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ABSTRACT

Many optimization algorithms generate, at each iteration, a pair
( )

consisting of an

approximation to the solution, Xj^, and a Hessian matrix approximation,
,
which contains local

second order information about the problem. Much is known about the convergence of the Xj^ to the

solution of the problem but relatively little about the behavior of the sequence of matrix

approximations. We analyze the sequence { } generated by the extended Broyden class of updating

schemes independently of the optimization setting in which they are used, deriving various conditions

under which convergence is assured and delineating the structure of the limits. Rates of convergence

are also obtained. Our results extend and clarify those already in the literature.

Key words: optimization, quasi-Newton algorithms, matrix updates, convergence analysis
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1. Introduction

In this paper we investigate a general class of matrix updating schemes that are of major interest in

optimization problems, both constrained and unconstrained. We consider the possible convergence of

sequences generated by these schemes, attempting to isolate the crucial factors that determine

convergence independent of any particular optimization setting. The results presented thus subsume

and clarify some recent results on convergence of Hessian approximations in specific optimization

problems.

In many iterative numerical optimization algorithms each iteration requires the solution (or partial

solution) of an approximate quadratic model of the problem under consideration. Each surrogate

model is usually characterized by the current iterate, Xj^
,
and a symmetric, often positive definite,

matrix, . The solution of the quadratic model yields a step, Sj^
,
from which the next iterate,

~ \ obtained. Once the new iterate is located a new quadratic model, i.e., a new

matrix, is chosen. The choice is determined by a particular formula involving the information

on hand, including the preceding matrix
,
the step

,
and the values of the problem functions at

Xj^ and The success of the algorithm is known to be sensitive in many cases to the method by

which the new matrix is chosen; in particular, the best results are to be expected when the quadratic

model closely reflects the important features of the underlying problem as the solution is approached.

For this reason the convergence properties of the sequence { } are of significant interest. This paper

is devoted to the study of these properties.

We examine an iteration scheme of the form

( 1 . 1 ) %+l -
®k’

where the are N x N symmetric matrices, the <t>^ are scalar parameters, the are given vectors

in the
y^^

are vectors which depend on the Sj^ in some way to be specified, and the function U is

the update formula. Of particular interest will be how the convergence (and rate of convergence) of the

sequence { } depends on the choice of the the initial matrix Hq, and the sequence {sj^} for a
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given U

.

The primary motivation for this study is the use of these updates in those optimization problems where

the function U adds a rank-two matrix to the current matrix in such a way that the secant

condition

(1-2) S|j _

is satisfied for each k. The best known example of the use of this updating method takes place in

quasi-Newton algorithms for solving unconstrained optimization problems where the matrix is an

approximation to the Hessian of the objective function. In this case Sj^ is the step generated by

(1.3) \ ~
^k'^

and

(1.4)

Here f is the objective function, Xj^ is the current iterate and is a step length parameter. Similar

updating schemes are also used in trust region methods for the unconstrained problem and for the

sequential quadratic programming algorithms designed to solve constrained optimization problems.

The most commonly used class of updating functions in these cases is the so-called “extended Broyden”

class where

t

(1.5)

^k \ ^k \ ^k ®k

, / t TT \ / ^k®k . / ^k ^k®k \L-

(

-t -
( -r •

^k^k ®k Vk ^k ^k ®k'VkS, Si/H-S,

The special cases = 0 and = 1 correspond to the well-known DFP and BFGS update formulas

respectively while the values of (j)^ £ [0,1] give rise to the “restricted Broyden class” of updates.

There is also a similar set of updates in which Sj^ and
y^^

are interchanged; these updating schemes

yield approximations to the inverse Hessian. (See Dennis and Schnabel [1] or Fletcher [2].)
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There has been a significant amount of research on the convergence of the matrices generated by these

updating schemes, most generally for the case described above in which each Sj, is a step in an

optimization algorithm. For example, Schuller [3], Ge and Powell [4], and Stoer [5] have determined

conditions under which the sequence of matrices converge in the setting of variable metric algorithms

where each is given by (1.3). More recently, Byrd, Nocedal, and Yuan [6] have studied the Broyden

class of updates seeking to explain the observed superiority of the BFGS update over the DFP update

in quasi-Newton algorithms. Conn, Gould, and Toint [7] have analyzed the special case of (1.5) where

^k’ ^k’ ®k’

^

symmetric rank one update. More significantly, they do not require that Sj^ be

generated by (1.3) but only that it represent the step . (However, they do take the vector

to be the difference in the gradients at and Xj^.) As they point out, this more general

formulation allows the analysis to include the important trust region methods as well as large scale

methods that use partitioned matrices.

The results presented herein are in the spirit of the approach in [7] in that the are not required to

satisfy (1.3); however, we go a step further and disassociate them from any particular optimization

problem, although the setting is motivated by the unconstrained optimization problem. We will

establish the convergence of { } under only minimal restrictions on { } that are not related

directly to its being generated by an optimization process. Moreover, we will not require the yj, to

satisfy (1.4) but rather that they be related to the in a certain way that includes (1.4) as a special

case. In spite of the less restrictive assumptions made on the parameters, some of the properties of the

limit of the sequence { } are derived under various conditions on the sequence }» thus clarifying

the results in [3] — [7]. Finally, our results can be applied to most of the common rank-two updating

schemes that have been used in unconstrained optimization.

In Section 2 the nuances of the problem to be solved are discussed and a simplified framework in which

to analyze the convergence is introduced. Specifically, we consider the class of updates as nonlinear

perturbations of a single linear update which derives from setting = 0 in (1.5). Section 3 contains

some basic notation and terminology as well as some fundamental results on difference equations that

are used in the remainder of the paper. In Section 4 the convergence of the linear update is established

for the case when the sequence {sj^} repeatedly spans 3? in a uniform manner and
yj^

= Sj^ for each

k. This latter condition occurs in the unconstrained optimization of a convex quadratic function. In

Section 5 this result is generalized to allow the Sj^ to approach a proper subspace of 3? . In particular,

the counterexample in [4] to general convergence of the sequence { } is clarified. In Section 6 the

convergence results are extended to nonlinear updating schemes, i.e., choices of other than zero.
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Finally, in Section 7 the condition
yj^
= is relaxed, permitting the previously obtained results to be

applied to the updates of the form (1.5). The basic requirement is only that the difference

converge to zero at a specified rate. Section 8 contains a summary of the major conclusions in the

paper, observations on their relevance, and suggestions for further avenues of research.

2. Problem formulation

In the quasi-Newton algorithm for unconstrained optimization problems == is

given by (1.4). Assuming that the sequence {xj^ }
converges to the solution x*, we can write

= F(x*)sj^ -h (F(xj^)-F(x*))sj^-f- 0(|sj^|2).

where F(x) is the Hessian of f at x. Thus

yfc
= F(x«)s^ +

where —.0. If F = F(x*) is positive definite then, since the form of the update (1.5) is invariant

under the transformations,

X.- 1/2 „l/2
, „ „l/2„„l/2

(T) s<-^F s,y^F'y, and H <->• F ' H F '
,

F(x*) can, without loss of generality, be assumed to be the identity matrix. Using this case as

motivation, the underlying assumption for our analysis of (1.5) will be that

( 2 . 1 ) = \ +

where .—^ . 0 at a rate to be specified. Note that if the objective function is quadratic then
l\l

= s^. Then we will allow the more general

formula (2.1) as a perturbation of this simpler situation. Further comments on this assumption are

made in the course of the paper.

= 0. Initially, we will analyze this special case with
yj^
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With the assumption that ~ update scheme generated by (1.5) no longer depends on the

length of Sj^ and can be written:

(2.2) H = £/(0,H,s,s)

= (I - ss^)H(I - ss^) + ss^ - (^(s^Hs)! s - if s - -
7^ V

\ s’^Hs/V s^Hs/

where the subscript k has been deleted, H has replaced and |s| = 1. It is observed that both

the Broyden class of update formulas for the approximations to the inverse Hessian and the Hessian

satisfy this equation when y = s. In fact, ( 2.2) represents the most general rank-two symmetric

update formula that uses the vectors s and Hs and satisfies the secant equation (1.2) (which is now Hs

= s). Thus (2.2) represents a rather general starting point for analyzing the convergence properties of

rank-two updates. It should be noted that other rank-two update formulae, such as the well-known

PSB update, that are not members of the Broyden class may not be able to be placed in this form

because they are not invariant under the transformations ( T )

;

that is, it cannot be assumed that the

Hessian of the objective function is the identity matrix. As is noted in Section 7, however, in certain

cases the convergence of the updates may still be analyzed by the methods we develop.

The two special cases identified in Section 1 are singled out for emphasis: 0 = 0, which yields

(L) H = (
I - ss^) H

(
I - ss^) + ss^

and 0 = 1, which gives

(C) H = H -h ss^ -
s^Es

These two updating formulas, which we will hereafter refer to as the “L update” ( L for linear) and the

“C update” (for complementary), can be thought of as versions of the well known DFP and BFGS

updating formulas. The reader should be careful to note that the BFGS, DFP, and other updates are

not uniquely identified in the formula ( 2.2) because the assumption that y = s removes the reference

to the particular optimization setting that might generate s. For example, the L update is derived

from the DFP update for the approximation of the Hessian matrix or, alternatively, the BFGS update

for approximating the inverse Hessian matrix. Similarly, the C update derives from the direct BFGS

or inverse DFP update.
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VVe will first be concerned with the convergence of the sequence { generated by the iterative

scheme (2.2) for arbitrary positive definite starting matrices Hq (although many of our results will

apply for arbitrary symmetric matrices) and specified sequences of unit vectors Two types of

methods of choosing the parameter <f>^ can be considered: a “static” procedure where 4>^ is constant

over all iterations and a “dynamic” method where the choice of (f)^ will vary from iteration to iteration

and may depend on the current values of and . (If the dynamic method is derived from the

original update formula (1.5) then it must be invariant under the transformations given above if it is

to be considered here.
)

The static method is typified by the L (
0^^
= 0 for all k

)
and the C ( = 1

for all k) updates and the dynamic method by the “symmetric rank one” update discussed below. In

theory, the dynamic approach can be used to take better advantage of the current information and can

therefore lead to more rapid convergence of the sequence This is illustrated by the

aforementioned symmetric rank one scheme in which the choice of 0g leads to convergence of the

{ } in a finite number ( < N )
of steps whenever the vectors Sq ,...,Sjy^

^
are linearly independent.

It is useful to consider the inverse corresponding to the update (2.2). Assuming that H and H are

invertible, an application of the Sherman-Morrison formula yields

(2.3) H-1 =

where

0 -f- (1-0)(s%s)(s^H‘M

It is observed that /i(0) = 1 and /i(l) = 0, illustrating the property that the inverse of the L update

is the C update of the inverse and vice versa. Moreover, if H is positive definite then (s^Hs) (s^H'^s)

> 1, and it is seen that O<0<1 implies that ^(0) falls between 0 and 1. Thus the inverse of a

restricted Broyden update of a positive definite matrix can be obtained by a (dynamic) restricted

Broyden update of the inverse of the matrix.

It should also be observed that if H is positive definite then so is H~^ and thus, since the L and C

updates preserve positive definiteness, (2.2) and (2.3) imply, by the interleaving eigenvalues theorem

(see [8]), that H and H’^ are positive definite if either 0 or /i(0) is less than or equal to zero.

More specifically we have
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ProDosition 2.1 (Fletcher [2]): Let H be positive definite. Then the iterate, H, given by (2.2) is

positive definite if and only if 0 < (I)q where

(s%s)(s^H'^s)

1- (s^Hs)(s^H'^s)
'

Proof: Since ( s^H s
)

( s^H'^ s) > 1 clearly (j>Q > 1. If the inequality holds then either 0 < 1 or ii{(p)

< 0 and by the remarks above H is positive definite. If 0 = 0q then from (2.3) it is seen that H is

singular. From (2.2) it follows that if H is positive definite for 0 =
0^^

and for 0 = 02 > 0^ then

it is positive definite in
( 0^ , 02 )• Thus H cannot be positive definite for any 0 > 0q. •

The case where 0 = 0g
s^Hs

1 - s^Hs
is of special interest because the rank-two update formula

( 2.2) reduces to the rank one update

(SRI) H = H -h
(s - Hs) (s - Hs)^

s\s - Hs)

known as the “symmetric rank one” (SRI) update. Note that the update formula for H'^ is identical

to that of H for the SRI update (with H'^ replacing H). If H is positive definite the SRI update is

never a restricted Broyden update because 0g is either greater than one (if s^Hs > 1 )
or less than zero

(if s^Hs < 1). Moreover, H may not be positive definite when H is positive definite if 0g > 1; in

fact, the SRI update will not exist if ( I — H)s is orthogonal to s. It follows from Proposition 2.1 and

the definition of 0g that the SRI update is positive definite if and only if either s^ H s < 1 ( 0g < 0

)

or s^H'^s < 1 (l<0g<0Q).

The convergence of the static schemes corresponding to the L and C updates are interrelated as shown

in the following proposition.

Proposition 2.2 : Let P be any subset of the symmetric matrices for which H £ P implies e P. If

for a given sequence { } the sequence { } generated by the L update converges for every initial

matrix chosen from P, then the same is true for the C update, and conversely.
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Proof: Suppose that the sequence generated by the L updating formula converges to L(Hq) for a

starting matrix Hq c P. Then the sequence converges to L(Hq)‘^. But the sequence

is generated by the C updating formula starting from Hq'^ and so the C formula yields

convergent sequences starting in P. •

It is well-known that for any choice of linearly independent k = 0, and any initial Hq

the generated by the SRI update satisfy the “hereditary” secant condition

(2.4) Sj = Sj
, j = 0,...,k.

It is easily shown by induction that this condition is also satisfied by all updates of the form ( 2.2) if

the {sj^} are orthogonal (corresponding to conjugate directions in the quadratic optimization setting).

The condition ( 2.4) implies that the converge in at most N steps and if the full N steps are

required then the limiting matrix is the identity. Thus the iteration matrices converge finitely for any

sequence { } when the {sj^} are orthogonal and for the SRI updates when the {sj^} are linearly

independent. In both cases the limiting matrix is the identity matrix and so it is natural to expect

that, generally, if the matrices converge nonfmitely they will also converge to the identity matrix

(other possibilities are considered in Section 5). Accordingly, it is somewhat simpler to consider the

convergence of the sequence of matrices { } where Ej^ = — I. Using the relations = 1

and = Ej^s^ -I- in (2.2), the can be seen to satisfy the difference equation

®k+l
=

(2.5)

- 0 ,

1 + Si % \

It is this form of the iteration scheme that we shall analyze first. Note that the quasi-Newton

condition for the becomes = 0 so that the matrices Ej^
,
k > 1, are always singular and

hence never positive definite; however, they are symmetric if Eq is symmetric. The eigenvectors of

and E^^ are identical and the eigenvalues of are exactly one unit greater than the eigenvalues

of Ej^. Thus if the are positive definite, the eigenvalues of the Ej^ are greater than negative one

and conversely. As a result, ( 2.5) is well-defined provided positive definiteness of the { } is
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maintained, as in the L and C updates.

^ resulting

However, if the matrix

undefined.

Hk is not positive definite then

It is a well-known fact that both the L and C updating formulas ( and therefore those of the restricted

Broyden class) lead to sequences { Ej^ } whose Frobenius norms are nonincreasing and, in fact, are

strictly decreasing if Ej^Sj^ ^ 0. (See, for instance, [4] or [5] ). However, as illustrated in [4], this

does not ensure convergence of the matrices {
Ej^ } nor does it yield any limiting matrix when the

sequence does converge. It should be noted that not all updates of the form ( 2.5) lead to sequences

{Ej^} that decrease in the Frobenius norm. For example, the Frobenius norms of the matrices Ej^

generated by the SRI update can have large jumps in value — although convergence within N steps is

assured. The analysis of the next sections is intended to shed light on the convergence of these

matrices and their limits.

3. Notation and preliminary results

Throughout this paper the notation [x] will refer to the Euclidean norm of the vector x. For a matrix

A, II A II
will denote the operator norm of A, i.e.,

I I A I i f I
^

I 1

II All = sup { },

while II A lip will denote the Frobenius norm,

II A lip =

In referring to rates of convergence the term “m-step linear convergence” will mean Q-order

convergence; that is, the sequence converges to zero with an m-step linear rate if there is a /?,

0 < /? < 1, independent of k such that

l^k+m - ^*1 ^ ^l*k -=‘*1

for all k sufficiently large. One -step linear convergence will be called simply “linear convergence”.

We will also refer to R- (order) linear convergence, which requires
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(|X|^ - < 0 < \

for all k sufficiently large. The important implications for our work are that m-step linear

convergence implies R- linear convergence and that the components of a vector converge R- linearly if

and only if the vector itself converges R- linearly (which does not hold for m-step linear convergence).

It will also be useful to note that a sequence converges R- linearly if and only if it is majorized by a

sequence converging (one -step) linearly. That is, converges R- linearly if and only if there are

constants u and r, 0 < r < 1, such that for all k

I

Xj^ — X*
I

< U ' .

More complete information on the definitions and properties of Q and R order convergence can be

found in [9].

Many of the proofs in the following sections will depend upon the properties of solutions of difference

equations. To simplify the presentations in Sections 4-7 we provide in this section some useful

theorems on such systems.

Consider the system of nonlinear difference equations

(3.1)

^k+1 - \ + ^k(^k’"k’‘k)

'^k+1
=

"k +

where z. e w. e e and Ak is a p x p matrix. Denote, for any fixed positive

integer m

,

(3.2)

m-1

^k,m = II n (\+i*
i=0

The following give convergence results for the solution to (3.1) under a variety of conditions on the

matrix and the functions and

Theorem 3.1 : Suppose that { Zj^ } and { } satisfy (3.1) and, in addition,
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^k,l - ^ II II -

(ii) for some fixed integer m, there is a constant /? < 1 and an infinite sequence of

integers { k. } such that /?, < (3 for each j

;

J Kj,m

(iii) there exist constants and K
2

independent of k such that

1

Zj^( z, w, t
) I

< •
1 1 1

and
|

Wj^( z, w, t )|
< ^2 •

I M for every k
;
and

(iv) the sequence { } converges to zero R- linearly.

Then for any Wq there exists a vector w*such that
{ }

—*• w* R- linearly and for any Zq the

sequence {zj^ } converges to the zero vector. If condition (ii) is replaced by

(ii)^ for some fixed integer m, there is a constant (3 < \ such that /?, < (3 for every
K

^
m

k sufficiently large;

then the convergence rate of {zj^} is R- linear and if Zj^ = 0 for each k the rate is m-step linear.

Theorem 3.2 : Suppose that conditions (i), (ii)^, and (iv) of Theorem 3.1 hold and, in addition:

(iii)^ there are positive constants /Cp /c^, and b such that for each k

I

Z|j( Z, w, t ) I
<

1

z 1^
-t- K

2 ( I

z
I
+

1

w
I )

•
1

1
1

and

|Wj^(z,w,t)| < /C
3

|z|^ + (
|z| + I

w|) • |t|

whenever
|

z
|
< 6

.

Then there exist positive constants and Tq and a. w* e 3?^ such that if
|

Zq
|
< rj^ and

I I
<

for every k, then the solutions to
(3 . 1 )

have the properties that { Zj^ }
—*• 0 and { }

—*• w* and the

convergence rates are R- linear. If, in particular, = 0 then the convergence rate of { Zj^ } is m-

step linear.
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Sketches of the proofs of these two theorems can be found in the Appendix.

4. Convergence of the L updating method

When = 0 (which corresponds to the L update) the iterations (2.5) reduce to

(4.1)

Note that for fixed (4.1) defines a linear transformation from the space of NxN matrices into itself.

The other updates of the Broyden class
( ^ 0 ) can in fact be considered to be nonlinear

perturbations of this linear mapping. We will exploit this fact in Section 6 to derive convergence

results for the cases where ^ 0. Denoting the mapping defined by (4.1) as

G(s^
;
•): L(S'^, H- L(3}^,

we have that

(4.2) = G{s^;E^).

Since the mapping preserves symmetry, Sm »
the set of symmetric NxN matrices, is a ^N(N-l-l)-

dimensional invariant subspace for * )• If assign the Frobenius norm to L(3?^,3?^) so that

it is an inner product space then, as the following proposition shows, the mapping G( s; • ) is a

projection.

Proposition 4.1 : Let s be a given unit vector. The mapping (j ( s; • )
is a projection onto an

(N-l)^- dimensional subspace of L(3?^,3f?^). An orthonormal set of eigenvectors corresponding to

the eigenvalue zero is

t / 2\t / 3\t / N\t 2 t
ss

,
s(v^)

,
s(v ),..., s(v^ ), V s

,
vNs‘

and an orthonormal set of eigenvectors corresponding to the eigenvalue one is
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v2(v2)t, v2(v3)t,.,., v2(vN)t, v3(v2)t v3(vN)t,...,

.N : Nwhere s, v“, ... ,
is an orthonormal basis for .

Proof: Since = G and G o G = G, G is a projection. The orthonormality follows from the facts

that for N-vectors u, v, w, and y ;

I! uv^llp - |u||v|

and

(uv^)^(wy^) = (u^w)(v^y)

where the superscript “T” represents the inner product in The eigenvalue properties are

easily checked. •

Since Sm is an invariant subspace of G(s; • ), it is of interest to provide an orthonormal basis for Sm

consisting of eigenvectors of G(s; • ). The following is a direct consequence of Proposition 4.1.

Proposition 4.2 : The following symmetric matrices are orthonormal eigenvectors of G(s; )

corresponding to the eigenvalue zero:

ss

/ 2xt ,
2 ts{v^y -h v^s"

v/2

s(v^)^ -f ^^s^__ „

and the following are orthonormal eigenvectors corresponding to the eigenvalue one:

vk(vk)t,
yk )t

_J.
yk (yj

V2
for k = 2, ... ,

N and j = k-fl, ... ,
N.

Since G(s;-) has eigenvalues equal to one it is not a contraction mapping, even when restricted to

Smi and so linear convergence of the is ruled out in general. Since G(s; •

)

is a projection matrix

it is possible, however, that a sequence of applications will reduce the norm of the E|^
,

i.e., that some

multi-step linear convergence can occur. In particular, we consider the sequence of N applications of

G,
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%(‘) = • )
° •

)
o ••• oG(sq,-).

\r

We will show that is a contraction mapping provided SQ,Sp...,Sj^
^

are linearly independent. To

do that we must show that the operator norm of Gjyj ,

||Gp,|| = max{||GN(W)||p: W 5 L(sN ^ j j

is less than one.

By Proposition 4.1 it is seen that there is an orthonormal basis for consisting of rank one

matrices. If these basis matrices are denoted by W ,W ,..., W with K = N
,
then for any W £

with ||W||p = 1

W = 7 - and E ( T; = 1 •

j=l ^ j=l ^

To obtain the desired results we define the set of vectors that generate the basis matrices in a

special manner. If we assume that the set of vectors {sQ,Sp... is linearly independent and for

each j , j = 0 , ... ,
N-1, let Sj = span { Sq, ••• iSj },

then we may choose the vectors v^ as follows:

(i) v|^ = Sq;

(ii) v^ £• S- and v^ £ (S*

(iii) |vj| = 1.

This set of vectors exists (but is not unique) because of the linear independence of the

N
an orthonormal basis for 3? . With this definition we have

s.

J

and it forms

(4.3) s. =
J

Defining

(4.4) Uq =

and, for i = 0

,

..,N-1,

(4.5)

k=0 ^

N-1
= E Tj-i k

k=l
^ ’

where

k=0 ^

1 .

where
N-1

E
k=0

1

= (• - (' - “0
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we have

Proposition 4.3 : The 7 . , in (4.5) satisfy the recurrences
1, K

^i+i,k
=(4.6)

and

7k -

7 k
k > i

(4.7)

N-1 9 N-1 9 ,9
k=0

^
’ k=0

‘ ‘

Proof: From (4.3) and (4.5) we have

1+1
= (I — s. s-M U- = u. —

(
s- ^ u.

)
s. = u. —

( s- ^ U- )
V

( s. ^ v^
)
v^

1 1 ' 1 1 '' I IM 1 1 1

7

1
'

k=0

and (4.6) follows from equating coefficients of v^. Then

N-1 9 N-1 o i

k=0 ^
’ k=i+l k=0

N-1 9 .9
= E (Tj “ (sj^uj)-

k=0
' '

where we have used the fact (from (4.3)) that ^ (s-^v^)^

k=0
= 1 .

It now follows from (4.7) that

= (1 - cos2(^i))

where 9
-^

is the angle between s- and Uj . Therefore,

N-1
(4.8) = n ( 1 - “s^(^i)) iuqI^-

i=0

Setting

R — n (I — s-s.^) — (I - s^_^s^_^^) ••• (I - SqSq^),

j=0 ^

(4.9)
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it is seen |Rug| =
| |

<
|

Ug
1

unless 9
-^

= 7r/2 for all i. However depends on u^ and hence

Ug so that, in principle,
| |

could be arbitrarily close to
|

Ug |. We would like to show that the factor

in (4.8) actually is bounded away from one for all Ug. This is the content of the next proposition.

Proposition 4.4 : Given linearly independent Sg,...,Sj^_j there is a constant o, 0 < a < 1, such that

for all Ug £ 3^^

I |2 ^ 2 I |2< oc
|

uq
|

.

Proof: We prove the result holds for all Ug with
|

Ug
|

= 1 ;
the general ca^e then follows in a

straightforward manner. The proof is by contradiction. If the proposition is not true then there exists

a sequence of vectors with
|

Ug
|

= 1 and

> (1 - ?) I
Ugl^.

Let Ug be any limit point of the sequence { Ug } and Uj,^ = R Ug. Then
| p = |ug|“ = 1.

Clearly, by (4.8) this implies that = 7r/2 (or (sj^Uj) = 0) for all i. Therefore, by (4.6), it

follows that for all i

N-1
= E

k=0
^0,k

and hence s-^ Ug = 0. The linear independence of the Sj implies that Ug = 0 contradicting the fact

that
I

Ug
I

= 1 . •

Using the formula l|V||p^ = trace(vW) and the fact that (j||^(u v^) = Ruv^R^ where R is given

by (4.9), it is seen that Proposition 4.4 yields

ll%(uv^)||p = |Ru||Rv| < |u||v| = lluv^llp.

In order to show that is a contraction mapping it is necessary to extend this inequality to all

matrices with unit Frobenius norm.
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It now follows from Proposition 4.1 that each basis matrix VV"^ for can be written in the

form v^(v^)^ for some i and k, 0 < i
;

unit Frobenius norm) can be expressed as

form v^( for some i and k, 0 < i < N-1, 0 < k < N-1. Thus an arbitrary matrix W ( with

N-1 N-1
j

. ,W = E E C; k
'' (v*'/

k=0 i=0
’

where
N-1 N-1

E E (<ik)
= 1-

k=0 i=o
’

For any such matrix W, Gn( W) = RWR^ where R is as given in (4.9). Thus

where

N-1 N-1
; w f tG^{W)= RE E Ci k

i=0 k=0 ’

N-1 . N-1
= R E [R E Pi 1

i=0 k=0 ’

k it

Ci k 9 N-1 n

Thus
N-1 9

E iPi k)
= 1

k=0 ’

N-1 9
and E (/^i)^

= 1

i=0

Then by Proposition 4.4

N-1
R E Pj k

k=0 ’

V =
N-1

^ k
k=0 ’

where
N-1 9 9 N-1 9

E (Pi k) < E (Pi k)
k=0 ’ k=0 ’

k \t
N-1

j

N-1

Gn(w) = r i; /?i
v‘ E Pi k

('' )

‘ i=0 k=0 ’

k \t
N-1 N-1 . ^

= [R E /?i
( E Pi k) )

i=0 k=0 ’

N-1 N-1
i k ,

= E [R E Pi k^ H'' >

k=o i=o
’

for each i . Now
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where /ij
k

’ Proposition 4.4 again gives

N-1 N-1 ...
^ E Aj k

V

k=0 i=0
’

where for each k

Therefore,

N-1 9 9 N-1

E (Pi k) < E (Pi k)'
i=0 ’ i=0

9 N-1 N-1 9
r = E E (Ai kT

k=0 i=0
’

< E E (Pi k)
k=0 i=0

’

4 N-1 N-1 9
<<*^E E(Cik)-

k=0 i=0
’

N-1 N-1 o

E E (“ik)
k=0 i=0

A N-1 N-1
< E E (p

k=0 i=0

Thus we are lead to the following theorem.

Theorem 4.5 : If Sq’
’’^N-1

linearly independent, then there exists an a, 0 < or < 1 ,
and

9
depending only on

(
Sq

,

• •
•

» )
such that ||(jjyj|i < a" < 1. Thus the linear transformation is

a contraction mapping on the set of N x N matrices.

Before stating our result on the convergence of the matrices generated by (4.1) we provide the following

definitions
(
See also

[ 7 ]
)

.

Definition 4.1 : Let {sj^ } be a sequence of unit N-vectors. For each k
,
let

S,k = ^(\+N-l’ *°‘"(*k+N-2’ )°"'°‘^(®k ’
)

«(k) = II S,k II-

and define



- 19-

Defmition 4.2 : Let (sj^ } be a sequence of unit 3?^-vectors. If there is an infinite subsequence of the

integers, { k- }, and a constant a, 0 < a < 1, such that Q:( k- )
< a for each j then the sequence {si }

J J K

is said to be subsequentiallv linearly independent . In this case, if the subsequence
{ k

j
} can be chosen

so that

X = lim sup
{ k.

^
- k. - 1}

j
— oo

is finite, then the sequence { Sj^ } is said to be uniformly linearly independent with gap x-

The a(k) of the definition are well-defined by Theorem 4.5. Note that if there is an a < 1 such that'

q( k) < a for all k sufficiently large then the gap is zero, in which case we call the sequence {sj^}

uniformly linearly independent.

To obtain the basic conyergence theorem, we put the system (4.2) into the form of the system (3.1) by

2 . . • 22 '

identifying each with an N -dimensional yector and each G(sj^;') with an N xN matrix

^k' ^k both zero for all k.
)

Since we are employing the Frobenius norm on the
,

we haye
|

Zj^
|

= t|Ej^||p and also ||Aj^|| = ||
G(sj^; •)||. The following proposition will help

establish the rate of conyergence of the { }.

2 2
Proposition 4.6 : Let the sequence {sj^} be giyen and for each k let be the N xN matrix

representing G(sj^;*). Let {(3^ be the constants defined by (3.2). Suppose {sj^} is

subsequentially linearly independent and let the constant a < 1 and the subsequence {
kj

}

be as

specified in Definition 4.2. Then

(4.10)

for all k
,
and

(4.11)

for each j. If (sj^ } is uniformly linearly independent with gap x fben

\(N+x) - “(4.12)
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for all k sufficiently large.

Proof: (4.10) and (4.11) follow directly from Definition 4.2. Assuming {sj^} is uniformly linearly

independent with gap x i {
kj } be the sequence given by Definition 4.2. Then for every k

sufficiently large there is a kj such that kj — x < k < kj . Therefore

N-kx-1

II n
i=0

^k+i < (

-1

n
i=k-k.

J

‘kj+i

N-1

(11 Au.+ i)
i=0 J

k-kj-fx-1

( n !iAk.+N+iii)
i=0 J

< a < 1

which yields (4.12)

.

The main result of this section is now just a straightforward application of Theorem 3.1 (with and

both zero) and Proposition 4.6.

Theorem 4.7 : Suppose the sequence { } is subsequentially linearly independent. Then the sequence

{ Ej^ } defined by (4.1) converges to the zero matrix from any symmetric starting matrix Eq. If the

sequence {sj^ } is uniformly linearly independent with gap x then the convergence rate is (N-l-x)-step

linear.

5. Extensions of convergence results for the L- update

In the previous section we proved that under relatively weak conditions on the sequence { } the L

update leads to the convergence of the sequence { Ej^ } regardless of the starting point. In this section

we extend that result by relaxing the conditions on the sequence }•

As was pointed out in Section 1, sequences {sj^} can be constructed for which the corresponding
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{ Ej^ } will not converge. This was demonstrated by Ge and Powell [4] for the two-dimensional case.

In their example, the vectors { } are pairwise linearly independent but become more nearly identical

w'hile not converging to a single vector. Thus the vectors are not subsequentially linearly independent

0
and they do not converge to a proper subspace of This latter property is also necessary for

nonconvergence of the
{ } in a sense that will be made clear in the following.

Theorem 4.7 is predicated on the (subsequential) uniform linear independence of the sequence {
Sj, }

which requires that they span We now relax this restriction and assume instead that they span a

proper M-dimensional subspace, S, of 3?^. In order to analyze this case we let P be an NxM matrix

whose columns are an orthonormal basis for S and let Q be an Nx(N — M) matrix whose columns are

an orthonormal basis for S“*". For such P and Q any NxN symmetric matrix E can be written

(5.1) E = PP^EPP*^ -b QQ*^EQQ^ + PP^EQQ^ + QQ^EPP^

Note that P P^ is the projection of 3?^ onto S and QQ^ = I — P P^ is the projection onto S'^.

For each k we let r^ = \ where rj^ s 3?^^ and
| |

= 1. For a

sequence { Ej^ } satisfying (4.1), we set

(5.2a) V,^=P^E,^P,

(5.2b) U,j = Q‘E^Q,

(5.2c) = p‘e^Q,

SO that

(5.3) E,j = PV^P^ + QU^Q‘ + PY^Q‘ + QY^‘P‘.

Note that Yj^ = 0 if and only if S is an eigenspace of Ej^. Since p‘p = Im (
the MxM identity

matrix) and Q^Sj^ = 0, we see from (4.1) that these matrices satisfy the following uncoupled

difference equations

(5.4a)
^k-fl

- ~
^k^k^) ^k

-
^k^k^

Uk+1 =(5.4b)
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( 5.4c

)

Yk+1 - (IM — Ft Y)y,

Equation (5.4a) shows that the MxM matrices, satisfy the updating scheme (4.1); (5.4b) that the

(N — M)x(N — M) matrices, Uj^, are constant with respect to k; and (5.4c) that the Mx(N — M)
matrices, Yj^, satisfy a one-sided type of (4.1) update. Thus if the sequence { rj^ } is uniformly linearly

independent with gap x if follows from Theorem 4.7 that converges to the MxM zero matrix

and that the rate of convergence is (M-|-x)‘Step linear. A modification of the proofs of the

propositions and theorems in Section 4 can be used to show that the Yj^ also converge to a zero matrix

at the ( M 4- X )- linear rate. It is perhaps easier, however, to note that the symmetric positive semi-

defmite matrices 2j^=Yj^Yj^^ satisfy the same equation as the and hence tend to zero; the

convergence of the Yj^ to the zero matrix R- linearly then follows from the convergence of the If

the sequence { rj^ } is only subsequentially linearly independent then the convergence of the and

Yj^ still holds but there is no multi-step linear rate. As a result of these observations we have the

following theorem which shows that the restriction of the { } to a subspace does not prevent the

convergence of the { Ej^ }•

Theorem 5.1 : Let S be an M - dimensional subspace of 3^^ and let the matrices P and Q be defined

cis above. Suppose the sequence of N-vectors {sj^} is contained in S and that the sequence of M-

vectors, defined by r^^ = P^Sj^ is subsequentially linearly independent. Then for any initial

symmetric matrix Eq, the sequence defined by (4.1) converges to the matrix QQ^EqQQ^. If the

sequence { rj^ } is uniformly linearly independent with gap x then the convergence rate is at least R-

linear.

Proof: By the remarks above, Vj^ ~ ^0 convergence

result follows from (5.3). The R- linear convergence follows from the fact that the components of Ej^

have (M-|-x)“Step linear, and hence R- linear convergence, which implies (by the remarks in Section

3) the R- linear convergence of the Ej^. •

The next result is somewhat surprising in that it demonstrates that if { } converges at a reasonable

rate to a subspace, convergence of the { Ej^ } can still be obtained. The importance of this type of

convergence in constrained optimization will be discussed in Section 8

.



-23-

Defmition 5.1 : Let S be an M - dimensional subspace of 3^^ and suppose that
{ } is a sequence of

unit vectors that satisfy d- where Uj. £ S, Vj, £ 8“^, and — 0 as k — cxd. Then we

say that {
Sj^ }

converges to, If
|

Vj^
|

tends to zero R- linearly, we say that { } converges to S at

an R~ linear rate.

Theorem 5.2 : Suppose that the {sj^} converge to an M- dimensional subspace S at an R- linear rate.

Let matrices P and Q be defined as above, let { } be the sequence of unit M - vectors given by

(5.5)

and assume that { } is subsequentially linearly independent. Then for any initial matrix Eg there is

an (N-M)x(N-M) matrix U* such that the sequence { Ej^ } defined by (4.1) converges to QU*Q^.

If { } is uniformly independent with gap x then the convergence rate is R- linear.

Proof: Let ~
'^k

^ Definition 5.1. Then

’k = |-^|
+ “k “k +

where = >iki
-1

u
k'

ti =

and from (5.5)

P^u,

^k

and hence

\
~

Pfk d- c^k^k
*“

'"k’

It can be shown that the conditions \s^
\

= 1 and
I |

— 0 R- linearly imply that orj^ —*• 0 R-

linearly. Thus we can write

(5.6) sj^ = Prj^ + tj^

where 0 R-linearly. Now using (5.1) and letting Wy., Uj^, and be defined as in (5.2) we
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obtain the equations

(5.7a) Vk+i = Vk‘)Vk(l- Vk‘) +

(5.7b) ^k+1
- U|j + U( E,^,

(5.7c) Yk+iW= (•- Vk‘'W('- Vk‘) + nE^.r^.t^)

where, since the Ej^ and are uniformly bounded, the nonlinear terms V, U, and Y are 0(|tj^|).

Thus the system (5.7) can be put in the framework of (3.1) by identifying and with Zj^

,

and Uj^ with Wj^ . The conclusion then follows from the application of Theorem 3.1. •

As a result of this theorem, it is seen that nonconvergence of the { } can occur only if the sequence

{sj^} does not approach any fixed subspace R- linearly in such a way that the projections onto the

subspace are subsequentially linearly independent. As noted above, in the Ge and Powell example, the

vectors approach each other but not a fixed subspace.

6. Convergence results for other upwiates

In this section we extend the convergence results obtained in Sections 4 and 5 to the update process

( 2.5) for other than zero. This will be accomplished by considering the general update as a

perturbation of the L update. That is, from ( 2.5)

( 6 . 1
) \+i =

where H: L(9?^,3i^) —. L(3i^,S^) is a nonlinear mapping. If IIE^Hp is sufficiently small then

K* +®k‘^k\)'^l = ' + OdlEkllp)

and hence
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(6.2) II
H(s^; E|^)||p < ( || ||p

)-

where a is a constant independent of k. This fact leads directly to the next theorem.

Theorem 6.1 : Let { } be uniformly linearly independent with gap ^ and let the (f)^ satisfy

(6.3)
I I

< K • ( 1 4- llEj^Ilp)

for some constant k independent of k and l|Ej.|lp sufficiently small. Then there exists a postive

constant S such that if Eq is any symmetric matrix satisfying ||Eq||p < 6 the sequence defined by

( 2.5) converges to the zero matrix and the rate of convergence is
(
N -f x )-step linear.

Proof: As in the proof of Theorem 4.7 we identify Ej^ with and G(s^;') with Now

identifying the term ') in (3.1) and applying (6.2) and (6.3) assures the hypotheses

of Theorem 3.2 are satisfied.
(
No Wj^ is present is this application.

)
The result follows. •

The boundedness requirement on the
, (6.3)

,
generally rules out dynamic processes such as the SRI

in which the <i>^ can be arbitrarily large for small Ej^ ( although the SRI update itself will converge

finitely in this case). There are two significant differences between Theorem 6.1 and the corresponding

theorem for the L update, Theorem 4.7. First, it appears that uniform linear independence is needed as

a hypothesis for Theorem 6.T, otherwise, the gap between successive values of the sequence { kj } in

Definition 4.2 could become large enough to allow the quadratic terms in H(sj^; •) to grow so rapidly

as to preclude convergence of the solution of (3.1) to zero. More importantly. Theorem 6.1 yields local

convergence only; inequality (6.2) is not valid without the assumption that ||Eq|1 is small. However,

as will be observed in Section 7, for certain starting matrices the convergence of the C updating

process can be obtained without these two restrictions.

To obtain the convergence of the general updating scheme (2.5) when the lie on a subspace we

apply the perturbation technique of Theorem 6.1 to the analysis in Theorem 5.1. Defining the matrices

P, Q, Vj^, Uj^, and Yj^ as in Section 5 and setting rj^ = P^Sj^ permit us to decompose (2.5) into the

system
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( 6.4a)

--^k( Vkl[(fk‘Vk^k)fk-Vkl'

(6.4b) Yk+l = ( I -
^k'k‘)^k- \( ,^/tv .

)
[('k^\r,) r,- V,r,] [r,%]

V ^ +
'k \'k) /

( 6.4c

)

Uk+l = Uk-^k{
. , _V, _ )V\^k%-
1 + fk‘vk^k

From these equations we obtain the following result.

Theorem 6.2 : Let S be an M - dimensional subspace of and let the matrices P, Q, Yj^, and

Uj^ be defined as in Section 5. Suppose the sequence of N-vectors } is contained in S and that the

sequence of M -vectors, defined by rj^ =
^^^k

uniformly linearly independent with gap x-

In addition suppose that the satisfy

(6.5) I'^kl ^

for ||P^Ej^P||p sufficiently small, where k is independent of k. Then there exists a positive constant

6 such that for any initial symmetric matrix Eq satisfying ||P^EqP||p < 6 the sequence defined by

(2.5) converges to a matrix of the form QU Q and the convergence rate is at least R- linear.

Proof: The equation (6.4a) for Vj^ is identical in form to that of (2.5). Therefore, by Theorem 6.1

Vk — 0 at an (N-l-x)-step rate and hence an R-linear rate. Then by identifying with tj^,

with Zj^, and Uj^ with Wj^ it is seen that the last two equations in (6.4) have the form of the

system (3.1) and satisfy the hypotheses of Theorem 3.2. The result follows. •

The matrix U'*' is not specified by the theorem. In particular it is not Eq Q as in Theorem 5.1. It

should also be observed that the convergence depends only on the initial value of the P P^ Eq P P^

component of Eq .
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If the Sj, are not on the subspace S but converge to it in a R- linear manner, then by using the

combination of the analysis of Theorem 5.2 with that of the preceding theorem the following result can

be obtained.

Theorem 6.3 : Let the subspace S be given and let the matrices P and Q be defined as above. For

each k let s^= Prj^ -f tj^ where { } is the sequence of M- vectors defined by (5.5) and tj^ is

defined by (5.6). Assume that the { } are uniformly linearly independent with gap x and that

(6.6) |t^| < |tg| r'‘

for some constant r
, 0 < r < 1. Also assume that the sequence { } satisfies

(6.7) 10,^1 < K(1 + ||P‘E^P||p + |t,^|-||Ekl|p)

for some constant k independent of k . Let Eq be a given symmetric matrix. Then there exist

positive constants rg = r( Eq
)
and S such that if

||
P^ Eg P ||p -I- ||

P^ Eg Q || < (5 and
|

tg
|

< Tq
,
the

sequence { } defined by (2.5) converges R- linearly to a matrix of the form QU*Q^.

Proof: (6.6) implies that —* 0 at an R- linear rate (and hence {s|^} converges to S at an R- linear

rate). Using (5.2) we obtain, from (2.5),

Vk+I = (I-r|,rp‘)Vp(I-r,rp‘)

+ ^*(VVk'Uk.Yk’‘k)

Yk+1 = ( I - 'k'k‘)A- hi r-rVr^ ) '<^''‘^k^k) ^k- Vk'kl ['k‘Ykl
V ^ +

"^k ''k'k) >
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-l-
^k’

k’ ^k’

^

Uu
I 1 — Ui — 01.1

1 t_ _ t

k+l
- ^k- '"kl f: ty l^k^k'k^k + ^k('k’''k’Uk’'^k’‘k)

Since the are uniformly bounded, U^, and are 0((||Vj^l|p -f ||Uj^||p -f
|1
Yj^ l|p )

•
| |

).

Using (6.7) and identifying Vj^ and Yj^Yj^^ with Zj^ and Uj^ with Wj^ in (3.1) we see that the

hypotheses of Theorem 3.2 are satisfied and hence the results follow. •

The hypotheses of this theorem do not require that the component of Eq relative to S“*" be small

however they do require that the components of { Sj^ } start and remain close to S. An analysis of the

proof of Theorem 3.2 will show that if the component of Eq relative to S"*" is sufficiently small then

the requirement that the {sj^ } start close to S can be relaxed, although the sequence still must

converge to S at an R- linear rate.

7. Application to updates of

In the previous three sections we have established the convergence of the sequence of matrices { }

generated by the system (2.5) under certain restrictions on the sequences {sj^} and { } • In this

section we apply those results to the sequence { } generated by (1.5). While the results obtained so

far may be of interest in their own right, the updating schemes (1.5) are of practical interest in the

optimization algorithms that motivated this study and are, consequently, of more import. For the

simplest (quadratic) case, when = Sj^, the translation of the major theorems of Sections 4, 5, and 6

into results for the system (2.2) can be carried out by a straightforward substitution of Hj^ — I for Ej^.

The results of this transformation are given in the next two theorems in condensed form; the first

theorem deals with the case where the sequence { Sj^ } remains on the subspace S ( which may be 3?^

)

and the second with the case where the { } converge to a proper subspace S.
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Theorem 7.1 : Let S be an M- dimensional subspace of 3?^ with M < N and let the matrices P and

Q be defined relative to S as in Section 5 (
P = I and Q = 0 if M = N ) . Suppose each vector in the

sequence of unit N - vectors, is in S and suppose that the sequence { »
defined by r^^ =

P^Sj^, is uniformly independent with gap x in S. Let Hq be a symmetric matrix and generate the

sequence { } by (2.2) . Then

(i) if = 0 for each k,

lim H. = QQ''H„QQ‘ + PP‘;
k-^oo ^

or,

(ii) if the <j)^ satisfy
| |

< « ( 1 -t- ||
P^ P

||p )
for some « independent of k and

II
P^HqP — PP^IIp is sufficiently small, for some NxN matrix H*

lim H, = -f PP^
k—CO ^

The convergence rate of the matrices is (N-f-x)'Step linear if S = 3?^ and R- linear if S is a proper

subspace of 3? . The uniform linear independence can be replaced in case (i) by subsequential linear

independence, but the R- linear rate convergence is no longer guaranteed.

Theorem 7.2 : Let S be a subspace of 3?^ and assume that the sequence { } satisfies the hypotheses

of Theorem 6.3. Assume that the <f)^ satisfy

I'^kl < «(i + IIp‘h^p|If + Itkl-IIHkllr)

for some k independent of k . Let Hq be a given symmetric matrix. Then there exist constants Tq =

r(HQ) and 6 such that if
||
P^HqP + P%qQ — PP^||p< ^ and r < Tq then the sequence { }

generated by (1.5) satisfies

lim H, = QH*Q‘ + PP*'
k—*00 ^

for some (N-M)x(N-M) matrix H* and the convergence rate is R- linear. If = 0 for all k then
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the restriction on the initial matrix Hq is not required.

Thus, generally speaking, the sequence of updates defined by (2.2) converges to a matrix which is the

identity on the subspace spanned by the sequence { } (possibly in a limiting sense) provided the

initial matrix is nearly the projection PP^. In particular, the subspaces S and S“^ are eigenspaces of

the limiting matrix.

VVe now drop the assumptions that each Sj^ is a unit vector and

each iteration

~ \ require instead that at

(7.1) + «k

where
I

0 as k — oo. As was discussed in Section 2 this assumption is motivated by the

unconstrained optimization problem where Sj^ represents the difference in successive iterates. We then

have the following theorem.

Theorem 7.3 : Let {sj^} satisfy the hypotheses of Theorem 6.3. Let the sequence {yj^} satisfy (7.1)

and assume that —* 0 at an R- linear rate and ^ ^ some r/Q,

where 0 < 77 < 1 . Assume that the sequence { } satisfies

Ukl < «(i + IIp‘h^p|If + (Ukl + l«kl/l®kl)-li'*kllF)

for some constant k independent of k. Let Hq be a symmetric matrix. Then there exist positive

constants 6 and Tq = ^(Hq) such that for ||P^HqP -f- P^HqQ — PP^||p< S, < t-q
,
and

I

tQ
I
< Tq the sequence { } generated by (1.5), satisfies

lim H, = QH*Q^ -b PP^
k—^00 ^

for some (N-M)x(N-M) matrix H* and the convergence rate is R- linear. If = 0 for all k then

no restriction is required on the initial matrix Hq .

Proof: Let (7.1) hold. Then
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t

®k \

and hence if
I |

is sufficiently small

7.2

Substituting (7.1) and (7.2) into the update formula (1.5), making the changes of variables

= ik.

k' i*k
Sk = and =

and replacing, as before, Hj^ by Ej^ -f I yield an equation of the form

(7.3) ^k+1 -
^(®k’^k)

“
'^k ^(®k’^k) '^k’®k’ ^k’ ^k'

where now |sj^
[

= 1 , and
I |

<
I hQ 1

• ^ . Using the bound on the 0. it is seen that

(7.4) ^V(.^,s,E,^)||p < « (IIEj^llp )• U|.

Now the Sj^ can be decomposed as in Theorem 6.3 and the results of Section 3 ( in particular Theorem

3.2) can be applied just as before. •

It may be disconcerting to observe that Theorems 7. 1-7.3 yield global convergence (i.e., unrestricted

initial matrix) of the { } only in the case where 4)^ is zero, i.e., the L update. Proposition 2.2

allows us to extend these results to the C updating formula for positive definite starting matrices.

Theorem 7.4 : If Hq is positive definite and = 1 for all k, then in each of Theorems 7.1 -7.3 the

convergence and rate of convergence of the sequence { Hj. } are independent of the initial matrix. In

the case where the s^ all lie on a subspace S and = Sy, for every k the uniform linear independence

assumption can be relaxed to subsequential linear independence and the limit has the form

QH*Q‘ + PP‘ = [QQ‘Hq'^QQ‘ + pp‘ ]!.
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Proof: The class of positive definite matrices satisfies the conditions of Proposition 2.2 so the sequence

converges when the C update is used. Since the sequence is converging the iterates will eventually get

close enough to their limit to assure that the initial matrix requirements of Theorems 7.1 -7.3 are

satisfied. The desired convergence rate is then achieved . The final form in the special case derives

from the fact that the inverse of the C update of a matrix is always the L update of the inverse of the

matrix. If only subsequential linear independence of { Sj^ } is assumed in this case then the iterates will

converge by the argument of Proposition 2.2 but no rate of convergence is specified. •

In addition to the class of “direct” Broyden updates generated by (1.5) there is the class of “inverse”

Broyden updates that are obtained from (1.5) by interchanging s and y. In the unconstrained

optimization setting this class of updates generates sequences { Hj^ } that represent approximations to

the inverse of the Hessian matrix of the objective function. When the y^ = the resulting class

reduces to (2.2) and the theorems of Sections 4, 5, and 6 apply. When (7.1) holds, Theorem 7.3 can

be repeated for the “inverse” class with no essential change. Only the function W is slightly different,

although it still satisfies (7.4).

When the theorems above are applied to the unconstrained optimization problem, it is under the

assumption that the Hessian matrix of the objective function at the optimal solution is the identity.

Since the form of the Broyden class of updates (1.5), as well as the form of the “inverse” class, is

invariant under the transformations ( T )
in Section 2 ,

there is no loss in generality in making this

assumption. The limiting value of the Hessian approximations in the untransformed case will be the

1/2
Hessian matrix F if the vectors F Sj^

,
equivalently the vectors Sj^

,
do not approach a proper

subspace of 3?^. If {F^^^Si } approax:hes a subspace S which is an eigenspace of F, the matrices P

1/2
and Q can be chosen so that the columns are eigenvectors of F ( and, hence, F

)
. Then

f'/'[P,Q] = [P,Q]D = [P,Q]

where and D
2

are the diagonal matrices whose diagonal elements are the square roots of the

eigenvalues of F on the subspaces S and S"^ respectively. Now the general form for the limiting

matrix gives

Dj 0

0 Dj

lim H, = Pp‘ + QU*Q‘
k-^oo ^
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so

lim H, =
k—-'DO

I 0

0 U*
(P,Qi‘F‘^'

= [P,Q]D
I 0

0 u*
D (P,Q]'

= PDj2p‘ + QUQ‘

for some matrix U. If S is not an eigenspace of F then the columns of P and Q cannot be chosen as

eigenvectors of F and the limit is F ^ [P -f Q U* Q^] F ^
.

Finally, it should be pointed out that other rank two updates not of the Broyden class may be able to

be analyzed by the methods presented here. For example, consider the well-known PSB update which

has the form:

t^(H,s,y) =
(y-Hs)st + s(y-Hs)t _ (y- Hs)^s

s‘s (s‘s)2

This update is not invariant under the transformations given above; however, we can analyze it by

letting y = F s -f ^ where ^ 0 as above. Then letting E = H — F and ^ = 0 ,
we obtain the L

updating scheme (4.1). Thus we can prove, under the appropriate restrictions on the that the

sequence { } converges to F if the { } do not converge to a subspace. If the { } converge to an

eigenspace, S
,
of F

,
then we obtain

lim (%-F)= QUQ‘
k—*-oo

for some matrix U . Now since the limiting subspace of the { Sj^ } is an eigenspace of F,

F = PDjP‘ + QD2
Q''

where and D
2

are diagonal matrices. (As above, P and Q are chosen to have eigenvectors of F

as columns). Thus

lim H. = PD, P‘ + QU*Q‘
k-»oo ^



-34-

for some
( N - M

) x( N - M
)
matrix U*. This is a somewhat more general result than is available for the

Broyden class of updates because there is no restriction that the limiting matrix F be positive definite;

it only need be symmetric. In the Broyden class of updates, the term y^s that appears in the

denominator can be zero when y = F s and F is not positive definite. Therefore, unless the lie on,

or converge to, a subspace on which F is positive definite, convergence results cannot be obtained for

the Broyden class of updates when F is indefinite. The implications of these remarks for constrained

optimization algorithms are discussed in the next section.

8. Final comments

In this paper we have analyzed the convergence of a sequence of symmetric matrices, { } ,
satisfying

rank two updating formulas, (1.5), of the type typically encountered in optimization algorithms. This

analysis was carried out independently of the particular algorithm and, indeed, independently of any

optimization problem. The results indicate that the convergence of the matrices follows from the

secant condition (1.2), the requirement that the sequence {sj^} satisfy certain linear independence

conditions, and the condition that the sequence { ~ } approach zero at a specified rate. It does

not postulate that the sequence { } be related to any optimization iteration scheme. In addition to

establishing convergence of the sequence of matrices the results presented show that the limiting matrix*’

is the identity matrix when restricted to the subspace to which { } converges. In optimization

problems where
y^^

— F(x*) Sj^ approaches zero and the Hessian matrix F(x*) is positive definite

with the subspace as an eigenspace, the limit of the matrices is identical to F(x*

)

on the subspace.

These results do not subsume those of earlier research, e.g., those contained in references [3] — [7],

because the conditions on the sequences { } and { } are assumed here and not derived as a

consequence of their generation in optimization problems. They do, however, provide characterizations

of the limiting matrix not given in those works and, in particular, illustrate how its structure depends

upon the subspace that is spanned by the sequence { } ,
an important consideration in, for example,

constrained optimization. Another distinction of the results presented here is that some analysis of

convergence rates is given. The convergence rate of these matrices, under the cissumptions used, is

essentially R- linear; thus it is unlikely to be recognized in an algorithm where the iterates are

converging much more rapidly, such as in a Q-superlinearly convergent algorithm.
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One of the original motives for undertaking this study was to try to find alternative proofs of the

superlinear convergence of the BFGS and DFP algorithms for unconstrained optimization. Our efforts

in this regard will appear in another report [10]. In particular, we wanted to try to simplify the

proofs’ dependence on the bounded deterioration estimates and the use of different weighted norms
[ 1 ]

.

The relation between the superlinear convergence of these algorithms and the convergence of the

Hessian approximations is best understood by recalling that if the iterates {
Xj^ }

converge and

— Xj^ = s-^
,
then the iterates converge superlinearly if and only if

(
8 . 1 )

lim (H^ - I),

k-»oo ^
'

\ _

( We assume the Hessian is the identity at the solution.
)
Now if the

{
Sj^ } converge to a subspace S

R- linearly and the projections of the Sj^ span a subspace S in the uniformly independent manner

defined in this paper, then

= P(P‘(H^-I)Prk + 0(?k)

where Therefore by the results of this paper the convergence is superlinear if and only if

P^Hj^P PP^

Another motivation of this research was the desire to understand the question of superlinear

convergence for sequential quadratic programming ( SQP )
methods for constrained optimization. The

necessary and sufficient condition analogous to (8.1) for superlinear convergence is

( 8 .2
)

lim PP‘(H, - L),-S-, = 0
k-.oo ''

Isitl

=k _

where L is the Hessian of the Lagrangian function with respect to the decision variable at the solution

and P P^ is the projection onto the null space, S, of the active gradients at the solution. (See [11] or

[12].) Note that the restriction of L to the subspace S is positive definite by the second order

sufficient conditions. Thus, letting

= PP^s, -f- QQ*^s, = r. -f V.

( 8.2

)

becomes

lim { PP‘( H. - L)PP‘ i + (PP‘(H, -L)QQ‘)ri
}

k-^CxD I I \%\
(8.3)
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It can be seen that if the sequence {sj^} spans 3?^ in a uniformly linearly independent manner then

the matrices — L)P and P^(Hj^ — L)Q must converge to zero if (8.3) is to hold. But L need

not be positive definite except on the subspace S. Thus a BFGS or DFP updating scheme initiated

with a positive definite matrix cannot be expected to lead to a superlinearly convergent algorithm

unless the problem is convex. On the other hand, it is seen that if the sequence { } spans S in a

uniformly linearly independent manner and tends to zero R- linearly then the results of this

paper imply that P P^
(

— L
)
P P^ — 0 and hence superlinear convergence occurs. The sequence of

vectors { } tending to zero is implied by the sequence of iterates { } tending to the solution in a

“tangential” sense relative to S and so this result reinforces and explains previous observations (see

[13]) that tangential convergence of the iterates in an SQP algorithm implies superlinear convergence.

The remarks in Section 7 concerning the PSB update suggest that superlinear convergence can be

obtained by an SQP algorithm employing that update, since under the assumption of uniform linear

independence of the sequence the PSB updates converge to the Hessian matrix without the

assumption of positive definiteness. Indeed, Han in his early work on the SQP method [14] was able

to prove superlinear convergence for this update.

It would be ideal to be able use to the convergence analysis of this paper to deduce the “best” update

scheme for a given optimization algorithm. This is unreasonable, however, since there are many other

factors that influence a numerical algorithm that are not taken into account here. More significantly,

our analysis treats the sequence of steps {sj^} as generated independently of the sequence

whereas in optimization algorithms the determination of is directly influenced by Hj^ . This

being said, it is hoped that some insight into the appropriateness or limitations of a particular update

in a certain situation may be gained from this type of analysis. For example, the remarks above

suggest that the updating methods that preserve positive definiteness, long favored for unconstrained

optimization algorithms, cannot guarantee superlinear convergence when applied in SQP algorithms for

constrained optimization problems.

One intriguing question that has inspired many research efforts (e.g., [6]) is to explain the

experimentally observed superiority of the BFGS updating scheme over the DFP scheme in quasi-

Newton algorithms for unconstrained optimization problems. In the context of system (2.2) the BFGS

update corresponds to the C update and the DFP to the L update (where Hj^ represents a direct

approximation of the Hessian of the objective function ) . If one interprets the system (2.2) as a local

approximation to the system (1.5) then one might hope to observe better convergence results for the C

update than for the L update. Theorem 7.4 suggests, however, that their theoretical convergence
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properties are identical for positive definite initial matrices.

Another way to compare the local convergence properties of the Broyden class of updates is in terms of

their relation to the SRI update. As was noted in Section 2 the SRI updating scheme used in (2.2)

yields finite convergence in N steps ( if Es 0 at an earlier step) if the sequence {sj^
Q

linearly

independent, while the other updates require that the be orthogonal to obtain the same result. This

property can be expressed in terms of the system (2.5) by observing that if p Sj^, and are given

with Ej^Sj^ =0, Sjj =
^®k-l

then, in the notation of (6.1),

^k-fl
~ ~ ~

^^®k’^k^
~

‘^S^^^k’^k^ ^ *^S
~

*^k ^ ^^^k’^k^

(8.4)

= G{v;E^) - 0s^(v;Ej^) -h

where 0g is the SRI update parameter. Since the last term is zero if it is seen that the SRI

parameter is the only one that causes the update formula to be a function of only the component, v
,
of

Sj^ perpendicular to the preceding step, ^ Thus we can think of the last term involving

as the error in the update that is preventing finite convergence. Clearly, in terms of speeding up

convergence for system (2.5) (and hence (2.2) )
it is best to choose . If, however, it is desired

that positive definiteness of the matrices be preserved, then the value 0g cannot always be chosen.

A reasonable strategy in this case might be to choose the value of as close to <^g as possible

consistent with preserving positive definiteness, thus minimizing the error term in (8.4). From

Propostion 2.1 it is seen that positive definiteness is preserved if and only if 0 < <f>Q where </)q is a

constant greater than one whose exact value depends on the current s and H. For the system (2.2)

0S
s^Hs

s^Hs- 1

so that if s^ H s < 1 then 0g < 0 and hence positive definiteness is preserved, while if s^ H s > 1

then <f>^ > \ and positive definiteness may or may not be preserved depending on the value of .

These observations lead to the consideration of four strategies for choosing the update parameter to

maintain positive definiteness for the system (2.2)

:

Strategy I: (pure DFP) Choose </» = 0;

Strategy II
: ( pure BFGS )

Choose </>=!;

Strategy III: (mixed BFGS and DFP) If s^Hs < 1 choose 0 = 0, otherwise choose 0 = 1;

Strategy IV: (mixed BFGS and SRI) If s^Hs < 1 choose 0 = 0g ,
otherwise choose 0=1.

Based on the arguments given above, one would expect Strategy IV on average to lead to faster
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convergence of the matrices than Strategy III and the latter to be better than either of the strategies I

or II. Very limited numerical experimentation on randomly generated problems has supported these

conjectures. This testing also gave an edge to Strategy II over Strategy I. A reasonable explanation

for this is that the eigenvalues of the randomly generated initial matrices were preponderantly greater

than one and, hence, so were those of the succeeding matrices. Therefore, on average, s^Hs was more

often than not greater than one and thus the value 0 = 1 was closer to 0g more often than was the

value 0 = 0. This situation would also be expected to occur for almost any realistic distribution of

positive definite matrices; thus one should expect that the strategies above are listed in increasing order

of general effectiveness. In particular, the BFGS strategy should generally outperform the DFP

strategy when there are numerous large eigenvalues (cf., [6]). Presumably, the best strategy would be

to choose 0 as close to the upper bound 0^ as possible whenever 0g is greater than 0q and 0 = 0g

otherwise. Whether or not this is computationally attractive is not clear.

It should be emphasized that the above remarks apply only to the system (2.2) and not to the system

(1.5). Further experimentation is necessary to determine if these conjectures can be validated for the

latter system and applied in a useful way to quasi-Newton algorithms for unconstrained optimization.

A generalization of the results of this paper that also might yield interesting insights would be the

relaxation of the secant condition (1.2). It seems clear that the analysis carried out here could also

work if another term were added to (2.5), say U(Sj^,Ej^), with U
Sj^

converging to, but not equal to,

zero. Such a class of updates satisfying a type of asymptotic secant condition would yield the same

convergence results and, by the remarks above, preserve superlinear convergence. Such updates could

potentially broaden the choices of updating schemes available for use in special classes of problems.

A final question that is unanswered by this analysis is if the global convergence properties enjoyed by

the L and C updates when Sj^ =
y^^

can be extended to other updates. In particular, it would be

reasonable to expect that the restricted Broyden class of updates would have this property.
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Api)endix

Here we address the proofs of the theorems in Section 3. We will not prove the theorems stated there

in their full generality. Rather we will sketch the proof of Theorem 3.1 and prove one theorem from

which the proof of Theorem 3.2 can be derived by generalizing the arguments.

For Theorem 3.1 we have two uncoupled systems

and

\+l -

"k+l = "k + Wk(tk)

where, because of the R- linear convergence of the { },

(A.l) ‘kl ^

for some r, 0 < r < 1, and some tg. For the first equation it can be shown by induction, using the fact

that
1 1

A.
1 1

<1 for all i

,

l"k+rl ^ ( II H (A^+j) ID l^kl + ''I'E l‘k+jl-

j=0 j=0

(A.2)

Assuming, without loss of generality, that
•'j+i

> kj -f m, condition (ii) of Theorem (3.1) implies
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l^k I

< /? |zu
I

+ K-rj .

"j+ l
‘'j

^1*1
I

where K = ^
— . Let { -Cj } satisfy

(A.3) ?j+l= /3«j+

with ^0 “ I' j’ l^k. I — ^j' solution to (A.3) satisfies
^0

--J

+ K- Z K-j]
J

i=:l

where p = max [jS
,
t]. So from (A. 2) ,

for kj < k <
‘‘j+i’

k.

|Zkl ^ l^k I

^

IK Kj Kq

Thus {zj^} --*• 0. If condition (ii)^ of Theorem 3.1 holds, then without loss of generality, we can

assume that it holds for all k. Then for k = j
• m -f r, 0 < r < 1, we have from (A. 2)

^k ' '^r+j-m' = ^ ' ^r-|-(j-l)'m
< Iz 4- K-r

r4-(j-l)-m

It can now be established by induction on j that for each r, 0 < r < m

,

z . .
I

< Kf pr4-j*m ' — ^ ^

where p = m€Lx[/?,r]. The R- linear convergence follows. If = 0, then for each k

l\+ml ^ l^ki

which gives the m-step convergence.

For the second system, to show that the {wj^} converge to some vector R- linearly we note that for

any positive integers k and i,

j=0
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and hence { } is a Cauchy sequence converging to some w*. Since

|w*-Wki = |i^Kk+i“’^kl ^ ^

it follows that the convergence is R- linear.

To show how Theorem 3.2 can be derived we consider the system of coupled difference equations in two

variables:

"k+l = + *k)-‘k

(A.4)

'^k+l
=

"'k
+ ^2(^k)^ + ^2-(^k +

''k)-‘k

where 0 <q:< 1, /?p /?
2 » 7p and 72 nonnegative constants, and { } converges to zero R-

linearly, i.e., (A.l) holds.

Theorem A.l : There exists positive constants and Tq such that if |zq| < and
|

tg
|
< Tq then

I

Zjj
I
<

I

Zq
I

and
| |

< 3 •
|

Wq
|

for all k . Moreover, there exists a w* such that

{^ki ^ 0

and

{Wk} - w*

R- linearly .

Proof: First we show, by induction, that the hypotheses imply that
| 1

< 3 •
|

Wq| and that there is

a p, 0 < p < 1 ,
such that

l^kl < hoi p'"-

We let /? = max { /?., /?2 }
and y = max { 70 }

(i) d = (1 + a)/2,
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(ii)

(iii)

(iv)

P = max {or
,
r ) ,

?o=
( 1 — P“).l/2

1}

. ,
(1 - /’)|zol (1 - r) ,"0= -"‘"f
SIwqIt

’ -4^>-

Clearly the inequalities are true for k = 0. Assume them to be true for j = 0, 1, . .
.

,

k

using (i), (iii), and the induction hypotheses

|zk+ll ^ hkl + ^l^kl'I^k*

< a |zq|p^ -h 4

Using (ii) and (iv) we have (since k > 1

)

(A.5)
^k+1

p( 1 - p) |z
0

} < IzqI ^
k-Hl

Then for each j , j = 0, . .
.

,

k

,

we have

< |wj| + /^IzqI^p^-^ 4- Tdz^lp-^ -h SlwgDItglp
2j

(A.6) <
I

wj + { I I
( 1 - p^

) + 4 7 I

Wq
I

Tq } p
2J

< |wj| + 2 |wq|(1-p“)

Clearly, the sequence { |

Wj
| } is majorized by the sequence { Cj } satisfying

Cj+l = fj + 2Co(l-p2)p2j, Co = l*ol

for j
= 0, . .

.

,

k. But then

Ck+i = Co + E [Cj+i - Cjl

j=o •'

Cq “b “ ^0 ^
^ ~ ^ p ^ ^0

j=0

Then

Thus
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Wk+il < 3- W/

which completes the induction step. Now it follows from (A. 5) that { }
—* 0 at an R- linear rate.

It remains to show that the { } converge to some vector R- linearly. From the difference equation

for the { } and the estimates in (A. 6) it is seen that for any positive integers k and i,

Wi ,

. — Wi
k-fi

< 2lw.|(l-p2) < 2|w.|p2k
j=0

and hence { Wj^ } is a Cauchy sequence converging to some w*. Since

" ~ "kl = l'"k+i
-

"k

it follows from the above inequality that the convergence is R- linear.

Theorem 3.2 can now be proved by generalizing the above theorem to the case where and w^^ are

vectors and the condition 0 < o < 1 is replaced by conditions (i) and (ii)^ of Theorem 3.1.
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