. Bergholm, "Convected Activation Profiles: Receptive Fields

for Real-Time Measurement of Short-Range Visual Motion," International Conference on

Computer Vision, April, 1988.

Page 20

NIST-1 14A

(REV. 3-90)

U.S. DEPARTMENT OF COMMERCE
NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY

BIBLIOGRAPHIC DATA SHEET

1 . PUBUCATION OR REPORT NUMBER

NISTIR 4610
2. PERFORMING ORGANIZATION REPORT NUMBER

3. PUBUCATION DATE
JUNE 1991

4. TITLE AND SUBTITLE

Real-time Model -Based Tracking Combining Spatial and Temporal Features

S. AUTHOR(S)

Karen Chaconas; Marilyn Nashman

6. PERFORMING ORGANIZATION (IF JOINT OR OTHER THAN NIST, SEE INSTRUCTIONS)

U.S. DEPARTMENT OF COMMERCE
NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY
GAITHERSBURG, MD 20899

7. CONTRACT/GRANT NUMBER

8. TYPE OF REPORT AND PERIOD COVERED

9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (STREET, QTY, STATE, ZIP)

10. SUPPLEMENTARY NOTES

11. ABSTRACT (A 200-WORD OR LESS FACTUAL SUMMARY OF MOST SIGNIFICANT INFORMATION. IF DOCUMENT INCLUDES A SIGNIFICANT BIBUOGRAPHY OR
LITERATURE SURVEY, MENTION IT HERE)

This paper describes a method for tracking moving image features by combining spatial and

temporal edge information with model based feature information. The algorithm updates the two-

dimensional position of object features by correlating predicted model features with current image

data. The results of the correlation process are used to compute an updated model. The algorithm

makes use of a high temporal sampling rate with respect to spatial changes of the image features

and operates in a real-time multi-processing environment Preliminary results demonstrate suc-

cessful tracking for image feature velocities between 1.1 and 4.5 pixels every image firame.

12. KEY WORDS (6 TO 12 ENTRIES; ALPHABETICAL ORDER; CAPITALIZE ONLY PROPER NAMES; AND SEPARATE KEY WORDS BY SEMICOLONS)

feature tracking; model -based tracking; model -based vision; real-time vision

13. AVAILABILITY

UNUMITED

FOR OFFICIAL DISTRIBUTION. DO NOT RELEASE TO NATIONAL TECHNICAL INFORMATION SERVICE (NTIS).

XX

ORDER FROM SUPERINTENDENT OF DOCUMENTS, U.S. GOVERNMENT PRINTING OFFICE,
WASHINGTON, DC 20402.

ORDER FROM NATIONAL TECHNICAL INFORMATION SERVICE (NTIS), SPRINGFIELD,VA 22161.

14. NUMBER OF PRINTED PAGES

23

15. PRICE

A03

ELECTRONIC FORM

