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1. Introduction

We have been working on a particular class of interior point methods for solv-

ing linear programming problems for several years. (See, e.g., [DBRW91].) Our

methods combine several search directions that are readily computed at each it-

eration. The final step is then calculated by computing the step that solves the

original problem restricted to the subspace spanned by these search directions. In

this paper we propose an extension of these ideas to the case of convex quadratic

programming.

The linear programming (LP) problem that we consider is

min u
1 X

u
_

(LI)
subject to: Au < b
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and the quadratic programming (QP) is

rmn^u Qu , .

subject to: Au < b

where u,c € Q £ A £ and b £ 3?"”. We assume that Q is sym-

metric and positive semi-definite, i.e., we allow the possibility that some variables

in the quadratic program enter only linearly. In addition we make the standard

assumptions that the problems have a finite optimal solution and that A has full

column rank. We do not assume that the problem has a full dimensional interior,

nor do we assume that the problem is nondegenerate.

Interior point methods have been extended to the quadratic programming

problem by several authors. For example, Shanno, et al. [Sha91] have been

working on a primal-dual method, and Anstreicher has suggested a log barrier

approach [AdHRT90] and a related dual version [Ans90] that is similar to our

approach, although his work is primarily theoretical. Our work is based on the

method of centers originally proposed by Huard [Hua67]. We believe that this

framework provides some advantages over the primal-dual approach. In particular,

as will be shown below, the Hessian matrix that is required involves the sum
of Q and a matrix of the form Al^

A

whereas in the primal-dual framework the

Hessian involves a matrix of the form A^ A. Clearly, even if Q is sparse, the

inverse will generally not be, and thus this latter form is much more likely to

be dense. Also, since the method of centers was originally proposed for general

convex programs, the directions we compute are natural extensions of those for

the linear programming case and can be computed at a low relative cost.

In §2 we present a brief description of the multi-dimensional method that forms

the basis both for our linear programming work and for the quadratic extensions.

In §3 we discuss the generation of the directions; in §4 we describe the details of

our implementation; and in §5 we give a summary of our preliminary numerical

results. These results indicate that the proposed algorithm can solve the quadratic

programming problems in approximately the same time as that required for the

linear problems. Finally, in §6 we note some directions for future research.

2. Multidimensional Methods

Our strategy for solving linear programming problems by interior-point methods

is based on the observation that the formation and factorization of the Hessian
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matrix consumes the majority of the CPU time. Thus our goal is to use the fac-

torization to compute several independent directions, and to determine the “best”

possible combination based on these directions. Viewed in this way, our strategy

is similar in spirit to the “predictor-corrector” methods of Mehrotra [Meh89].

Our multidimensional algorithm for LP can be thought of as optimizing over

a low-dimensional subspace at each major iteration. We formalize it as follows.

Multidimensional Algorithm

1. Compute a strictly feasible point, set i=0.

2. At u\ generate q independent directions, s\ j = 1, . .

.

,^.

3. Form and solve the subproblem

to obtain (*.

mm c
' (

+ XI 0'^'^

j=i

subject to: A
j

u* + y~l

i=i

< b

4. Set := a where a is the steplength.

5. If convergence then

Stop;

Else, set i := i + 1; Go to 2.

Note that the subproblem in Step 3 is equivalent to

mm >

^ j=i
9

subject to: ^ <b — Au\
3= 1

The quantities c'^sU As^
^
and b— Au' need only be computed once and thus this

low-dimensional problem can be solved efficiently. We comment further on its

solution in §4. The steplength a in step 4 is fixed at .99, a value in accordance

with much of the work in interior-point methods for LP. (See §4 for details.)

3
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The extension to QP of this general procedure is obvious

objective function includes the quadratic term, i.e.,

min^ + ^('^QgC
subject to: Au < b

where

C, = + {u‘fQs^

and Qg G is defined analogously.

In our work to date, our algorithm optimizes over a 3-dimensional subspace,

and hence we designate the method by OSD. The subproblem solution in Step 3

has three variables and m constraints. In the LP case, we can efficiently solve

this problem using a specialized, revised dual simplex procedure. In the QP case,

this does not appear to be a viable option, and the QP subproblem is solved by

a simplified interior-point method, the details of which are in §4.

3. Directions

The efficacy of the multidimensional algorithm depends critically on the directions

that generate the subproblem. In this section, we derive our directions from the

method of centers. To do this, we first present some notation.

Define the residuals for the constraints to be

rk{u,t) = bk - AkU,

where Ak is the A:th row of A. Define the residual for the objective function to be

ro(u, t) = t — c u — \u Qu

where f is a scalar whose value is determined as follows. Let be strictly feasible

and let D be the value of the objective function at vS. Note that >
0, = 1, . .

.

,

m and that ro(M°, f) > 0 for t > D. Thus

m

n rk{uO°)
k=0

is positive in the interior of the feasible region that corresponds to points where

the objective function is less than D. The center can then be defined as the

maximum, of this product, or, equivalently,

m
min Z/(u, = min V' log r^(u, (3.1)
U U * ^

A:=0

The subproblem

(
2 . 1 )
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which defines L{u,t). The method of centers is to solve (3.1) to obtain set t^

equal to the objective function value at
,
and repeat. It can be shown that this

yields a sequence of points that converges to an optimal solution.

In [DBRW91] we show that if the constraint on the objective function is moved

continuously then a trajectory is formed that approaches an optimal solution.

More importantly, by a slight generalization, it can be shown that there exists

a trajectory connecting every strictly feasible point to an optimal solution. The
vector field defined by these directions is given by

Our first direction, therefore, is known in the literature as the dual-affine

direction [ARVS9]. After some algebraic simplifications we have that is

(3.2)

where

H = A^D^A-\-
Q

ro{u,t)'

Z) is a diagonal matrix with A:th diagonal entry l/rk{uA), and ffi is a scalar.

It is likewise possible to compute the so-called recentering direction, i.e., the

Newton direction for solving (3.1) given by

VuuL[u,t)

This direction is a combination of two directions, the first of which is and the

second of which is our second direction, 5^, given by

De (3.3)

where e is the vector of all ones, and is a scalar.

The third direction is derived from considering the rank one effect on the Hes-

sian matrix, H, of the first constraint, whose index is denoted by k, encountered

in the direction. It is easily shown that this change is dominated by the vector

and that the resulting direction is

(3.4)

Finally, using the notation of factorable functions [JM86], we obtain our fourth

direction, a third order correction to namely

= H-^EA
k=l

T 3

rk{u,t)

n2
(3.5)
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The details for all of these directions may be found in [DBRW91]. Our strategy,

outlined below, is to choose three of these four directions at each iteration.

The only difference between the formulas here for the quadratic programming

problem and those for the linear programming problem is the appearance of the Q
term. One can readily observe that the sparsity of H is decreased by the addition

of Q, but not catastrophically, as it is in methods such as those mentioned in §1.

The work per iteration, therefore, is approximately the same for the quadratic

program as for the linear program.

4. Implementation Details

In the results reported here, we use the basic 03D algorithm presented in §2 with

the three directions, s'*, and either or s^, to specify the subproblem. The

selection of the third direction is based on the proximity to the optimal vertex.

The implementation uses in early iterations, and in the final iterations.

The “switch-over” is performed when the duality gap (see below) is less than

or equal to 10“'* or the residual on the objective function (c.f., §3) is less than

or equal to 1/m. The main procedure continues until it satisfies at least one of

three convergence criteria: (a) the relative change in the objective function, (b)

the relative difference between the primal and dual objective values (see, e.g.,

[ARV89]), and (c) the steplength.

Note that computation of the dual variables is theoretically more complicated

in the QP case. Our preliminary work, however, simply extends the techniques we

used for the LP case, using y = D^A{A^D^A-\-QlrQ)~^[c-[-Qu) to approximate a

dual feasible solution, provided that y > 0. It can be shown that this is guaranteed

to yield a dual feasible point in the limit, and this appears to be working well in

practice.

The subproblem is solved by using an interior point approach on the three

dimensional subspace. At each iteration of the subproblem, a dual afffne direction

(3.2) is computed and a step is taken either a fixed percentage of the distance

to the boundary, or a distance which minimizes the objective function in that

direction, whichever is smaller.

Problem scaling, starting values and the phase 1 procedure are exactly the

same as used for our earlier LP subproblem work. In particular, both A and

the subproblem constraint matrix defined in (1.2) are scaled. Our algorithm is

initialized by setting Uq = 0, where 0 denotes the 0-vector of the appropriate

dimension, and then taking a single recentering step using a quadratic model in

6
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the steepest descent direction, AJ De. When necessary, an initial feasible solution

is obtained using a big-M Phase 1 procedure (see, e.g., [BJ77] and [DBRW91]).

The A matrix is stored in sparse format using the XMP experimental mathe-

matical programming data structures described in [MarSl]. The Hessian matrix

{A^D^A + QItq) is stored using the data structures from the Yale Sparse Matrix

Package SMPAK [SMP85]. A minimum- local-fill ordering procedure [VS83] is in-

voked only once at the beginning of the procedure to find a permutation of the

rows and columns that reduces fill-in. The Hessian is then factored and solved

using the Yale Sparse Matrix Package SMPAK [SMP85]. Constraints that are

sufficiently far from the current point u, are explicitly removed from the compu-

tations.

The methods reported here are implemented in Fortran 77 and executed in

double precision on an IBM RISC System/6000 Model 520 workstation running

at 20MHz using the x// compiler with the -0 option.

5. Results

We create a set of QP test problems by augmenting 83 of the linear programming

problems (publicly available through Netlib [Gay85]) with a quadratic term using

Q = I. This allows an easy comparison of the work required to solve the QP
problems with that required for the LP problems. Also, in the sense that any

strictly convex QP can be transformed into one with Q = 7, this can be regarded

as a general formulation.

The convergence conditions and the corresponding total CPU time required for

these QP problems are nearly identical to the LP results reported in [DBRW91].

For the 83 problems, 40 terminated due to the convergence criterion based on the

relative difference between the primal and dual objective values. Of the remaining

43 problems that terminated due to the objective function convergence criterion,

all but 3 found a point reasonably close (but not close enough for duality gap

convergence) to the dual objective to indicate that the problem had solved cor-

rectly. Because the “true” objective function values are not readily available for

these QP problems, however, we did not verify that the correct objective value

was found. The total CPU time for the 83 QP problems is 2637 seconds, only 50

seconds more than the time required for our best LP results.
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6. Future Directions

Our preliminary study demonstrates the feasibility of extending our multidimen-

sional method, OSD, to the QP case. We intend to explore these ideas further by

first attempting the problem set with a general positive semi-definite matrix Q.

In these tests, we will not transform io Q = I since we believe that transforming

the problem io Q = I will destroy too much of the sparsity. Next, although our

subproblem solver has performed adequately in these preliminary tests, we think

that some improvements are possible. Finally, we will investigate the use of this

procedure in a sequential quadratic programming (SQP) algorithm for general

large-scale nonlinear programming problems.
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