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Abstract

An ultra-high accuracy planar coordinate measuring machine, called
the Molecular Measuring Machine (M^) is being built at the National
Institute of Standards and Technology (NIST) . The design goal is to

achieve a spatial resolution of 0.1 nm over an area of 50 mm x 50 mm.

This goal requires that gravity loading and vibration response of a

complicated mechanical structure be modeled to a high accuracy. Finite
element analysis (FEA) was applied in the design of M^ since analytical
modeling of the complicated structure was precluded. In order to achieve
confidence in a specific FEA package, normal mode analysis results for a

thick spherical shell that represented a first approximation to the M^

structure were compared to those predicted by another FEA package and to

analytic results of the thick shell problem. The analytic model predicted
degenerate modes due to the structural symmetry of the sphere. These were
confirmed subsequently by both of the FEA packages. The FEA and analytic
results differ by less than 5%.

Keywords: boundary value problems; finite element analysis; Molecular
Measuring Machine; normal mode analysis; software evaluation; thick shell
sphere; vibration
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1 . INTRODUCTION

The National Institute of Standards and Technology (NIST) has
embarked on a project to construct an instrument capable of providing very
high resolution dimensional metrology information about topographic
features for a wide variety of sample surfaces and materials. The
design goal is to obtain a point-to-point spatial resolution of 0.1 nm of
the distance between any two points within a 50 mm x 50 mm x 100
working volume. The maximum size of the specimens will be limited to 50
mm X 50 mm X 12 mm. Typical topographic surface maps will be
1000 pixels X 1000 pixels with two modes of operation. The large scale or
coarse mode of operation will allow acquisition of up to a 50 ram x 50 mm
image at resolutions of about 1 /xm; the small or fine scale map will allow
acquisition of a 100 nm x 100 nm image at resolutions of less than 0.2 nm.

The probe- to-specimen speed is expected to be 1 mm/s or less.

Due to the extreme accuracy demands of the instrument, relative
displacements between the surface probe tip and the sample caused by
gravity loading and vibration had to be estimated. The core structure of

is a complex spherical form, see Fig. 1, and precludes analytic
estimates of the displacements. Finite element analysis (FEA) was
selected as an appropriate technique to address the boundary value
problems that need to be solved to estimate both gravity load deformations
and vibration modes. Since finite element analysis was also going to be
used in other aspects of the design of it became essential to verify
the results of a particular package. Results of the two software FEA
packages were therefore tested against each other and against the results
of an analytic model so that a confidence level could be established for
the accuracy of the solutions to the thick shell problem. This would also
give confidence in other applications of the finite element analysis
method. This paper discusses our computational experience and how the

FEA and analytic results compare for the simple thick shell sphere model.
In some recent related work Tang, Fong, and Dietrich [1] have used new
capabilities introduced in another FEA package that changed a comparative
experiment, as given in this report into an active one in which a user not

only could monitor errors for a benchwork problem but develop probes to

measure error changes due to perturbations of mesh design. They
demonstrated that these FEA features could be used to develop an automated
mesh generation procedure that would make the FEA results approach the

exact solution of their benchmark problem. They applied these features to

the analysis of the stresses in the vicinity of an elliptical hole in a

uniformly stressed plate. Since the data we obtained by the comparative

technique were sufficient for our study and these active monitoring
features were not available on our FEA package, this approach, although it

showed promise, was not pursued.

2. MEASUREMENT MACHINE SIMULATION

Since the instrument core structure is basically a sphere with an

inner core removed, M^ was modeled as a thick-shelled aluminum hollow

sphere with an inner and outer radii of 10 cm and 20 cm, respectively.
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Material properties were chosen for an aiuminuni alloy with a Poisson's
ratio of 0.355, modulus of elasticity of 71.3 GPa (10.3 Mlb/in^), unit
weight of 26.6 kN/m^ (0.098 Ib/in^), and specific stiffness of
2.6 X 10 ra /s (4.04 x 10 in /s ). At the time the calculations were
performed, aluminum was thought to be the material of choice. A
subsequent figure of merit analysis showed oxygen-free-high-conductivity
copper to be the better material. The material properties used for copper
were: Poisson's ratio of 0.326, modulus of elasticity of 119 GPa (17.2
Mlb/in^), unit weight of 87.3 kN/m^ (0.322 Ib/in^), and specific stiffness
of 1.3 X 10 m /s (2.1 X 10 in /s ). The frequencies for copper in
Fig. 2 were estimated based on the formula relating frequencies and
eigenvalues of the exact boundary value problem in the appendix in Section
II. Since the Poisson's ratio of aluminum and copper are sufficiently
close and the eigenvalues of the boundary value problem depend on the
Poisson's ratio and inner and outer radii of the thick shelled sphere the
eigenvalues in both material cases are nearly the same. The eigenvalue to
frequency formula could be equated for the two materials and the
frequencies for copper thus computed.

3 . ANALYTIC MODEL

The equation of motion of any homogeneous, isotropic, elastic medium
can be written in the form of a vector wave equation (See Appendix). The
time dependent portion of the solution can be separated out in order to
compute the normal modes of vibration and their frequencies. The result
is a vector Helmholtz equation where the eigenvalues are related to the
angular frequencies of the normal modes. The solution of this eigenvalue
problem can be written in the form of a sum of three vector fields. These
three vector fields are related to three scalar fields that are themselves
solutions of three scalar Helmholtz equations with eigenvalues, which are
determined by imposing boundary conditions. The solutions for these
scalar equations can be found by separation of variables. In spherical
coordinates the solutions can be written as products of radial functions
and angular functions. The radial functions, indexed by n, can be written
as linear combinations of spherical Bessel and Neumann functions. For
each of these radial functions there are 2n+l angular functions. These
are spherical harmonics indexed by n and another parameter m, where m
takes on the 2n+l values from -n to n.

Physically, each mode of vibration, indexed by n, has an n-fold
symmetry. These modes arise without consideration of boundary conditions.
Once the boundary conditions are imposed, the eigenvalues of the scalar
Helmholtz equations can be determined. These are directly related to the

eigenfrequencies of the overall vector Helmholtz equation. For the thick-

shelled sphere problem, stress free boundary conditions were assumed at

the inner and outer surfaces since the will be operated in vacuum.

From these conditions it can be shown that there are an infinite number of

eigenfrequencies, indexed by s, for each mode n. Note that this means the

same value of s can have different frequency values depending on the mode

n. It can further be shown that the eigenfrequencies are independent of

the index m due to the symmetry of the sphere, resulting in a 2n+l
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degeneracy of each n-order mode.

Analytically, vibration modes of the thick-walled sphere decompose
into two classes. In one class, there is no change in the volume of the
sphere and radial displacements are zero. These are referred to as
torsional modes. In the second class, radial displacements are not zero.
These modes, termed spheroidal vibrations, were the only ones considered
in the analytical solution since they were considered to have the greatest
impact on the performance of the . For more details on the analytical
solutions for torsional modes of a solid sphere see Hosseini-Hashemi and
Anderson [2] and for radial modes of a spherical shell see Mehl [3] and
Huerta-Garnica and Teague [4]. Huerta-Garnica and Teague obtained the
radial modes for larger shell thicknesses than Mehl and calculated the
dynamic response for point excitations of the sphere.

Figure 2 shows 4 sample modes from the analytical solutions. In
general, the analytical modes are specified by three indices, n, m, s,

where for each n and s there are 2n+l different modes with the same
frequency. For all of the examples provided, s is equal to 1 while n and
m vary. Using the (n,m,s) notation, the (0,0,1) mode is a "breathing"
mode where the inner and outer surfaces move in phase radially. The
(1,0,1) mode may be thought of as an "egg yolk" mode, where the inner and
outer surfaces move out of phase with respect to one another. In the
(2,1,1) mode all points move radially with the inner and outer surfaces
moving in the same direction to form an elliptically shaped mode. The
final mode illustrated has a triangular shape.

4 . FINITE ELEMENTS

The finite element method approximates a solution of a boundary value
problem by a set of piecewise differentiable functions, each one of which
is defined over a finite number of subregions that combine to form the

total region over which solution is defined. The subregions are called
elements and are defined by sets of points called nodes (see Fig. 3). The

displacement values at the nodes of the solution of the boundary value
problem are called the degrees-of-freedom and are the quantities to be

computed. The piecewise differentiable functions selected as

approximations to the solution over each element are sums of polynomials
defined in terms of the nodal degrees-of-freedom. These polynomials are

called shape functions and are chosen to maintain continuity at the

interelement boundaries. The nodal degrees-of-freedom for each element

are solved for as solutions of linear equations whose coefficients involve

integrals of the boundary value problem operators applied to the shape

functions. These are combined using the connectivity of the elements to

form a large matrix called the stiffness matrix, [K]

.

The Jth column of

[K] can be viewed as the forces needed to maintain static equilibrium with

a unit displacement of the Jth degree-of-freedom. For the free vibration

frequencies w and modes one needs to solve the eigenvalue problem

([K] - u>2[M]){D) = (0) ,

5



where [M] is known as the consistent mass matrix and is formed from
integrals involving the mass density p and the shape functions. The
vector (D) represents the modal shape vector.

5

.

COMPUTATION CONCERNS

Several issues arose during the finite element analysis of the thick-
shelled sphere. The first problem involved determining how to model the
boundary conditions with the data input languages provided by the two
finite element packages used. The next issue was how to select a finite
element mesh that would serve to compute the modes of interest. The third
concern was how well the results would agree with those from the analytic
solution. A final issue was how well the results from different finite
element programs would agree.

In order to compare results from different programs, identical
problems were analyzed with two different programs running on two
different computers. One program was COSMOS/M from Structural Research
and Analysis Corporation (SRAC); the other program GEMINI was developed at
Lawrence Livermore National Laboratory (LLNL) . COSMOS was run on a SUN
Microsystems 3/260, while GEMINI was run on a VAX 11/785.

6.

SIMULATING BOUNDARY CONDITIONS

The model was not constrained in any of the three translational
degrees -of - freedom in order to simulate the free- free case. Rotational
degrees-of-freedom were constrained since the 3-dimensional solid finite
elements available in the FEA packages had no rotational stiffness
defined.

7.

MESH SELECTION STRATEGY

The issue of mesh geometry became interwoven with the issues of
comparisons between analytic solutions and finite element solutions. In

general, various mesh geometries were selected differing primarily in the

number of elements used. For the COSMOS system, five meshes were
considered, but on the GEMINI system only two were used due to reduced
computer time available on the VAX 11/785. In all cases 8 -node solid
elements were used. These elements are forms of generalized hexahedrons.
The inner and outer radii and material properties of the spherical shell

were taken to be the same in both the analytic and the finite element
models

.

Although the specific mesh generation techniques for COSMOS and
GEMINI were different certain guiding principles were used. The first

guiding principle used with both packages was to select solid elements so

chat the inner and outer surfaces of the shell were covered with element

surfaces that had approximately the same surface area. For the case of

COSMOS this is shown in Fig. 4 for five different meshes. The final mesh

6



selection depended on a convergence computation discussed below. In the
GEMINI package two meshes were studied, one for 192 elements and one for
384. Fig. 5 shows the 192 element mesh for GEMINI.

8. A COMPARISON WITH ANALYTIC RESULTS

Table 1 gives a subset of frequency results of the analysis performed
with the finite element packages and provides a comparison with the
analytical results. The basic problem posed to the finite element codes
was to determine the first 19 modes for a freely vibrating hollow sphere.
The table lists the first two computed spheroidal frequencies and gives
percent difference using the analytical results as a base. Some solution
times are also provided. Torsional modes predicted by the finite element
analysis are not indicated since the analytical method, by design, did not
produce any of these modes.

These results indicate variations with both mesh density and with the
FEA program used. In the case of mesh density, one would expect that with
insufficient elements, accuracy for the higher modes would suffer due to

insufficient discretization. On the other hand, high mesh density can
decrease accuracy due to roundoff, with an added penalty of increased
solution time. A possible heuristic method for selecting mesh density is

to compare results for different densities and select the model with a

density such that it produces the minimum change in results from
increasing or decreasing the density. It appears from Table 1 that a mesh
density of around 192 elements is reasonable for this problem.

Comparing the results of the two codes (Table 2) shows that the

differences between computed frequencies is less than 5%. Mode shapes
from the two programs for models of the same density were virtually
identical for the first 10 modes. Figure 6 shows sample modes computed
with GEMINI. These can be compared to the corresponding modes computed
analytically, as shown in Figure 2. Table 2 shows radial analytic modes

aligned with comparable radial modes generated by the finite element

programs. Note that the finite element programs also produced torsional

modes in groups that are interleaved with the radial modes. Due to

symmetry they also have the same degeneracies as the radial modes. This

table also shows that GEMINI produced consistently lower frequency values

than the analytic results, while COSMOS produced consistently higher

results. This is attributable to different computer algorithms for

generating the frequencies.

Although mesh density differences are studied here other factors

might account for some of the differences in the results. Both

integration procedures used and the choice of shape functions by the

different packages can produce different results. However it is usually

not possible for the analyst to change these in the package since these

are built into the element definitions provided by the FEA package

supplier. The present study, then, has concentrated on studying

variations in those parameters that are available to the FEA package user.
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Table 2 shows the first 19 frequencies of the non-rigid body modes
organized into groups as computed by COSMOS and GEMINI. The first five
modes represent the lowest frequency radial mode with its five-fold
degeneracy. Note that neither finite element program produces the same
frequencies for these modes the way the analytic solution does. This
points out the need for using some analytic methods in conjunction with
finite element tools as an interpretive guide in the case of structural
symmetries. Without the analytic knowledge of the degeneracy property it
might have been difficult placing the finite element modes in their proper
groups. For example in the first ten modes note that both finite element
programs produce frequencies grouped in two groups of two and two groups
of three. Modes 1 and 2 could be isolated as a separate group from modes
3, 4, 5 without an analytic guide.

Figure 7 shows typical output from the first three modes generated by
COSMOS as given in Table 2. Pictures of all of the degeneracies are not
shown. The figure shows that the mode computed at 5918 Hz is clearly a
torsional mode. This mode was not computed analytically.

9 . CONCLUSIONS

Comparing finite element and analytical results showed that in
general the frequencies computed with the finite element method agreed
well with corresponding analytical results. Two explanations for
differences are suggested. One is that results from the analysis of a

perfectly symmetrical object, (i.e., a hollow sphere) are affected by the
artificial stiffness introduced by discretization. Another is that
discretized representations only approach continuous ones in the limit as

the number of elements becomes large. Unfortunately, increasing the
number of elements leads to roundoff-bom inaccuracies as well as longer
solution times.

This study exposed certain practical observations about testing
software in particular finite element packages. Since real life

structures may be too complicated to model analytically a good rule seems
to be to select a structure that can be modeled analytically but exhibits
a structure as close as possible to the desired structure. This gives an
analytic guide to the finite element analysis of the real structure.
Another observation is that finite element packages that might be tested
against each other may not be available on the same computer. This might
lead to arithmetic differences in the results. Finally different packages
construct meshes differently and use different algorithms for solving the

eigenvalue problems that result. This suggests that the different FEA
packages might be tested using standard eigenvalue problems with known
solutions. However, the two packages tested do not provide a means of
entering a user specified eigenvalue problem independent from one

generated through a meshed model, which further suggests that a set of

reference problems that probe the performances of an FEIA package would be

useful

.
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Precision designing with FEA packages demands as much care in determining
the operating characteristics of the software packages as one takes in
determining the operating characteristics of precision laboratory
instrumentation.
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11. APPENDIX

The displacement vector u(?,t) for the motion of any homogeneous,
isotropic, elastic medium can be written formally as

c2 V(V.u) - c2 V X V X il = a2 il/at2

where and are the longitudinal and transverse wave speeds. They are

related to material properties of the medium by Young's modulus E and
Poisson's ratio a and density p

c2 = E (l-a)/(p(l+a)(l-2a)),

c2 = E/(2(l+a)p)

The solution of the displacement vector system can be found by separation
of variables into a time -dependent and a steady-state portion. The time

independent equation can be written in the form of an eigenvalue problem

C2 V (V . u) - V X V X 2u = -w^u

The solution can be written in the form of a sum of a longitudinal

component, t, and two transverse components, H and I5, which may be

represented in terms of three scalar fields, F, G and H,

u(r) = L + M + N

9



w

where

k^L = VF(r)

A

M = V X (rrG(r)

)

A

k^N = V X V X (rrH(r))
,

where ,
k^ = w/C^-. In these equations ? represents the position

vector of a point, r its magnitude and f the unit radial vector at that
point. The scalar fields defined above are solutions of the scalar
Helmholtz equation and can be used to generate a general solution. The
Helmholtz equations are;

(v2+k^)F(r) = 0 ;
(V^+k^)G(r) = 0 ; (vW)HU) = 0 .

In spherical coordinates, these fields are linear combinations of
spherical Bessel and Neumann functions for the radial part and spherical
harmonics for the angular parts.

H(r) = H (r)Y„„(«,*) ;n run

G(r) = G(r)Y(d,^) ;n run

^ Vn<V>

Finally, the displacement vector is given by:

u (r) = r

dF H
n y ^ . Tl

r + n(n + 1) z

d(k^r) k^r run

+ d
n 1 d , ,, .

k^r k r dr n dd ^run^^’*^^ ^ sin^ 3^ *run

10



+ 4>
^ Id , „ ,

i i "T" (rH )k r k r dr ^ n

1 d^ Y__(^,<^) -

sin^ 84) run n 86 run

For an unconstrained shell in vacuum, we require stress free boundary
conditions at r = a and b,

"rr
=

‘’rt
'

''r*
= ° at r = a, b

where a and b are the respective inner and outer radii of the thick-
shelled sphere. These boundary conditions yield a homogeneous set of
constraint equations for the i = 1, .... 6, in the defining equations
for F^, and above. The eigenvalues, , of this system determine
the resonant frequencies. The eigenvalues are functions of the ratio b/a
and the Poisson's ratio o and are related to the frequencies by

A = 2nf
ns

r (l- 2g) (l+a)p
]

L (l-a)E J

1/2

where f represents a resonant frequency.
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n=0
,

ni=0 ,
s=l

Frequency
Aluminum 9994 Hz
Copper 7039 Hz

n=l
,
m=0

, s=l

Frequency
Aluminum 9944 Hz
Copper 7004 Hz

n=2. m=l

,

S=1

Frequency
Aluminum 4752 Hz
Copper 3347 Hz

n=3 ,
m=0 ,

s=l

Frequency
Aluminum 7761 Hz

Copper 5466 Hz

Fig. 2 Sample yibration modes exhibited by the analytic solutions.
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Fig. 3 Decomposition of a region for finite element analysis.

14



432

Fig. 4 Mesh models selected using elements with equal surface areas.

Numbers represent total number of elements in the model.
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Fig. 5 192 Element mesh model used by GEMINI.
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Frequency 4745 Hz

Fig.

Frequency 8207 Hz
Y

) Sample modes computed by GEMINI at three frequencies.
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4906 Hz

Radial

5918 Hz

Torsional

7954 Hz

Radial

Fig. 7 First three modes computed by COSMOS. Degeneracies are not shown.
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Table 1 Percentage Deviation of finite element results from analytical

Analytic

results

.

Freq. (Hz)

4752

%Difference Freq. (Hz)

7762

%Difference
Computing
Time (sec)

COSMOS/M
(#Elem.

)

24 5073 6.8 6970 -10.0 612

48 4661 -2.0 6931 -10.7 1901

96 4728 -0.5 7520 - 3.7 3158

192 4864 2.3 7807 0.6 5552

432 4820 1.4 7854 1.2 37711

GEMINI
(#Elem.

)

192 4744 -0.2 7540 - 2.9 NOT
384 4738 -0.3 7538 - 2.9 AVAILABLE
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Table 2 Mode grouping of the first 19 non-zero frequencies. Analytic
frequencies in parentheses were not actually computed but would
have resulted due to formula symmetry.

Mode
number

FREQUENCY COKPARISON

GEMINI
frequency
(Hertz)

192 Elements

ANALYTICAL
frequency
(Hertz)

COSMOS
frequency
(Hertz)

192 Elements

1 4744.3 4751.9 4906
'

2 4744.4 4751.9 4906
3 4780.3 (4751.9) 4864 -• n=2 , 2n + 1 = 5

4 4780.4 (4751.9) 4864
5 4780.6 (4751.9) 4864

^

6 5565.7 5803
'

7 5565.7 5803

8 5616.9 5918 Torsional
9 5616.9 5918

10 5617.0 5918
^

11 7540.4 7761.1 7807
'

12 7540.4 7761.1 7818

13 7540.5 7761.1 7818

14 7563.7 (7761.1) 7818 n=3
,
2n + 1 = 7

15 7563.7 (7761.1) 7954

16 7563.8 (7761.1) 7954

17 7649.8 (7761.1) 7954
^

18 8207.2 8793 > Torsional

19 8280.2 8793
.
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compared to those predicted by another FEA package and to analytic results of the thick shell
problem. The analytic model predicted degenerate modes due to the structural symmetry of the
sphere. These were confim^d subsequently by both of the FEA packages. The FEA and analytic
results differ by less than 5X.

12, WEV WORDS (S TO 12 KNTRIIS; ALRHABCTICAL ORDER; CARTTAUZS ONLY PRORER NAMES; AND SEPARATE KEY WORDS SY SEMICOLONS)

boundary value problems; finite element analysis; Molecular Measuring Machine; normal mode

analysis; software evaluation; thick shell shpere; vibration

IX AVAILASIUTY 14. NUMBER OF PRINTED PAGES

X UNUMITSO 23
FOR OFFICUL DISTRISUTION. DO NOT RELEASE TO NATKNIAL TECHMCAL NM0RMAT10N SERYtCE (NTIS).

ORDER FROM SUPERMTENOSNT OF DOCUMENTS, UA OOVERNMENT PRSfTSM OFFICI.
WASHINOTON, DC SMOX

IX PRICS ^02

X ORDER FROM NATIONAL TECHNICAL SIFORMATIOM SERVICE (NTIS). SPRBNIFKLD.VA SZIEI.

ELECTRONIC FORM



*'5 sj'!^T«r'

'hyh ti’fsvs

,

^!'ifcv0#3f

^ATM
:^n - ?

<-c^* 1>* .L' !«.»»»44*.‘ . *»v4,-.

-N ' *

1. ! »
-" ' v'!^?^J^>^;^« sit ; "'t^fc')' f' '('v^i

'
' '•4-i*^.'*^''

». ^ A - V f c «. ^-m'f f' 1^* ' .v.4«» 4’»'WT^ • jmh^wi inp-n

f ..i dtiv

(;^v(vr

• r;!)’ > t -“

^ i' L ! Jh-j '•, '•^r .-^

K.

i \ y
'‘'

'

,
49||i&’

^

»
• •- Ui- -Sh ; .

. '4
1 .

>'

- " '

- '
. C !C

;
1

4%^ 'r'.:-""^''
fe4M

-
. •, . ... ... -V;

' «?. 1
; ^

. £^

.* V*

i).'

\
.. y ' v-«?

1 ik

y
^

... .
;§n?J;:.

m.muv

cjr . ,

•>

f,.
•*- •

.
.

- ' «|Jll^^

- • ^ "‘' '* '

'.T
'

, V' -:

"

. .!:.p.^

'. .: : . •. ..'-,rlSm






