
NISTIR 4563

A Draft Abstract Test Suite for Determining

Conformance to the BACnet Protocol

U.S. Department of Commerce
National Institute of Standards and Technology

Building and Fire Rearch Laboratory

Gaithersburg, MD 20899

NISTIR 4563

A Draft Abstract Test Suite for Determining

Conformance to the BACnet Protocol

Steve T. Bushby

April 1991

U.S. Department of Commerce
Robert A. Mosbacher, Secretary

National Institute of Standards and Technology

John W. Lyons, Director

Building and Fire Rearch Laboratory

Gaithersburg, MD 20899

ABSTRACT

The BACnet communication protocol for building automation and control systems is in an advanced state of

development and is expected to be released for public review in early 1991. When the review process is completed

it will become an ASHRAE standard. One of the important outstanding issues to be resolved is conformance to

the standard and how to test devices to determine if they meet the conformance requirements. This report is a draft

Abstract Test Suite based on working draft 3 of the proposed standard.

This Abstract Test Suite is a first step in developing the tests which will be used to certify conformance to BACnet.

Its purpose is to provide a starting point from which a conformance certification program can be built and to focus

discussions on the outstanding conformance issues that need to be resolved before the standard can be considered

complete. The role of an abstract test suite in the conformance testing process is described, a proposed BACnet

test system architecture is presented and individual abstract test cases are defined. Test cases to determine support

for object types and application services defined in working draft 3 [9] are included. A standard object

configuration is also proposed to simplify the testing process.

CONTENTS

ABSTRACT iii

1. INTRODUCTION 1

2. THE NATURE OF AN ABSTRACT TEST SUITE 1

3. THE BACnet TEST SYSTEM ARCHITECTURE 2

4. STANDARD OBJECT CONFIGURATION 4

11

12

12

44

7. BEHAVIOR TESTS 55

7.

1

Responses to Valid Behavior by a Peer Implementation 55

7.1.1 Application Services Initiated by the Lower Tester 55

7. 1.1.1 Alarm and Event Services 55

7. 1.1.2 File Access Services . 57

• 7. 1.1.3 Object Access Services 57

7. 1.1.4 Remote Device Management Services 83

7. 1.1.5 Virtual Terminal Services 83

7.1.2 Application Services Initiated by the Implementation Under Test 84

7.1.2. 1 Alarm and Event Services 84

7. 1.2.2 File Access Services 88

7. 1.2.3 Object Access Services . 88

7. 1.2.4 Virtual Terminal Services 109

8. FUTURE WORK . 109

REFERENCES 110

APPENDIX 1 - ASN. 1 Production for BACnetPropertyType Ill

5. TEST CASE NAMING CONVENTIONS

6. CAPABILITY TESTS
6.1 Object-type Support Tests

6.2 Property Fimctional Range Tests

IV

1. INTRODUCTION

Since January, 1987 the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE)

has been actively developing an industry consensus standard communication protocol for building automation and

control systems. The title of the proposed standard is "BACnet - A Data Communication Protocol for Building

Automation and Control Networks. " BACnet is expected to be issued in draft form for public review and comment

in early 1991. General information about BACnet has been published in the ASHRAE literature [1,2] and in other

building trade publications [3].

The National Institute of Standards and Technology (NIST) has been actively involved in the development of

BACnet from its beginning in 1987. One role that NIST has taken on is to develop procedures for testing a building

automation device for conformance to BACnet. It is expected that these procedures will become the basis for an

industry certification program. An architecture for the test system, based on a variation of the "coordinated abstract

test method" [4], has been proposed . This test method is one of several being proposed as an international standard

for testing conformance to communication protocols [5]. A methodology for developing the actual test suite has

also been proposed [6].

This document presents a draft abstract test suite for testing conformance to BACnet. It is based on working draft

3 of the BACnet protocol and the modifications to working draft 3 contained in [7]. Working draft 3 was prepared

by ASHRAE stndards procect committee 135P (SPC 135P) for internal use and is not a complete draft standard.

Since it has not been approved for public review and comment, there may be some important changes and additions

to BACnet before it is released for review. In fact, one of the issues that has not been completely resolved by the

SPC is what portions of the standard must be supported in order to claim conformance to BACnet and how many

different classes of conformance there will be. This draft abstract test suite contains tests for static conformance

requirements for all object types defined in working draft 3 and a portion of the dynamic conformance requirenents

for the defined application services.

These uncertainties present obvious difficulties to anyone attempting to develop conformance tests for BACnet at

this time. Nevertheless, there are important advantages to defining conformance tests for BACnet in its present

form. The process of designing the tests and building an implementation provides important feedback to the SPC
about ambiguities in the draft standard, helps to bring into focus outstanding issues regarding conformance

requirements, and makes it more likely that an accepted abstract test suite and conformance testing procedure will

be ready when the first commercial products using BACnet become available. The abstract test suite described in

this report will certainly undergo several changes as the standard approaches final form.

Section 2 of this report briefly describes what an abstract test suite is and the role it plays in developing a

conformance testing implementation. Section 3 describes the test system architecture that has been assumed for the

purpose of developing these abstract tests. A standard object database which plays an important role in interpreting

the test results is described in section 4. Section 5 describes the conventions used to name the abstract test cases.

The abstract test cases are found in sections 6 and 7. Section 6 contains the capability tests which are used to

determine compliance with the static conformance requirements of the standard. For BACnet this amounts to testing

the support of particular standard object-types. Section 7 contains the behavior tests which determine compliance

with the dynamic conformance requirements of the standard.

2. THE NATURE OF AN ABSTRACT TEST SUITE

An abstract test suite is an organized collection of abstract test cases. Each abstract test case is a complete and

independent specification of the actions required to achieve a specific test purpose. The test cases are abstract

because they are specified in terms of the service primitives defined in the protocol and they are independent of any

particular hardware or software used in a real test implementation. The abstract test suite becomes the basis for

a real test implementation that actually generates protocol messages and evaluates the responses received.

1

Each test case has a specific test purpose which corresjjonds to one conformance requirement of the standard. It

specifies what actions should be taken by the tester, what actions are expected by the implementation under test

(lUT) and how to evaluate the possible results. The test case must clearly indicate imder what circumstances the

test is considered to have passed, failed, or was inconclusive. Unfortimately, there are many possible outcomes that

are inconclusive, and the results must be interpreted in the context of the results of other tests before a judgement

can be made.

Consider a test case designed to test support for a particular object-type A. One part of this test would be to read

the properties of an instance of object-typ>e A using a ReadProperty protocol service. If an unexpected response

is received from this request it could be the case that the object-type is not correctly supported. It could also be

the case that the ReadProperty service is not correctly implemented. Only in the context of other attempts to use

the ReadProperty service which were successful can it be determined that the problem is indeed with the support

for object-type A.

This example illustrates the importance of the context of a particular test case. Many possible inconclusive results

can be eliminated by making assumptions about which other test cases the implementation may have already passed.

These assumptions must be clearly stated and test cases need to be executed in an order that can take advantage of

this simplification.

In spite of these precautions there may be circumstances where the results are ambiguous. The judgement of a

person with expertise in the protocol would be required to resolve the issue. Hopefully, most of these cases can

be anticipated from the experience of developing the test suite and a real test implementation. This will allow clear

guidelines for interpretation of results to be established. It is expected that ASHRAE will form a standing standards

project committee (SSPC), made up of members of the committee that is drafting the standard, to resolve these

kinds of issues.

3. THE BACnet TEST SYSTEM ARCHITECTURE

The BACnet protocol is based on a collapsed form of the open systems intercormection (OSI) Basic Reference Model

[8]. The physical, data link, and application layers of the model are included in the current draft of BACnet. It

is expected that the physical and data link layers will be implemented in hardware and will be tested by means

outside of the scope of this report. This leaves only the application layer to be tested.

There is an inherent asymmetry in application layer protocols. Issuing a request for a remote device is a very

different process from responding to a request that has been received. In order to test the correct implementation

of an application service there must be a way to test an lUT in both roles. The logical entity which allows the tester

to instruct the lUT to take particular actions is called the "upper tester" in draft international standards for

conformance testing [5]. The logical entity which interacts with the lUT over the communication medium (the lower

layer boundary) is called the "lower tester".

The proposed BACnet test architecture is shown in Figure 2.1. It is a variation of the "coordinated test method".

In this method the activities of the upper and lower testers are coordinated by passing synchronization messages.

The BACnet protocol has some built-in features which provide the functionality of the upper tester and facilitate

this approach.

The upper tester consists of the instantiation of a standardized object-type, ConformTest, and an application service,

called the ConformTest Service. The properties of the ConformTest object, shown in Figure 2.2, represent the

information needed to construct a particular application service request. The lower tester writes to the properties

of this object using the normal protocol WriteProperty service. The ConformTest application service is a command
to read the properties of the ConformTest object and issue the application service request described by its properties.

This mechanism provides a way for the lower tester to control application service requests issued by the lUT.

2

The details of the lower tester are not important from the standpoint of the abstract test suite and may be found

elsewhere [4]. The ConformTest object and ConformTest application service are important to the abstract test suite

LOWER TESTER

Figure 2. 1 Proposed ASHRAE Abstract Conformance Test Architecture.

3

Property Identifier Description

Objectidentifier The name of this object i.e., "Test"

Object_Type CONFORMTEST
Service_Name The application service to be invoked by the lUT
Parameter 1 1®* parameter needed to construct APDU
Parameter2 2"*^ parameter needed to construct APDU
Parameters 3*^ parameter needed to construct APDU
Parameter4 4*^ parameter needed to construct APDU
Parameters 5* parameter needed to construct APDU
Parameterb 6* parameter needed to construct APDU
Parameter? 7* parameter needed to construct APDU
Parameters 8* parameter needed to construct APDU
Parameter9 9^*^ parameter needed to construct APDU
Parameter10 10* parameter needed to construct APDU

Figure 2.2 Properties of a ConformTest Object. The Parameters represent the service specific parameters needed

to construct the application protocol data unit (APDU). No BACnet service requires more than ten such parameters.

because they are the key to all of the test cases which involve application services initiated by the lUT.

4. STANDARD OBJECT CONFIGURATION

Interpreting the results of individual test cases requires knowledge of the object database contained in the device

being tested. It may be necessary for the SPC to define a "standard object configuration". The standard object

configuration would consist of a list of most object types defined in the protocol and a particular standard value for

each property of the object. Some object types need not be included because protocol services can be used to create

them. When a manufacturer submits a device for conformance testing, a protocol implementation conformance

statement (PICS) would specify which object-types are supported in this device. The device would be configured

such that there would be one instance of each supported object-type with the properties initialized as defined in the

standard object configuration.

Without this standard object configuration it would be necessary to customize the interpretation of test results for

each device tested, based on some other initial configuration supplied by the manufacturer. This approach would

require a machine-readable configuration file, in a standard format, which the lower tester would process. The

lower tester would, in effect, configure itself to match the configuration supplied by the manufacturer. The lower

tester’s database would become the reference for the "correct" property values.

In this paper it will be assumed that the standard object configuration approach is used in order to illustrate how
"pass" results are interpreted. The standard object configuration is based, where practical, on the examples in the

draft standard. The abstract test cases in this paper assume that all object-types defined in the standard are

supported and that the lUT is configured with one instance of each of the following object-types:

Analog Input Calendar Event Enrollment Schedule

Analog Output Command Group

Analog Value ConformTest Loop

Binary Input Device Multi-State Input

Binary Output Device Table Multi-State Output

Binary Value Directory Program

4

The description which follows is a summary of the properties of these objects and their initial values.

Analog Input^

Key Property: Object_Identi fier

Property: Object_Type

Default Property: Present_Value

Property: Description

Property: Device_Type

Property: Status_Flags

Property: State

Property: Reliability

Property: Out_of_Service

Property: Update_Interval

Property: Units

Property: Min_Pres

Property: Max_Pres

Property: Min_Raw
Property: Max_Raw
Property: Resolution

Analog Output

Key Property: Object_Identifier

Property: Object_Type

Default Property: Present_Value

Property: Description

Property: Device_Type

Property: Status_Flags

Property: State

Property: Reliability

Property: Out_of_Service

Property: Update_Interval

Property: Units

Property: Min_Pres

Property: Max_Pres

Property: Min_Raw
Property: Max_Raw
Property: Resolution

Analog Value

Key Property: Object_Identifier

Property: Object_Type

Default Property: Present_Value

= "lAHlMAT"
= ANALOGINPUT
= 58.1

= "Mixed Air Temperature"

= "100 OHM RTD"
= {FALSE, TRUE, FALSE, FALSE}
= NORMAL
= RELIABLE
= FALSE
= 10

= "DEGF"
= -50

= 250

= 0

= 4095

= 0.1

= "lAHlDMPR"
= ANALOG_OUTPUT
= 75.0

= "Damper Actuator"

= "3-8 PSI Actuator"

= {FALSE, TRUE, FALSE, FALSE)
= NORMAL
= RELIABLE
= FALSE
= 10

= "%"

= 0

= 100

= 0

= 4095

= 0.1

= "MA_SetPoint"

= ANALOGVALUE
= 58.0

^The Present_Value of objects associated with inputs may vary because they are linked to hardware and

software/firmware designed to read sensors.

5

Property; Description = "Loop Set Point"

Property: Status_Flags = {FALSE, TRUE, FALSE, FALSE}
Property; State = NORMAL
Property: Reliability = RELIABLE
Property: Out_of_Service = FALSE
Property: Units = "DEGF"

Binary Input^

Key Property: Object_Identifier = "HighPressSwitch"

Property: Object_Type = BINARYINPUT
Property: Description = "Penthouse Supply High Static"

Default Property: Present_Value = ACTIVE
Property: Polarity = NORMAL
Property: Inactive_Text = "Static Pressure OK"
Property: Active_Text = "High Pressure Alarm"

Property: Status_Flags = {FALSE,TRUE,FALSE,FALSE}
Property: State = NORMAL
Property: Reliability = RELIABLE
Property: Out_Of_Service = FALSE
Property: Change_Of_State_Time = (90/03/23, 6, 19:01:34)

Property: Elapsed_Active_Time = 401

Property: Change_Of_State_Coimt = 134

Property: Time_Of_Reset = (90/01/01, 2, 00:00:00)

Binary Output

Key Property: Object_Identifier = "Floor3ExhaustFan

"

Property: Object_Type = BINARY_OUTPUT
Profierty: Description = "Third floor bathroom exhaust fan"

Default Property: Present Value = INACTIVE
Property: Polarity = REVERSE
Property: Lnactive_Text = "Fan is turned off"

Property: Active_Text = "Fan is running"

Property: Status_Flags = {FALSE,TRUE,FALSE,FALSE}
Property: State = NORMAL
Property: Reliability = RELIABLE
Property: Out_Of_Service = FALSE
Property; Change_Of_State_Time = (90/03/23, 6, 19:01:34)

Property: Run_Time = 401

Prop)erty: Change_Of_State_Count = 134

Property: Time_Of_Reset = (90/01/01, 2, 00:00:00)

Property: Minimum_0ff_Time = 100

Property: Minimum_On_Time = 10

^The Present_Value of objects associated with inputs may vary because they are linked to hardware and

software/firmware designed to read sensors.

6

Binary Value

Key Property: Object_Identifier = "ExhaustFanEnable

"

Property: Object_Type = BINARYVALUE
Property: Description = "Exhaust Fan Operator Enable"

Default Property: Present Value = ACTIVE
Property: Inactive_Text = "Enabled by Operator"

Property: Active_Text = "Fan Not Enabled by Operator"

Property: .Status_Flags = {FALSE,TRUE,FALSE,FALSE}

Property: State = NORMAL
Property: Reliability = RELIABLE
Property: Out_Of_Service = FALSE
Property: Change_Of_State_Time = (90/03/23, 6, 19:01:34)

Property: Elapsed_Active_Time = 401

Property: Change_Of_State_Count = 134

Property: Time_Of_Reset = (90/01/01, 2, 00:00:00)

Property: Mininium_Off_Time = 0

Property: Minimum_On_Time = 0

Calendar

Key Property: Object_Identifier = "HOLIDAYS"
Property: Object_Type = CALENDAR
Default Property: Present Value = ACTIVE
Property: DateList = ((90/2/19),

(90/5/28),

((90/12/24), (90/1/4)))

Command

Key Property: Object_Identifier = "CommandTest"

Property: Object_Type = COMMAND
Property: Description = "Command Object used for Test Purposes"

Default Property Present_Value = 0

Property: StateO = ((NULL,"lAHlMAT",Min_Raw,100), (NULL, "lAHlDMPR",Units, "Percent

(NULL, "lAHlDMPR", Present Value, 61))

Property: Statel = ((NULL,"lAHlMAT",Min Raw,0), (NULL,"lAHlDMPR",Units,"%"),
(NULL, "lAHlDMPR", Present_Value, 75))

Property: State2 = (NULL, "FIoor3ExhaustFan", Present_Value, ACTIVE)
Property: State3 = (NULL, "FIoor3ExhaustFan", Present Value, INACTIVE)
Property: State4 = ((NULL,"1AH1DMPR",NULL,20), (NULL, "Floor3ExhaustFan",NULL,

ACTIVE), (NULL, "MA SetPoint", NULL, 76))

Property: State5 = ((NULL,"1AH1DMPR",NULL,75), (NULL, "Floor3ExhaustFan",NULL,
INACTIVE), (NULL, "MA_SetPoint", NULL, 58))

Property: State6 = ((lower tester, "TestLoop", Process_Variable_Reference, ("MA_SetPoint",

Present_Value)), (lower tester, "Rm208Sched", Sunday_Schedule, (0:00,

INACTIVE), (8:00, ACTIVE), (2:00, INACTIVE)), (lower tester,

"Fanl_Output", NULL, Sate3))

Property: State? = ((lower tester, "TestLoop", Process_Variable_Reference, ("lAHlMAT",
Present_Value)), (lower tester, "Rm208Sched", Sunday_Schedule, (0:00,

7

INACTIVE)), (lower tester, "Fanl_Output", NULL, Sate2))

Device

There is no standard configuration for this object because the value of most of its properties are vendor specific.

The initial configuration must be supplied by the vendor. The Device Object shall be configured as the "default"

object.

ConformTest

All properties of this object shall be initialized to NULL except for the Object_Identifier property which shall be

initialized to "ConformTest".

Device Table

Key Property: Object_Identifier = "Alarm Consoles"

Property: Object_Type = DEVICETABLE
Property: Description = "Building ABC Host Computer Systems"

Property: Device_List = "Node 5", "Node 7"

Directory

Key Property: Object Identifier = "Directory Object 79"

Property: ObjectType = DIRECTORY
Property: Description = "Outside Air Temp Obj Dir"

Property: Reference_ObjectIdentifier = "OA TEMP-NORTH"
Property: Reference_ObjectType = ANALOG_INPUT
Property: Reference_Nickname = "OA-MAIN"
Property: Device_Address = A5
Property: Site ID = "North Shore"

Property: Tel_Number = "312-123-4567"

Event Enrollment

Key Property: Object_ldentifier = "ZonelALARM"
Property: Object_Type = EVENT ENROLLMENT
Property: Event_Type = OUT_OF_RANGE_ALARM
Property: Property_Reference = ("ZonelTEMP", Present Value)

Property: State = ALARM
Property: Enabled = TRUE
Property: Acknowledged = FALSE
Property: Notification_Rules = ((NORMAL TO ALARM, 2, 3, TRUE, "Alarm'

(ALARM TO NORMAL, 5, 3, FALSE, "Normal'

Property: Parameter_List = (65., 85., .25)

Property: Confirmed_Recipient_List = (’Node 29’, ’Node 96’, "Alarm Consoles")

Property: Unconfirmed_Recipient_List = (NULL)

Group

8

Key Property: Object_Identifier = "Test Group"

Property: Object_Type = GROUP
Property: List of Access Specifications = ((" 1AHlMAT",(Min_Pres, Max_Pres, Description)).

("MA_SetPoint " ,
(Present_Value. Units))

,

("Alarm_Consoles " ,
(Description, Device_List)))

Property: Present_Value = (-50, 250, "Mixed Air Temperature", 58.0,

"DEGF", "Building ABC Host Computer Systems",

’Node5’, ’Node?’)

Loop

Key Property: Object_Identifier = "Test Loop"

Property: Object_Type = LOOP
Default Property: Present_Value = 8.3

Property: Description = "A simple test loop"

Property: Status_Flags = {FALSE,TRUE,FALSE,FALSE}
Property: State = NORMAL
Property: Reliability = RELIABLE
Property: Out_Of_Service = FALSE
Property: Update_Interval = 1

Property: Output_Units = "PSi"

Property: Controlled_Variable_Reference = ("lAHlDMPR", Present_Value)

Property: Process_Variable_Reference = ("lAHlMAT", Present Value)

Property: Process_Variable_Value = 58.1

Property: Process_Units = "DEGF"
Property: Setpoint_Reference = ("MA SetPoint", Present Value)

Property: Setpoint = 58

Property: Action = DIRECT
Property: Proportional_Constant = 0.5

Property: Proportional_Constant_Units = "PSI/DEGF"

Property: Integral_Constant = 0.1

Property: Integral_Constant_Units = "1/MIN."

Property: Derivative_Constant = 0

Property: Derivative Constant Units = ""

Property: Bias = 9

Property: Maximum_Output = 15

Property: Minimum_Output = 3

Multi-State Input

Key Property: Object Identifier = "Fanl Input"

Property: ObjectType = MULTISTATE_INPUT
Default Property: Present_Value = STATE 1

Property: Description = "2-speed Fan#l"

Property: Status_Flags = {FALSE, TRUE, FALSE, FALSE}
Property: State = NORMAL
Property: Reliability = RELIABLE
Property: Out_of_Service = FALSE
Property: Number of States = 3

Property: State_Text = ("OfP, "On_Low", "On_High")

Multi-State Output

9

Key Property: Object_Identifier = "Fanl Output"

Property: Object_Type = MULTISTATEOUTPUT
Default Property: Present_Value = STATE_2
Property: Description = "2-speed Fan#l"

Property: Status_Flags = {FALSE, TRUE, FALSE, FALSE}
Property: State = NORMAL
Property: Reliability = RELIABLE
Property: Out_of_Service = FALSE
Property: Number_of_States = 3

Property: State_Text = ("Ofr, "On Low", "On High")

Program

There is no standard configuration for this object because the underlying program and many o

vendor-specific. The initial configuration must be supplied by the vendor.

Schedule

Key Property: Object_Identifier = "Rm208Sched"

Property: Object_Type = SCHEDULE
Default Property: Present_Value = ACTIVE
Property: Effective_Period = ((90/9/5),(91/6/10))

Property: Monday_Schedule = ((8:00,ACTIVE),(17:00,INACTIVE))

Property: Tuesday_Schedule = ((8:00,ACTIVE))

Property: Wednesday_Schedule = ((8:00,ACTIVE),(17:00,INACTIVE)),

Property: Thursday Schedule = ((8:00,ACTIVE),(17:00,INACTIVE),

(19:00,ACTIVE),(23:30,INACTIVE))

Property: Friday_Schedule = ((8:00,ACTIVE),(17:00,INACTIVE))

Property: Saturday_Schedule = ((10:00,ACTIVE),(17:00,INACTIVE))

Property: Sunday Schedule = ((0:00,INACTIVE))

Property: Exception_Schedule = (((90/1 1/23),(0:00,INACTIVE), 10),

(HOLIDAYS,(0:00,INACTIVE), 1 1),

(((91/3/5),(91/3/7)), ((9:00,ACTIVE),

(14:00,INACTIVE)),6))

Property: Property_Reference = (Rm208RTP,Present Value)

Property: Priority_For_Writing = 15

10

5. TEST CASE NAMING CONVENTIONS

The abstract test cases are arranged in hierarchical structure of nested groups. Each test case is identified by a

sequence of alpha-numeric fields separated by periods (.). Each field corresponds to a different level in the

hierarchy. The last field is a sequential number which identifies this test case from all of the others in the same

group. The result is an outline form which is illustrated in Figure 5.1.

A. Capability Test

A.l Mandatory Object-Types^

A.2 Optional Object-Types

A. 3 Property Functional Ranges

B. Behavior Tests: responses to valid behavior by peer implementation

B. 1 Application Services Initiated by Tester

B. 1. 1 Alarm and Event Services

B.1.2 File Access Services

B.1.3 Object Access Services

B.1.4 Remote Device Management Services

B.1.5 Virtual Terminal Services

B.2 Application Services Initiated by Implementation Under Test

B.2. 1 Alarm and Event Services

B.2.2 File Access Services

B.2. 3 Object Access Services

B.2.4 Remote Device Management Services

B.2.5 Virtual Terminal Services

C. Behavior Tests: response to syntactically invalid behavior by peer

implementation

D. Behavior Tests: response to syntactically correct but inopportune

events by peer implementation.

Figure 5.1 Outline for Abstract Test Suite

Each test case begins with an explanation of the test purpose. This is followed by a brief description of the test and

the expected results. The actions of the lower tester, upper tester and the lUT are then explained in detail. Finally

the conditions for a pass result, a fail result, or an inconclusive result are described.

Test groups C and D are not included in this version of the abstract test suite. The current draft of BACnet defines

a reject_PDU type which will be used in group C tests but the details of how a device should respond to invalid

service requests (BACnet clause 6.2.1) have not been sjjecified. There is a similar problem for the group D tests.

Error-classes and error-codes have been defined but details about how they should be used are lacking.

^ The current draft standard does not specify which object-types must be supported.

6. CAPABILITY TESTS

This group of abstract test cases are used to determine if BACnet standard object types are correctly supported.

They are broken into two categories, tests to verily the existence of each object type and all of its properties, and

tests for the range of values supported by the individual properties of the objects (functional range). To avoid

unnecessary redimdancy the functional range of a property is tested only once and it is assumed that all object types

which have a property of that type correctly implement the functional range if the test is passed for one object type.

These abstract tests make use of the ReadProperty, WriteProperty, and optionally the ReadMultipleProperty

application services. It is assumed that the implementation of these services has been established prior to execution

of these tests.

6.1 Object-type Support Tests

The SPC has not yet agreed on a p>olicy regarding which standard object-types will be required in order to claim

conformance to BACnet or if they will be grouped by conformance class. This test suite assumes that all object-

types are optional. The test cases will be renumbered in a future version when the outstanding conformance issues

are resolved by the committee (see Figure 5.1).

Test A.2.1 Support for the Analog Input Object-Type

Test Fhirpose:

Verify that the implementation supports the Analog Input object-type.

BACnet Clause Reference; 5.1

Test Description:

The lower tester issues several ReadProperty requests or a single ReadMultipleProperty request in an

attempt to read all of the properties of the Analog Input object "lAHlMAT". The single

ReadMultipleProperty request option is preferred if the ReadMultipleProp)erty service is supported by the

lUT.

Expected Result:

A successful attempt to read all of the properties of " 1AHIMAT". The values returned will be the values

defined in the standard object configuration.

Lower Tester:

Option 1 - Issue a ReadMultipleProperty service request with the following argument:

’List of Read Access Specifications’ = ("lAHlMAT", ALL)

Option 2 - Issue a sequence of ReadProperty requests, one for each of the sixteen properties of the object.

The sequence of arguments is shown below.

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

Specification’

Specification’

Specification’

Sfiecification’

Specification’

Specification’

Specification’

Specification’

("1AHIMAT", Object_Identifier)

("1AHIMAT", Object_Type)

("1AHIMAT", Present_Value)

("1AHIMAT", Description)

("lAHlMAT", Device_Type)

("1AHIMAT", Status_Flags)

("1AHIMAT", State)

("1AHIMAT", Reliability)

12

’Read Access Specification

’Read Access Specification

’Read Access Specification

’Read Access Specification

’Read Access Specification

’Read Access Specification

’Read Access Specification

’Read Access Specification

("lAHlMAT", Out_of_Service)

("lAHlMAT", Update_Interval)

("lAHlMAT", Units)

("lAHlMAT", Min_Pres)

("lAHlMAT", Max_Pres)

("lAHlMAT", Min_Raw)

("lAHlMAT", Max_Raw)
("lAHlMAT", Resolution)

lUT:

Process the ReadMultipleProperty request or the sequence of ReadProperty requests and issue a response

containing the requested information.

Upper Tester:

No action is required for this test case.

Pass Results:

Option 1 - A Result(+) confirm primitive is received by the lower tester containing the following

argument:

’List of Read Access Results’ = ("lAHlMAT", ANALOG_INPUT, 58.1, "Mixed Air

Temperature", "100 OHM RTD", {FALSE, TRUE, FALSE, FALSE}, NORMAL, RELIABLE,
FALSE, 10, "DEGF", -50, 250, 0, 4095, 0.1)

Option 2 - A sequence of Result(-l-) confirm primitives are received by the lower tester, one for each

request issued. Each Result(+) primitive will contain one argument. The sequence will be:

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

"lAHUlMAT"
ANALOGINPUT
58.1

"Mixed Air Temperature"

"100 OHM RTD"
{FALSE, TRUE, FALSE, FALSE}
NORMAL
RELIABLE
FALSE
10

"DEGF"
-50

250

0

4095

0.1

Fail Results:

This test fails if a Result(-) confirm primitive is received by the lower tester with an error class of OBJECT
or an error class of PROPERTY. The test also fails if one or more of the property values returned in the

Result! -I-) primitives is not correct. In this case a configuration error may be the cause and this fact should

be noted in the test report.

Inconclusive Results:

13

The test results are inconclusive if a Result(-) confirm primitive is received by the lower tester with any

error class other than OBJECT or PROPERTY. The results are also inconclusive if a reply is not received

to one or more of the read requests.

Test A.2.2 Support for the Analog Output Object-Type

Test Purpose:

Verify that the implementation supports the Analog Output object-type.

BACnet Clause Reference: 5.2

Test Description:

The lower tester issues several ReadProperty requests or a single ReadMultipleProperty request in an

attempt to read all of the properties of the Analog Output object "lAHlDMPR". The single

ReadMultipleProperty request option is preferred if the ReadMultipleProperty service is supported by the

lUT.

Expected Result:

A successful attempt to read all of the properties of " 1AHIDMPR". The values returned will be the values

defined in the standard object configuration.

Lower Tester:

Option 1 - Issue a ReadMultipleProperty service request with the following argument:

’List of Read Access Specifications’ = ("lAHlDMPR", ALL)

Option 2 - Issue a sequence of ReadProperty requests, one for each of the sixteen properties of the object.

The sequence of arguments is shown below.

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

Specification’

Specification’

Specification’

Specification’

Specification’

Specification’

Specification’

Specification’

Specification’

Specification’

Specification’

Si>ecification’

Specification’

Specification’

Specification’

Specification’

("lAHlDMPR",
("lAHlDMPR",
("lAHlDMPR",
("lAHlDMPR",
("lAHlDMPR",
("lAHlDMPR",
("lAHlDMPR",
("lAHlDMPR",
("lAHlDMPR",
("lAHlDMPR",
("lAHlDMPR",
("lAHlDMPR",
("lAHlDMPR",
("lAHlDMPR",
("lAHlDMPR",
("lAHlDMPR",

Object_Identi fier)

Object_Type)

Present_Value)

Description)

Device_Type)

Status_Flags)

State)

Reliability)

Out_of_Service)

Update_Interval)

Units)

Min_Pres)

Max_Pres)

Min_Raw)

Max_Raw)
Resolution)

lUT:

Process the ReadMultipleProperty request or the sequence of ReadProperty requests and issue a response

containing the requested information.

Upper Tester:

14

No action is required for this test case.

Pass Results:

Option 1 - A Result(+) confirm primitive is received by the lower tester containing the following

argument:

’List of Read Access Results’ = ("lAHlDMPR", ANALOG_OUTPUT, 75.0, "Damper

Actuator", "3-8 PSI Actuator", {FALSE, TRUE, FALSE, FALSE}, NORMAL,
RELIABLE, FALSE, 10, "%", 0, 100, 0, 4095, 0.1)

Option 2 - A sequence of Result(-I-) confirm primitives are received by the lower tester, one for each

request issued. Each Result(+) primitive will contain one argument. The sequence will be:

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

"lAHlDMPR"
ANALOG_OUTPUT
75.0

"Damper Actuator"

"3-8 PSI Actuator"

(FALSE, TRUE, FALSE, FALSE}
NORMAL
RELIABLE
FALSE
10
"%"

0

100

0

4095

0.1

Fail Results:

This test fails if a Result(-) confirm primitive is received by the lower tester with an error class of OBJECT
or an error class of PROPERTY. The test also fails if one or more of the property values returned in the

Result(-f-) primitives is not correct. In this case a configuration error may be the cause and this fact should

be noted in the test report.

Inconclusive Results:

The test results are inconclusive if a Result(-) confirm primitive is received by the lower tester with any

error class other than OBJECT or PROPERTY. The results are also inconclusive if a reply is not received

to one or more of the read requests.

Test A.2.3 Support for the Analog Value Object-Type

Test Purpose:

Verify that the implementation supports the Analog Value object-type.

BACnet Clause Reference: 5.3

Test Description:

The lower tester issues several ReadProperty requests or a single ReadMultipleProperty request in an

15

attempt to read all of the properties of the Analog Value object "MA_SetPoint". The single

ReadMultipleProperty request option is preferred if the ReadMultipleProperty service is supported by the

lUT.

Expected Result:

A successful attempt to read all of the properties of "MA_SetPoint". The values returned will be the

values defined in the standard object configuration.

Lower Tester:

Option 1 - Issue a ReadMultipleProperty service request with the following argument:

’List of Read Access Specifications’ = (''MA_SetPoint'', ALL)

Option 2 - Issue a sequence of ReadProperty requests, one for each of the nine properties of the object.

The sequence of arguments is shown below.

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

Specification’

Specification’

Specification’

Specification’

Specification’

Specification’

Specification’

Specification’

Specification’

("MASetPoint",

("MA_SetPoint’',

(’’MA_SetPoint",

("MA_SetPoint'',

("MA_SetPoint "

,

(''MA_SetPoint",

("MA_SetPoint''

,

CMA_SetPoint "

,

("MA_SetPoint’',

lUT:

Process the ReadMultipleProperty request or the sequence

containing the requested information.

Upper Tester:

No action is required for this test case.

Pass Results:

Option 1 - A Result(+) confirm primitive is received

argument:

Object_Identi fier)

Object_Type)

Present_Value)

Description)

Status_Flags)

State)

Reliability)

Out_of_Service)

Units)

of ReadProperty requests and issue a response

by the lower tester containing the following

’List of Read Access Results’ = (''MA_SetPoint'', ANALOG_VALUE, 58.0, "Loop Set Point", {FALSE,

TRUE, FALSE, FALSE}, NORMAL, RELIABLE, FALSE, "DEGF")

Option 2 - A sequence of Result(+) confirm primitives are received by the lower tester, one for each

request issued. Each Result(+) primitive will contain one argument. The sequence will be:

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

"MA_SetPoint"

ANALOG_VALUE
58.0

"Loop Set Point"

(FALSE, TRUE, FALSE, FALSE}
NORMAL
RELIABLE
FALSE
"DEGF"

16

Fail Results:

This test fails if a Result(-) confirm primitive is received by the lower tester with an error class of OBJECT
or an error class of PROPERTY. The test also fails if one or more of the property values returned in the

Result(+) primitives is not correct. In this case a configuration error may be the cause and this fact should

be noted in the test report.

Inconclusive Results:

The test results are inconclusive if a Result(-) confirm primitive is received by the lower tester with any

error class other than OBJECT or PROPERTY. The results are also inconclusive if a reply is not received

to one or more of the read requests.

Test A.2.4 Support for the Binary Input Object-Type

Test Purpose:

Verify that the implementation supports the Binary Input object-type.

BACnet Clause Reference: 5.4

Test Description:

The lower tester issues several ReadProperty requests or a single ReadMultipleProperty request in an

attempt to read all of the properties of the Binary Input object "HighPressSwitch". The single

ReadMultipleProp>erty request option is preferred if the ReadMultipleProperty service is supported by the

lUT.

Expected Result:

A successful attempt to read all of the properties of "HighPressSwitch". The values returned will be the

values defined in the standard object configuration.

Lower Tester:

Option 1 - Issue a ReadMultipleProperty service request with the following argument:

’List of Read Access Specifications’ = ("HighPressSwitch", ALL)

Option 2 - Issue a sequence of ReadProperty requests, one for each of the fifteen properties of the object.

The sequence of arguments is shown below.

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

Specification’

Specification’

Specification’

Specification’

Specification’

Specification’

Specification’

Specification’

Specification’

Specification’

Specification’

Specification’

Specification’

Specification’

Specification’

("HighPressSwitch", Object_Identifier)

("HighPressSwitch", Object_Type)

("HighPressSwitch", Description)

("HighPressSwitch", Present_Value)

("HighPressSwitch", Polarity)

("HighPressSwitch " , Inactive_Text)

("HighPressSwitch", Active_Text)

("HighPressSwitch", Status Flags)

(" HighPressSwitch " , State)

("HighPressSwitch", Reliability)

("HighPressSwitch" , Out_of_Service)

("HighPressSwitch"
, Change_of_State_Time)

("HighPressSwitch", Elapsed_Active_Time)

("HighPressSwitch " , Change_of_State_Count)

("HighPressSwitch " , Time_of_Reset)

17

lUT:

Process the ReadMultipleProperty request or the sequence of ReadProperty requests and issue a response

containing the requested information.

Upper Tester;

No action is required for this test case.

Pass Results:

Option 1 - A Result(+) confirm primitive is received by the lower tester containing the following

argument:

’List of Read Access Results’ = ("HighPressSwitch", BINARY_INPUT, "Penthouse Supply High Static",

ACTIVE, NORMAL, "Static Pressure OK", "High Pressure Alarm", {FALSE, TRUE, FALSE, FALSE},

NORMAL, RELIABLE, FALSE, (90/03/23, 6, 19:01:34), 401, 134, (90/01/01, 2, 00:00:00))

Option 2 - A sequence of Result(+) confirm primitives are received by the lower tester, one for each

request issued. Each Result(+) primitive will contain one argument. The sequence will be:

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

"HighPressSwitch
"

BINARYJNPUT
"Penthouse Supply High Static"

ACTIVE
NORMAL;
"Static Pressure OK"
"High Pressure Alarm"

{FALSE, TRUE, FALSE, FALSE}
NORMAL
RELIABLE
FALSE
(90/03/23, 6, 19:01:34)

401

134

(90/01/01, 2, 00:00:00)

Fail Results:

This test fails if a Result(-) confirm primitive is received by the lower tester with an error class of OBJECT
or an error class of PROPERTY. The test also fails if one or more of the property values returned in the

Result! +)
primitives is not correct. In this case a configuration error may be the cause and this fact should

be noted in the test report.

Inconclusive Results:

The test results are inconclusive if a Result(-) confirm primitive is received by the lower tester with any

error class other than OBJECT or PROPERTY. The results are also inconclusive if a reply is not received

to one or more of the read requests.

Test A.2.5 Support for the Binary Output Object-Type

Test Purpose:

Verify that the implementation supports the Binary Output object-type.

18

BACnet Clause Reference 5.5

Test Description:

The lower tester issues several ReadProperty requests or a single ReadMultipleProperty request in an

attempt to read all of the properties of the Binary Output object "FloorSExhaustFan". The single

ReadMultipleProperty request option is preferred if the ReadMultipleProperty service is supported by the

lUT.

Expected Result:

A successful attempt to read all of the properties of "FloorSExhaustFan". The values returned will be the

values defined in the standard object configuration.

Lower Tester:

Option 1 - Issue a ReadMultipleProperty service request with the following argument:

’List of Read Access Specifications’ = ("FloorSExhaustFan", ALL)

Option 2 - Issue a sequence of ReadProperty requests, one for each of the seventeen properties of the

object. The sequence of arguments is shown below.

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

Specification’

Specification’

Specification’

Specification’

Specification’

Specification’

Specification’

Specification’

Specification’

Specification’

Specification’

Specification’

Specification’

Specification’

Specification’

Specification’

Specification’

("FloorsExhaustFan " ,Object Identifier)

("FloorSExhaustFan "

,

("FloorSExhaustFan "

,

("FloorsExhaustFan "

,

("FloorsExhaustFan "

,

("FloorSExhaustFan"

,

("FloorsExhaustFan "

,

("FloorSExhaustFan "

,

("FloorSExhaustFan",

("FloorSExhaustFan",

("FloorSExhaustFan",

("FloorSExhaustFan",

("FloorSExhaustFan "

,

("FloorsExhaustFan "

,

("FloorsExhaustFan "

,

("FloorsExhaustFan "

,

("FloorSExhaustFan "

,

Object_Type)

Description)

Present_Value)

Polarity)

Inactive_Text)

Active_Text)

Status_Flags)

State)

Reliability)

Out_of_Service)

Change_of_State_Time)

Run_Time)

Change_of_State_Count)

Time_of_Reset)

Minimum_Off_Time)

M inimum_On_Time)

lUT:

Process the ReadMultipleProperty request or the sequence of ReadProperty requests and issue a response

containing the requested information.

Upper Tester:

No action is required for this test case.

Pass Results:

Option 1 - A Result(+) confirm primitive is received by the lower tester containing the following

argument:

’List of Read Access Results’ = ("FloorSExhaustFan", BINARY_OUTPUT, "Third floor bathroom

exhaust fan", INACTIVE, REVERSE, "Fan is turned off", "Fan is running", {FALSE, TRUE, FALSE,
FALSE}, NORMAL, RELIABLE, FALSE, (90/03/23, 6, 19:01:34), 401, 134, (90/01/01, 2, 00:00:00),

19

100 , 10)

Option 2 - A sequence of Result(+) confirm primitives are received by the lower tester, one for each

request issued. Each Result(+) primitive will contain one argument. The sequence will be:

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

"FloorSExhaustFan"

BINARY_OUTPUT
"Third Floor bathroom exhaust fan"

INACTIVE
REVERSE;
"Fan is turned ofP

"Fan is running"

{FALSE, TRUE, FALSE, FALSE}
NORMAL
RELIABLE
FALSE
(90/03/23, 6, 19:01:34)

401

134

(90/01/01, 2, 00:00:00)

100

10

Fail Results:

This test fails if a Result(-) confirm primitive is received by the lower tester with an error class of OBJECT
or an error class of PROPERTY. The test also fails if one or more of the property values returned in the

Result(+) primitives is not correct. In this case a configuration error may be the cause and this fact should

be noted in the test report.

Inconclusive Results:

The test results are inconclusive if a Result(-) confirm primitive is received by the lower tester with any

error class other than OBJECT or PROPERTY. The results are also inconclusive if a reply is not received

to one or more of the read requests.

Test A.2.6 Support for the Binary Value Object-Type

Test Fhirpose:

Venfy that the implementation supports the Binary Value object-type.

BACnet Clause Reference: 5.6

Test Description:

The lower tester issues several ReadProperty requests or a single ReadMultipleProperty request in an

attempt to read all of the properties of the Binary Value object "ExhaustFanEnable". The single

ReadMultipleProperty request option is preferred if the ReadMultipleProperty service is supported by the

lUT.

Expected Result:

A successful attempt to read all of the properties of "ExhaustFanEnable". The values returned will be the

values defined in the standard object configuration.

20

Lower Tester:

Option 1 - Issue a ReadMultipleProperty service request with the following argument:

’List of Read Access Specifications’ = ("ExhaustFanEnable", ALL)

Option 2 - Issue a sequence of ReadProperty requests, one for each of the sixteen properties of the object.

The sequence of arguments is shown below.

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

Sf>ecification’

Specification’

Specification’

Specification’

Specification’

Specification’

Specification’

Specification’

Specification’

Specification’

Specification’

Specification’

Specification’

Specification’

Specification’

Specification’

("ExhaustFanEnable",Object Identifier)

= ("ExhaustFanEnable",

= ("ExhaustFanEnable",

= ("ExhaustFanEnable",

= ("ExhaustFanEnable",

= ("ExhaustFanEnable",

= ("ExhaustFanEnable",

= ("ExhaustFanEnable",

= ("ExhaustFanEnable",

= ("ExhaustFanEnable",

= ("ExhaustFanEnable",

= ("ExhaustFanEnable",

= ("ExhaustFanEnable",

= ("ExhaustFanEnable",

= ("ExhaustFanEnable",

= ("ExhaustFanEnable",

Object_Type)

Description)

Present_Value)

Inactive_Text)

Active_Text)

Status_Flags)

State)

Reliability)

Out_of_Service)

Change_of_State_Time)

Elapsed_Active_Time)

Change_of_State_Count)

Time_of_Reset)

Minimum_Off_Time)

Minimum_On_Time)

lUT:

Process the ReadMultipleProperty request or the sequence of ReadProperty requests and issue a response

containing the requested information.

Upper Tester:

No action is required for this test case.

Pass Results:

Option 1 - A Result(+) confirm primitive is received by the lower tester containing the following

argument:

’List of Read Access Results’ = ("ExhaustFanEnable", BINARY_VALUE, "Exhaust Fan Operator

Enable", ACTIVE, "Enabled by Operator", "Fan Not Enabled by Operator", {FALSE, TRUE, FALSE,
FALSE}, NORMAL, RELIABLE, FALSE, (90/03/23, 6, 19:01:34), 401, 134, (90/01/01, 2, 00:00:00),

0 , 0)

Option 2 - A sequence of Result(+) confirm primitives are received by the lower tester, one for each

request issued. Each Result(+) primitive will contain one argument. The sequence will be:

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

"ExhaustFanEnable

"

BINARY_VALUE
"Exhaust Fan Operator Enable"

ACTIVE
"Enabled by Operator"

"Fan Not Enabled by Operator"

{FALSE, TRUE, FALSE, FALSE}
NORMAL

21

’Read Access Result

’Read Access Result

’Read Access Result

’Read Access Result

’Read Access Result

’Read Access Result

’Read Access Result

’Read Access Result

RELIABLE
FALSE
(90/03/23, 6, 19:01:34)

401

134

(90/01/01, 2, 00:00:00)

0

0

Fail Results:

This test fails if a Result(-) confirm primitive is received by the lower tester with an error class of OBJECT
or an error class of PROPERTY. The test also fails if one or more of the property values returned in the

Result(+)
primitives is not correct. In this case a configuration error may be the cause and this fact should

be noted in the test report.

Inconclusive Results:

The test results are inconclusive if a Result(-) confirm primitive is received by the lower tester with any

error class other than OBJECT or PROPERTY. The results are also inconclusive if a reply is not received

for one or more of the read requests.

Test A.2.7 Support for the Calendar Object-Type

Test Purpose:

Verify that the implementation supports the Calendar object-typ>e.

BACnet Clause Reference: 5.7

Test Description:

The lower tester issues several ReadProperty requests or a single ReadMultipleProperty request in an

attempt to read all of the properties of the Calendar object "HOLIDAYS". The single

ReadMultipleProperty request option is preferred if the ReadMultipleProp)erty service is supported by the

lUT.

Expected Result:

A successful attempt to read all of the properties of "HOLIDAYS". The values returned will be the values

defined in the standard object configuration.

Lower Tester:

Option 1 - Issue a ReadMultipleProperty service request with the following argument:

’List of Read Access Specifications’ = ("HOLIDAYS", ALL)

Option 2 - Issue a sequence of ReadProperty requests, one for each of the four properties of the object.

The sequence of argurtients is shown below.

’Read Access

’Read Access

’Read Access

’Read Access

Specification’

Specification’

Specification’

Specification’

("HOLIDAYS", Objectjdentifier)

("HOLIDAYS", Object Type)

("HOLIDAYS", Present_Value)

("HOLIDAYS", DateList)

22

lUT:

Process the ReadMultipieProperty request or the sequence of ReadProperty requests and issue a response

containing the requested information.

Upper Tester:

No action is required for this test case.

Pass Results:

Option 1 - A Result(+) confirm primitive is received by the lower tester containing the following

argument:

’List of Read Access Results’ = ("HOLIDAYS", CALENDAR, ACTIVE, ((90/2/19), (90/5/28),

((90/12/24), (91/1/4)))

Option 2 - A sequence of Result(+) confirm primitives are received by the lower tester, one for each

request issued. Each Result(+)
primitive will contain one argument. The sequence will be:

’Read Access Result’ = "HOLIDAYS"
’Read Access Result’ = CALENDAR
’Read Access Result’ = ACTIVE
’Read Access Result’ = ((90/2/19), (90/5/28), ((90/12/24), (91/1/4)))

Fail Results:

This test fails if a Result(-) confirm primitive is received by the lower tester with an error class of OBJECT
or an error class of PROPERTY. The test also fails if one or more of the property values returned in the

Result(+) primitives is not correct. In this case a configuration error may be the cause and this fact should

be noted in the test report.

Inconclusive Results:

The test results are inconclusive if a Result(-) confirm primitive is received by the lower tester with any

error class other than OBJECT or PROPERTY. The results are also inconclusive if a reply is not received

for one or more of the read requests.

Test A.2.8 Support for the Command Object-Type

Test Purpose:

Verify that the implementation supports the Command object-type.

BACnet Clause Reference: 5.8

Test Description:

The lower tester issues several ReadProperty requests or a single ReadMultipieProperty request in an

attempt to read all of the properties of the Command object "CommandTest". The single

ReadMultipieProperty request option is preferred if the ReadMultipieProperty service is supported by the

lUT.

If the first part is successful the lower tester issues several WriteProperty requests, each one writing a new
value to the Present_Value property of "ConformTest". A series of ReadProperty requests is issued after

each WriteProperty request is confirmed to determine if the "command" functions of the object have been

implemented. For the special cases where the StateN property indicates that the properties to be

"commanded" reside in the lower tester subsequent ReadProperty requests are not needed.

23

Expected Result:

A successful attempt to read all of the properties of "CommandTest". The values returned will be the

values determined in the standard configuration. This is followed by successfully "commanding" the object

into each of its possible states.

Lower Tester:

Step 1, Option 1 - Issue a ReadMultipleProperty service request with the following argument:

’List of Read Access Results’ = ("CommandTest", ALL)

Step 1, Option 2 - Issue a sequence of ReadProperty service requests, one for each of the eleven properties

of the object, the sequence of arguments is shown below.

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

Specification’

Specification’

Specification’

Specification’

Specification’

Specification’

Specification’

Specification’

Specification’

Specification’

Specification’

Specification’

("CommandTest",

("CommandTest",

("CommandTest",

("CommandTest",

("CommandTest",

("CommandTest",

("CommandTest",

("CommandTest",

("CommandTest",

("CommandTest",

("CommandTest",

("CommandTest",

Object_Identifier)

Object_Type)

Present_Value)

Description)

StateO)

State 1)

State2)

StateS)

State4)

StateS)

Stated)

State?)

Step 2 - Issue a WriteProperty service request with the following argument:

’Write Access Specification’ = ("CommandTest", Present_Value, 0)

When a confirmation is received (possibly after retries) issue ReadProperty service requests with

the following arguments.

’Read Access Specification’

’Read Access Specification’

’Read Access Specification’

’Read Access Specification’

= ("CommandTest", Present_Value)

= ("lAHlMAT", Min Raw)

= ("lAHlDMPR", Units)

= ("lAHlDMPR", Present_Value)

Step 3 - Issue a WriteProperty service request with the following argument:

’Write Access Specification’ = ("CommandTest", Present_Value, 1)

When a confirmation is received (possibly after retries) issue ReadPropierty service requests with

the following arguments.

’Read Access Specification’

’Read Access Specification’

’Read Access Specification’

’Read Access Specification’

= ("CommandTest", Present_Value)

= ("lAHlMAT", Min_Raw)

= ("lAHlDMPR", Units)

= ("lAHlDMPR", Present_Value)

Step 4 - Issue a WriteProperty service request with the following argument:

24

Write Access Specification = ("CommandTest", Present_Value, 2)

When a confirmation is received (possibly after retries) issue ReadProperty service requests with

the following arguments.

’Read Access Specification’ = ("CommandTest", Present_Value)

’Read Access Specification’ = ("FloorSExhaustFan", Present_Value)

Step 5 - Issue a WriteProperty service request with the following argument:

’Write Access Specification’ = ("CommandTest", Present_Value, 3)

When a confirmation is received (possibly after retries) issue ReadProperty service requests with

the following arguments.

’Read Access Specification’ = ("CommandTest", Present_Value)

’Read Access Specification’ = ("FloorSExhaustFan", Present_Value)

Step 6 - Issue a WriteProperty service request with the following argument:

Write Access Specification = ("CommandTest", Present_Value, 4)

When a confirmation is received (possibly after retries) issue ReadProperty service requests with

the following arguments.

’Read Access Specification’ = ("CommandTest", Present_Value)

’Read Access Specification’ = ("lAHlMA_SetPoint", Present,Value)

’Read Access Specification’ = ("FloorSExhaustFan", Present_Value)

’Read Access Specification’ = ("MA_SetPoint", Present_Value)

Step 7 - Issue a WriteProperty service request with the following argument:

’Write Access Specification’ = ("CommandTest", Present_Value, 5)

When a confirmation is received (possibly after retries) issue ReadProperty service requests with

the following arguments.

’Read Access Specification’ = ("CommandTest", Present_Value)

’Read Access Specification’ = ("lAHlMA_SetPoint", Present,Value)

’Read Access Specification’ = ("FloorSExhaustFan", Present_Value)

’Read Access Specification’ = ("MA_SetPoint", Present_Value)

Step 8 - Issue a WriteProperty service request with the following argument.

’Write Access Specification’ = ("CommandTest", Present_Value, 6)

Step 9 - Issue a WriteProperty service request with the following argument.

’Write Access Specification’ = ("CommandTest", Present_Value, 7)

lUT:

25

Step 1 - Process the ReadMultipleProperty request or the sequence of ReadProperty requests and issue a

response containing the requested information.

Steps 2-9 When the WriteProperty service indication is received, change the value of the Present_Value

property of the "CommandTest" object, carry out the implied command, and issue a Result(+) response

primitive. When the subsequent ReadProperty service indications are received, issue a Result(+) response

primitive conveying the requested values.

Upper Tester:

No action is required for this test.

Pass Result:

Step 1, Option 1 - A Result(-I-) confirm primitive is received by the lower tester containing the following

argument:

’List of Read Access Results’ = ("CommandTest", COMMAND, "Command Object used for Test

Purposes", 0, ((NULL,"lAHlMAT",Min_Raw,100), (NULL, "lAHlDMPR", Units, "Percent"),

(NULL, "lAHlDMPR", Present_Value, 61)), ((NULL,"lAHlMAT",Min_Raw,0),
(NULL,"lAHlDMPR",Units,"%"), (NULL, "lAHlDMPR", Present_Value, 75)), (NULL,
"FloorsExhaustFan", Present_Value, ACTIVE), (NULL, "FloorSExhaustFan", Present_Value,

INACTIVE), ((NULL,"1AH1DMPR",NULL,20), (NULL, "FloorSExhaustFan",NULL,
ACTIVE), (NULL, "MA_SetPoint", NULL, 76)), ((NULL,"1AH1DMPR",NULL,75),
(NULL, "FloorSExhaustFan" ,NULL, INACTIVE), (NULL, "MA_SetPoint" , NULL, 58)), ((lower

tester, "TestLoop", Process_Variable_Reference, ("MA_SetPoint",Present_Value)), (lowertester,

"Rm208Sched", Sunday_Schedule, (0:00, INACTIVE), (8:00, ACTIVE), (2:00, INACTIVE)),

(lower tester, "Fanl_Output", NULL, StateS)), ((lower tester, "TestLoop",

Process_Variable_Reference, ("lAHlMAT", Present_VaIue)), (lower tester, "Rm208Sched",

Sunday_ScheduIe, (0:00, INACTIVE)), (lower tester, "Fanl_Output", NULL, State2))

Step 1 , Option 2 - A sequence of Result(-f-) confirm primitives are received by the lower tester, one for

each request issued. Each Result(-I-) primitive will contain one argument. The sequence will be.

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

= "CommandTest"

= COMMAND
= "Command Object used for Test Purposes"

= 0

= ((NULL," lAHlMAT",Min_Raw, 100),

(NULL, "lAHlDMPR",Units, "Percent"), (NULL, "lAHlDMPR",
Present_Value, 61))

= ((NULL,"lAHlMAT",Min_Raw,0), (NULL, "lAHlDMPR", Units, " %"),

(NULL, "lAHlDMPR", Present_Value, 75))

= (NULL, "FloorSExhaustFan", Present_Value, ACTIVE)
= (NULL, "FloorsExhaustFan", Present_Value, INACTIVE)

= ((NULL,"1AH1DMPR",NULL,20), (NULL, "FloorSExhaustFan",NULL,
ACTIVE), (NULL, "MA_SetPoint", NULL, 76))

= ((NULL," lAHlDMPR",NULL,75), (NULL, "FloorSExhaustFan",NULL,
INACTIVE), (NULL, "MA_SetPoint", NULL, 58))

= ((lower tester, "TestLoop", Process_Variable_Reference, ("MA_SetPoint",

Present_Value)), (lower tester, "Rm208Sched", Sunday_ScheduIe, (0:00,

INACTIVE), (8:00, ACTIVE), (2:00, INACTIVE)), (lower tester,

"Fanl_Output", NULL, StateS))

= ((lowertester, "TestLoop", Process_VariabIe_Reference, ("lAHlMAT",

26

Present_Value)), (lower tester, "Rni208Sched", Sunday_Schedule, (0:00,

INACTIVE)), (lower tester, ’'Fanl_Output", NULL, State2))

Step 2 - A Result(+) confirm primitive is received by the lower tester in response to the WriteProperty

service request. A sequence of Result(+) confirm primitives is received by the lower tester , one for each

of the ReadProperty service requests. Each Result(+) primitive conveys one argument. The sequence will

be:

’Read Access Result’ = ("CommandTest", Present_Value, 0)

’Read Access Result’ = ("lAHlMAT", Min_Raw, 100)

’Read Access Result’ = ("lAHlDMPR", Units, "Percent")

’Read Access Result’ = ("lAHlDMPR", Present_Value, 61)

Step 3 - A Result(4-) confirm primitive is received by the lower tester in response to the WriteProperty

service request. A sequence of Result(+) confirm primitives is received by the lower tester , one for each

of the ReadProperty service requests. Each Result(+) primitive conveys one argument. The sequence will

be:

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

("CommandTest", Present_Value, 1)

("lAHlMAT", Min Raw, 100)

("lAHlDMPR", Units, "%")

("lAHlDMPR", Present_Value, 75)

Step 4 - A Result(+) confirm primitive is received by the lower tester in response to the WriteProperty

service request. A sequence of Result(+) confirm primitives is received by the lower tester , one for each

of the ReadProperty service requests. Each Result(+) primitive conveys one argument. The sequence will

be:

’Read Access Result’ = ("CommandTest", Present_VaIue, 2)

’Read Access Result’ = ("FIoorSExhaustFan", Present_Value, ACTIVE)

Step 5 - A Result(+) confirm primitive is received by the lower tester in resp>onse to the WriteProperty

service request. A sequence of Result(+) confirm primitives is received by the lower tester , one for each

of the ReadProperty service requests. Each Result(+) primitive conveys one argument. The sequence will

be:

’Read Access Result’ = ("CommandTest", Present_Value, 3)

’Read Access Result’ = ("Floor3ExhaustFan", Present_Value, INACTIVE)

Step 6 - A Result(+) confirm primitive is received by the lower tester in response to the WriteProperty

service request. A sequence of Result(+) confirm primitives is received by the lower tester , one for each

of the ReadProperty service requests. Each Result(+) primitive conveys one argument. The sequence will

be:

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

("CommandTest", Present_Value, 4)

("lAHlDMPR", Present_Value, 20)

("Floor3ExhaustFan", Present_Value, ACTIVE)
("MA_SetPoint", Present_Value, 76)

Step 7 - A Result! +) confirm primitive is received by the lower tester in response to the WriteProperty

service request. A sequence of Result(+) confirm primitives is received by the lower tester , one for each

of the ReadProperty service requests. Each Result(+)
primitive conveys one argument. The sequence will

27

be:

’Read Access Result’ = ("CommandTest", Present_Value, 5)

’Read Access Result’ = ("lAHlOMPR", Present_Value, 75)

’Read Access Result’ = ("FloorSExhaustFan", Present_Value, INACTIVE)
’Read Access Result’ = (’'MA_SetPomt", Present_Value, 58)

Step 8 - A Result(+) confirm primitive is received by the lower tester in response to the WriteProperty

service request. A sequence of three WriteProperty service indication are received by the lower tester. The

arguments conveyed by these service primitives are:

’Write Access Specification’ = (NULL, "TestLoop", Process_Variable_Reference, ("lAHlMAT",
Present_Value))

’Write Access Specification’ = (NULL, ''Rm208Sched'', Sunday_Schedule, ((0:00, INACTIVE), (8:00,

Active), (2:00, INACTIVE))
’Write Access Specification’ = (NULL, ''Fanl_Output'', Present_Value, StateS)

These WriteProperty service indications may appear in any order and the Result(+) confirm primitive may

be interleaved with these WriteProperty service indications in any order.

Step 9 - A Result(+) confirm primitive is received by the lower tester in response to the WriteProperty

service request. A sequence of three WriteProperty service indication are received by the lower tester. The

arguments conveyed by these service primitives are:

’Write Access Specification’ = (NULL, "TestLoop", Process_Variable_Reference, ("lAHlMAT",
Present_Value))

’Write Access Specification’ = (NULL, "Rm208Sched", Sunday_Schedule, (0:00, INACTIVE))

’Write Access Specification’ = (NULL, "Fanl_Output", Present_VaIue, State3)

These WriteProperty service indications may appear in any order and the Result(+) confirm primitive may

be interleaved with these WriteProperty service indications in any order.

Fail Result:

If the Result(+) confirm primitive received in response to the ReadProperty service requests in steps 2 -

7 do not return the specified value and there are no other algorithms running in the device which can

change the values of these properties, then the test fails. In steps 8 and 9, if the WriteProperty service

indications are not received or are incorrect then the test fails.

Inconclusive Results:

If the Result(+) confirm primitive received in response to the ReadProjxsrty service requests in steps 2 -

7 do not return the specified value but there are other algorithms running m the device which can change

the values of these properties, then the test is inconclusive. It is not clear if the Command object is not

properly implemented or if the property values were changed by another algorithm before they could be

read.

Test A.2.9 Support for the Device Object-Type

Test Purpose:

Verify that the implementation supports the Device object-type.

BACnet Clause Reference: 5.9

28

Test Description:

The lower tester issues several ReadProperty requests or a single ReadMultipleProperty request in an

attempt to read all of the properties of the Device object specified in the PICS. The single

ReadMultipleProperty request option is preferred if the ReadMultipleProperty service is supported by the

lUT.

Expected Result:

A successful attempt to read all of the properties of the device object. Since the device object is device

specific, the values returned will be the values defined in the PICS.

Lower Tester:

Option 1 - Issue a ReadMultipleProperty service request with the following argument:

’List of Read Access Specifications’ = (device object ID, ALL)

Option 2 - Issue a sequence of ReadProperty requests, one for each of the nineteen properties of the object.

The sequence of arguments is shown below.

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

Specification’

Specification’

Specification’

Specification’

Specification’

Specification’

Specification’

Specification’

Specification’

Specification’

Specification’

Specification’

Specification’

Specification’

Sf)ecification’

Specification’

Specification’

Specification’

Specification’

(device object ID,

(device object ID,

(device object ID,

(device object ID,

(device object ID,

(device object ID,

(device object ID,

(device object ID,

(device object ID,

(device object ID,

(device object ID,

(device object ID,

(device object ID,

(device object ID,

(device object ID,

(device object ID,

(device object ID,

(device object ID,

(device object ID,

Object_Identifier)

Object_Type)

System_Status)

Vendor_Name)

Model_Name)

Firmware_Revision)

Application_Software_Version)

Location)

Description)

Protocol_Version)

Protocol_Conformance_Class)

ProtocoI_Services_Supported)

ProtocoI_Object_Types_Supported)

Max_Message_Length_Supported)

Wtndow_Size)

VT_Classes_Supported)

Active_VT_Sessions)

Local_Time)

Local_Date)

lUT:

Process the ReadMultipleProperty request or the sequence of ReadProperty requests and issue a response

containing the requested information.

Upper Tester:

No action is required for this test case.

Pass Results:

Option 1 - A Result! +) confirm primitive is received by the lower tester containing a ’List of Read Access

Results’ argument which contains all of the property values of the device object. These values must match

the values specified in the PICS.

Option 2 - A sequence of Result(+) confirm primitives are received by the lower tester, one for each

29

request issued. Each Result(+) primitive will contain one ’Read Access Result’ argument, which conveys

the value of one property of the device object. The property values must match the values sp>ecified in the

PICS.

Fail Results:

This test fails if a Result(-) confirm primitive is received by the lower tester with an error class of OBJECT
or an error class of PROPERTY. The test also fails if one or more of the property values returned in the

Result(+) primitives is not correct. In this case a configuration error may be the cause and this fact should

be noted in the test report.

Inconclusive Results:

The test results are inconclusive if a Result(-) confirm primitive is received by the lower tester with any

error class other than OBJECT or PROPERTY. The results are also inconclusive if a reply is not received

for one or more of the read requests.

Test A,2ol0 Support for the Device Table Object-Type

Test Purpose:

Verify that the implementation supports the Device Table object-type.

BACnet Clause Reference: 5.10

Test Description:

The lower tester issues several ReadProperty requests or a single ReadMultipleProperty request m an

attempt to read all of the properties of the Device Table object "Alarm Consoles". The single

ReadMultipleProperty request option is preferred if the ReadMultipleProperty service is supported by the

lUT.

Expected Result:

A successful attempt to read all of the properties of "Alarm Consoles". The values returned will be the

values defined in the standard object configuration.

Lower Tester:

Option 1 - Issue a ReadMultipleProperty service request with the following argument:

’List of Read Access Specifications’ = ("Alarm Consoles", ALL)

Option 2 - Issue a sequence of ReadProperty requests, one for each of the four properties of the object.

The sequence of arguments is shown below.

’Read Access Specification’

’Read Access Si>ecification’

’Read Access Specification’

’Read Access Specification’

("Alarm Consoles",

("Alarm Consoles",

("Alarm Consoles",

("Alarm Consoles",

Object_Identi fier)

Object_Type)

Description)

Device_List)

lUT:

Process the ReadMultipleProperty request or the sequence of ReadProperty requests and issue a response

containing the requested information.

Upper Tester:

30

No action is required for this test case.

Pass Results:

Option 1 - A Result(+) confirm primitive is received by the lower tester containing the following

argument:

’List of Read Access Results’ = ("Alarm Consoles", DEVICE_TABLE, "Building ABC Host Computer

Systems", ("Node 5", "Node 7"))

Option 2 - A sequence of Result(+) confirm primitives are received by the lower tester, one for each

request issued. Each Result(+) primitive will contain one argument. The sequence will be:

’Read Access Result’ = "Alarm Consoles"

’Read Access Result’ = DEVICE_TABLE
’Read Access Result’ = "Building ABC Host Computer Systems"

’Read Access Result’ = ("Node 5", "Node 7")

Fail Results:

This test fails if a Result(-) confirm primitive is received by the lower tester with an error class of OBJECT
or an error class of PROPERTY. The test also fails if one or more of the property values returned in the

Result(+) primitives is not correct. In this case a configuration error may be the cause and this fact should

be noted in the test report.

Inconclusive Results:

The test results are inconclusive if a Result(-) confirm primitive is received by the lower tester with any

error class other than OBJECT or PROPERTY. The results are also inconclusive if a reply is not received

for one or more of the read requests.

Test A.2.11 Support for the Directory Object-Type

Test Purpose:

Verify that the implementation supports the Directory object-type.

BACnet Clause Reference: 5.11

Test Description:

The lower tester issues several ReadProperty requests or a single ReadMultipleProperty request in an

attempt to read all of the properties of the Directory object "Directory Object 79". The single

ReadMultipleProperty request option is preferred if the ReadMultipleProperty service is supported by the

lUT.

Expected Result:

A successful attempt to read all of the properties of "Directory Object 79". The values returned will be

the values defined in the standard object configuration.

Lower Tester:

Option 1 - Issue a ReadMultipleProp)erty service request with the following argument:

’List of Read Access Specifications’ = ("Directory Object 79", ALL)

31

Option 2 - Issue a sequence of ReadProperty requests, one for each of the nine properties of the object.

The sequence of arguments is shown below.

’Read

’Read

’Read

’Read

’Read

’Read

’Read

’Read

’Read

Access Specification’

Access Sp>ecification’

Access Specification’

Access Specification’

Access Specification’

Access Specification’

Access Specification’

Access Specification’

Access Specification’

("Directory Object 79", Object_Identifier)

("Directory Object 79", Object_Type)

("Directory Object 79", Description)

("Directory Object 79", Reference_ObjectIdentifier)

("Directory Object 79", Reference_ObjectType)

("Directory Object 79", Reference_Nickname)

("Directory Object 79", Device_Address)

("Directory Object 79", Site_ID)

("Directory Object 79", Tel_Number)

lUT;

Process the ReadMultipleProperty request or the sequence of ReadProperty requests and issue a response

containing the requested information.

Upper Tester:

No action is required for this test case.

Pass Results:

Option 1 - A Result(+) confirm primitive is received by the lower tester containing the following

argument:

’List of Read Access Results’ = ("Directory Object 79", DIRECTORY,
"Outside Air Temp Obj Dir", OA TEMP-NORTH, ANALOGJNPUT, "OA-MAIN", A5, "North Shore",

"312-123-4567")

Option 2 - A sequence of Result(-t-) confirm primitives are received by the lower tester, one for each

request issued. Each Result(+) primitive will contain one argument. The sequence will be:

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

"Directory Object 79"

DIRECTORY
"Outside Air Temp Obj Dir"

"OA TEMP-NORTH"
ANALOGJNPUT
"OA-MAIN"
A5
"North_Shore"

"312-123-4567"

Fail Results:

This test fails if a Result(-) confirm primitive is received by the lower tester with an error class of OBJECT
or an error class of PROPERTY. The test also fails if one or more of the property values returned in the

Result! +)
primitives is not correct. In this case a configuration error may be the cause and this fact should

be noted in the test report.

Inconclusive Results:

The test results are inconclusive if a Result(-) confirm primitive is received by the lower tester with any

error class other than OBJECT or PROPERTY. The results are also inconclusive if a reply is not received

for one or more of the read requests.

32

Test A.2.12 Support for the Event Enrollment Object-Type

Test Purpose:

Verify that the implementation supports the Event Enrollment object-type.

BACnet Clause Reference: 5.12

Test Description:

The lower tester issues several ReadProperty requests or a single ReadMultipleProperty request in an

attempt to read all of the properties of the Event Enrollment object "Zone 1ALARM". The single

ReadMultipleProperty request option is preferred if the ReadMultipleProperty service is supported by the

lUT.

Expected Result:

A successful attempt to read all of the properties of "Zone 1ALARM". The values returned will be the

values defined in the standard object configuration.

Lower Tester:

Option 1 - Issue a ReadMultipleProperty service request with the following argument:

’List of Read Access Specifications’ = ("Zone 1ALARM", ALL)

Option 2 - Issue a sequence of ReadProperty requests, one for each of the eleven properties of the object.

The sequence of arguments is shown below.

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

Specification’

Specification’

Specification’

Specification’

Specification’

Specification’

Specification’

Specification’

Specification’

Specification’

Specification’

("Zone 1ALARM", Object_Identifier)

("Zone 1ALARM", Object_Type)

("Zone 1ALARM", Event_Type)

("Zone 1ALARM", Property_Reference)

("Zone 1ALARM", State)

("Zone 1ALARM", Enabled)

("Zone 1ALARM", Acknowledged)

("Zone 1ALARM", Notification_Rules)

("Zone 1ALARM", Parameter_List)

("Zone 1ALARM " , Confirmed_Recipient_List)

("Zone 1ALARM " , Unconfirmed_Recipient_List)

lUT:

Process the ReadMultipleProperty request or the sequence of ReadProperty requests and issue a response

containing the requested information.

Upper Tester:

No action is required for this test case.

Pass Results:

Option 1 - A Result! -I-) confirm primitive is received by the lower tester containing the following

argument:

’ListofRead Access Results’ = ("Zone 1ALARM", EVENT_ENROLLMENT, ALARM, ("ZonelTEMP",
Present_Value), ALARM, TRUE, FALSE, ((NORMAL_TO_ALARM, 2, 3, TRUE, "Alarm"),

(ALARM_TO_NORMAL, 5, 3, FALSE, "Normal")), (65., 85., .25), ("Node 29", "Node 96",

33

Alarm Consoles"), NULL)

Option 2 - A sequence of Result(+) confirm primitives are received by the lower tester, one for each

request issued. Each Result(+) primitive will contain one argument. The sequence will be:

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

= "ZonelALARM"
= EVENTENROLLMENT
= ALARM
= ("Zone 1TEMP", Present_Value)

= ALARM
= TRUE
= FALSE
= ((NORMAL-TO ALARM, 2, 3, TRUE, "Alarm"),

(ALARM_TO_NORMAL, 5, 3, FALSE, "Normal"))

= 65., 85., .25)

= ("Node 29", "Node 96", "Alarm Consoles")

= NULL

Fail Results:

This test fails if a Result(-) confirm primitive is received by the lower tester with an error class of OBJECT
or an error class of PROPERTY. The test also fails if one or more of the property values returned in the

Result(+) primitives is not correct. In this case a configuration error may be the cause and this fact should

be noted in the test report.

Inconclusive Results:

The test results are inconclusive if a Result(-) confirm primitive is received by the lower tester with any

error class other than OBJECT or PROPERTY. The results are also inconclusive if a reply is not received

for one or more of the read requests.

Test A.2.13 Support for the Group Object-Type

Test Purpose:

Verify that the implementation supports the Group object-type.

BACnet Clause Reference: 5.13

Test Description:

The lower tester issues several ReadProperty requests or a single ReadMultipleProperty request in an

attempt to read all of the properties of the Group object "Test_Group". The single ReadMultipleProperty

request option is preferred if the ReadMultipleProperty service is supported by the lUT.

Expected Result:

A successful attempt to read all of the properties of "Test_Group". The values returned will be the values

defined m the standard object configuration.

Lower Tester:

Option 1 - Issue a ReadMultipleProperty service request with the following argument:

’List of Read Access Specifications’ = ("Test_Group", ALL)

Option 2 - Issue a sequence of ReadProperty requests, one for each of the four properties of the object.

34

The sequence of arguments is shown below.

’Read Access Specification’

’Read Access Specification’

’Read Access Specification’

’Read Access Specification’

("Test_Group'’, Object_Identifier)

(''Test_Group", Object_Type)

(''Test_Group'' , List_of_Access_Specifications)

(’'Test_Group", Present_Value)

lUT:

Process the ReadMultipleProperty request or the sequence of ReadProperty requests and issue a response

containing the requested information.

Upper Tester:

No action is required for this test case.

Pass Results:

Option 1 - A Result(+) confirm primitive is received by the lower tester containing the following

argument:

’List of Read Access Results’ = (''Test_Group", GROUP, (("lAHlMAT'’, (Min_Pres, Max_Pres,

Description)), ("MA_SetPoint'', (Present_Value, Units)), ("Alarm Consoles", (Description,

Device_List))), (-50, 250, "Mixed Air Temperature", 58.0, "DEGF", "Building ABC Host

Computer Systems", "Node 5", "Node 7"))

Option 2 - A sequence of Result(-I-) confirm primitives are received by the lower tester, one for each

request issued. Each Result(-I-) primitive will contain one argument. The sequence will be:

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

"Test_Group"

GROUP
(("lAHlMAT", (Min_Pres, Max_Pres, Description)),

("MA_SetPoint", (Present_Value, Units)),

("Alarm Consoles " ,
(Description,Device_List)))

,

(-50, 250, "Mixed Air Temperature", 58.0, "DEGF",

"Building ABC Host Computer Systems", "Node 5", "Node 7"))

Fail Results:

This test fails if a Result(-) confirm primitive is received by the lower tester with an error class of OBJECT
or an error class of PROPERTY. The test also fails if one or more of the property values returned in the

Result(-I-) primitives is not correct. In this case a configuration error may be the cause and this fact should

be noted in the test report.

Inconclusive Results:

The test results are inconclusive if a Result(-) confirm primitive is received by the lower tester with any

error class other than OBJECT or PROPERTY. The results are also inconclusive if a reply is not received

for one or more of the read requests.

Test A.2.14 Support for the Loop Object-Type

Test Purpose:

Verify that the implementation supports the Loop object-type.

35

BACnet Clause Reference: 5.14

Test Description:

The lower tester issues several ReadProperty requests or a single ReadMultipleProperty request in an

attempt to read all of the properties of the Loop object "Test_Loop". The single ReadMultipleProperty

request option is preferred if the ReadMultipleProperty service is supported by the lUT.

Expected Result:

A successful attempt to read all of the properties of ''Test_Loop". The values returned will be the values

defined in the standard object configuration.

Lower Tester:

Option 1 - Issue a ReadMultipleProperty service request with the following argument:

’List of Read Access Specifications’ = ("Test_Loop", ALL)

Option 2 - Issue a sequence of ReadProperty requests, one for each of the 26 properties of the object. The

sequence of arguments is shown below.

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

Specification’

Specification’

Specification’

Specification’

Specification’

Specification’

Specification’

Specification’

Specification’

Specification’

Specification’

Specification’

Specification’

Specification’

Specification’

Specification’

Specification’

Specification’

Specification’

Specification’

Specification’

Specification’

Specification’

Specification’

Specification’

Specification’

= (''Test_Loop’',

= ("Test_Loop'',

= (''Test_Loop'',

= (''Test_Loop'',

= (''Test_Loop'',

= ("Test_Loop",

= ("Test_Loop’',

= (''Test_Loop'',

= (''Test_Loop'',

= (''Test_Loop",

= ("Test_Loop",

= (''Test_Loop'',

= (’'Test_Loop'',

= ("Test_Loop’',

= (''Test_Loop'',

= ("Test_Loop",

= (''Test_Loop",

= ("Test_Loop’',

= (’'Test_Loop’',

= ("Test_Loop'',

= ("Test_Loop'',

= (''Test_Loop",

= (''Test_Loop'',

= ("Test_Loop'',

= (’'Test_Loop’',

= ("Test_Loop",

Object_Identifier)

Object_Type)

Present_Value)

Description)

Status_Flags)

State)

Reliability)

Out_of_Service)

Update_Interval)

Output_Units)

Controlled_Variable_Reference)

Process_Variable_Reference)

Process_Variable_Value)

Process_Units)

Setpoint_Reference)

Setpoint)

Action)

Proportional_Constant)

Proportional_Constant_Units)

Integral_Constant)

Integral_Constant_Units)

Derivative_Constant)

Derivative_Constant_Uni ts)

Bias)

Maximum_Output)

Minimum_Output)

lUT:

Process the ReadMultipleProperty request or the sequence of ReadProperty requests and issue a response

containing the requested information.

Upper Tester:

36

No action is required for this test case.

Pass Results:

Option 1 - A Result(+) confirm primitive is received by the lower tester containing the following

argument:

’List of Read Access Results’ = ("Test_Loop'', LOOP, 8.3, "A simple test loop", {FALSE, TRUE,
FALSE, FALSE}, NORMAL, RELIABLE, FALSE, 1, "PSI", ("lAHlDMPR", Present Value),

("lAHlMAT", Present_Value), 58.1, "DEGF", ("MA_SetPoint", Present_Value), 58, DIRECT,

0.5, "PSI/DEGF", 0.1, "1/MIN", 0, 9, 15, 3)

Option 2 - A sequence of Result(+) confirm primitives are received by the lower tester, one for each

request issued. Each Result(+) primitive will contain one argument. The sequence will be:

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

"Test_Loop"

LOOP
8.3

"A simple test loop"

{FALSE, TRUE, FALSE, FALSE}
NORMAL
RELIABLE
FALSE
1

"PSI"

("lAHlDMPR", Present Value)

("lAHlMAT", Present_Value)

58.1

"DEGF"
("MA_SetPoint", Present_Value)

58

DIRECT
0.5

"PSI/DEGF"

0.1

"1/MIN"

0

9

15

3

Fail Results:

This test fails if a Result(-) confirm primitive is received by the lower tester with an error class of OBJECT
or an error class of PROPERTY. The test also fails if one or more of the property values returned in the

Result(+) primitives is not correct. In this case a configuration error may be the cause and this fact should

be noted in the test report.

Inconclusive Results:

The test results are inconclusive if a Result(-) confirm primitive is received by the lower tester with any

error class other than OBJECT or PROPERTY. The results are also inconclusive if a reply is not received

for one or more of the read requests.

37

Test A.2.15 Support for the Multi-State Input Object-Type

Test Puqx)se:

Verify that the implementation supports the Multi-State Input object-type.

BACnet Clause Reference: 5.15

Test Description:

The lower tester issues several ReadProperty requests or a single ReadMultipleProperty request in an

attempt to read all of the prop>erties of the Multi-State Input object "Fanl_Input". The single

ReadMultipleProperty request option is preferred if the ReadMultipleProperty service is supported by the

lUT.

Expected Result:

A successful attempt to read all of the properties of "Fanl_Input''. The values returned will be the values

defined in the standard object configuration.

Lower Tester:

Option 1 - Issue a ReadMultipleProperty service request with the following argument:

’List of Read Access Specifications’ = ('’Fanl_Input'', ALL)

Option 2 - Issue a sequence of ReadProperty requests, one for each of the ten properties of the object. The

sequence of arguments is shown below.

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

Specification’

Specification’

Specification’

Specification’

Specification’

Specification’

Specification’

Specification’

Specification’

Specification’

(’'Fanl_Input'', Object_Identifier)

(''Fanl_Input'', Object_Type)

(’'Fanl_Input’', Present_Value)

("Fanl_Input’', Description)

(''Fanl_Input’', Status_Flags)

("Fanl_Input’', State)

(''Fanl_Input'', Reliability)

(’'Fanl_Input'', Out_of_Service)

(''Fanl_Input'', Number_of_States)

("Fanl_Input’', State_Text)

lUT:

Process the ReadMultipleProperty request or the sequence of ReadProperty requests and issue a response

containing the requested information.

Upper Tester:

No action is required for this test case.

Pass Results:

Option 1 - A Result! +) confirm primitive is received by the lower tester containing the following

argument:

’List of Read Access Results’ = (''Fanl_Input'', MULTI-STATE_INPUT, STATE_2, ''2-speed Fan#!",

{FALSE, TRUE, FALSE, FALSE}, NORMAL, RELIABLE, FALSE, 3, ("Ofr, "On Low", "On-High"))

Option 2 - A sequence of Result! +) confirm primitives are received by the lower tester, one for each

38

request issued. Each Result(+)
primitive will contain one argument. The sequence will be:

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

''Fanl_Input"

MULTI-STATEINPUT
STATE_2
"l-speed Fan#!"

{FALSE, TRUE, FALSE, FALSE}
NORMAL
RELIABLE
FALSE
3

("Ofr, ''On_Low", ''On_High'')

Fail Results:

This test fails if a Result(-) confirm primitive is received by the lower tester with an error class of OBJECT
or an error class of PROPERTY. The test also fails if one or more of the property values returned in the

Result(+) primitives is not correct. In this case a configuration error may be the cause and this fact should

be noted in the test report.

Inconclusive Results:

The test results are inconclusive if a Result(-) confirm primitive is received by the lower tester with any

error class other than OBJECT or PROPERTY. The results are also inconclusive if a reply is not received

for one or more of the read requests.

Test A.2.16 Support for the Multi-State Output Object-Type

Test Purpose:

Verify that the implementation supports the Multi-State Output object-type.

BACnet Clause Reference: 5.16

Test Description:

The lower tester issues several ReadProperty requests or a single ReadMultipleProperty request in an

attempt to read all of the properties of the Multi-State Output object ''Fanl_Output''. The single

ReadMultipleProperty request option is preferred if the ReadMultipleProperty service is supported by the

lUT.

Expected Result:

A successful attempt to read all of the properties of '’Fanl_Output". The values returned will be the values

defined in the standard object configuration.

Lower Tester:

Option 1 - Issue a ReadMultipleProperty service request with the following argument:

’List of Read Access Specifications’ = (’'Fanl_Output'', ALL)

Option 2 - Issue a sequence of ReadProperty requests, one for each of the ten properties of the object. The
sequence of arguments is shown below.

’Read Access Specification’ = ("Fanl_Output'', Object_Identifier)

39

’Read Access Specification’ = ("Fanl_C)utput", Object_Type)

’Read Access Specification’ = (''Fanl_Output'', Present_Value)

’Read Access Specification’ = ("Fanl_Output", Description)

’Read Access Specification’ = (''Fanl_Output", Status_Flags)

’Read Access Specification’ = (''Fanl_Output", State)

’Read Access Specification’ = (''Fanl_Output'', Reliability)

’Read Access Specification’ = ("Fanl_C)utput'', Out_of_Service)

’Read Access Specification’ = (’'Fanl_Output'', Number_of_States)

’Read Access Specification’ = (''Fanl_C)utput", State_Text)

lUT:

Process the ReadMultipleProperty request or the sequence of ReadProperty requests and issue a response

containing the requested information.

Upper Tester:

No action is required for this test case.

Pass Results:

Option 1 - A Result(+) confirm primitive is received by the lower tester containing the following

argument:

’List of Read Access Results’ = ("Fanl_Output'', MULTI-STATE_OUTPUT, STATE_2, "2-speed

Fan#r, {FALSE, TRUE, FALSE, FALSE}, NORMAL, RELIABLE, FALSE, 3, ("OfP, "On_Low",

"On-High", "ON-LOW")

Option 2 - A sequence of Result(+) confirm primitives are received by the lower tester, one for each

request issued. Each Result(-I-) primitive will contain one argument. The sequence will be:

’Read Access Result’ = "Fanl_Output"

’Read Access Result’ = MULTI-STATE_OUTPUT
’Read Access Result’ = STATE_2
’Read Access Result’ = "2-speed Fan#l"

’Read Access Result’ = {FALSE, TRUE, FALSE, FALSE}
’Read Access Result’ = NORMAL
’Read Access Result’ = RELIABLE
’Read Access Result’ = FALSE
’Read Access Result’ = 3

’Read Access Result’ = ("OfP, "On Low", On High")

Fail Results:

This test fails if a Result(-) confirm primitive is received by the lower tester with an error class of OBJECT
or an error class of PROPERTY. The test also fails if one or more of the property values returned in the

Result! -I-) primitives is not correct. In this case a configuration error may be the cause and this fact should

be noted in the test report.

Inconclusive Results:

The test results are inconclusive if a Result(-) confirm primitive is received by the lower tester with any

error class other than OBJECT or PROPERTY. The results are also inconclusive if a reply is not received

for one or more of the read requests.

40

Test A.2.17 Support for the Program Object-Type

Test Purpose:

Verify that the implementation supports the Program object-type.

BACnet Clause Reference: 5.17

Test Description:

The lower tester issues several ReadProperty requests or a single ReadMultipleProperty request in an

attempt to read all of the properties of the program object specified in the PICS. The single

ReadMultipleProperty request option is preferred if the ReadMultipleProperty service is supported by the

lUT.

Expected Result:

A successful attempt to read all of the properties of the program object. Since the program object is

vendor-specific, the values returned will be the values defined in the PICS.

Lower Tester:

Option 1 - Issue a ReadMultipleProperty service request with the following argument:

’List of Read Access Specifications’ = (program object ID, ALL)

Option 2 - Issue a sequence of ReadProperty requests, one for each of the eleven properties of the object.

The sequence of arguments is shown below.

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

Specification’

Specification’

Specification’

Specification’

Specification’

Specification’

Specification’

Specification’

Specification’

Specification’

Specification’

(program object ID,

(program object ID,

(program object ID,

,
(program object ID,

(program object ID,

(program object ID,

(program object ID,

(program object ID,

(program object ID,

(program object ID,

(program object ID,

Object_Identifier)

Object_Type)

Program_State)

Program_Change)

Reason_For_HaIt)

Description)

Instance_Of)

Status_Flags)

State)

Reliability

Out_Of_Service)

lUT:

Process the ReadMultipleProperty request or the sequence of ReadProperty requests and issue a response

containing the requested information.

Upper Tester:

No action is required for this test case.

Pass Results:

Option 1 - A Result(+) confirm primitive is received by the lower tester containing a ’List of Read Access

Results’ argument which contains all of the property values of the program object. These values must

match the values specified in the PICS.

Option 2 - A sequence of Result(+) confirm primitives are received by the lower tester, one for each

request issued. Each Result(+) primitive will contain one ’Read Access Result’ argument, which conveys

41

the value of one property of the program object. The property values must match the values specified in

the PICS.

Fail Results:

This test fails if a Result(-) confirm primitive is received by the lower tester with an error class of OBJECT
or an error class of PROPERTY. The test also fails if one or more of the property values returned in the

Result! +)
primitives is not correct. In this case a configuration error may be the cause and this fact should

be noted in the test report.

Inconclusive Results:

The test results are inconclusive if a Result(-) confirm primitive is received by the lower tester with any

error class other than OBJECT or PROPERTY. The results are also inconclusive if a reply is not received

for one or more of the read requests.

Test A.2.18 Support for the Schedule Object-Type

Test Purpose:

Verify that the implementation supports the Schedule object-type.

BACnet Clause Reference: 5.18

Test Description:

The lower tester issues several ReadProperty requests or a single ReadMultipleProperty request in an

attempt to read all of the properties of the Schedule object "RmlOSSched". The single

ReadMultipleProperty request option is preferred if the ReadMultipleProperty service is supported by the

lUT.

Expected Result:

A successful attempt to read all of the properties of ''Rm208Sched". The values returned will be the values

defined in the standard object configuration.

Lx)wer Tester:

Option 1 - Issue a ReadMultipleProperty service request with the following argument:

’List of Read Access Specifications’ = ("Rm208Sched", ALL)

Option 2 - Issue a sequence of ReadProperty requests, one for each of the fourteen properties of the object.

The sequence of arguments is shown below.
,

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

Specification’

Specification’

Specification’

Specification’

Specification’

Specification’

Specification’

Specification’

Specification’

Specification’

Specification’

(''Rm208Sched'', Object_Identifier)

("Rm208Sched'', Object_Type)

("Rm208Sched", Present_Value)

("RmlOSSched", Effective_Period)

("Rm208Sched " , Monday_Schedule)
("RmlOSSched", Tuesday_Schedule)

(’'Rm208Sched'', Wednesday_Schedule)

(''Rni208Sched'', Thursday_Schedule)

("Rm208Sched", Friday_Schedule)

("Rm208Sched", Saturday_Schedule)

("Rm208Sched'', Sunday_Schedule)

42

’Read Access Specification’ = (’'Rm208Sched'', Exception_Schedule)

’Read Access Specification’ = ("RmlOSSched", Proj>erty_Reference)

’Read Access Specification’ = ("RmlOSSched", Priority_For_Writing)

lUT:

Process the ReadMultipleProperty request or the sequence of ReadProperty requests and issue a response

containing the requested information.

Upper Tester:

No action is required for this test case.

Pass Results:

Option 1 - A Result(+) confirm primitive is received by the lower tester containing the following

argument:

’List of Read Access Results’ = ("Rm208Sched", SCHEDULE, ACTIVE, ((90/9/5), (91/6/10)), ((8:00,

ACTIVE), (17:00, INACTIVE)), ((8:00, ACTIVE)), ((8:00, ACTIVE), (17:00, INACTIVE)), ((8:00

ACTIVE), (17:00, INACTIVE), (19:00, ACTIVE), (23:30, INACTIVE)), ((8:00, ACTIVE), (17:00,

INACTIVE)), ((10:00, ACTIVE), (17:00, INACTIVE)), ((0:00, INACTIVE)), (((90/11/23), (0:00,

INACTIVE), 10), (HOLIDAYS, (0:00, INACTIVE), 1 1),(((91/3/5), (91/3/7)), ((9:00, ACTIVE), (14:00,

INACTIVE)),6)))

Option 2 - A sequence of Result(+) confirm primitives are received by the lower tester, one for each

request issued. Each Result(+) primitive will contain one argument. The sequence will be:

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

= "Rm208Sched'’

= SCHEDULE
= ACTIVE
= ((90/9/5), (91/6/10))

= ((8:00, ACTIVE), (17:00, INACTIVE))

= ((8:00, ACTIVE))

= ((8:00, ACTIVE), (17:00, INACTIVE))

= ((8:00, ACTIVE), (17:00, INACTIVE),

(19:00, ACTIVE), 23:30, INACTIVE))

= ((8:00, ACTIVE), (17:00, INACTIVE))

= ((10:00, ACTIVE), (17:00, INACTIVE))

= ((0:00, INACTIVE))

= (((90/11/23), (0:00, INACTIVE), 10),

(HOLIDAYS, (0:00, INACTIVE), 11),

(((91/3/5), (91/3/7)), ((9:00, ACTIVE), (14:00, INACTIVE)),6))

Fail Results:

This test fails if a Result(-) confirm primitive is received by the lower tester with an error class of OBJECT
or an error class of PROPERTY. The test also fails if one or more of the property values returned in the

Result(+) primitives is not correct. In this case a configuration error may be the cause and this fact should

be noted in the test report.

Inconclusive Results:

The test results are inconclusive if a Result(-) confirm primitive is received by the lower tester with any

error class other than OBJECT or PROPERTY. The results are also inconclusive if a reply is not received

for one or more of the read requests.

43

6.2 Property Functional Range Tests

Functional range tests are used to verify that an implementation will support property values over the entire range

specified by BACnet. This is done by writing selected values to the properties that span the allowable range and

subsequently reading the values back to verily that the write attempt was successful. It is assumed in this abstract

test suite that if a property is correctly supp>orted for one object-type that any other object-type that has the same

property is also correct. Thus, each property is tested only once.

The current draft of BACnet specifies 100 different properties. For many of these properties a finite range of values

has not yet been specified so functional range testing cannot be done. A common example is a property with a

datatype of Unsigned. In theory this is an integer with a range from zero to infinity. There are proposals to define

integer datatypes with more limited ranges to in order to manage storage requirements but a final decision in this

mater has not yet been made. Many of the properties defined in BACnet are character strings. This is another kind

of property which does not have a fixed bound. This may also need to be changed because of a need to manage

storage in a device. There are properties that are intimately linked to application services and their functional range

can only be tested in the context of testing the application service. The Acknowledged property of Event Enrollment

objects is an example of such a property. Its value is set to FALSE when an alarm occurs and is set to TRUE when

an AcknowledgeAlarm indication is received. The remaining properties are enumerated values or have an explicitly

defined ranges. Functional range tests for these properties can be defined at this time. Appendix 1 is an abstract

syntax notation one (ASN. 1) description of the BACnet property identifiers. Comments indicate which of the

categories above applies to each of the properties.

Test A.3.1 Functional Range for the Action Property

Test Purpose:

Verify that the lUT supports values for the Action property over the entire defined range.

BACnet Clause Reference: 5.14.1.17

Test Description:

The lower tester verifies the initial value of the property then alternately writes and reads new values of

the property until the entire range of values is spaimed.

Expected Results:

The Action property has only two defined values, DIRECT and REVERSE. The lower tester should be

able to write and then read either or both of these values.

Lower Tester:

The lower tester takes the following steps.

1. Issue a ReadProperty service request with a ’Read Access Specificaiton’ = (''Test_Loop'', Action).

2. Issue a WriteProperty service request with a ’Write Access Specification’ = (NULL, "Test Loop",

Action, REVERSE).

3. Issue a ReadProperty service request with a ’Read Access Specification’ = ("Test_Loop", Action).

4. Issue a WriteProperty service request with a ’Write Access Specification’ = (NULL, "Test_Loop",

Action, DIRECT).

lUT:

44

Process the ReadProperty and WriteProp>erty indications as specified by BACnet.

Upper Tester:

No action is required for this test.

Pass Result:

The lower tester receives a confirm primitive corresponding to each of the four service requests described

above. The responses in order are:

1. AResult(+) confirm primitive conveying the parameter ’Read Access Result’ = ("Test_Loop", Action,

DIRECT).

2. A Result(+) confirm primitive.

3. A Result(+) confirm primitive conveying the parameter ’Read Access Result’ = (''Test_Loop’', Action,

REVERSE).

4. A Result(+) confirm primitive.

Fail Result:

If the WriteProperty service is successfully completed and the value for the Action property returned in

step 1 or step 3 is not as specified then the result is failure. If a Result(-) confirm primitive is received

in response to any of the service requests and the error class is PROPERTY then the test result is failure.

Inconclusive Result:

If the lUT does not respond or if a Result(-) confirm primitive is received in response to any of the service

requests and the error class is not PROPERTY the result is inconclusive.

Test A.3.2 Functional Range for the Enabled Property

Test Purpose:

Verify that the lUT supports values for the Enabled property over the entire defined range.

BACnet Clause Reference: 5. 14. 1 . 17

Test Description:

The lower tester verifies the initial value of the property then alternately writes and reads new values of

the property until the entire range of values is sparmed.

Expected Results:

The Enabled property has only two defined values, TRUE and FALSE. The lower tester should be able

to write and then read either or both of these values.

Lower Tester:

The lower tester takes the following steps.

1. Issue a ReadProperty service request with a ’Read Access Specificaiton’ = ("Zone 1ALARM", Enabled).

2. Issue a WriteProperty service request with a ’Write Access Specification’ = (NULL, "ZonelALARM",
Enabled, FALSE).

45

3. Issue a ReadProperty service request with a ’Read Access Specification’ = ("Zone 1ALARM", Enabled).

4. Issue a WriteProperty service request with a ’Write Access Specification’ = (NULL, "ZonelALARM",
Enabled, TRUE).

lUT:

Process the ReadProperty and WriteProperty indications as specified by BACnet.

Upper Tester:

No action is required for this test.

Pass Result:

The lower tester receives a confirm primitive corresponding to each of the four service requests described

above. The responses in order are:

1. A Result(+) confirm primitive conveying the parameter ’Read Access Result’ = ("ZonelALARM",
Enabled, TRUE).

2. A Result(+) confirm primitive.

3. A Result(+) confirm primitive conveying the parameter ’Read Access Result’ = ("ZonelALARM",
Enabled, FALSE).

4. A Result(+) confirm primitive.

Fail Result:

If the WriteProperty service is successfully completed and the value for the Enabled property returned in

step 1 or step 3 is not as specified then the result is failure. If a Result(-) confirm primitive is received

in response to any of the service requests and the error class is PROPERTY then the test result is failure.

Inconclusive Result:

If the lUT does not respond or if a Result(-) confirm primitive is received in response to any of the service

requests and the error class is not PROPERTY the result is inconclusive.

Test A.3.3 Functional Range for the Event Type Property

Test Purpose:

Verify that the lUT supports values for the Event_Type property over the entire defined range.

BACnet Clause Reference: 5.14.1.17

Test Description:

The tower tester verifies the initial value of the property then alternately writes and reads new values of

the property until the entire range of values is spanned.

Expected Results:

The Event_Type property has seven defined values (CHANGE_OF_VALUE, OUT_OF_RANGE,
CHANGE_OF_STATE_EVENT, CHANGE_OF_STATE_ALARM, OUTOFRANGEALARM,
FLOATING_LIMIT_ALARM, COMMAND_FAIL_ALARM). The lower tester should be able to write

and then read any of these values.

46

Lower Tester:

The lower tester takes the following steps.

1. Issue a ReadProperty service request with a ’Read Access Specificaiton’ = ("Zone 1ALARM",
Event_Type).

2. Issue a WriteProperty service request with a ’Write Access Specification’ = (NULL, "Zone 1ALARM",
Event_Type, CHANGE_OF_VALUE).

3. Issue a ReadProperty service request with a ’Read Access Specification’ = ("Zone 1ALARM",
Event_Type).

4. Issue a WriteProperty service request with a ’Write Access Specification’ = (NULL, "ZonelALARM",
Event Type, OUT OF RANGE).

5. Issue a ReadProperty service request with a ’Read Access Specificaiton’ = ("ZonelALARM",
Event_Type).

6. Issue a WriteProperty service request with a ’Write Access Specification’ = (NULL, "ZonelALARM",
Event_Type, CHANGE_OF_STATE_EVENT).

7. Issue a ReadProperty service request with a ’Read Access Specification’ = ("ZonelALARM",
Event_Type).

8. Issue a WriteProperty service request with a ’Write Access Specification’ = (NULL, "ZonelALARM",
Event_Type, CHANGE_OF_STATE_ALARM).

9. Issue a ReadProperty service request with a ’Read Access Specificaiton’ = ("ZonelALARM",
Event_Type).

10. Issue a WriteProperty service request with a ’Write Access Specification’ = (NULL,
"ZonelALARM", Event_Type, FLOATING_LIMIT_ALARM).

11. Issue a ReadProperty service request with a ’Read Access Specification’ = ("ZonelALARM",
Event_Type).

12. Issue a WriteProperty service request with a ’Write Access Specification’ = (NULL,
"ZonelALARM", Event_Type, COMMAND_FAIL_ALARM).

13. Issue a ReadProperty service request with a ’Read Access Specificaiton’ = ("ZonelALARM",
Event_Type).

14. Issue a WriteProperty service request with a ’Write Access Specification’ = (NULL,
"ZonelALARM", Event_Type, OUT OF RANGE ALARM).

lUT:

Process the ReadProperty and WriteProperty indications as specified by BACnet.

Upper Tester:

No action is required for this test.

47

Pass Result:

The lower tester receives a confirm primitive corresponding to each of the four service requests described

above. The responses in order are:

1. A Result(+) confirm primitive conveying the parameter ’Read Access Result’ = ("Zone 1ALARM",
Event_Type, OUT_OF_RANGE_ALARM).

2. A Result(+) confirm primitive.

3. A Result(+) confirm primitive conveying the parameter ’Read Access Result’ = ("Zone 1ALARM",
Event_Type, CHANGE OF VALUE).

4. A Result(+) confirm primitive.

5. A Result(+) confirm primitive conveying the parameter ’Read Access Result’ = ("Zone 1ALARM",
Event Type, OUT_OF_RANGE).

6. A Result(+) confirm primitive.

7. A Result(+) confirm primitive conveying the parameter ’Read Access Result’ = ("Zone 1ALARM",
Event Type, CHANGE_OF_STATE_EVENT).

8. A Result(+) confirm primitive.

9. A Result(+) confirm primitive conveying the parameter ’Read Access Result’ = ("Zone 1ALARM",
Event_Type, CHANGE_OF_STATE_ALARM).

10. A Result(+) confirm primitive.

11. A Result(+) confirm primitive conveying the parameter ’Read Access Result’ = ("Zone 1ALARM",
Event Type, FLOATING LIMIT ALARM).

12. A Result(+) confirm primitive.

13. A Result(+) confirm primitive conveying the parameter ’Read Access Result’ = ("Zone 1ALARM",
Event_Type, COMMAND FAIL ALARM).

14. A Result(+) confirm primitive.

Fail Result:

If the WriteProperty service is successfully completed and the value for the Event_Type property returned

in steps 1, 3, 5, 7, 9, 11, or 13 is not as specified then the result is failure. If a Result(-) confirm

primitive is received in response to any of the service requests and the error class is PROPERTY then the

test result is failure.

Inconclusive Result:

If the lUT does not respond or if a Result(-) confirm primitive is received in response to any of the service

requests and the error class is not PROPERTY, the result is inconclusive.

Test A.3.4 Functional Range for the Minimum_Off_Tinie Property

48

Test Purpose:

Verify that the lUT supports values for the Minimun_Off_Time property over the entire defined range.

note: This version of the test assumes a datatype of Unsignedl6 instead of the sp>ecified Unsigned32. This

is an upper bound of 18 hours instead of 136 years.

BACnet Clause Reference: 5.5.1.16

Test Description:

The lower tester verifies the initial value of the property then alternately writes and reads new values of

the property until the entire range of values is spanned.

Expected Results:

The Minimum_Off_Time property has a range from 0 - 65535 seconds. The lower tester should be able

to write and then read any value in this range.

Lower Tester:

The lower tester takes the following steps.

1. Issue a WriteProperty service request with a ’Write Access Specification’ = (NULL,
''Floor3ExhaustFan", Minimum_Off_Time, 0).

2. Issue a ReadProperty service request with a ’Read Access Specification’ = ("Floor3ExhaustFan",

Minimum_Off_Time)

.

3. Issue a WriteProperty service request with a ’Write Access Specification’ = (NULL,
''Floor3ExhaustFan'', Minimum_Off_Time, 65535).

4. Issue a ReadProperty service request with a ’Read Access Specification’ = ('’Floor3ExhaustFan'',

Minimum_Off_Time)

.

5. Issue a WriteProperty service request with a ’Write Access Specification’ = (NULL,
"Floor3ExhaustFan", Minimum_Off_Time, 100).

lUT:

Process the ReadProperty and WriteProperty indications as specified by BACnet.

Upper Tester:

No action is required for this test.

Pass Result:

The lower tester receives a confirm primitive corresponding to each of the four service requests described

above. The responses in order are:

1. A Result(+) confirm primitive.

2. A Result(+) confirm primitive conveying the parameter ’Read Access Result’ = ("Floor3ExhaustFan",

Minimum_Off_Time, 0).

3. A Result(+) confirm primitive.

49

4. A ResuU(+) confirm primitive conveying the parameter ’Read Access Result’ = ("FloorSExhaustFan",

Minimum_Off_Time, 65535).

5. A Result(+) confirm primitive.

Fail Result:

If the WriteProperty service is successfully completed and the value for the Minimum_Off_Time property

returned in step 1 or step 3 is not as specified then the result is failure. If a Result(-) confirm primitive

is received in response to any of the service requests and the error class is PROPERTY, then the test result

is failure.

Inconclusive Result:

If the lUT does not respond or if a Result(-) confirm primitive is received in response to any of the service

requests and the error class is not PROPERTY, the result is inconclusive.

Test A.3.5 Functional Range for the Minimum On Time Property

Test Purpose:

Verify that the lUT supports values for the Minimun_On_Time property over the entire defined range.

note: This version of the test assumes a datatype of Unsignedl6 instead of the specified Unsigned32. This

is an upper bound of 18 hours instead of 136 years.

BACnet Clause Reference: 5.5.1.17

Test Description:

The lower tester verifies the initial value of the property then alternately writes and reads new values of

the property until the entire range of values is spanned.

Expected Results:

The Minimum_On_Time property has a range from 0 - 65535 seconds. The lower tester should be able

to write and then read any value in this range.

Lxjwer Tester:

The lower tester takes the following steps.

1. Issue a WriteProperty service request with a ’Write Access Specification’ = (NULL,

’'Floor3ExhaustFan'', Minimum_On_Time, 0).

2. Issue a ReadProperty service request with a ’Read Access Specification’ = ("Floor3ExhaustFan",

Minimum_On_Time)

.

3. Issue a WriteProperty service request with a ’Write Access Specification’ = (NULL,

’'Floor3ExhaustFan’', Mmimum_On_Time, 65535).

4. Issue a ReadProperty service request with a ’Read Access Specification’ = ("FIoor3ExhaustFan'',

M inimum_On_Time)

.

50

(NULL,5. Issue a WriteProperty service request with a ’Write Access Sp>ecification’ =

"FloorsExhaustFan", Minimum_On_Time, 10).

lUT:

Process the ReadProperty and WriteProperty indications as specified by BACnet.

Upjjer Tester:

No action is required for this test.

Pass Result:

The lower tester receives a confirm primitive corresponding to each of the four service requests described

above. The responses in order are:

1. A Result(+) confirm primitive.

2. A Result(+) confirm primitive conveying the parameter ’Read Access Result’ = ("FloorSExhaustFan",

Minimum_On_Time, 0).

3. A Result(+) confirm primitive.

4. A Result(+) confirm primitive conveying the parameter ’Read Access Result’ = ("Floor3ExhaustFan",

Minimum_C)n_Time, 65535).

5. A Result(+) confirm primitive.

Fail Result:

If the WriteProperty service is successfully completed and the value for the Minimum_On_Time property

returned in step 1 or step 3 is not as specified then the result is failure. If a Result(-) confirm primitive

is received in response to any of the service requests and the error class is PROPERTY, then the test result

is failure.

Inconclusive Result:

If the lUT does not respond or if a Result(-) confirm primitive is received in response to any of the service

requests and the error class is not PROPERTY, the result is inconclusive.

Test A.3.6 Functional Range for the Out Of Service Property

Test Fhirp>ose:

Verify that the lUT supports values for the Out_Of_Service property over the entire defined range.

BACnet Clause Reference: 5 . 1 . 1 .9

Test Description:

The lower tester verifies the initial value of the property then alternately writes and reads new values of

the property until the entire range of values is spanned.

Expected Results:

The Out_Of_Service property has only two defined values, TRUE and FALSE. The lower tester should

be able to write and then read either or both of these values.

51

Lower Tester:

The lower tester takes the following steps.

1. Issue a ReadProperty service request with a ’Read Access Specificaiton’ = ("lAHlMAT",
Out_Of_Service)

.

2. Issue a WriteProperty service request with a ’Write Access Specification’ = (NULL, "lAHlMAT",
Out_Of_Service, TRUE).

3. Issue a ReadProperty service request with a ’Read Access Specification’ = ("lAHlMAT",
C)ut_Of_Service)

.

4. Issue a WriteProperty service request with a ’Write Access Specification’ = (NULL, "lAHlMAT",
Out_Of_Service, FALSE).

lUT:

Process the ReadProperty and WriteProperty indications as specified by BACnet.

Upper Tester:

No action is required for this test.

Pass Result:

The lower tester receives a confirm primitive corresponding to each of the four service requests described

above. The responses in order are:

L A Result(+) confirm primitive conveying the parameter ’Read Access Result’ = ("lAHlMAT",
Out_Of_Service, FALSE).

2. A Result(+) confirm primitive.

3. A Result(+) confirm primitive conveying the parameter ’Read Access Result’ = ("lAHlMAT'’,

Out_Of_Service, TRUE)

4. A Result(+) confirm primitive.

Fail Result:

If the WriteProperty service is successfully completed and the value for the Out_Of_Service property

returned in step 1 or step 3 is not as specified then the result is failure. If a Result(-) confirm primitive

is received in response to any of the service requests and the error class is PROPERTY, then the test result

is failure.

Inconclusive Result:

If the lUT does not respond or if a Result(-) confirm primitive is received in response to any of the service

requests and the error class is not PROPERTY, the result is inconclusive.

Test A.3.7 Functional Range for the Polarity Property

Test Purpose:

Verify that the lUT supports values for the POLARITY property over the entire defined range.

BACnet Clause Reference: 5.4. 1.9

52

Test Description:

The lower tester verifies the initial value of the property then alternately writes and reads new values of

the property until the entire range of values is spanned.

Expected Results:

The Polarity property has only two defined values, NORMAL and REVERSE. The lower tester should

be able to write and then read either or both of these values.

Lower Tester:

The lower tester takes the following steps.

1. Issue a ReadProperty service request with a ’Read Access Specificaiton’ = ("HighPressSwitch",

Polarity).

2. Issue a WriteProperty service request with a ’Write Access Specification’ = (NULL,
"HighPressSwitch", Polarity, REVERSE).

3. Issue a ReadProperty service request with a ’Read Access Specification’ = ("HighPressSwitch",

Polarity).

4. Issue a WriteProperty service request with a ’Write Access Specification’ = (NULL,
"HighPressSwitch", Polarity, NORMAL).

lUT:

Process the ReadProperty and WriteProperty indications as specified by BACnet.

Upper Tester:

No action is required for this test.

Pass Result:

The lower tester receives a confirm primitive corresponding to each of the four service requests described

above. The responses in order are:

1. A Result(+) confirm primitive conveying the parameter ’Read Access Result’ = ("HighPressSwitch”,

Polarity, NORMAL).

2. A Result(+) confirm primitive.

3. A Result(+) confirm primitive conveying the parameter ’Read Access Result’ = ("HighPressSwitch",

Polarity, REVERSE).

4. A Result(+) confirm primitive.

Fail Result:

If the WriteProperty service is successfully completed and the value for the Polarity property returned in

step 1 or step 3 is not as specified then the result is failure. If a Result(-) confirm primitive is received

in respionse to any of the service requests and the error class is PROPERTY, then the test result is failure.

Inconclusive Result:

If the lUT does not respond or if a Result(-) confirm primitive is received in response to any of the service

requests and the error class is not PROPERTY, the result is inconclusive.

53

Test A.3.8 Functional Range for the Run Time Property

Test Purpose:

Verify that the lUT supports values for the Run_Time property over the entire defined range.

BACnet Clause Reference: 5.5.1.13

Test Description:

The lower tester verifies the initial value of the property then alternately writes and reads new values of

the property until the entire range of values is spanned.

Expected Results:

The Run_Time property has a range from 0 - (2^^-l) seconds. The lower tester should be able to write

and then read any value in this range.

Lower Tester:

The lower tester takes the following steps.

1. Issue a WriteProperty service request with a ’Write Access Specification’ = (NULL,
"FloorSExhaustFan", Run_Time, 0).

2. Issue a ReadProperty service request with a ’Read Access Specification’ = ("FloorSExhaustFan",

Rim_Time).

3. Issue a WriteProperty service request with a ’Write Access Specification’ = (NULL,
"Floor3ExhaustFan'', Run_Time, 2^^-l).

4. Issue a ReadProperty service request with a ’Read Access Specification’ = (''Floor3ExhaustFan",

Run_Time),

5. Issue a WriteProperty service request with a ’Write Access Specification’ = (NULL,

’'Floor3ExhaustFan'', Run_Time, 401).

lUT:

Process the ReadProperty and WriteProperty indications as specified by BACnet.

Upper Tester:

No action is required for this test.

Pass Result:

The lower tester receives a confirm primitive corresponding to each of the four service requests described

above. The responses in order are:

1 . A Result(+) confirm primitive.

2. A Result(+) confirm primitive conveying the parameter ’Read Access Result’ = (''Floor3ExhaustFan",

Minimum_C)n_Time, 0).

3. A Result(+) confirm primitive.

4. A Result(+) confirm primitive conveying the parameter ’Read Access Result’ = ("Floor3ExhaustFan'',

54

Minimum_C)n_Time,

5. A Result(+) confirm primitive.

Fail Result:

If the WriteProperty service is successfully completed and the value for the Rxm_Time property returned

in step 1 or step 3 is not as specified then the result is failure. If a Result(-) confirm primitive is received

in resp>onse to any of the service requests and the error class is PROPERTY, then the test result is failure.

Inconclusive Result:

If the lUT does not respond or if a Result(-) confirm primitive is received in response to any of the service

requests and the error class is not PROPERTY, the result is inconclusive.

7. BEHAVIOR TESTS

The current draft of BACnet defines 29 application services. The behavior tests check the conformance of all of

these services. The lUT is tested for its response to both valid and invalid requests from the lower tester and the

lUT is instructed to generate application service requests of its own to test this capability.

7.1 Responses to Valid Behavior by a Peer Implementation

All test cases in this group are based on valid application service requests. They are divided into a hierarchy

consisting of two main groups, each of which is further broken down into five smaller groups representing the five

classes of services defined in BACnet. The two main groups are services initiated by the lower tester and services

initiated by the lUT. The services initiated by the lower tester are designed to test the lUT’s ability to correctly

respond to valid service requests. The services initiated by the lUT are designed to test the lUT’s ability to

correctly generate valid application service requests.

Some tests require that the properties of the various objects in the lUT have particular values which are not the

standard configuration. For these tests there are one or more WriteProperty service requests issued to correctly

establish the configuration. At the completion of the test the object database is returned to the standard

configuration so that the lUT will be in a known state for beginning the next test in the suite.

7.1.1 Application Services Initiated by tbe Lower Tester

For all tests in this group the lower tester issues a correctly formed application service request and the response

from the lUT is analyzed to determine if it correctly responds to the request as specified in the service procedure.

7.1.

1.1

Alarm and Event Services

Test B. 1.1.1 Support for the AcknowIedgeAlarm Service

Test Purpose:

Verify that the lUT can correctly respond to a valid AcknowIedgeAlarm service request. This test also

serves to verify the functional range of the Acknowledged property.

BACnet Clause Reference: 5.12.1.7, 6.3.1

Test Description:

55

The standard object configuration contains an Event Enrollment object with an imacknowledged alarm.

The lower tester acknowledges this alarm and then reads the Acknowledged property to ensure that it has

been reset.

Expected Result:

A confirmation that the AcknowledgeAlarm service indication was received and the Acknowledged property

reset to TRUE.

Lower Tester:

The lower tester issues an AcknowledgeAlarm service request conveying the following parameters.

’Event Enrollment Name’ = " Zone 1Alarm"

’Acknowledged State’ = ALARM
’Time Stamp’ = current time

After the request is issued several things can happen and the lower tester must respond as indicated below.

lUT Response PDU Lower Tester Action

none

error

reject

simpleACK

When a timer expires retransmit as specified by BACnet.

Test complete, no action needed

Retransmit as specified by BACnet

Continue to next step

The lower tester now issues a ReadProperty service request with the following parameter.

’Read Access Specification’ = ("Zone 1ALARM", Acknowledged)

lUT:

Process the AcknowledgeAlarm service indication and the ReadProperty service indication as specified in

BACnet.

Upp)er Tester:

No action is required for this test.

Pass Result:

A correctly formed Result(+) response primitive shall be returned by the lUT as a result of the

AcknowledgeAlarm service request. A correctly formed Result(+) response primitive shall be returned

by the lUT conveying the following argument:

’Read Access Result’ = ("Zone 1ALARM", Acknowledged, TRUE)

Fail Result:

If a correct Result(+) confirm primitive is not received as a result of the AcknowledgeAlarm service

request the test fails. If the AcknowledgeAlarm service request is confirmed but the response to the

subsequent ReadProperty request indicates that the value of the Acknowledged property has not been

correctly changed the test fails.

Inconclusive Result:

If the AcknowledgeAlarm service request is confirmed but a value is not returned from the ReadProperty

service request because of an error, a reject, or no response is received, then the test is inconclusive.

56

7. 1.1.2 File Access Services

At the present time the File Access services are in a considerable state of flux with some radically different

proposals being considered by the SPC. Defining test cases for these services will be delayed until the situation

becomes more clear.

7.1. 1.3 Object Access Services

Test B. 1.3. 1.1 Support for the AddListElement Service

Test Purpose:

Verify that the lUT can correctly respond to a valid AddListElement service request.

BACnet Clause Reference: 6.5.1

Test Description:

The lower tester issues an AddListElement service request addressed to the lUT. When the lower tester

receives a confirmation (after retries if needed) a ReadProperty service request is issued. The response

to the ReadProperty service request is analyzed to determine if the AddListElement service request was

successfully completed.

Expected Result:

The lUT issues a Result(+) response acknowledging the completion of the AddListElement request. The

lUT issues a Result(+) response to the ReadProperty service request which conveys the new value of the

property affected by the AddListElement indicating that the new elements have been added to the list.

Lower Tester:

The lower tester issues an AddListElement confirmed-request PDU which conveys the parameters shown

below.

’Object Identifier’ = "TestGroup"

’Property Identifier’ = List_of_Access_Specifications

’List of Elements’ = (("HighPressSwitch", (Present_Value, Polarity, Reliability)),

("FloorSExhaustFan", (Present_Value, Polarity, Reliability))

After the request is issued several things can happen and the lower tester must respond as indicated below.

lUT Response PDU Lower Tester Action

none

error

reject

simpleACK

When a timer expires retransmit as sp>ecified by BACnet

Test complete, no action needed

Retransmit as specified by BACnet

Continue to the next step

At this point the lower tester issues a ReadProperty confirmed-request PDU which conveys the following

parameter.

’Read Access Specification’ = ("TestGroup", List_of_Access_Specifications)

57

After the request is issued several things can happen and the lower tester must respond as indicated below.

lUT Response PDU Lower Tester Action

none

error

reject

simpleACK

When a timer expires retransmit as specified by BACnet
Test complete, no action needed

Retransmit as specified by BACnet

Restore the property to its original value

The List_of_Access_Specifications is restored to its original value by issuing a WriteProperty confirmed-

request PDU conveying the following parameter.

’Write Access Specification’ = (NULL, "TestGroup", ((("lAHlMAT",(Min_Pres, Max_Pres,

Description)), ("MA_SetPoint'',(Present_Value, Units)), ("Alarm_Consoles'', (Description,

Device_List)))

lUT:

Process the AddListElement request and the subsequent ReadProperty and WriteProperty requests and issue

responses as specified in BACnet.

Upper Tester;

No action is required for this test.

Pass Result:

A correctly formed Result(-t-) response primitive shall be returned by the lUT in response to the

AddListElement service request. A correctly formed complexACK-PDU shall be returned by the lUT in

response to the ReadProperty request which conveys the following parameter.

’Read Access Result’ = (NULL, "TestGroup", ((("lAHlMAT",(Min_Pres, Max_Pres,

Description)), ("MA_SetPoint",(Present_Value, Units)), ("Alarm_Consoles", (Description,

Device_List)), ("HighPressSwitch", (Present_Value, Polarity, Reliability)), ("FloorSExhaustFan",

(Present_Value, Polarity, Reliability))

A correctly formed Result(-I-) response primitive shall be returned by the lUT in response to the

WriteProperty request.

Fail Result:

If the Result(-I-) response is returned but is not correctly formed the test fails. If the AddListElement

request is confirmed but the response to the subsequent ReadProperty request indicates that the value of

the property has not been correctly changed the test fails.

Inconclusive Result:

If the AddListElement service request is confirmed but a value is not returned from the ReadProperty

service because of an error, a reject, or no response is received, then the test result is inconclusive.

Further tests may be needed to determine if the AddListElement of the ReadPropery service has failed.

The results are also inconclusive if a reply is not received for one or more of the lower tester’s requests

after all retransmissions have been exhausted.

Test B.1.3.2.1 Support for the CreateEnrolImentObJect Service With No Optional Parameters

58

Test Purpose:^

Verify that the lUT can correctly respond to a valid CreateEnrollmentObject request with no optional

parameters.

BACnet Clause Reference: 6.5.2

Test Description:

The lower tester issues a CreateEnrollmentObject service request addressed to the lUT. When the lower

tester receives a confirmation (after retries if needed) a ReadMultipleProperty service request or a series

of ReadProperty service requests is issued. The response to the ReadMultipleProperty of the series of

ReadProperty requests is analyzed to determine if the new Event Enrollment Object was in fact created.

Expected Result:

The lUT issues a Result(+) response acknowledging the completion of the CreateEnrollmentObject service

request. The lUT issues a Result(+) response to the ReadMultipleProperty request or a series of

Result(+) responses to the ReadProperty requests conveying the property values of the newly created Event

Enrollment object.

Lx)wer Tester:

The lower tester issues a CreateEnrollmentObject confirmed-request PDU which conveys the following

parameters.

Object Identifier = "TestAlarm"

Event Type = ALARM
Property Reference List = ("MA_SetPomt", Present_Value)

Notification Rules = (NORMAL_TO_ALARM, 2, 3 , TRUE, "This is a test alarm")

Parameter List = (50, 60, 1)

After the request is issued several things can happen and the lower tester must respond as indicated below.

lUT Response PDU Lower Tester Action

none

error

reject

simpleACK

When a timer expires retransmit as specified by BACnet

Test complete, no action needed

Retransmit as specified by BACnet
Continue to the next step

At this point the lower tester attempts to verify that the Event Enrollment was successfully created by

reading its properties.

Option 1 - Issue a ReadMultipleProperty service request with the following argument:

’List of Read Access Results’ = (TestAlarm", ALL)

Option 2 - Issue a sequence of ReadProperty requests, one for each of the eleven properties of the object.

The sequence of arguments is shown below.

’Read Access Specification’ = ("TestAlarm", Object_Identifier)

^This test is based on DRAFT 2 of the CreateEnrollmentObject Service in [7].

59

’Read Access Specification’ =
’Read Access Specification’ =

’Read Access Specification’ =

’Read Access Specification’ =

’Read Access Specification’ =
’Read Access Specification’ =

’Read Access Specification’ =
’Read Access Specification’ =

’Read Access Specification’ =

’Read Access Specification’ =

("TestAlarm",

("TestAlarm",

("TestAlarm",

("TestAlarm",

("TestAlarm",

("TestAlarm",

("TestAlarm",

("TestAlarm",

("TestAlarm",

("TestAlarm",

Object_Type)

Event_Type)

Property_Reference)

State)

Enabled)

Acknowledged)

Notification_Rules)

Parameter_List)

Confirmed_Recipient_List)

Unconfirmed_Recipient_List)

lUT:

Process the CreateEnrollmentObject request and the ReadMultipleProperty or the sequence ofReadProperty

requests as specified in BACnet.

Upper Tester:

No action is required for this test.

Pass Result:

The lUT responds to the CreateEnrollmentObject service with a Result(+). If the lower tester follows this

with a ReadMultipleProperty request, the lUT resjwnds with a Result(+) containing the following

argument:

’List of Read Access Results’ = ("TestAlarm", EVENT_ENROLLMENT, ALARM, ("MA_SetPoint",

Present_Value), ALARM, TRUE, FALSE, (NORMAL_TO_ALARM, 2, 3, TRUE, "This is a

test alarm"), (50, 60, 1), NULL, NULL)

If the lower tester follows instead with the series of ReadProperty requests then a sequence of Result(+

)

confirm primitives are received by the lower tester, one for each request issued. Each Result(+) primitive

will contain one argument. The sequence will be:

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

"TestAlarm"

EVENT_ENROLLMENT
ALARM
("MA_SetPoint", Present_Value)

ALARM
TRUE
FALSE
(NORMAL_TO_ALARM), 2, 3, TRUE, "This is a test alarm")

(50, 60, 1)

NULL
NULL

Fail Result:

If the correct response to the CreateEnrollmentObject service request is not received the test fails. If the

CreateEnrollmentObject request is properly confirmed but the response to the subsequent

ReadMultipleProperty or series of ReadProperty requests indicates that the Event Enrollment object was

not properly created the test fails.

Inconclusive Result:

If the CreateEnrollmentObject service request is confirmed but values are not returned from the

ReadMultipleProperty or ReadProperty service requests because of an error, a reject, or no response is

60

received, then the test results are inconclusive. Further tests may be needed to determine if the

CreateEnrolImentObject, ReadMultipleProperty, or the ReadProperty service has failed.

Test B.1.3.2.2 Support for the CreateEnrolImentObject Service With All Optional Parameters

Test Purpose:^

Verify that the lUT can correctly respond to a valid CreateEnrolImentObject request with all optional

parameters.

BACnet Clause Reference: 6.5.2

Test Description:

The lower tester issues a CreateEnrolImentObject service request addressed to the lUT. When the lower

tester receives a confirmation (after retries if needed) a ReadMultipleProperty service request or a series

of ReadProperty service requests is issued. The response to the ReadMultipleProperty of the series of

ReadProperty requests is analyzed to determine if the new Event Enrollment Object was in fact created.

Expected Result:

The lUT issues a Result(+) response acknowledging the completion of the CreateEnrolImentObject service

request. The lUT issues a Result(+) response to the ReadMultipleProperty request or a series of

Result(+) responses to the ReadProperty requests conveying the property values of the newly created Event

Enrollment object.

Lower Tester:

The lower tester issues a CreateEnrolImentObject confirmed-request PDU which conveys the following

parameters.

Object Identifier

Event Type

Property Reference List

Enabled

Notification Rules

Parameter List

Confirmed Recipient List

Unconfirmed Recipient List

= "TestAlarm"

= ALARM
= ("MA_SetPoint", Present_Value)

= TRUE
= (NORMAL_TO_ALARM, 2, 3, TRUE, "This is a test alarm")

= (50, 60, 1)

= lower tester

= GLOBAL

After the request is issued several things can happen and the lower tester must respond as indicated below.

lUT Response PDU Lower Tester Action

none

error

reject

simpleACK

When a timer expires retransmit as specified by BACnet

Test complete, no action needed

Retransmit as specified by BACnet

Continue to the next step

At this point the lower tester attempts to verify that the Event Enrollment was successfully created by

^This test is based on DRAFT 2 of the CreateEnrolImentObject Service in [7].

61

reading its properties.

Option 1 - Issue a ReadMultipleProperty service request with the following argument:

’List of Read Access Results’ = (TestAlarm", ALL)

Option 2 - Issue a sequence of ReadProperty requests, one for each of the eleven properties of the object.

The sequence of arguments is shown below.

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

’Read Access

’Read.Access

’Read Access

’Read Access

’Read Access

Specification’

Specification’

Specification’

Specification’

Specification’

Specification’

Specification’

Specification’

Specification’

Specification’

Specification’

("TestAlarm",

("TestAlarm",

("TestAlarm",

("TestAlarm",

("TestAlarm",

("TestAlarm",

("TestAlarm",

("TestAlarm",

("TestAlarm",

("TestAlarm",

("TestAlarm",

Object_Identifier)

Object_Type)

EventType)

Property_Reference)

State)

Enabled)

Acknowledged)

Notification_Rules)

Parameter_List)

Confirmed_Recipient_List)

Unconfirmed_Recipient_List)

lUT:

Process the CreateEnrollmentObject request and the ReadMultipleProperty or the sequence of ReadProperty

requests as specified in BACnet.

Upper Tester:

No action is required for this test.

Pass Result:

The lUT responds to the CreateEnrollmentObject service with a Result(+). If the lower tester follows this

with a ReadMultipleProperty request the lUT responds with a Result(+) containing the following argument:

’List of Read Access Results’ = ("TestAlarm", EVENT_ENROLLMENT, ALARM, ("MA_SetPoint",

Present Value), ALARM, TRUE, FALSE, (NORMAL_TO_ALARM, 2, 3, TRUE, "This is a

test alarm"), (50, 60, 1), NULL, NULL)

If the lower tester follows instead with the series of ReadProperty requests then a sequence of Result(+)

confirm primitives are received by the lower tester, one for each request issued. Each Result(+) primitive

will contain one argument. The sequence will be:

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

’Read Access Result’

"TestAlarm"

EVENTENROLLMENT
ALARM
("MA_SetPoint", Present_Value)

ALARM
TRUE
FALSE
(NORMAL_TO_ALARM), 2, 3, TRUE, "This is a test alarm")

(50, 60, 1)

lower tester

GLOBAL

62

Fail Result:

If the correct response to the CreateEnrollmentObject service request is not received the test fails. If the

CreateEnrollmentObject request is properly confirmed but the response to the subsequent

ReadMultipleProperty or series of ReadProperty requests indicates that the Event Enrollment object was

not properly created the test fails.

Inconclusive Result:

If the CreateEnrollmentObject service request is confirmed but values are not returned from the

ReadMultipleProperty or ReadProperty service requests because of an error, a reject, or no response is

received, then the test results are inconclusive. Further tests may be needed to determine if the

CreateEnrollmentObject, ReadMultipleProperty, or the ReadProperty service has failed.

Test B.1.3.3.1 Support for the CreateGroupObject Service

Test Purpose:

Verify that the lUT can correctly respond to a valid CreateGroupObject request.

BACnet Clause Reference: 6.5,3

Test Description:

The lower tester issues a CreateGroupObject service request addressed to the lUT. When the lower tester

receives a confirmation (after retries if needed) a ReadMultipleProperty service request or a series of

ReadProperty service requests is issued. The response to the ReadMultipleProperty of the series of

ReadProperty requests is analyzed to determine if the new Group Object was in fact created.

Expected Result:

The lUT issues a Result(+) resp>onse acknowledging the completion of the CreateGroupObject service

request. The lUT issues a Result(+) response to the ReadMultipleProperty request or a series of

Result(+) responses to the ReadProperty requests conveying the property values of the newly created Event

Enrollment object.

Lower Tester:

The lower tester issues a CreateGroupObject confirmed-request PDU which conveys the following

parameters.

Object Identifier = ''Test_Group''

List_of_Access_Specifications = (("lAHlMAT",(Min_Pres, Max_Pres, Description)),

("MA_SetPoint" ,(Present_Value, Units)),

("Alarm_Consoles " ,
(Description, Device_List)))

After the request is issued several things can happen and the lower tester must respond as indicated below.

lUT Response PDU Lower Tester Action

none

error

reject

simpleACK

When a timer expires retransmit as specified by BACnet

Test complete, no action needed

Retransmit as specified by BACnet
Continue to the next step

At this point the lower tester attempts to verify that the Group object was successfully created by reading

its properties.

63

Option 1 - Issue a ReadMultipleProperty service request with the following argument:

’List of Read Access Results’ = (Test_Group", ALL)

Option 2 - Issue a sequence of ReadProperty requests, one for each of the eleven properties of the object.

The sequence of arguments is shown below.

’Read Access Specification’ = (''Test_Group'', Object_Identifier)

’Read Access Specification’ = (''Test_Group’', Object_Type)

’Read Access Specification’ = (''Test_Group'', List_Of_Access_Specifications)

’Read Access Specification’ = (''Test_Group", Present_Value)

lUT:

Process the CreateGroupObject request and the ReadMultipleProperty or the sequence of ReadProperty

requests as specified in BACnet.

Upper Tester:

No action is required for this test.

Pass Result:

The lUT responds to the CreateGroupObject service with a Result(+). If the lower tester follows this with

a ReadMultipleProperty request the lUT responds with a Result(+) containing the following argument:

’List of Read Access Results’ = (''Test_Group'', GROUP, (("lAHlMAT", (Min_Pres, Max_Pres,

Description)), (''MA_SetPoint", (Present_Value, Units)), ("Alarm Consoles", (Description,

Device_List)), (-50, 250, "Mixed Air Temperature", 58.0, "DEGF", "Building ABC Host

Computer Systems", "Node 5", "Node 7"))

If the lower tester follows instead with the series of ReadProperty requests then a sequence of Result(+

)

confirm primitives are received by the lower tester, one for each request issued. Each Result(-I-) primitive

will contain one argument. The sequence will be:

’Read Access Result’ = "Test_Group"

’Read Access Result’ = GROUP
’Read Access Result’ = (("lAHlMAT", (Min_Pres, Max_Pres, Description)),

("MA_SetPoint", (Present_Value, Units)),

("Alarm Consoles" ,(Description,Device_List)),

’Read Access Result’ = (-50, 250, "Mixed Air Temperature", "Alarm Consoles"

58.0, "DEGF", "Building ABC Host Computer Systems", "Node 5", "Node 7"))

Fail Result:

If the correct response to the CreateGroupObject service request is not received the test fails. If the

CreateGroupObject request is properly confirmed but the response to the subsequent ReadMultipleProperty

or series of ReadProperty requests indicates that the Group object was not properly created the test fails.

Inconclusive Result:

If the CreateGroupObject service request is confirmed but values are not returned from the

ReadMultipleProperty or ReadProperty service requests because of an error, a reject, or no response is

received, then the test results are inconclusive. Further tests may be needed to determine if the

CreateGroupObject, ReadMultipleProperty, or the ReadProperty service has failed.

64

Test B. 1.3.4. 1 Support for the DeleteObject Service

Test Puqxjse:

Verify that the lUT can correctly respond to a valid DeleteObject service request.

BACnet Clause Reference: 6.5.4

Test Description:

The lower tester issues a DeleteObject service request addressed to the lUT. The ReadProperty service

is then used to verify that the object has in fact been deleted.

Expected Result:

The lUT issues a Result(+) response to the DeleteObject service request. The lUT responds to the

subsequent ReadProperty with a Result(-) response conveying an error class of OBJECT and an error code

of UNKNOWN OBJECT.

Lower Tester:

The lower tester issues a DeleteObject confirmed-request-PDU which conveys the parameter ’Object

Identifier’ = ''Test_Group''. After the request is issued several things can happen and the lower tester

must respond as indicated below.

rUT Response PDU Lower Tester Action

none

error

reject

simpleACK

When a timer expires retransmit as specified by BACnet

Test complete, no action needed

Retransmit as specified by BACnet

Continue to next step

At this point the lower tester issues a ReadProperty confirmed-request PDU which conveys the following

parameter.

’Read Access Specification’ = (''Test_Group'')

After the request is issued several things can happen and the lower tester must respond as indicated below.

lUT Response PDU Lower Tester Action

none

error

reject

complexACK

When a timer expires retransmit as specified by BACnet
Test complete, no action needed

Retransmit as specified by BACnet
Test complete, no action needed

lUT:

Process the DeleteObject service request and the ReadProperty service request as specified by BACnet.

Upper Tester:

No action needed for this test.

Pass Result:

The lower tester should receive a Result(+) confirm from the lUT confirming the DeleteObject service

and a Result(-) confirm confirming the ReadProperty service request conveying and error class of OBJECT
and error code of UNKNOWN OBJECT.

65

Fail Result:

If a response to the DeleteObject service request is received but it is not a correct Result(+) the test fails.

If a correct response to the DeleteObject service is received but a Result(+) confirm or a Result(-) confirm

which is not as specified above is received in response to the ReadProperty service then the test fails. The

test also fails if the DeleteObject service request is rep>eatedly rejected.

Inconclusive Results:

The results are inconclusive if the lUT does not respond. The communication link should be checked to

ensure that the communication has not been lost due to a lower layer failure. If this is the case the test

must be retried. If this is not the case the test has failed.

Test B. 1.3.6. 1 Support for the ReadMultipleProperty With No ’Return Read Access with Result’ Parameter

Test Purpose:

Verify that the lUT can correctly respond to a valid ReadMultipleProperty service request with no ’Return

Read Access Specification with Result’ parameter. All of the allowed combinations for the ’List of Access

Specifications’ are included in this test.

BACnet Clause Reference: 6.5.6

Test Description:

The lower tester issues a ReadProperty service request addressed to the lUT with no ’Return Read Access

Specification’ parameter and the response is analyzed based on the standard object configuration.

note: This test assumes that the lUT supports Analog Input, Analog Output, and Binary Input object-types.

If this assumption is not valid then the details of the ’List of Access Specifications’ must be modified.

Expected Result:

The lUT issues a Result(+) response PDU which correctly encodes the valued specified in the

ReadMultipleProperty request.

Lower Tester:

The lower tester issues a ReadMultipleProperty confirmed-request PDU with the parameters shown below.

’List of Read Access Specifications’ = ((lower tester, "lAHlMAT", Present_Value, Reliability,

Description), (NULL, " 1AHIDMPR", Present_Value, Status_Flags), (NULL, "HighPressSwitch",

NULL))

After the request is issued several things can happen and the lower tester must respond as indicated below.

rUT Response PDU Lower Tester Action

none

error

reject

complexACK

When a timer expires retransmit as specified by BACnet

Test complete, no action needed

Retransmit as specified by BACnet

Test complete, no action needed

lUT:

Process the confirmed-service request as specified by BACnet.

Upper Tester:

66

No action required for this case.

Pass Result:

A correctly formed complexACK-PDU shall be returned by the lUT to the lower tester conveying the

following Result(+)
parameter.

’Read Access Result’ = (58.1, RELIABLE, "Mixed Air Temperature", 75.0, {FALSE, TRUE, FALSE,
FALSE}, ACTIVE)

This result may come after retransmitting one or more times, up to the limit specified in BACnet, and the

test results are still considered a pass. The fact that retransmissions were needed should however be noted

because this may be useful diagnostic information for imcovering a conformance problem with the lUT.

Fail Result:

If a complexACK-PDU is returned that must be rejected by the lower tester because it is incorrectly

formed, or if it is correctly formed but does not covey the information described above the test result is

a failure. The test result is also a failure if the lUT returns an error-PDU or rejects the original request

and all retries. It may be possible to determine from the test results that failure was due to the fact that

the lUT does not correctly implement the optional ’BACnet Device Name’ or the optional ’List of Property

Identifiers’.

Inconclusive Result:

The results inconclusive if the lUT does not respond. The communication link should be checked to ensure

that communication has not been lost due to a lower layer failure. If this is the case the test must be

retried. If this is not the case then this test has failed.

Test B. 1.3.6.2 Support for the ReadMultipIeProperty With ’Return Read Access with Result’ = FALSE

Test Purpose:

Verify that the lUT can correctly respond to a valid ReadMultipIeProperty service request with ’Return

Read Access Specification with Result’ = FALSE. All of the allowed combinations for the ’List of Access

Specifications’ are included in this test.

BACnet Clause Reference: 6.5.6

Test Description:

The lower tester issues a ReadProperty service request addressed to the lUT with ’Return Read Access

Specification with Result’ = FALSE and the response is analyzed based on the standard object

configuration.

note: This test assumes that the lUT supports Analog Input, Analog Output, and Binary Input object-types.

If this assumption is not valid then the details of the ’List of Access Specifications’ must be modified.

Expected Result:

The lUT issues a Result(-f-) response PDU which correctly encodes the valued specified in the

ReadMultipIeProperty request.

Lower Tester:

The lower tester issues a ReadMultipIeProperty confirmed-request PDU with the parameters shown below.

’List of Read Access Specifications’ = ((lower tester, "lAHlMAT", Present_Value, Reliability,

67

Description), (NULL, " 1AHIDMPR", Present_Value, Status_Flags), (NULL, "HighPressSwitch",

NULL))
’Return Read Access Specifications with Result’ = FALSE

After the request is issued several things can happen and the lower tester must respond as indicated below.

lUT Response PDU Lower Tester Action

lUT:

none

error

reject

complexACK

When a timer expires retransmit as specified by BACnet
Test complete, no action needed

Retransmit as specified by BACnet

Test complete, no action needed

Process the confirmed-service request as specified by BACnet.

Upper Tester:

No action required for this case.

Pass Result:

A correctly formed complexACK-PDU shall be returned by the lUT to the lower tester conveying the

following Result(+) parameter.

’Read Access Result’ = (58.1, RELIABLE, "Mixed Air Temperature", 75.0, {FALSE, TRUE, FALSE,
FALSE}, ACTIVE)

This result may come after retransmitting one or more times, up to the limit specified in BACnet, and the

test results are still considered a pass. The fact that retransmissions were needed should however be noted

because this may be useful diagnostic information for uncovering a conformance problem with the lUT.

Fail Result:

If a complexACK-PDU is returned that must be rejected by the lower tester because it is incorrectly

formed, or if it is correctly formed but does not covey the information described above, the test result is

a failure. The test result is also a failure if the lUT returns an error-PDU or rejects the original request

and all retries. It may be possible to determine from the test results that failure was due to the fact that

the lUT does not correctly implement the optional ’BACnet Device Name’ or the optional ’List of Property

Identifiers’. If the ’Read Access Specifications’ are returned with the result, the lUT does not properly

implement the ’Return Read Access Specifications with Result’ parameter.

Inconclusive Result:

The results inconclusive if the lUT does not respond. The communication link should be checked to ensure

that communication has not been lost due to a lower layer failure. If this is the case the test must be

retried. If this is not the case then this test has failed.

Test B.1.3,6.3 Support for the ReadMultipIeProperty With ’Return Read Access with Result’ = TRUE

Test Purpose:

Verify that the lUT can correctly respond to a valid ReadMultipIeProperty service request with ’Return

Read Access Specification with Result’ = TRUE. All of the allowed combinations for the ’List of Access

Specifications’ are included in this test.

BACnet Clause Reference: 6.5.6

68

Test Description:

The lower tester issues a ReadProperty service request addressed to the lUT with ’Return Read Access

Specification with Result’ = TRUE and the response is analyzed based on the standard object configuration.

note: This test assumes that the lUT supports Analog Input, Analog Output, and Binary Input object-types.

If this assumption is not valid then the details of the ’List of Access Specifications’ must be modified.

Expected Result:

The lUT issues a Result(-f-) response PDU which correctly encodes the valued specified in the

ReadMultipleProperty request.

Lower Tester:

The lower tester issues a ReadMultipleProperty confirmed-request PDU with the parameters shown below.

’List of Read Access Specifications’ = ((lower tester, "lAHlMAT", Present_Value, Reliability,

Description), (NULL, " 1AHIDMPR" , Present_Value, Status_Flags), (NULL, "HighPressSwitch"

,

NULL))
’Return Read Access Specifications with Result’ = TRUE

After the request is issued several things can happen and the lower tester must respond as indicated below.

lUT Response PDU Lower Tester Action

none

error

reject

When a timer expires retransmit as sp)ecified by BACnet

Test complete, no action needed

Retransmit as specified by BACnet

complexACK Test complete, no action needed

lUT:

Process the confirmed-service request as specified by BACnet.

Upper Tester:

No action required for this case.

Pass Result:

A correctly formed complexACK-PDU shall be returned by the lUT to the lower tester conveying the

following Result(-I-) parameter.

’Read Access Result’ = (lower tester, "lAHlMAT", Present_Value, 58.1, Reliability, RELIABLE,
Description, "Mixed Air Temperature", "lAHlDMPR", Present_Value, 75.0, Status_Flags,

{FALSE, TRUE, FALSE, FALSE}, "HighPressSwitch", Present_Value, ACTIVE)

This result may come after retransmitting one or more times, up to the limit specified in BACnet, and the

test results are still considered a pass. The fact that retransmissions were needed should however be noted

because this may be useful diagnostic information for uncovering a conformance problem with the lUT.

Fail Result:

If a complexACK-PDU is returned that must be rejected by the lower tester because it is incorrectly

formed, or if it is correctly formed but does not covey the information described above the test result is

a failure. The test result is also a failure if the lUT returns an error-PDU or rejects the original request

and all retries. It may be possible to determine from the test results that failure was due to the fact that

the lUT does not correctly implement the optional ’BACnet Device Name’ or the optional ’List of Property

69

Identifiers’. If the ’Read Access Specifications’ are not returned with the result, the lUT does not properly

implement the ’Return Read Access Specifications with Result’ parameter.

Inconclusive Result:

The results inconclusive if the lUT does not respond. The communication link should be checked to ensure

that communication has not been lost due to a lower layer failure. If this is the case the test must be

retried. If this is not the case then this test has failed.

Test B.1.3.7.1 Support for the ReadProperty Service Using All Default Parameters

Test Purpose:

Verily that the lUT can correctly respond to a valid ReadProperty service request with default values for

the ’Object Identifier’ and ’Property Identifier’ parameters in the ’Read Access Specification’.

BACnet Clause Reference: 6,5.7

Test Description:

The lower tester issues a ReadProperty service request addressed to the lUT using all default values for

the ’Read Access Specification’ and the response is analyzed based on the standard object configuration.

Expected Result:

The lUT issues a Result(+) response PDU which correctly encodes the value for the System_Status

property of the Device object (the default property of the default object).

Lower Tester:

The lower tester issues a ReadProperty confirmed-request PDU with default values for the Read Access

Specification. After the request is issued several things can happen and the lower tester must respond as

indicated below.

lUT Response PDU Lower Tester Action

lUT:

none

error

reject

complexACK

When a timer expires retransmit as specified by BACnet

Test complete, no action needed

Retransmit as specified by BACnet

Test complete, no action needed

Process the confirmed-service request as specified by BACnet.

Upper Tester:

No action required for this case.

Pass Result:

A correctly formed complexACK-PDU shall be returned by the lUT to the lower tester conveying the

following Result! +)
parameter.

’Read Access Result’ = (device object ID, System_Status, OPERATIONAL)

This result may come after retransmitting one or more times, up to the limit specified in BACnet, and the

test results are still considered a pass. The fact that retransmissions were needed should however be noted

because this may be useful diagnostic information for uncovering a conformance problem with the lUT.

70

Fail Result:

If a complexACK-PDU is returned that must be rejected by the lower tester because it is incorrectly

formed, or if it is correctly formed but does not covey the information described above the test result is

a failure. The test result is also a failure if the lUT returns an error-PDU or rejects the original request

and all retries.

Inconclusive Result:

The result is inconclusive if the lUT does not respond. The communication link should be checked to

ensure that communication has not been lost due to a lower layer failure. If this is the case the test must

be retried. If this is not the case then this test has failed.

Test B. 1.3.7.2 Support for the ReadProperty Service Using Default Object Identifier

Test Purpose:

Verify that the lUT can correctly respond to a valid ReadProperty service request with a default value for

the ’Object Identifier’ in the ’Read Access Specification’.

BACnet Clause Reference: 6.5.7

Test Description:

The lower tester issues a ReadProperty service request addressed to the lUT specifying a property identifier

and the default object identifier for the ’Read Access Specification’. The response is analyzed based on

the standard object configuration.

Expected Result:

The lUT issues a ComplexACK-PDU conveying a Result(-I-) response which correctly encodes the value

for the specified property of the Device object (the default object).

Lx)wer Tester:

The lower tester issues a ReadProperty confirmed-request PDU specifying the Protocol_Version (or another

DEVICE object property) property identifier and no device identifier for the ’Read Access Specification’.

After the request is issued several things can happen and the lower tester must respond as indicated below.

lUT Response PDU Lower Tester Action

lUT:

none

error

reject

complexACK

When a timer expires retransmit as specified by BACnet

Test complete, no action needed

Retransmit as specified by BACnet

Test complete, no action needed

Process the confirmed-service request as specified by BACnet.

Upper Tester:

No action required for this case.

Pass Result:

A correctly formed complexACK-PDU shall be returned by the lUT to the lower tester conveying the

following Result(-f-
)
parameter.

’Read Access Result’ = (device object ID, Protocol_Version, 1.0)

71

This result may come after retransmitting one or more times, up to the limit specified in BACnet, and the

test results are still considered a pass. The fact that retransmissions were needed should however be noted

because this may be useful diagnostic information for uncovering a conformance problem with the lUT.

Fail Result:

If a complexACK-PDU is returned that must be rejected by the lower tester because it is incorrectly

formed, or if it is correctly formed but does not covey the information described above the test result is

a failure. The test result is also a failure if the lUT returns an error-PDU or rejects the original request

and all retries.

Inconclusive Result:

The result is inconclusive if the lUT does not respond. The communication link should be checked to

ensure that communication has not been lost due to a lower layer failure. If this is the case the test must

be retried. If this is not the case then this test has failed.

Test B. 1.3.7.3 Support for the ReadProperty Service Using Default Property Identifier

Test Purpose:

Verify that the lUT can correctly respond to a valid ReadProperty service request with a default value for

the ’Proj>erty Identifier’ in the ’Read Access Si>ecification’.

BACnet Clause Reference 6.5.7

Test Description:

The lower tester issues a ReadProperty service request addressed to the lUT specifying an object identifier

and the default property identifier for the ’Read Access Specification’. The response is analyzed based on

the standard object configuration.

Expected Result:

The lUT issues a BACnet-ComplexACK-PDU conveying a Result(+) response which correctly encodes

the value for the default property of the specified object.

Lower Tester:

The lower tester issues a ReadProperty confirmed-request PDU specifying the DEVICE object identifier

(or some other object identifier) but no property identifier in the ’Read Access Specification’. After the

request is issued several things can happen and the lower tester must respond as indicated below.

lUT Response PDU Lower Tester Action

none

error

reject

complexACK

When a timer expires retransmit as specified by BACnet

Test complete, no action needed

Retransmit as specified by BACnet

Test complete, no action needed

lUT:

Process the confirmed-service request as specified by BACnet.

Upper Tester:

No action required for this case.

72

Pass Result:

A correctly formed complexACK-PDU shall be returned by the lUT to the lower tester conveying the

following Result(+) parameter.

’Read Access Result’ = (device object ID, System_Status, OPERATIONAL)

This result may come after retransmitting one or more times, up to the limit specified in BACnet, and the

test results are still considered a pass. The fact that retransmissions were needed should however be noted

because this may be useful diagnostic information for uncovering a conformance problem with the lUT.

Fail Result:

If a compIexACK-PDU is returned that must be rejected by the lower tester because it is incorrectly

formed, or if it is correctly formed but does not covey the information described above the test result is

a failure. The test result is also a failure if the lUT returns an error-PDU or rejects the original request

and all retries.

Inconclusive Result:

The result is inconclusive if the lUT does not respond. The communication link should be checked to

ensure that communication has not been lost due to a lower layer failure. If this is the case the test must

be retried. If this is not the case then this test has failed.

Test B. 1.3.7.4 Support for the ReadProperty Service With No Default Parameters

Test Purpose:

Verify that the lUT can correctly respond to a valid ReadProperty service request with no default values.

BACnet Clause Reference: 6.5.7

Test Description:

The lower tester issues a ReadProperty service request addressed to the lUT specifying an object identifier

and a property identifier for the ’Read Access Specification’. The response is analyzed based on the

standard object configuration.

Expected Result:

The lUT issues a BACnet-ComplexACK-PDU conveying a Result(+) response which correctly encodes

the value for the specified object and property.

Lower Tester:

The lower tester issues a ReadProperty confirmed-request PDU specifying "lAHlMAT" as the object

identifier (or some other object identifier) and State (or some other property identifier for this object) in

the ’Read Access Specification’. After the request is issued several things can happen and the lower tester

must respond as indicated below.

lUT Response PDU Lower Tester Action

none

error

reject

complexACK

When a timer expires retransmit as specified by BACnet
Test complete, no action needed

Retransmit as specified by BACnet
Test complete, no action needed

73

lUT:

Process the confirmed-service request as specified by BACnet.

Upper Tester:

No action required for this case.

Pass Result:

A correctly formed complexACK-PDU shall be returned by the lUT to the lower tester conveying the

following Result(-}-) parameter.

’Read Access Result’ = ("lAHlMAT", State, NORMAL)

This result may come after retransmitting one or more times, up to the limit specified in BACnet, and the

test results are still considered a pass. The fact that retransmissions were needed should however be noted

because this may be useful diagnostic information for imcovering a conformance problem with the lUT.

Fail Result:

If a complexACK-PDU is returned that must be rejected by the lower tester because it is incorrectly

formed, or if it is correctly formed but does not covey the information described above the test result is

a failure. The test result is also a failure if the lUT returns an error-PDU or rejects the original request

and all retries.

Inconclusive Result:

The result is inconclusive if the lUT does not respond. The commimication link should be checked to

ensure that communication has not been lost due to a lower layer failure. If this is the case the test must

be retried. If this is not the case then this test has failed.

Test B. 1.3. 10.1 Support for the WriteMuItipIeProperty Service Using Default Property Identifier

Test Purpose:

Verify that the lUT can correctly respond to a valid WriteMuItipIeProperty service request with a default

value for the ’Property Identifier’ parameter in the ’Write Access Specification’.

BACnet Clause Reference: 6.5.10

Test Description:

The lower tester issues a WriteMuItipIeProperty service request addressed to the lUT using a default value

for the ’Property Identifier’ parameter. When the WriteMuItipIeProperty service request is acknowledged

(possibly after retries) the lower tester issues a ReadMultipleProperty service request addressed to the lUT
specifying the same objects and properties that was written to in the WriteMuItipIeProperty service request.

The values returned from the ReadMultipleProperty request are then compared with the values that were

written.

Expected Result:

After processing the WriteMuItipIeProperty request the lUT issues a Result(-t-) response primitive

confirming that the write has been successfully completed. After processing the ReadMultipleProperty

request the lUT issues a Result(+) response primitive which correctly conveys the new values for the

specified objects and properties.

Lower Tester:

74

The lower tester issues a WriteMultipleProperty confirmed-request PDU with the following parameter.

List of Write Access Specification = (("FloorSExhaustFan", NULL, ACTIVE), ("ExhaustFanEnable",

NULL, INACTIVE))

After the request is issued several things can happen and the lower tester must respond as indicated below.

lUT Response PDU Lower Tester Action

none

error

reject

simpleACK

When a timer expires retransmit as specified by BACnet

Test complete, no action needed

Retransmit as specified by BACnet

Continue to the next step

At this point the lower tester issues a ReadMultiplePropery confirmed-request PDU with the following

parameter.

’List of Read Access Specifications’ = ((NULL, "FloorSExhaustFan", NULL), (NULL,

"ExhaustFanEnable", NULL))

After the request is issued several things can happen and the lower tester must respond as indicated below.

lUT Response PDU Lower Tester Action

none

error

reject

ComplexACK

When a timer expires retransmit as specified by BACnet

Test complete, no action needed

Retransmit as specified by BACnet

Evaluate response

The lower tester then restores the Present_Value of "FloorSExhaustFan" and "ExhaustFanEnable" by

writing to them again.

lUT:

Process the confirmed-service requests as specified by BACnet.

Upper Tester:

No action required for this test case.

Pass Result:

A correctly formed Result(-l-) response primitive shall be returned by the lUT in response to the

WriteMultipleProperty request. A correctly formed complexACK-PDU shall be returned by the lUT in

response to the ReadMultipleProperty request which conveys the parameter ’Read Access Result’ =

(ACTIVE, INACTIVE).

Either or both of these results may come after retransmitting one or more times, up to the limit specified

in BACnet, and the test results are still considered a pass. The fact that retransmissions were needed

should however be noted because this may be useful information for imcovering a conformance problem

with the lUT.

Fail Result:

If the Result(-I-) response to the WriteProperty request is returned but is not correctly formed the test fails.

If the WriteProperty request is confirmed but the subsequent ReadMultipleProperty indicates that the value

75

of the property has not been correctly changed the test fails.

Inconclusive Result:

If the WriteMuItipleProperty service request is confirmed but a value is not returned from the

ReadMultipleProperty service because of an error, a reject, or no response is received then the test result

is inconclusive. Further tests may be needed to determine if the ReadMultipleProperty or the

WriteMuItipleProperty service has failed. The results are also inconclusive if a reply is not received for

one or more of the lower tester’s requests after all retransmissions have been exhausted.

Test B. 1.3. 10.2 Support for the WriteMuItipleProperty Service Using Explicit Property Identifiers

Test Purpose:

Verify that the lUT can correctly respond to a valid WriteMuItipleProperty service request with a explicit

values for the ’Property Identifier’ parameter in the ’Write Access Specification’.

BACnet Clause Reference: 6.5.10

Test Description:

The lower tester issues a WriteMuItipleProperty service request addressed to the lUT using a mixture of

explicit and default values for the ’Property Identifier’ parameters. When the WriteMuItipleProperty

service request is acknowledged (p>ossibly after retries) the lower tester issues a ReadMultipleProperty

service request addressed to the lUT specifying the same objects and properties that was written to in the

WriteMuItipleProperty service request. The values returned from the ReadMultipleProperty request is then

compared with the values that were written.

Expected Result:

After processing the WriteMuItipleProperty request the lUT issues a Result(+) response primitive

confirming that the write has been successfully completed. After processing the ReadMultipleProperty

request the lUT issues a Result! +) response primitive which correctly conveys the new values for the

specified objects and properties.

Lower Tester:

The lower tester issues a WriteMuItipleProperty confirmed-request PDU with the following parameter.

List of Write Access Specification = (("TestLoop", Integral_Constant, 0.5), CTestLoop”,

Maximum_OutPut, 20), (" Rm208Sched " , Effective_Period, ((90/9/5),

(91/8/31))),("Floor3ExhaustFan",NULL, ACTIVE), ("ExhaustFanEnable", NULL, INACTIVE))

After the request is issued several things can happen and the lower tester must respond as indicated below.

lUT Response PDU Lower Tester Action

none

error

reject

simpleACK

When a timer expires retransmit as specified by BACnet

Test complete, no action needed

Retransmit as specified by BACnet

Continue to the next step

At this point the lower tester issues a ReadMultiplePropery confirmed-request PDU with the following

parameter.

’List of Read Access Specifications’ = ((NULL, "TestLoop", Integral_Constant, Maximum_Output),

76

(NULL, "Rin208Sched", Effective_Peric>d),(NULL, "FIoorSExhaustFan", NULL),

(NULL, "ExhaustFanEnable", NULL))

After the request is issued several things can happen and the lower tester must respond as indicated below.

lUT ResTMjnse PDU Lower Tester Action

none

error

reject

ComplexACK

When a timer expires retransmit as specified by BACnet

Test complete, no action needed

Retransmit as specified by BACnet

Evaluate response

The lower tester then restores the Present_Value of "FloorSExhaustFan" and "ExhaustFanEnable" by

writing to them again.

lUT:

Process the confirmed-service requests as specified by BACnet.

Upper Tester:

No action required for this test case.

Pass Result:

A correctly formed Result(-I-) response primitive shall be returned by the lUT in response to the

WriteMultipleProperty request. A correctly formed complexACK-PDU shall be returned by the lUT in

response to the ReadMultipleProperty request which conveys the following parameter.

’Read Access Result’ = (0.5, 20, ((90/9/05), (91/8/31)), ACTIVE, INACTIVE).

Either or both of these results may come after retransmitting one or more times, up to the limit specified

in BACnet, and the test results are still considered a pass. The fact that retransmissions were needed

should however be noted because this may be useful information for uncovering a conformance problem

with the rUT.

Fail Result:

If the Result(-I-) response to the WriteProperty request is returned but is not correctly formed the test fails.

If the WriteProperty request is confirmed but the subsequent ReadMultipleProperty indicates that the value

of the property has not been correctly changed the test fails.

Inconclusive Result:

If the WriteMultipleProperty service request is confirmed but a value is not returned from the

ReadMultipleProperty service because of an error, a reject, or no response is received then the test result

is inconclusive. Further tests may be needed to determine if the ReadMultipleProperty or the

WriteMultipleProperty service has failed. The results are also inconclusive if a reply is not received for

one or more of the lower tester’s requests after all retransmissions have been exhausted.

Test B.1.3.11.1 Support for the WriteProperty Service Using All Default Parameters

Test Purpose:

Verify that the lUT can correctly respond to a valid WriteProperty service request with default values for

the ’BACnet Device Name’ and the ’Property Identifier’ parameters in the ’Write Access Specification’.

77

BACnet Clause Reference: 6.5.11

Test Description:

The lower tester issues a WriteProperty service request addressed to the lUT using default values for the

’Device Name’ and ’Property Identifier’ parameters. When the WriteProperty service request is

acknowledged (possibly after retries) the lower tester issues a ReadProperty service request addressed to

the lUT specifying the same object and property that was written to in the WriteProperty service request.

The value returned from the ReadProperty request is then compared with the value that was written.

Expected Result:

After processing the WriteProperty request the lUT issues a Result(+) response primitive confirming that

the write has been successfully completed. After processing the ReadProperty request the lUT issues a

Result(+) response primitive which correctly conveys the new value for the specified object and property.

Lower Tester:

The lower tester issues a WriteProperty confirmed-request PDU with the following parameter.

Write Access Specification = (NULL, "FloorSExhaustFan", NULL, ACTIVE)

After the request is issued several things can happen and the lower tester must respond as indicated below.

lUT Response PDU Lower Tester Action

none

error

reject

simpleACK

When a timer expires retransmit as specified by BACnet

Test complete, no action needed

Retransmit as specified by BACnet

Continue to the next step

At this point the lower tester issues a ReadPropery confirmed-request PDU with the following parameter.

’Read Access Specification’ = ("FloorSExhaustFan", Present_Value)

After the request is issued several things can happen and the lower tester must respond as indicated below.

lUT Response PDU Lower Tester Action

none

error

reject

ComplexACK

When a timer expires retransmit as specified by BACnet

Test complete, no action needed

Retransmit as sp>ecified by BACnet

Evaluate response

The lower tester then restores the Present_Value of "FloorSExhaustFan" by writing to it again with a value

of INACTIVE.

lUT:

Process the confirmed-service requests as specified by BACnet.

Upper Tester:

No action required for this test case.

Pass Result:

78

A correctly formed Result(+) response primitive shall be returned by the lUT in response to the

WriteProperty request. A correctly formed complexACK-PDU shall be returned by the lUT in response

to the ReadProperty request which conveys the parameter ’Read Access Result’ = ("FloorSExhaustFan",

ACTIVE).

Either or both of these results may come after retransmitting one or more times, up to the limit specified

in BACnet, and the test results are still considered a pass. The fact that retransmissions were needed

should however be noted because this may be useful information for imcovering a conformance problem

with the rUT.

Fail Result:

If the Result(+) response to the WriteProperty request is returned but is not correctly formed the test fails.

If the WriteProperty request is confirmed but the subsequent ReadProperty indicates that the value of the

property has not been correctly changed the test fails.

Inconclusive Result:

If the WriteProperty service request is confirmed but a value is not returned from the ReadProperty service

because of an error, a reject, or no response is received then the test result is inconclusive. Further tests

may be needed to determine if the ReadProperty or the WriteProperty service has failed. The results are

also inconclusive if a reply is not received for one or more of the lower tester’s requests after all

retransmissions have been exhausted.

Test B.1.3.11.2 Support for the WriteProperty Service Using Default BACnet Device Name

Test Purp>ose:

Verify that the lUT can correctly respond to a valid WriteProperty service request with a default value for

the ’BACnet Device Name’ parameter in the ’Write Access Specification’.

BACnet Clause Reference: 6.5.11

Test Description:

The lower tester issues a WriteProperty service request addressed to the lUT using a default value for the

’Device Name’ parameter. When the WriteProperty service request is acknowledged (possibly after retries)

the lower tester issues a ReadProperty service request addressed to the lUT specifying the same object and

property that was written to in the WriteProperty service request. The value returned from the

ReadProperty request is then compared with the value that was written.

Expected Result:

After processing the WriteProperty request the lUT issues a Result(+) response primitive confirming that

the write has been successfully completed. After processing the ReadProperty request the lUT issues a

Result(+) response primitive which correctly conveys the new value for the specified object and property.

Lower Tester:

The lower tester issues a WriteProperty confirmed-request PDU with the following parameter.

Write Access Specification = (NULL, "FloorSExhaustFan", Present_Value, ACTIVE)

After the request is issued several things can happen and the lower tester must respond as indicated below.

lUT Response PDU Lower Tester Action

79

none When a timer expires retransmit as specified by BACnet

error Test complete, no action needed

reject Retransmit as specified by BACnet

simpleACK Continue to the next step

At this point the lower tester issues a ReadPropery confirmed-request PDU with the following parameter.

’Read Access Specification’ = ("FloorSExhaustFan", Present_Value)

After the request is issued several things can happen and the lower tester must respond as indicated below.

lUT Restxinse PDU Lx)wer Tester Action

none

error

reject

ComplexACK

When a timer expires retransmit as specified by BACnet
Test complete, no action needed

Retransmit as specified by BACnet

Evaluate response

The lower tester then restores the Present_Value of "FloorSExhaustFan" by writing to it again with a value

of INACTIVE.

lUT;

Process the confirmed-service requests as specified by BACnet.

Upper Tester:

No action required for this test case.

Pass Result:

A correctly formed Result(+) response primitive shall be returned by the lUT in response to the

WriteProperty request. A correctly formed complexACK-PDU shall be returned by the lUT in response

to the ReadProperty request which conveys the parameter ’Read Access Result’ = ("FloorSExhaustFan",

ACTIVE).

Either or both of these results may come after retransmitting one or more times, up to the limit specified

in BACnet, and the test results are still considered a pass. The fact that retransmissions were needed

should however be noted because this may be useful information for uncovering a conformance problem

with the lUT.

Fail Result:

If the Result! +) response to the WriteProperty request is returned but is not correctly formed the test fails.

If the WriteProperty request is confirmed but the subsequent ReadProperty indicates that the value of the

property has not been correctly changed the test fails.

Inconclusive Result:

If the WriteProperty service request is confirmed but a value is not returned from the ReadPropierty service

because of an error, a reject, or no response is received then the test result is inconclusive. Further tests

may be needed to determine if the ReadProperty or the WriteProperty service has failed. The results are

also inconclusive if a reply is not received for one or more of the lower tester’s requests after all

retransmissions have been exhausted.

80

Test B. 1.3. 11.3 Support for the WriteProperty Service Using Default Property Identifier

Test Purpose:

Verify that the lUT can correctly respond to a valid WriteProperty service request with a default value for

the ’Property Identifier’ parameter in the ’Write Access Specification’.

BACnet Clause Reference: 6.5.11

Test Description:

The lower tester issues a WriteProperty service request addressed to the lUT using a default value for the

’Property Identifier’ parameter. When the WriteProperty service request is acknowledged (possibly after

retries) the lower tester issues a ReadProperty service request addressed to the lUT specifying the same

object and property that was written to in the WriteProperty service request. The value returned from the

ReadProperty request is then compared with the value that was written.

Expected Result:

After processing the WriteProperty request the lUT issues a Result(+) response primitive confirming that

the write has been successfully completed. After processing the ReadProperty request the lUT issues a

Resultf +) response primitive which correctly conveys the new value for the specified object and property.

Lower Tester:

The lower tester issues a WriteProperty confirmed-request PDU with the following parameter.

Write Access Specification = (lUT, "FloorSExhaustFan", NULL, ACTIVE)

After the request is issued several things can happen and the lower tester must respond as indicated below.

lUT Response PDU Lower Tester Action

none

error

reject

simpleACK

When a timer expires retransmit as specified by BACnet

Test complete, no action needed

Retransmit as specified by BACnet

Continue to the next step

At this point the lower tester issues a ReadPropery confirmed-request PDU with the following parameter.

’Read Access Specification’ = ("FloorSExhaustFan", Present_Value)

After the request is issued several things can happen and the lower tester must respond as indicated below.

lUT Response PDU Lower Tester Action

none

error

reject

ComplexACK

When a timer expires retransmit as specified by BACnet

Test complete, no action needed

Retransmit as specified by BACnet

Evaluate response

The lower tester then restores the Present_Value of "FloorSExhaustFan" by writing to it again with a value

of INACTIVE.

lUT:

Process the confirmed-service requests as specified by BACnet.

81

Upper Tester:

No action required for this test case.

Pass Result:

A correctly formed Result(+) response primitive shall be returned by the lUT in response to the

WriteProperty request. A correctly formed complexACK-PDU shall be returned by the lUT in response

to the ReadProperty request which conveys the parameter ’Read Access Result’ = ("FloorSExhaxistFan'’,

ACTIVE).

Either or both of these results may come after retransmitting one or more times, up to the limit specified

in BACnet, and the test results are still considered a pass. The fact that retransmissions were needed

should however be noted because this may be useful information for uncovering a conformance problem

with the lUT.

Fail Result:

If the Result! +) response to the WriteProperty request is returned but is not correctly formed the test fails.

If the WriteProperty request is confirmed but the subsequent ReadProperty indicates that the value of the

property has not been correctly changed the test fails.

Inconclusive Result:

If the WriteProperty service request is confirmed but a value is not returned from the ReadProperty service

because of an error, a reject, or no response is received then the test result is inconclusive. Further tests

may be needed to determine if the ReadProperty or the WriteProperty service has failed. The results are

also inconclusive if a reply is not received for one or more of the lower tester’s requests after all

retransmissions have been exhausted.

Test B,1.3oll.4 Support for the WriteProperty Service Writing to a Remote Device

Test Fhirpose:

Verify that the lUT can correctly respond to a valid WriteProperty service request with a ’BACnet Device

Identifier’ parameter in the ’Write Access Specification’ which specifies a remote device.

BACnet Clause Reference: 6.5.11

Test Description:

The lower tester issues a WriteProperty service request addressed to the lUT using a default value for the

’Property Identifier’ parameter. The ’BACnet Device Name’ parameter specifies the lower tester. This

means that the lUT must issue a WriteProperty request addressed to the lower tester passing along the

specifications for the object identifier, property identifier, and the new value.

Expected Result:

After processing the WriteProperty request the lUT issues a valid WriteProperty service request addressed

to the lower tester specifying the same object identifier, property identifier and new value.

Lower Tester:

The lower tester issues a WriteProperty confirmed-request PDU with the following parameter.

Write Access Specification = (lower tester, ''MA_SetPoint'', Present_Value, 65.)

The lower tester should receive a WriteProperty request from the lUT and process it in the usual way.

82

note: At some point the lower tester should also receive a confirmation from the lUT that the original

WriteProperty has succeeded. The draft standard is ambiguous about when this should occur. It needs

to specify which of the following cases the confirmation applies to.

1) The WriteProperty request has been received.

2) The WriteProperty request has been received and a new WriteProperty request has been issued as

specified in the service procedure.

3) The WriteProperty request has been received, a new WriteProperty request has been issued, and

confirmation of the second request has been received.

lUT:

Process the requests as specified by BACnet.

Upper Tester:

No action required for this test case.

Pass Result:

A correctly formed WriteProperty request PDU with one of the following Write Access Specifications

should be received by the lower tester.

Write Access Specification = (NULL, "MA_SetPoint", Present_Value, 65.) or

Write Access Specification = (NULL, "MA_SetPoint", NULL, 65.) or.

Write Access Specification = (lower tester, "MA_SetPomt", NULL, 65.) or

Write Access Specification = (lower tester, "MA_SetPoint", Present_Value, 65.)

The lower tester should also receive a Result(+) confirmation from the lUT which corresponds to the

original WriteProperty request. The timing of this confirmation is ambiguous (see note above).

These results may come after retransmitting the original WriteProperty request one or more times, up to

the limit specified in BACnet, and the test results are still considered a pass. The fact that retransmissions

were needed should however be noted because this may be useful mformation for uncovering a

conformance problem with the lUT.

Fail Result:

There are three cases which constitute a failure for this test.

1) The lUT does not issue a WriteProperty request as described above but it does issue a WriteProperty

confirmation to the original request.

2) The lUT issues a correctly WriteProperty request but does not issue a WriteProperty confirmation for

the original WriteProperty request.

3) The timing of the WriteProperty request and the WriteProprerty confirmation is not appropriate (this case

only applies after the ambiguity is resolved.)

7. 1.1.4 Remote Device Managment Services

7. 1.1.5 Virtual Terminal Services

The purpose of Virtual Terminal services is to facilitate the bi-directional exchange of character-oriented data.

83

Normally, these services would be used to permit an application program in one BACnet device to act as a "terminal

emulator" which interacts with an "operator interface" application program in another BACnet device. Because

operator interfaces are not defined by BACnet, a test of these services must be customized for each device being

tested. Guidelines for doing this will be added to a future draft of this test suite.

7.1.2 Application Services Initiated by the Implementation Under Test

The purpose of the tests in this group is to determine if the lUT can correctly initiate the application services that

the PICS claims the lUT supports. The lower tester writes to the properties of the ConformTest object in the lUT
to establish which application service the lUT is expected to initiate and to specify the parameters, if any, that are

to be used in constructing the request PDU. The lower tester then issues a ConformTest service request which

instructs the lUT to construct and issue the application service request specified by the ConformTest object.

7. 1.2.1 Alarm and Event Services

B.2.1 Initiating the AcknowledgeAlarm Service

Test Purpose:

Verify that the lUT can correctly initiate an AcknowledgeAlarm service request.

BACnet Clause Reference: 6.3.1

Test Description:

The lower tester issues a series of WriteProperty requests to initialize the values of the ConformTest object.

The lower tester then issues a ConformTest service request and the response from the lUT is analyzed.

Expected Result:

The lUT issues an AcknowledgeAlarm service request using the parameters specified in the ConformTest

object followed by a Result(+) response to the ConformTest service request.

Lower Tester:

The lower tester issues a series of WriteProperty service requests, following the usual retry procedure if

needed, to initialize the ConformTest object to the following values.

Service_Name

Parameter 1

Parameter2

Parameters

All other parameters

= AcknowledgeAlarm
= "Test_Alarm"

= ALARM
= current time

= NULL

When the confirmations to these services are received a ConformTest service request is issued.

Upper Tester:

When the ConformTest service indication is received the properties of the ConformTest object are read and

an AcknowledgeAlarm service request is generated using the parameter values specified in the ConformTest

object.

84

Pass Result:

A pass result consists of the following sequence of events in order.

1. The lower tester issues the specified WriteProperty requests and receives the corresponding Result(+)

confirmations after one or more tries.

2. The lower tester issues a ConformTest service request.

3. The lower tester receives a correctly formed AcknowledgeAlarm service indication from the lUT which

conveys the parameters specified in the ConformTest object.

4. The lower tester receives a correctly formed Result(+) confirmation to the previously issued

ConformTest service request.

Fail Result:

If the lower tester does not receive a correctly formed AcknowledgeAlarm service indication, the test result

is a failure, (note: This could be an inconclusive result if the correct implementation of the ConformTest

service has not been established by its use in other test cases. It is certain however that either the

ConformTest service has failed or the AcknowledgeAlarm service has failed.) The test result is also a

failure if the lUT returns an error-PDU or rejects the ConformTest request and all retries.

Inconclusive Result:

The result is inconclusive if the lUT does not resp>ond to any of the requests from the lower tester. The

commimication link should be checked to ensure that communication has not been lost due to a lower layer

failure. If this is the case the test must be retried. If this is not the case then this test has failed.

B.2.2 Initiating the ConfimiedEventNotification Service

Test Purpose:

Verify that the lUT can correctly initiate a ConfirmedEventNotification service request.

BACnet Clause Reference: 6.3.2

Test Description:

This test case assumes that the lUT has an Event Enrollment object with the following property values.

Object Identifier

Event Type

Property Reference List

Enabled

Notification Rules

Parameter List

Confirmed Recipient List

Unconfirmed Recipient List

= "TestAlarm"

= ALARM
= ("MA_SetPoint", Present_Value)

= TRUE
= (NORMAL_TO_ALARM, 2, 3, TRUE, "This is a test alarm")

= (50, 60, 1)

= lower tester

= NULL

The event notification is triggered by writing to the Present_Value property of the "MA_SetPoint" object

causing it to go out-of-range.

note: When all of the Event_Types have been defined a test similar to this one should be made for each

Event_Type to check that the Event_type algorithm works properly.

85

Expected Result:

The lUT issues a ConfirmedEventNotification service request conveying the parameters specified in the

"Pass Result" section below. The lUT also issues a Result(+) response to the WriteProperty service

request.

Lx)wer Tester:

The lower tester must establish that the "TestAlarm" object exists and is configured as indicated above.

A WriteProjjerty service request is issued containing the following parameter.

’Write Access Specification’ = ("MA_SetPoint", Present_Value, 70)

When a correctly formed ConfirmedEventNotification indication is received the lower tester must respond

with a Result(+) confirmation.

lUT:

The lUT processes the WriteProperty service indication as specified by BACnet, detects that an event has

occurred and issues a ConfirmedEventNotification service request.

Upper Tester:

No action is required for this test.

Pass Result:

The lower tester must receive a Result(+) confirmation to the WriteProperty service request and a

ConfirmedEventNotification indication. These PDUs may arrive in either order. The

ConfirmedEventNotification indication must convey the following parameters.

’Event Enrollment Object Identifier’

’Event State’

’Event Type’

’Priority’

’Message Test"

’List of Events’

’Time Stamp’

’Acknowledgement Notification’

= "TestAlarm"

= ALARM
= ALARM
= 2

= "This is a test alarm"

= (("MA_SetPoint", Present_Value), 70)

= current time or a sequence number

= FALSE

Fail Result:

If the lower tester receives a Result(+) confirmation to the WriteProperty service request but it does not

receive a correctly formed ConfirmedEventNotification indication as described above the test fails.

Inconclusive Result:

If the lUT does not respond to the WriteProperty request and does not issue the

ConfirmedEventNotification service request the result is inconclusive. The communication link should be

checked to ensure that communication has not been lost due to a lower layer failure.

B.2.2 Initiating the UnconfirmedEventNotification Service

Test Purpose:

Verify that the lUT can correctly initiate an UnconfirmedEventNotification service request.

BACnet Clause Reference: 6.3.5

86

Test Description:

This test case assumes that the lUT has an Event Enrollment object with the following property values.

Object Identifier

Event Type

Property Reference List

Enabled

Notification Rules

Parameter List

Confirmed Recipient List

Unconfirmed Recipient List

= "TestAlarm"

= ALARM
= ("MA_SetPoint", Present_Value)

= TRUE
= (NORMAL_TO_ALARM, 2, 3, TRUE, "This is a test alarm")

= (50, 60, 1)

= NULL
= Lower Tester

The event notification is triggered by writing to the Present_Value property of the "MA_SetPoint" object

causing it to go out-of-range.

note: When all of the Event_Types have been defined a test similar to this one should be made for each

Event_Type to check that the Event_type algorithm works properly.

Expected Result:

The lUT issues an UnconfirmedEventNotification service request conveying the parameters specified in

the "Pass Result" section below. The lUT also issues a Result(4-) response to the WriteProperty service

request.

Lower Tester:

The lower tester must establish that the "TestAlarm" object exists and is configured as indicated above.

A WriteProperty service request is issued containing the following parameter.

’Write Access Specification’ = ("MA_SetPoint", Present_Value, 70)

lUT:

The rUT processes the WriteProperty service indication as specified by BACnet, detects that an event has

occurred, and issues an UnconfirmedEventNotification service request.

Upper Tester:

No action is required for this test.

Pass Result:

The lower tester must receive a Result(-I-) confirmation to the WriteProperty service request and an

UnconfirmedEventNotification indication. These PDUs may arrive in either order. The

UnconfirmedEventNotification indication must convey the following parameters.

’Event Enrollment Object Identifier’

’Event State’

’Event Type’

’Priority’

’Message Test"

’List of Events’

’Time Stamp’

’Acknowledgement Notification’

= "TestAlarm"

= ALARM
= ALARM
= 2

= "This is a test alarm"

= (("MA_SetPoint", Present_Value), 70)

= current time or a sequence number
= FALSE

Fail Result:

If the lower tester receives a Result(-I-) confirmation to the WriteProperty service request but it does not

87

receive a correctly formed UnconfirmedEventNotification indication as described above the test fails.

Inconclusive Result:

If the lUT does not respond to the WriteProperty request and does not issue the

ConfirmedEventNotification service request the result is inconclusive. The communication link should be

checked to ensure that communication has not been lost due to a lower layer failure.

7. 1.2.2 File Access Services

At the present time the File Access services are in a considerable state of flux with some radically different

proposals being considered by the SPC. Defining test cases for these services will be delayed imtil the situation

becomes more clear.

7. 1.2.3 Object Access Services

B.2.3.1.1 Initiating the AddListElement Service

Test Purpose:

Verify that the lUT can correctly initiate an AddListElement service request.

BACnet Clause Reference: 6.5.1

Test Description:

The lower tester issues a series of WriteProperty requests to initialize the values of the ConformTest object.

The lower tester then issues a ConformTest service request and the response from the lUT is analyzed.

Expected Result:

The lUT issues a AddListElement service request using the parameters specified in the ConformTest object

followed by a Result(+) response to the ConformTest service request.

Lower Tester:

The lower tester issues a series of WriteProperty service requests, following the usual retry procedure if

needed, to initialize the ConformTest object to the following values.

Service_Name

Parameter 1

Parameter2

Parameters

All other parameters

= AddListElement Service

= Test_Group

= List_of_Access_Specifications

= (("HighPressSwitch", (Present_Value, Polarity, Reliability)),

("FloorSExhaustFan", (Present_Value, Polarity, Reliability))

= NULL

When the confirmations to these services are received a ConformTest service request is issued. If the lUT

issues the AddListElement service request as expected, the lower tester responds by issuing a Resultf +

)

response primitive.

Upper Tester:

When the ConformTest service indication is received the properties of the ConformTest object are read and

a AddListElement service request is generated using the parameter values specified in the ConformTest

object.

88

Pass Result:

A pass result consists of the following sequence of events in order.

1. The lower tester issues the specified WriteProperty requests and receives the corresponding Result(+)

confirmations after one or more tries.

2. The lower tester issues a ConformTest service request.

3. The lower tester receives a correctly formed AddListElement service indication from the lUT which

conveys the parameters specified in the ConformTest object.

4. The lower tester issues a Result(+) response primitive.

5. The lower tester receives a correctly formed Result(+) confirmation to the previously issued

ConformTest service request.

Fail Result:

If the lower tester does not receive a correctly formed AddListElement service indication the test result is

a failure, (note: This could be an inconclusive result if the correct implementation of the ConformTest

service has not been established by its use in other test cases. It is certain however that either the

ConformTest service has failed or the AddListElement service has failed.) The test result is also a failure

if the lUT returns an error-PDU or rejects the ConformTest request and all retries.

Inconclusive Result:

The result is inconclusive if the lUT does not respond to any of the requests from the lower tester. The

communication link should be checked to ensure that communication has not been lost due to a lower layer

failure. If this is the case the test must be retried. If this is not the case then this test has failed.

B.2.3.2.1 Initiating the CreateEnrolImentObject Service With No Optional Parameters

Test Purpose:

Verify that the lUT can correctly initiate the CreateEnrolImentObject service request with no optional

parameters.

BACnet Clause Reference: 6.5.2

Test Description:

The lower tester issues a series ofWriteProperty requests to initialize the values of the ConformTest object.

The lower tester then issues a ConformTest service request and the response from the lUT is analyzed.

Expected Result:

The lUT issues a CreateEnrolImentObject service request using the parameters specified in the

ConformTest object followed by a Result(+) response to the ConformTest service request.

Lower Tester:

The lower tester issues a series of WriteProperty service requests, following the usual retry procedure if

needed, to initialize the ConformTest object to the following values.

Service_Name = CreateEnrolImentObject

Parameterl = "TestAlarm"

Parameter2 = ALARM

89

Parameters = ("MA_SetPomt", Present_Value)

Parameter4 = (NORMAL_TO_ALARM, 2, 3, TRUE, "This is a test alarm")

Parameters = (50,60,1)

All other parameters = NULL

When the confirmations to these services are received a ConformTest service request is issued. If the lUT
issues the CreateEnrollmentObject service request as expected, the lower tester responds by issuing a

Result(+) response primitive.

Upper Tester:

When the ConformTest service indication is received the properties of the ConformTest object are read and

a CreateEnrollmentObject service request is generated using the parameter values specified in the

ConformTest object.

Pass Result:

A pass result consists of the following sequence of events in order.

1. The lower tester issues the specified WriteProperty requests and receives the corresponding Result(+)

confirmations after one or more tries.

2. The lower tester issues a ConformTest service request.

3. The lower tester receives a correctly formed CreateEnrollmentObject service indication from the lUT
which conveys the parameters specified in the ConformTest object.

4. The lower tester issues a Result(+) response primitive.

5. The lower tester receives a correctly formed Result(+) confirmation to the previously issued

ConformTest service request.

Fail Result:

If the lower tester does not receive a correctly formed CreateEnrollmentObject service indication the test

result is a failure, (note: This could be an inconclusive result if the correct implementation of the

ConformTest service has not been established by its use in other test cases. It is certain however that either

the ConformTest service has failed or the CreateEnrollmentObject service has failed.) The test result is

also a failure if the lUT returns an error-PDU or rejects the ConformTest request and all retries.

Inconclusive Result:

The result is inconclusive if the lUT does not respond to any of the requests from the lower tester. The

communication link should be checked to ensure that communication has not been lost due to a lower layer

failure. If this is the case the test must be retried. If this is not the case then this test has failed.

B.2.3.2.2 Initiating the CreateEnrollmentObject Service With All Optional Parameters

Test Purpose:

Verify that the lUT can correctly initiate a valid CreateEnrollmentObject service request using all optional

parameters.

BACnet Clause Reference: 6.5.2

Test Description:

90

The lower tester issues a series of WriteProperty requests to initialize the values of the ConformTest object.

The lower tester then issues a ConformTest service request and the response from the lUT is analyzed.

Expected Result:

The lUT issues a CreateEnrollmentObject service request using the parameters specified in the

ConformTest object followed by a Result(+) response to the ConformTest service request.

Lower Tester:

The lower tester issues a series of WriteProperty service requests, following the usual retry procedure if

needed, to initialize the ConformTest object to the following values.

Service_Name = CreateEnrollmentObject

Parameterl = "TestAlarm"

Parameter2 = ALARM
Parameters = ("MA_SetPoint", Present_Value)

Parameter4 = TRUE
Parameterb = (NORMAL_TO_ALARM, 2, 3, TRUE, "This is a test alarm")

Parameter? = (50,60,1)

Parameters = GLOBAL
All other parameters = NULL

When the confirmations to these services are received a ConformTest service request is issued. If the lUT
issues the CreateEnrollmentObject service request as expected, the lower tester responds by issuing a

Result(+) response primitive.

Upper Tester:

When the ConformTest service indication is received the properties of the ConformTest object are read and

a CreateEnrollmentObject service request is generated using the parameter values specified in the

ConformTest object.

Pass Result:

A pass result consists of the following sequence of events in order.

1.

The lower tester issues the specified WriteProperty requests and receives the corresponding Result(+)

confirmations after one or more tries.

2. The lower tester issues a ConformTest service request.

3. The lower tester receives a correctly formed CreateEnrollmentObject service indication from the lUT
which conveys the parameters specified in the ConformTest object,

4. The lower tester issues a Result(+) response primitive.

5. The lower tester receives a correctly formed Result(+) confirmation to the previously issued

ConformTest service request.

Fail Result:

If the lower tester does not receive a correctly formed CreateEnrollmentObject service indication the test

result is a failure, (note: This could be an inconclusive result if the correct implementation of the

ConformTest service has not been established by its use in other test cases. It is certain however that either

the ConformTest service has failed or the CreateEnrollmentObject service has failed.) The test result is

also a failure if the lUT returns an error-PDU or rejects the ConformTest request and all retries.

91

Inconclusive Result:

The result is inconclusive if the lUT does not respond to any of the requests from the lower tester. The

communication link should be checked to ensure that communication has not been lost due to a lower layer

failure. If this is the case the test must be retried. If this is not the case then this test has failed.

B.2.3.3.1 Initiating the CreateGroupObject Service

Test Purpose:

Verify that the lUT can correctly initiate a valid CreateGroupObject service request.

BACnet Clause Reference: 6.5.3

Test Description:

The lower tester issues a series of WriteProperty requests to initialize the values of the ConformTest object.

The lower tester then issues a ConformTest service request and the response from the lUT is analyzed.

Expected Result:

The lUT issues a CreateGroupObject service request using the parameters specified in the ConformTest

object followed by a Result(+) response to the ConformTest service request.

Lower Tester:

The lower tester issues a series of WriteProperty service requests, following the usual retry procedure if

needed, to initialize the ConformTest object to the following values.

Service_Name = CreateGroupObject

Parameterl = "Test_Group"

Parameter2 = (("lAHlMAT",(Min_Pres, Max_Pres, Description)),

("MA_SetPoint",(Present_Value, Units)),

("Alarm_Consoles " ,
(Description, Device_List)))

All other parameters = NULL

When the confirmations to these services are received a ConformTest service request is issued. If the lUT

issues the CreateGroupObject service request as expected, the lower tester responds by issuing a Result(+)

response primitive.

Upper Tester:

When the ConformTest service indication is received the properties of the ConformTest object are read and

a CreateGroupObject service request is generated using the parameter values specified in the ConformTest

object.

Pass Result:

A pass result consists of the following sequence of events in order.

1. The lower tester issues the specified WriteProperty requests and receives the corresponding Result(+)

confirmations after one or more tries.

2. The lower tester issues a ConformTest service request.

3. The lower tester receives a correctly formed CreateGroupObject service indication from the lUT which

conveys the parameters specified in the ConformTest object.

92

4. The lower tester issues a Result(+) response primitive.

5. The lower tester receives a correctly formed Result(+) confirmation to the previously issued

ConformTest service request.

Fail Result:

If the lower tester does not receive a correctly formed CreateGroupObject service indication the test result

is a failure, (note: This could be an inconclusive result if the correct implementation of the ConformTest

service has not been established by its use in other test cases. It is certain however that either the

ConformTest service has failed or the CreateGroupObject service has failed.) The test result is also a

failure if the lUT returns an error-PDU or rejects the ConformTest request and all retries.

Inconclusive Result:

The result is inconclusive if the lUT does not respond to any of the requests from the lower tester. The

communication link should be checked to ensure that communication has not been lost due to a lower layer

failure. If this is the case the test must be retried. If this is not the case then this test has failed.

B,2.3.3.1 Initiating the DeleteObject Service

Test Purpose:

Verify that the lUT can correctly initiate a valid DeleteObject service request.

BACnet Clause Reference: 6.5.4

Test Description:

The lower tester issues a series of WriteProperty requests to initialize the values of the ConformTest object.

The lower tester then issues a ConformTest service request and the response from the lUT is analyzed.

Expected Result:

The lUT issues a DeleteObject service request using the parameters specified in the ConformTest object

followed by a Result(+) response to the ConformTest service request.

Lx>wer Tester:

The lower tester issues a series of WriteProperty service requests, following the usual retry procedure if

needed, to initialize the ConformTest object to the following values.

Service_Name = DeleteObject

Parameterl = "Test_Group"

All other parameters = NULL

When the confirmations to these services are received a ConformTest service request is issued. If the lUT
issues the CreateGroupObject service request as expected, the lower tester responds by issuing a Result(+

)

response primitive.

Upper Tester:

When the ConformTest service indication is received the properties of the ConformTest object are read and

a DeleteObject service request is generated using the parameter values specified in the ConformTest object.

Pass Result:

A pass result consists of the following sequence of events in order.

93

1. The lower tester issues the si>ecified WriteProperty requests and receives the corresponding Result(+)

confirmations after one or more tries.

2. The lower tester issues a ConformTest service request.

3. The lower tester receives a correctly formed DeleteObject service indication from the lUT which

conveys the parameters specified in the ConformTest object.

4. The lower tester issues a Result(+) response primitive.

5. The lower tester receives a correctly formed Result(+) confirmation to the previously issued

ConformTest service request.

Fail Result;

If the lower tester does not receive a correctly formed DeleteGroupObject service indication the test result

is a failure, (note: This could be an inconclusive result if the correct implementation of the ConformTest

service has not been established by its use in other test cases. It is certain however that either the

ConformTest service has failed or the DeleteObject service has failed.) The test result is also a failure if

the lUT returns an error-PDU or rejects the ConformTest request and all retries.

Inconclusive Result:

The result is inconclusive if the lUT does not resp>ond to any of the requests from the lower tester. The

communication link should be checked to ensure that communication has not been lost due to a lower layer

failure. If this is the case the test must be retried. If this is not the case then this test has failed.

B.2.3.6.1 Initiating the ReadMultipleProperty Service With No ’Return Read Access With Result’ Parameter

Test Purpose:

Verify that the lUT can correctly initiate a valid ReadProperty service request with no ’Return Read Access

With Result’ parameter. All of the allowed combinations of the ’List of Read Access Specifications’ are

included in this test.

BACnet Clause Reference; 6.5.6

Test Description:

The lower tester issues a series of WriteProperty requests to initialize the values of the ConformTest object.

The lower tester then issues a ConformTest service request and the response from the lUT is analyzed.

Expected Result:

The lUT issues a ReadMultipleProperty service request using the parameters specified in the ConformTest

object followed by a Result(+) response to the ConformTest service request.

Lower Tester:

The lower tester issues a series of WriteProperty service requests, following the usual retry procedure if

needed, to initialize the ConformTest object to the following values.

Service_Name = ReadMultipleProperty

Parameterl = ((lower tester, "lAHlMAT", Present_Value, Reliability, Description),

(NULL, "lAHlDMPR", Present_Value, Status_Flags),

(NULL, "HighPressSwitch", NULL))
All other parameters = NULL

94

When the confirmations to these confirmed services are received a ConformTest service request is issued.

If the lUT issues the ReadMultipIeProperty service request as expected, the lower tester responds by

issuing a Result(+) response primitive containing the requested property values.

Upper Tester:

When the ConformTest service indication is received the properties of the ConformTest object are read and

a ReadMultipIeProperty service request is generated using the specified values for the ’Read Access

Specification’.

Pass Result:

A pass result consists of the following sequence of events in order.

1. The lower tester issues the specified WriteProperty requests and receives the corresponding Result(+)

confirmations after one or more tries.

2. The lower tester issues a ConformTest service request.

3. The lower tester receives a correctly formed ReadProperty service indication from the lUT which

specifies the ’List of Read Access Specifications’ described above.

4. The lower tester issues a Result(+) response primitive containing the requested property values.

5. The lower tester receives a correctly formed Result(+) confirmation to the previously issued

ConformTest service request.

Fail Result:

If the lower tester does not receive a correctly formed ReadProperty service indication the test result is

a failure, (note: This could be an inconclusive result if the correct implementation of the ConformTest

service has not been established by its use in other test cases. It is certain however that either the

ConformTest service has failed or the ReadProperty service has failed.) The test result is also a failure

if the lUT returns an error-PDU or rejects the ConformTest request and all retries.

Inconclusive Result:

The result is inconclusive if the lUT does not respond to any of the requests from the lower tester. The

communication link should be checked to ensure that communication has not been lost due to a lower layer

failure. If this is the case the test must be retried. If this is not the case then this test has failed.

B.2.3.6.2 Initiating the ReadMultipIeProperty Service With ’Return Read Access with Result’ = FALSE

Test Purpose:

Verify that the lUT can correctly initiate a valid ReadProperty service request with ’Return Read Access

with Result’ = FALSE. All of the allowed combinations of the ’List of Read Access Sjjecifications’ are

included in this test.

BACnet Clause Reference: 6.5.6

Test Description:

The lower tester issues a series of WriteProperty requests to initialize the values of the ConformTest object.

The lower tester then issues a ConformTest service request and the response from the lUT is analyzed.

95

Expected Result:

The lUT issues a ReadMuItipleProperty service request using the parameters specified in the ConformTest

object followed by a Result(+) response to the ConformTest service request.

Lower Tester:

The lower tester issues a series of WriteProperty service requests, following the usual retry procedure if

needed, to initialize the ConformTest object to the following values.

Service_Name = ReadMuItipleProperty

Parameterl = ((lower tester, "lAHlMAT", Present_Value, Reliability, Description),

(NULL, "lAHlDMPR", Present Value, Status Flags),

(NULL, "HighPressSwitch", NULL))
Return Read Access Specifications with Result = FALSE
All other parameters = NULL

When the confirmations to these confirmed services are received a ConformTest service request is issued.

If the lUT issues the ReadMuItipleProperty service request as exp^ted, the lower tester responds by

issuing a Result(+) response primitive containing the requested property values.

Upper Tester:

When the ConformTest service indication is received the properties of the ConformTest object are read and

a ReadMuItipleProperty service request is generated using the specified values for the ’Read Access

Specification’ and the ’Return Read Access Specifications with Result’ parameters.

Pass Result:

A pass result consists of the following sequence of events in order.

1. The lower tester issues the specified WriteProperty requests and receives the corresponding Result(+)

confirmations after one or more tries.

2. The lower tester issues a ConformTest service request.

3. The lower tester receives a correctly formed ReadProperty service indication from the lUT which

specifies the ’List of Read Access Specifications’ described above and ’Return Access Specifications with

Result’ = FALSE.

4. The lower tester issues a Result(+) response primitive containing the requested property values.

5. The lower tester receives a correctly formed Result(+) confirmation to the previously issued

ConformTest service request.

Fail Result:

If the lower tester does not receive a correctly formed ReadProperty service indication the test result is

a failure, (note: This could be an inconclusive result if the correct implementation of the ConformTest

service has not been established by its use in other test cases. It is certain however that either the

ConformTest service has failed or the ReadProperty service has failed.) The test result is also a failure

if the lUT returns an error-PDU or rejects the ConformTest request and all retries.

Inconclusive Result:

The result is inconclusive if the lUT does not respond to any of the requests from the lower tester. The

communication link should be checked to ensure that communication has not been lost due to a lower layer

96

failure. If this is the case the test must be retried. If this is not the case then this test has failed.

B.2.3.6.3 Initiating the ReadMuItipleProperty Service With ’Return Read Access with Result’ = TRUE

Test Purpose:

Verily that the lUT can correctly initiate a valid ReadProperty service request with ’Return Read Access

with Result’ = TRUE. All of the allowed combinations of the ’List of Read Access Specifications’ are

included in this test.

BACnet Clause Reference: 6.5.6

Test Description:

The lower tester issues a series of WriteProperty requests to initialize the values of the ConformTest object.

The lower tester then issues a ConformTest service request and the response from the lUT is analyzed.

Expected Result:

The lUT issues a ReadMuItipleProperty service request using the parameters specified in the ConformTest

object followed by a Result(+) response to the ConformTest service request.

Lower Tester:

The lower tester issues a series of WriteProperty service requests, following the usual retry procedure if

needed, to initialize the ConformTest object to the following values.

Service_Name = ReadMuItipleProperty

Parameterl = ((lower tester, "lAHlMAT", Present_Value, Reliability, Description),

(NULL, "lAHlDMPR", Present_Value, Status_Flags),

(NULL, "HighPressSwitch", NULL))
Return Read Access Specifications with Result = TRUE
All other parameters = NULL

When the confirmations to these confirmed services are received a ConformTest service request is issued.

If the lUT issues the ReadMuItipleProperty service request as expected, the lower tester responds by

issuing a Result(+) response primitive containing the requested property values.

Upper Tester:

When the ConformTest service indication is received the properties of the ConformTest object are read and

a ReadMuItipleProperty service request is generated using the specified values for the ’Read Access

Specification’ and the ’Return Read Access Specifications with Result’ parameters.

Pass Result:

A pass result consists of the following sequence of events in order.

1. The lower tester issues the specified WriteProperty requests and receives the corresponding Result(+)

confirmations after one or more tries.

2. The lower tester issues a ConformTest service request.

3. The lower tester receives a correctly formed ReadProperty service indication from the lUT which

specifies the ’List of Read Access Sp)ecifications’ described above and ’Return Access Specifications with

Result’ = TRUE.

97

4. The lower tester issues a Result(+) response primitive containing the requested property values.

5. The lower tester receives a correctly formed Result(+) confirmation to the previously issued

ConformTest service request.

Fail Result:

If the lower tester does not receive a correctly formed ReadProperty service indication the test result is

a failure, (note: This could be an inconclusive result if the correct implementation of the ConformTest

service has not been established by its use in other test cases. It is certain however that either the

ConformTest service has failed or the ReadProperty service has failed.) The test result is also a failure

if the lUT returns an error-PDU or rejects the ConformTest request and all retries.

Inconclusive Result:

The result is inconclusive if the lUT does not respond to any of the requests from the lower tester. The

communication link should be checked to ensure that communication has not been lost due to a lower layer

failure. If this is the case the test must be retried. If this is not the case then this test has failed.

B.2.3.7.1 Initiating the ReadProperty Service With All Default Parameters

Test Purpose:

Verify that the lUT can correctly initiate a valid ReadProperty service request with default values for the

’Object Identifier’ and ’Property Identifier’ parameters in the ’Read Access Specification’.

BACnet Clause Reference:' 6.5.7

Test Description:

The lower tester issues a series of WriteProperty requests to initialize the values of the ConformTest object.

The lower tester then issues a ConformTest service request and the response from the lUT is analyzed.

Expected Result:

The lUT issues a ReadProperty service request using the parameters specified in the ConformTest object

followed by a Result(+) response to the ConformTest service request.

Lower Tester:

The lower tester issues a WriteProperty service request, following the usual retry procedure if needed, to

initialize the ConformTest object to the following values.

Service_Name = ReadProperty

All other parameters = NULL

When the confirmation to this confirmed service is received a ConformTest service request is issued. If

the lUT issues the ReadProperty service request as expected, the lower tester responds by issuing a

Result! +) response primitive containing the default property of the default object.

Upper Tester:

When the ConformTest service indication is received the properties of the ConformTest object are read and

a ReadProperty service request is generated using all default values for the ’Read Access Specification’.

Pass Result:

A pass result consists of the following sequence of events in order.

98

1. The lower tester issues the specified WriteProperty request and receives the corresponding Result(+)

confirmation after one or more tries.

2. The lower tester issues a ConformTest service request.

3. The lower tester receives a correctly formed ReadProperty service indication from the lUT which

specifies the default property of the default object.

4. The lower tester issues a Result(+) response primitive containing the default property of the default

object.

5. The lower tester receives a correctly formed Result(+) confirmation to the previously issued

ConformTest service request.

Fail Result:

If the lower tester does not receive a correctly formed ReadProperty service indication the test result is

a failure, (note: This could be an inconclusive result if the correct implementation of the ConformTest

service has not been established by its use in other test cases. It is certain however that either the

ConformTest service has failed or the ReadProperty service has failed.) The test result is also a failure

if the lUT returns an error-PDU or rejects the ConformTest request and all retries.

Inconclusive Result:

The result is inconclusive if the lUT does not respond to any of the requests from the lower tester. The

communication link should be checked to ensure that communication has not been lost due to a lower layer

failure. If this is the case the test must be retried. If this is not the case then this test has failed.

B.2.3.7.2 Initiating the ReadProperty Service Using Default Object Identifier

Test Purpose:

Verily that the lUT can correctly initiate a valid ReadProperty service request with a default value for the

’Object Identifier’ and a specified ’Property Identifier’ in the ’Read Access Specification’ parameter.

BACnet Clause Reference: 6.5.7

Test Description:

The lower tester issues a series of WriteProperty requests to initialize the values of the ConformTest object.

The lower tester then issues a ConformTest service request and the response from the lUT is analyzed.

Expected Result:

The lUT issues a ReadProperty service request using the parameters specified in the ConformTest object

followed by a Result(+) response to the ConformTest service request.

Lower Tester:

The lower tester issues a series of WriteProperty service requests, following the usual retry procedure if

needed, to initialize the ConformTest object to the following values.

Service_Name = ReadProperty

Parameterl = (NULL, Protocol_Version)

All other parameters = NULL

99

When the confirmation to these confirmed services are received a ConformTest service request is issued.

If the lUT issues the ReadProperty service request as expected, the lower tester responds by issuing a

Result(+) response primitive containing the Protocol_Version property of the default object. When the

test has completed the lower tester issues a WriteProperty service request to return the Parameterl property

to a value of NULL (the standard configuration).

Upper Tester:

When the ConformTest service indication is received the properties of the ConformTest object are read and

a ReadProperty service request is generated using the specified values for the ’Read Access Specification’.

Pass Result:

A pass result consists of the following sequence of events in order.

1. The lower tester issues the specified WriteProperty requests and receives the corresponding Result(+)

confirmations after one or more tries.

2. .The lower tester issues a ConformTest service request.

3. The lower tester receives a correctly formed ReadProperty service indication from the lUT which

specifies the Protocol_Version property of the default object.

4. The lower tester issues a Result(+) resp>onse primitive containing the ProtocoI_Version property of the

default object.

5. The lower tester receives a correctly formed Result(+) confirmation to the previously issued

ConformTest service request.

Fail Result:

If the lower tester does not receive a correctly formed ReadProperty service indication the test result is

a failure, (note: This could be an inconclusive result if the correct implementation of the ConformTest

service has not been established by its use in other test cases. It is certain however that either the

ConformTest service has failed or the ReadProperty service has failed.) The test result is also a failure

if the rUT returns an error-PDU or rejects the ConformTest request and all retries.

Inconclusive Result:

The result is inconclusive if the lUT does not respond to any of the requests from the lower tester. The

communication link should be checked to ensure that communication has not been lost due to a lower layer

failure. If this is the case the test must be retried. If this is not the case then this test has failed.

B.2.3.7.3 Initiating the ReadProperty Service Using Default Property Identifier

Test Purpose:

Verify that the lUT can correctly initiate a valid ReadProperty service request using a default ’Property

Identifier’ in the ’Read Access Specification’ parameter.

BACnet Clause Reference: 6.5.7

Test Description:

The lower tester issues a series of WriteProp>erty requests to initialize the values of the ConformTest object.

The lower tester then issues a ConformTest service request and the response from the lUT is analyzed.

100

Expected Result:

The lUT issues a ReadProperty service request using the parameters specified in the ConformTest object

followed by a Result(+) response to the ConformTest service request.

Lower Tester:

The lower tester issues a series of WriteProperty service requests, following the usual retry procedure if

needed, to initialize the ConformTest object to the following values.

Service_Name = ReadProperty

Parameterl = (DEVICE object identifier, NULL)
All other parameters = NULL

When the confirmation to these confirmed services are received a ConformTest service request is issued.

If the lUT issues the ReadProperty service request as expected, the lower tester responds by issuing a

Result(+) response primitive containing the System_Status property of the DEVICE object. When the test

has completed the lower tester issues a WriteProperty service request to return the Parameterl property

to a value of NULL (the standard configuration).

Upper Tester:

When the ConformTest service indication is received the properties of the ConformTest object are read and

a ReadProperty service request is generated using the specified values for the ’Read Access Specification’.

Pass Result:

A pass result consists of the following sequence of events in order.

1. The lower tester issues the specified WriteProperty requests and receives the corresponding Result(+)

confirmations after one or more tries.

2. The lower tester issues a ConformTest service request.

3. The lower tester receives a correctly formed ReadProperty service indication from the lUT which

specifies the default property of the DEVICE object.

4. The lower tester issues a Result(+) response primitive containing the System_Status property of the

DEVICE object.

5. The lower tester receives a correctly formed Result(+) confirmation to the previously issued

ConformTest service request.

Fail Result:

If the lower tester does not receive a correctly formed ReadProperty service indication the test result is

a failure, (note: This could be an inconclusive result if the correct implementation of the ConformTest

service has not been established by its use in other test cases. It is certain however that either the

ConformTest service has failed or the ReadProperty service has failed.) The test result is also a failure

if the lUT returns an error-PDU or rejects the ConformTest request and all retries.

Inconclusive Result:

The result is inconclusive if the lUT does not respond to any of the requests from the lower tester. The

communication link should be checked to ensure that communication has not been lost due to a lower layer

failure. If this is the case the test must be retried. If this is not the case then this test has failed.

101

B.2.3.7.4 Initiating the ReadProperty Service Using No Default Parameters

Test Ihirpose:

Verify that the lUT can correctly initiate a valid ReadProperty service request using no defaults in the

’Read Access Specification’ parameter.

BACnet Clause Reference: 6.5.7

Test Description:

The lower tester issues a series of WriteProperty requests to initialize the values of the ConformTest object.

The lower tester then issues a ConformTest service request and the response from the lUT is analyzed.

Exp>ected Result:

The lUT issues a ReadProperty service request using the parameters specified in the ConformTest object

followed by a Result(+) response to the ConformTest service request.

Lower Tester:

The lower tester issues a series of WriteProperty service requests, following the usual retry procedure if

needed, to initialize the ConformTest object to the following values.

Service_Name = ReadProperty

Parameterl = ("lAHlMAT", State)

All other parameters = NULL

When the confirmation to these confirmed services are received a ConformTest service request is issued.

If the lUT issues the ReadProperty service request as expected, the lower tester resp>onds by issuing a

Result(-f) response primitive containing the Protocol_Version property of the default object. When the

test has completed the lower tester issues a WriteProperty service request to return the Parameterl property

to a value of NULL (the standard configuration).

Upper Tester:

When the ConformTest service indication is received the properties of the ConformTest object are read and

a ReadProperty service request is generated using the specified values for the ’Read Access Specification’.

Pass Result:

A pass result consists of the following sequence of events in order.

1. The lower tester issues the specified WriteProperty requests and receives the corresponding Result(+)

confirmations after one or more tries.

2. The lower tester issues a ConformTest service request.

3. The lower tester receives a correctly formed ReadProperty service indication from the lUT which

specifies the State property of the object "lAHlMAT".

4. The lower tester issues a Result(+) response primitive containing the State property of the object

"lAHlMAT".

5. The lower tester receives a correctly formed Result(+) confirmation to the previously issued

ConformTest service request.

102

Fail Result:

If the lower tester does not receive a correctly formed ReadProperty service indication the test result is

a failure, (note: This could be an inconclusive result if the correct implementation of the ConformTest

service has not been established by its use in other test cases. It is certain however that either the

ConformTest service has failed or the ReadProperty service has failed.) The test result is also a failure

if the lUT returns an error-PDU or rejects the ConformTest request and all retries.

Inconclusive Result:

The result is inconclusive if the lUT does not respond to any of the requests from the lower tester. The

communication link should be checked to ensure that communication has not been lost due to a lower layer

failure. If this is the case the test must be retried. If this is not the case then this test has failed.

B.2.3. 10. 1 Initiating the WriteMuItipleProperty Service With No ’Return Read Access With Result’ Parameter

Test Purpose:

Verify that the lUT can correctly initiate a valid WriteMuItipleProperty service request. All of the allowed

combinations of the ’List of Write Access Specifications’ are included in this test.

BACnet Clause Reference: 6.5.10

Test Description:

The lower tester issues a series of WriteProperty requests to initialize the values of the ConformTest object.

The lower tester then issues a ConformTest service request and the response from the lUT is analyzed.

Expected Result:

The lUT issues a WriteMuItipleProperty service request using the parameters specified in the ConformTest

object followed by a Result(+) response to the ConformTest service request.

Lower Tester:

The lower tester issues a series of WriteProperty service requests, following the usual retry procedure if

needed, to initialize the ConformTest object to the following values.

Service_Name = WriteMuItipleProperty

Parameterl = (("lAHlMAT", Present_Value, Reliability, Description),

(NULL, "lAHlDMPR", Present_Value, Status_Flags),

(NULL, "HighPressSwitch", NULL))
All other parameters = NULL

When the confirmations to these confirmed services are received a ConformTest service request is issued.

If the lUT issues the ReadMultipIeProperty service request as expected, the lower tester responds by

issuing a Result(+) response primitive containing the requested property values.

Upper Tester:

When the ConformTest service indication is received the properties of the ConformTest object are read and

a ReadMultipIeProperty service request is generated using the specified values for the ’Read Access

Specification’.

Pass Result:

A pass result consists of the following sequence of events in order.

103

1. The lower tester issues the specified WriteProi5erty requests and receives the corresponding Result(+)

confirmations after one or more tries.

2. The lower tester issues a ConformTest service request.

3. The lower tester receives a correctly formed ReadProperty service indication from the lUT which

specifies the ’List of Read Access Specifications’ described above.

4. The lower tester issues a Result(+) response primitive containing the requested property values.

5. The lower tester receives a correctly formed Result(+) confirmation to the previously issued

ConformTest service request.

Fail Result:

If the lower tester does not receive a correctly formed ReadProperty service indication the test result is

a failure, (note: This could be an inconclusive result if the correct implementation of the ConformTest

service has not been established by its use in other test cases. It is certain however that either the

ConformTest service has failed or the ReadProperty service has failed.) The test result is also a failure

if the lUT returns an error-PDU or rejects the ConformTest request and all retries.

Inconclusive Result:

The result is inconclusive if the lUT does not respond to any of the requests from the lower tester. The

communication link should be checked to ensure that communication has not been lost due to a lower layer

failure. If this is the case the test must be retried. If this is not the case then this test has failed.

B.2.3cll.l Initiating the WriteProperty Service With All Default Parameters

Test Purpose:

Verify that the lUT can correctly initiate a valid WriteProperty service request with default values for the

’BACnet Device Name’ and ’Property Identifier’ parameters in the ’Write Access Specification’.

BACnet Clause Reference: 6.5.11

Test Description:

The lower tester issues a series of WriteProperty requests to initialize the values of the ConformTest object.

The lower tester then issues a ConformTest service request and the response from the lUT is analyzed.

Expected Result:

The lUT issues a WriteProperty service request using the parameters specified in the ConformTest object

followed by a Result(+) response to the ConformTest service request.

Lower Tester:

The lower tester issues a series of WriteProperty service requests, following the usual retry procedure if

needed, to initialize the ConformTest object to the following values.

Service_Name = WriteProperty

Write Access Specification = (NULL, "ExhaustFanEnable", NULL, ACTIVE)
All other parameters = NULL

When the confirmation to this confirmed service is received a ConformTest service request is issued. If

the lUT issues the WriteProperty service request as expected, the lower tester responds by issuing a

104

Result(+) response primitive. When the test has completed the lower tester issues a WriteProperty service

request to return the Parameterl property to a value of NULL (the standard configuration).

Upper Tester:

When the ConformTest service indication is received the properties of the ConformTest object are read and

a WriteProperty service request is generated using the specified values for the ’Write Access Specification’.

Pass Result:

A pass result consists of the following sequence of events in order.

1. The lower tester issues the specified WriteProperty requests and receives the corresponding Result(+)

confirmations after one or more tries.

2. The lower tester issues a ConformTest service request.

3. The lower tester receives a correctly formed WriteProperty service indication from the lUT which

conveys one of the valid ’Write Access Specification’.

4. The lower tester issues a Result(+) response primitive.

5. The lower tester receives a correctly formed Result(+) confirmation to the previously issued

ConformTest service request.

Fail Result:

If the lower tester does not receive a correctly formed WriteProperty service indication the test result is

a failure, (note: This could be an inconclusive result if the correct implementation of the ConformTest

service has not been established by its use in other test cases. It is certain however that either the

ConformTest service has failed or the ReadProperty service has failed.) The test result is also a failure

if the lUT returns an error-PDU or rejects the ConformTest request and all retries.

Inconclusive Result:

The result is inconclusive if the lUT does not respond to any of the requests from the lower tester. The

communication link should be checked to ensure that communication has not been lost due to a lower layer

failure. If this is the case the test must be retried. If this is not the case then this test has failed.

B.2.3.11.2 Initiating the WriteProperty Service Using Default BACnet Device Name

Test Purpose:

Verify that the lUT can correctly initiate a valid WriteProperty service request with a default value for the

’BACnet Device Name’ and a specified ’Property Identifier’ in the ’Write Access Specification’ parameter.

BACnet Clause Reference: 6.5.11

Test Description:

The lower tester issues a series of WriteProperty requests to initialize the values of the ConformTest object.

The lower tester then issues a ConformTest service request and the response from the lUT is analyzed.

Expected Result:

The lUT issues a WriteProperty service request using the parameters specified in the ConformTest object

followed by a Result(+) response to the ConformTest service request.

105

Lower Tester:

The lower tester issues a series of WriteProperty service requests, following the usual retry procedure if

needed, to initialize the ConformTest object to the following values.

Service_Name = WriteProperty

Parameter 1 = (NULL, "Alarm_Consoles", Description, "This is a new Description!")

All other parameters = NULL

When the confirmation to these confirmed services are received a ConformTest service request is issued.

If the rUT issues the WriteProperty service request as expected, the lower tester responds by issuing a

Result(+) response primitive. When the test has completed the lower tester issues a WriteProperty service

request to return the Parameter 1 property to a value of NULL (the standard configuration).

Upper Tester:

When the ConformTest service indication is received the properties of the ConformTest object are read and

a WriteProperty service request is generated using the specified values for the ’Write Access Specification’.

Pass Result:

A pass result consists of the following sequence of events in order.

1. The lower tester issues the specified WriteProperty requests and receives the corresponding Result(+)

confirmations after one or more tries.

2. The lower tester issues a ConformTest service request.

3. The lower tester receives a correctly formed WriteProperty service indication from the lUT which

conveys one of the valid ’Write Access Specification’.

4. The lower tester issues a Result(+) response primitive.

5. The lower tester receives a correctly formed Result(+) confirmation to the previously issued

ConformTest service request.

Fail Result:

If the lower tester does not receive a correctly formed WriteProperty service indication the test result is

a failure, (note: This could be an inconclusive result if the correct implementation of the ConformTest

service has not been established by its use in other test cases. It is certain however that either the

ConformTest service has failed or the WriteProperty service has failed.) The test result is also a failure

if the rUT returns an error-PDU or rejects the ConformTest request and all retries.

Inconclusive Result:

The result is inconclusive if the lUT does not respond to any of the requests from the lower tester. The

communication link should be checked to ensure that communication has not been lost due to a lower layer

failure. If this is the case the test must be retried. If this is not the case then this test has failed.

B.2.3.11.3 Initiating the WriteProperty Service Using Default Property Identifier

Test Purpose:

Verify that the lUT can correctly initiate a valid WriteProperty service request using a default ’Property

Identifier’ in the ’Write Access Specification’ parameter.

106

BACnet Clause Reference: 6.5.11

Test Description:

The lower tester issues a series of WriteProperty requests to initialize the values of the ConformTest object.

The lower tester then issues a ConformTest service request and the resf>onse from the lUT is analyzed.

Expected Result:

The lUT issues a WriteProperty service request using the parameters specified in the ConformTest object

followed by a Result(+) response to the ConformTest service request.

Lower Tester:

The lower tester issues a series of WriteProperty service requests, following the usual retry procedure if

needed, to initialize the ConformTest object to the following values.

Service_Name = WriteProperty

Parameterl = (lower tester, "MA_SetPoint", NULL, 65.)

All other parameters = NULL

When the confirmation to these confirmed services are received a ConformTest service request is issued.

If the lUT issues the WriteProperty service request as expected, the lower tester responds by issuing a

Result! +) response primitive. When the test has completed the lower tester issues a WriteProperty service

request to return the Parameterl property to a value of NULL (the standard configuration).

Upper Tester:

When the ConformTest service indication is received the properties of the ConformTest object are read and

a ReadProperty service request is generated using the specified values for the ’Read Access Specification’.

Pass Result:

A pass result consists of the following sequence of events in order.

1. The lower tester issues the specified WriteProperty requests and receives the corresponding Result! +)

confirmations after one or more tries.

2. The lower tester issues a ConformTest service request.

3. The lower tester receives a correctly formed WriteProperty service indication from the lUT which

conveys one of the valid ’Write Access Specification’.

4. The lower tester issues a Result! +) response primitive.

5. The lower tester receives a correctly formed Result! +) confirmation to the previously issued

ConformTest service request.

Fail Result:

If the lower tester does not receive a correctly formed WriteProperty service indication the test result is

a failure, (note: This could be an inconclusive result if the correct implementation of the ConformTest

service has not been established by its use in other test cases. It is certain however that either the

ConformTest service has failed or the ReadProperty service has failed.) The test result is also a failure

if the lUT returns an error-PDU or rejects the ConformTest request and all retries.

Inconclusive Result:

The result is inconclusive if the lUT does not respond to any of the requests from the lower tester. The

107

communication link should be checked to ensure that communication has not been lost due to a lower layer

failure. If this is the case the test must be retried. If this is not the case then this test has failed.

B.2.3.11.4 Initiating the WriteProperty Service Using No Default Parameters

Test PurpKJse:

Verify that the lUT can correctly initiate a valid WriteProperty service request using no defaults in the

’Write Access Specification’ parameter.

BACnet Clause Reference: 6.5.11

Test Description:

The lower tester issues a series of WriteProperty requests to initialize the values of the ConformTest object.

The lower tester then issues a ConformTest service request and the response from the lUT is analyzed.

Expected Result:

The lUT issues a ReadProperty service request using the parameters specified in the ConformTest object

followed by a Result(+) response to the ConformTest service request.

Lx)wer Tester:

The lower tester issues a series of WriteProperty service requests, following the usual retry procedure if

needed, to initialize the ConformTest object to the following values.

Service_Name = WriteProperty

Parameter 1 = (lower tester, "HighPressSwitch", Out_Of_Service, TRUE)
All other parameters = NULL

When the confirmation to these confirmed services are received a ConformTest service request is issued.

If the lUT issues the WriteProperty service request as expected, the lower tester responds by issuing a

Result! +) response primitive. When the test has completed the lower tester issues a WriteProperty service

request to return the Parameter 1 property to a value of NULL (the standard configuration).

Upper Tester:

When the ConformTest service indication is received the properties of the ConformTest object are read and

a WriteProperty service request is generated using the specified values for the ’Write Access Specification’.

Pass Result:

A pass result consists of the following sequence of events in order.

1. The lower tester issues the specified WriteProperty requests and receives the corresponding Result! +)
confirmations after one or more tries.

2. The lower tester issues a ConformTest service request.

3. The lower tester receives a correctly formed WriteProperty service indication from the lUT which

conveys one of the valid ’Write Access Specification’.

4. The lower tester issues a Result! +) response primitive.

5. The lower tester receives a correctly formed Result! +) confirmation to the previously issued

108

ConformTest service request.

Fail Result:

If the lower tester does not receive a correctly formed WriteProperty service indication the test result is

a failure, (note: This could be an inconclusive result if the correct implementation of the ConformTest

service has not been established by its use in other test cases. It is certain however that either the

ConformTest service has failed or the ReadProperty service has failed.) The test result is also a failure

if the lUT returns an error-PDU or rejects the ConformTest request and all retries.

Inconclusive Result:

The result is inconclusive if the lUT does not respond to any of the requests from the lower tester. The

communication link should be checked to ensure that communication has not been lost due to a lower layer

failure. If this is the case the test must be retried. If this is not the case then this test has failed.

7. 1.2.4 Virtual Terminal Services

The purpose of Virtual Terminal services is to facilitate the bi-directional exchange of character-oriented data.

Normally, these services would be used to permit an application program in one BACnet device to act as a "terminal

emulator" which interacts with an "operator interface" application program in another BACnet device. Because

operator interfaces are not defined by BACnet, a test of these services must be customized for each device being

tested. Guidelines for doing this will be added to a future draft of this test suite.

8. FUTURE WORK

Much work remains to be done before a conformance testing procedure is complete. Various parts of the draft

standard need to be finalized. Outstanding questions regarding the minimum requirements in order to claim

conformance need to be resolved, including the number of conformance classes will there will be and how they will

be defined. This draft abstract test suite is a first attempt to define what the conformance tests will actually be.

For most of the test cases in this suite, assumptions were made about particular object types and services are

supf>orted. Changes may need to be made if these assumptions do not appear to be reasonable when conformance

classes are decided upon. Another open question is "How thorough is thorough enough?". It may be decided that

some test cases described here will not be sufficient to build confidence that the lUT correctly implements the

portion of the standard being tested. Other test cases may be considered overkill. The hard question of testing the

lUT’s responses to invalid or inopportune events has not been addressed in this first draft. All of these issues must

be addressed before the abstract test suite can be finalized.

Having an abstract test suite is not the final answer to the conformance testing problem. There still needs to be a

real test system that implements the tests. Only after such a system has been built and used for a period of time

will there be any real confidence that the conformance tests are sound. Such a real test system is now being

developed at NIST. The plan is to coordinate this activity with participants in the building industry so that prototype

BACnet devices can be tested using this facility. This effort should provide valuable feedback both in terms of

evaluating the BACnet standard and the conformance testing process.

109

REFERENCES

[1] Bushby, S. T., and Newman, H.M, "Standardizing EMCS Communication

Protocols." ASHRAE Journal Vol 31, No 1, January 1989.

[2] Bushby, S. T., and Newman, H. M., "BACnet - The Emerging Communication

Protocol for Building Automation Systems." ASHRAE Journal (scheduled for publication in April 1991).

[3] Fisher, D. M., "’ASHRAE Protocol’: A Route to Building Systems

Compatibility. " Building Operating Management June, 1990 p. 56 - 62.

[4] Bushby, S. T., "Testing Conformance to Energy Management and Control System

Communication Protocols - Part 1: Test Architecture." ASHRAE Transactions Vol 96, Pt 1, paper AT
90-14-3, 1990.

[5] ISO, Draft International Standard 9646-1, "Information processing systems

- open systems interconnection - OSI Conformance Testing Methodology and Framework - part 1: General

Concepts." International Standards Organization. Available from ANSI, 1400 Broadway, New York, NY
10018.

[6] Bushby, S. T., "Testing Conformance to Energy Management and Control System

Communication Protocols - Part 2: Test Suite Generation." ASHRAE Transactions Vol 96, Pt 1, paper

AT 90-14-4, 1990.

[7] ASHRAE, "Minutes of SPC 135P Application Services Working Group, September 14, 1990, San Diego,

CA." SPC 135P AS-032.

[8] ISO, International Standard 7498, "Information Processing Systems - Open

System Interconnection - Basic Reference Model." Available from ANSI, 1400 Broadway, New York,

NY 10018.

[9] ASHRAE, "BACnet - A Data Communication Protocol for Building Automation and Control Networks."

Working Draft 3. September 5, 1990.

110

APPENDIX 1 - ASN.l Production for BACnetPropertyType

The comments after each line of the production indicate the status of the property with regard to functional range

testing. A designation of "service" means that the property is closely linked to the service procedure for one or

more of the application services other than WriteProperty or WriteMultipleProperty. The only functional range

testing for these properties is part of testing the implementation of the related application service or services. A
designation of "text" means that the property is a text string. The designation "enumerated" means that the property

is an enumeration of several possible values that can be tested by using the WriteProperty and ReadProperty

services. If there is no designation this means that the property has an undefined range in draft 3 of BACnet. An
example of this is the "bias" property of the Loop object-type. It is a numeric value with no specified range.

BACnetPropertyType ::= ENUMERATED {

acknowledged (0), ~ service

action (1), — enumerated

active-text (2), “ text

active-vt-sessions (3), — service

application-software-version (4), — text

bias (5),

change-of-state-coimt (6), “ service

change-of-state-time (7), — service

confirmed-recipient-list (8).

controlled-variable-reference (9),

datelist (10)

derivative-constant (11).

derivative-constant-units (12), — text

description (13), — text

device-address (14),

device-list (15),

device-type (16), -- text

effective-period (17), — range

elapsed-active-time (18),

enabled (19), — enumerated

event-type (20), — enumerated

exception-schedule (21),

firmware-revision (22), - text

friday-schedule (23),

inactive-text (24), — text

instance-of (25), — text

integral-constant (26),

integral-constant-units (27), — text

list-of-access-specifications (28),

local-date (29), — service

local-time (30), — service

location (31), — text

maximum-output (32),

max-message-length-supported (33),

max-pres (34),

max-raw (35),

minimum-off-time (36), " range

minimum-on-time (37), “ range

minimum-output (38),

111

min-pres (39),

min-raw (40),

mcxlel-name (41), — text

monday-schedule (42),

notification-rules (43),

number-of-states (44),

object-identifier (45),

object-type (46), — fixed

out-of-service (47). — enumerated

output-units (48), — text

parameter-list (49),

polarity (50), — enumerated

present-value (51).

priority-for-writing (52), — range

process-units (53), ~ text

process-variable-reference (54),

process-variable-value (55),

program-change (56), — enumerated

program-state (57). — service

property-reference (58),

property-reference-list (59),

proportional-constant (60),

proportional-constant-units (61), — text

protocol-conformance-class (62), — fixed

protocol-object-types-supported (63), “ fixed

protocol-services-supported (64), “ fixed

protocol-version (65), — fixed

reason-for-halt (66), — service

reference-object-identifier (67),

reference-object-type (68), “ enumerated

reference-nickname (69),

reliability (70), — fixed

resolution (71),

run-time (72), — range

saturday-schedule (73),

setpoint (74),

setpoint-reference (75),

site-id (76), “ text

state (77),

stateO (78),

state 1 (79),

state2 (80),

States (81),

state4 (82),

States (83),

state6 (84),

state? (85),

state-text (86), — text

status-flags (87),

sunday-schedule (88),

system-status (89),

tel-number (90),

112

thursday-schedule (91),

time-of-reset (92),

tuesday-schedule (93),

imconfirmed-recipient-list (94),

units (95), “ text

update-interval (96), — fixed

vendor-name (97), — fixed

vt-classes-supported (98), ~ fixed

wednesday-schedule (99),

window-size (100),

113

v
(”2V'i

-*) -'‘A-v - .

-.'” 14' li"

IttK
--

-4..

?
•

, : iy Kit'-- / . ' ,)..
.

i' r •

L- urfi *•

.' '

’f ob ti i <lji i’^'} ;

:4n:'

,
'.i.' >, \'iy. .mi}

'

j.-l. .
1

^

j-

1 .. •. .

* ‘C'fi? »'
•

'
: '-^T

' .

,>.<i I'l <,f^7

. ,• j ' m'

!9'

1 ,

'
'4.

' -m

:

: t ,
’ - —

; V w / \
'* !'4:'

r. ’iS
f

* 'V

* ' .'liUTiJX'

NIST-1 14A U.S. DEPARTMENT OF COMMERCE
(REV. 3-89) NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY

BIBLIOGRAPHIC DATA SHEET

1. PUBUCATION OR REPORT NUMBER

NTRTIR 4563
2. PERFORMING ORGANIZATION REPORT NUMBER

3. PUBUCATION DATE
APRIL 1991

4.

TITLE AND SUBTITLE

A Draft Abstract Test Suite for Determining Conformance to the BACnet Protocol

S. AUTHOR(S)

Steven T. Bushby

6.

PERFORMING ORGANIZATION (IF JOINT OR OTHER THAN NIST, SEE INSTRUCTIONS)

U.S. DEPARTMENT OF COMMERCE
NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY
QATTHERSBURG, MD 20899

7. CONTRACT/GRANT NUMBER

8. TYPE OF REPORT AND PERIOD COVERED

9.

SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (STREET, CITY, STATE, ZIP)

SIRS

10.

SUPPLEMENTARY NOTES

DOCUMENT DESCRIBES A COMPUTER PROGRAM; SF-185, FIPS SOFTWARE SUMMARY, IS ATTACHED.

11.

ABSTRACT (A 200-WORD OR LESS FACTUAL SUMMARY OF MOST SIGNIFICANT INFORMATION. IF DOCUMENT INCLUDES A SIGNIFICANT BIBUOGRAPHY OR
LITERATURE SURVEY, MENTION IT HERE)

The BACnet communication protocol for building automation and control systems is in an advanced
state of development and is expected to be released for public review in early 1991. When the
review process is completed it will become an ASHRAE standard. One of the important outstand-
ing issues to be resolved is conformance to the standard and how to test devices to determine
if they meet the conformance requirements. This report is a draft Abstract Test Suite based on
working draft three of the proposed standard.

This Abstract Test Suite is a first step in developing the tests which will be used to certify
conformance to BACnet. Its purpose is to provide a starting point from which a conformance
certification program can be built and to focus discussions on the outstanding conformance
issues that need to be resolved before the standard can be considered complete. The role of an
abstract test suite in the conformance testing process is described, a proposed BACnet test
system architecture is presented and individual test cases are defined. Test cases to deter-
mine support for object types and application services defined in working draft three are
included. A standard object configuration is also proposed to simplify the testing process.

1Z KEY WORDS (6 TO 12 ENTRIES; ALPHABETICAL ORDER; CAPITAUZE ONLY PROPER NAMES; AND SEPARATE KEY WORDS BY SEMICOLONS)

ASHRAE; BACnet; building automation; computer; conformance; control; EMCS ,
energy management;

protocol

13. AVAILABIUTY

UNUMITED

FOR OFFICIAL DISTRIBUTION. DO NOT RELEASE TO NATIONAL TECHNICAL INFORMATION SERVICE (NTIS).

X

X

ORDER FROM SUPERINTENDENT OF DOCUMENTS, U.S. GOVERNMENT PRINTING OFFICE,
WASHINGTON, DC 20402.

ORDER FROM NATIONAL TECHNICAL INFORMATION SERVICE (NTIS), SPRINGFIELD, VA 22161.

14. NUMBER OF PRINTED PAGES

113

15. PRICE

A06

ELECTRONIC FORM

-• . *«>

w/v

WAft JwJ 'I fl

-r / iTA ’

Tiai(».^Tp:.,SHM^Aft©O|.J0lSa
:U r- ‘^vi

>.j'>j>. . ',’'3fjOA<' * ,i;v. o:i - ar'c

Ll',*?-'

— •»». I

—..11*1 **^>'***“ -**"'*>*J<>' !
>—

‘ ^'

'-iMI'.

•

,»,
^

. ^'^;
/'’f-'L'*

'

'-A

,(f*fH3iii-'" I A .tf

6 i'i f '^'
-ri ,'i ft

,

/''!;''» „ ^

/ * T . w - f.

• ,
;• j r •

»

^

JJl’ 1 if '
., "0 'M'^'.

'
"• '

«. l(ll . ' _
- .. it-Zl 1 i.r.

':
' yK'.’d

'*

1
^ '

1 .
.

'
V. 1

'

• ...4 A »t, 'v.'

.; i,'',Vfe

.
.

.

''
,^i':

• • ‘
•

''
'wcJiWS-' '^ 7<

.?

j

• j
#'

'
' irt.o.' ; i‘>i.;/,;>r)a'., -id n>5. Wrj&«/e'/*:

„ - •.
i- 1 I'

r>- i '.io'/ H-r.a I..AIH,.
'

?fc,?n leu^itivic-sU-

at/ /•
. h,>r.„\ '.7** f 4 .5,1 api'Aa.i4|i#^6’ femr.

li’v
:

fs"®*.
.'

'

*• Rr*iqisv1

.! •'’‘f-^>** ., '.

5,11
.'

ru • iA/ >.; •.;-!rt(ri. . 27Kr/ }fo’i;'. -> ;.

i

t t-jh' -i.-'l. v«

",J

'

Slt< f,V»i

7£liyS_

(<'

Lfcai:*
'

' IM®

i

I

J

