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National Institute of Standards and Technology

Gaithersburg, MD 20899

Approximate equations for a Boussinesq model with viscous dissipation and

thermal conduction describing buoyant convection driven by a heat source in a

rectangular enclosure are derived. The finite-difference algorithm for computing

transient solutions in two dimensions to these equations is presented. The al-

gorithm allows the enclosure fluid to be stratified in a direction parallel to the

enclosure walls initially, or for gravity to have an arbitrary direction relative to

the enclosure (but with no initial stratification). Computational results of tran-

sient, two-dimensional buoyant convection for very high resolution are presented.

The hydrodynamics is directly based on the time-dependent Navier-Stokes equa-

tions; the model is valid in the Boussinesq approximation. No turbulence model

or other empirical parameters are introduced. There is no inflow or outflow at

boundaries; this assumption, although rather restrictive, allows the mathematical

problem to be properly formulated so that no other empiricism is introduced by

specification of the algorithmic boundary conditions. A finite-difference scheme

second-order in space and first-order in time is used to integrate the evolution

equations, and an elliptic solver is used to solve the pressure equation. The algo-

rithms have been verified by comparisons with exact solutions to the equations in

simple, special cases, and predictions of the overall model when the viscosity and

thermal conductivity are zero have been compared with experimental results. The

use of Lagrangian particle tracking allows one to visualize the flow patterns.

1 Introduction

The authors have pubhshed previously a description of the mathematical

model and their algorithm for computation of the buoyant convection in-
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duced by a fire evolving in a room [1] - [7]. The model is for a dissipation

free, thermally expandable fluid, i.e., one for which density and tempera-

ture variations can be large, but pressure variations are small [1], and for

a Boussinesq model, one in which the density variations are also small.

The algorithm can be generalized easily to include viscous dissipation and

thermal conductivity. Previously the authors had argued that one could

not resolve both large-scale motions associated with room-scale buoyant

convection and motions at the dissipative length scale with computational

resources available. However, with the revolution in computational capa-

bihty currently taking place, this statement is no longer strictly true, at

lesLst in two dimensions.

In this document the authors generalize their model and algorithm in

two dimensions to include viscous dissipation and thermal conduction. Also

included are recently introduced generalizations which allow for either an

initial background stratification in a direction parallel to the enclosure walls

or for the enclosure to have an arbitrary direction relative to gravity (but

not both in the same calculation). We present the details of the algo-

rithm in this report (which may be regarded a^ a working document on

the two-dimensional boussinesq code with dissipation). Because the model

is restricted to two dimensions, very high resolution computations can be

performed, which allow us to resolve both large-scale buoyant convection

and small scale dissipation for Reynolds numbers of interest for enclosure

fires. The model of buoyant convection is presented in Section 2 and a brief

description of the numerical methods in Section 3. Section 4 contains a

detailed description of the algorithm. Some sample results, together with

discussion of the physical phenomena observed, are described in Section

5. An Appendix is also included which contains the algorithm used to

introduce and track the Lagrangian particles.

2 Hydrodynamic Model

Traditionally, two approaches to the computation of fire-induced buoy-

ant convection have been reported: direct integration of the Navier-Stokes

equations using molecular values for viscosity and thermal conductivity or

integration of these equations using a turbulent viscosity and conductiv-

ity to account for fluctuations occurring at the large Reynolds numbers of

2



practical interest. The former approach, although most desirable, is not

practically feasible in three dimensions with today’s computers; computers

are not big and fast enough to calculate simultaneously the largest scales

of buoyant convection and the smallest scales at which dissipation occurs.

Alternately, the use of a turbulence model in the equations introduces func-

tional forms and empirical constants which do not have a fundamental the-

oretical basis at this time. However, in two dimensions, direct simulation

of the Navier-Stokes equations at Reynolds numbers of practical interest

for fire-driven flows is possible and even practical, and these simulations

are the subject of this report.

The essence of the buoyant convection model is described as follows.

We consider a Boussinesq fluid with constant \’iscosity and thermal con-

ductivity in a rectangidar enclosure driven by a prescribed heat source. We
start with the equations of motion for a thermally expandable ideal gas

[1] in which we include viscous dissipation and thermal conductivity (with

constant viscous and conduction coefficients).

5 , .

/ du, dui\ dp

= 0

= pv
d^Ui

d^

pC,
dT dT

di
= Q + K

d^T

dxj

Po = pRT

(
1 )

Here, all symbols have their usual fluid dynamical meaning: p is density, u
,

are the velocity components, p is pressure, g is the acceleration of gravity,

ki are the components of the vector describing the direction of the gravity

vector, u is kinematic viscosity, Cp is the constant-pressure specific heat, T
is temperature and K is the thermal conductivity, t is time and Q is the

spatially and temporarly prescribed heat source.

If we combine these equations as described in [2], nondimensionahze

them a.s described in the appendix of this reference and make the Boussinesq

approximation, we obtain the following set of equations.
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dui duiw +

+

dp

dxi

dp dp _
di dxi

{p-po{z))ki =

dui _
dxi

-^!—^Q + kV^P
7

vV^Ui

0

( 2 )

Here, all symbols have the meanings given above but in dimensionless form,

Pq{z) is the initially stratified density profile assumed to depend only upon
the vertical coordinate 2r, and k is the dimensionless thermal conductivity.

The dimensionless quantities are defined as follows: lengths are relative to

the height of the enclosure, pressure is relative to ambient pressure, time is

relative to the height of the enclosure and the velocity scale, and velocity

is relative to a scale U, and the density perturbation is relative to ambient

density with a small parameter (3, If we denote temporarily the dimensional

quantities by an asterisk, then these relationships can be written as follows:

X* = Hx„ r =

u* = UUi

p- = po(0)J7V

p- = po(0)(l + I3p)

Po(^') = po(0)(l + 0p(z))

U and /3 are defined in terms of the magnitude of the heat source as follows:

/3 = uy{gH)

U = {Qogl{poC,ToH)Y/^ (3)

U = {qog/ipoC,To)y>^

Here Qq is the strength of the three-dimensional heat source in units of

energy per unit time, qo is the strength of the two-dimensional heat source

in energy per unit length per unit time, H is the height of the enclosure

and all other quantities have their usual meanings. See [2] and [6] for

more details of the scaling. Henceforth, all variables will be regarded as

dimensionless.
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In the two-dimensional case, these equations can be rewritten as follows:

dp
Jr F F^ PX ^ PZ

du

di

dp
+ + T P9x

dw ^ dp ^

du dw

/ d^u \

dz'^

)

_ / d^w d^w\

where

P = P- Po(2)

ax

/ dpo dp\

Fi = (1/2)^ - wu

F, = (l/2)^ + «u,

dw du

dx dz

= u^ + w^

(4)

Boundary conditions for these equations are that there be no inflow

or outflow at boimdaries, that there be a no-slip or free-slip conditions

at boundary walls, and that the walls are adiabatic or kept at a constant

temperature. The initial conditions are that the fluid is quiescent.

3 Numerical Methods

Equations (1) are a mixed parabolic/elliptic system of partial differential

equations; i.e., the equations for the density and for the velocity components

are parabolic, whereas that for the pressure is elliptic. The incompressible
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equations of hydrodynamics are well known to have this mixed character.

When there is no dissipation in these equations, it is important not to intro-

duce any through the numerical scheme. Analytical studies of the abihty

of several candidate finite difference schemes to calculate internal gravity

waves [3] led to the conclusion that methods of second order accuracy in

space and time would be necessary; without dissipation, the scheme cho-

sen is dispersive, but not dissipative. All time derivatives are replaced by

central differences over twice the time step size (a leap-frog scheme) while

all viscous and conduction terms are either differenced at the lagged time

level in one case, or according to a DuFort-Frankel scheme in the other.

Both schemes, the lagged-dissipation one and the DuFort-Frankel, have

been used. Other terms in the evolution equations (the first two of Eqs.

(1)) are in general evaluated at the mid level of the three level scheme.

The spatial grid is taken to be uniform in each of the two directions,

although the mesh length may be different in each direction. Within each

rectangular mesh cell, vector components are evaluated at the sides and

scalar quantities at the center of the cell. The staggered grid permits central

differences to second order accuracy for all lineax operations. The nonlinear

terms must be considered separately. The density evolution equation in

continuous form is the maiss conservation equation minus the expression

for the velocity divergence. Each of these two equations is approximated

by central differrences and then subtracted. The density at all faces is

approximated by the mean of the density at the centers of adjacent cells.

This procedure ensures global mass conservation ais well as second order

accuracy.

The momentum equation is differenced in the vector invariant form

shown in Eqs. (1). This ensures nonlinear stability and complete compat-

ibility between the “primitive variable” formulation presented here and a

vorticity, stream-function formulation (in the dissipation-free c2Lse), see [4]

for details.

The pressure equation is the discretized version of the time derivative of

the third of Eqs. (1), using the central difference approximation to the di-

vergence of the velocity and with the time difference of the velocity replaced

using the discretized momentum equations. Mathematically, the calcula-

tion of the pressure requires the solution of an elliptic partial differential

equation. For the Boussinesq model, the Hnear algebraic system arising

from its discretization has constant coefficients and can be solved by a fast
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direct method, see [6] for details. The solution to the pressure equation

constitutes the bulk of the numerical computation since the density and

the velocity are updated expHcitly once the pressure gradients are known.

Finally, stabihty of the computational scheme imposes a limit on the

time step size relative to the spatial mesh sizes, see [2] and [3]. Also, ac-

curacy of the computation is an important consideration, which has been

examined in [2], [3] and [6], and verification that the numerical methods

solve the partial differential equations, at least in special cases, has been

addressed in these references. In addition, the basic features, such as the

plume rise-time in a uniform density environment, have been compared

with experimented results to verify the basic predictive capability of the

dissipation-free model [5]. With such careful consideration of the basic

model and numerical methodology, we have confidence in the predictions

made by these computations, and feel justified in interpreting physical fea-

tures arising in them.

4 The Algorithm

4.1 The Density Equation

We now write out the details of the algorithm. First, for the density equa-

tion, return to the full continuity equation (in dimensional form):

dp ^ / X ^_+_(p„.) = o

dp dp dui _
( 5 )

Use the nondimensionalization presented earlier

dp djpo -h p)

di dxi
+ [1 -h (3(po -t- = 0 (

6 )

where p = l-hyd(po“hp), where now all variables are dimensionless and

where we have divided through hy /3. If we now formally allow P —* 0^ then

we recover the Boussinesq equation for the density.

^ d{po + p) duj

di dxi dxi
( 7 )
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The same procedure used above for the partial differential equations

(PDE) can now be applied to the finite difference equations (FDE). We
desire to keep conservation form for the FDE as well as for the PDE. Hence,

dpik
,

rpi+l,k + Pik Pik + Pi-l,k

dt
+ ( ‘^ik 1,A:J c

OX

,

rPt,fc+l + Pik
+ Wik

Pik + Pi,k-\
T
1 p,

2
“^•*-157 = 0

or, rewriting,

dpik Pi+l,k^ik

di 2Sx

,

Pi,k+l'Wik

Pi-l,kUi-l,k Pik / X

+ :rr-[Uxk - Ui-i,k)
28x 28x

28z

Using the identity

Pi,k-\'^i,k-\ Pik / \ n+ :ZT-(^ik - Wi^k-l) = 0
28z 28z

ac — hd = [(a + h){c — d) + (a — 6)(c -h d)]/2

we find

Pi-\,k){'^ik — y'i-\,k)

“1“ Pi—l,k^(^^ik “1“ ^i— l,fc)
2,8x

l,fc)

4-=^(p,-,*:+l + Pi,k-l)(Wik - Wi,k~l)
^dz

4- - Pi,k-i){wik + Wi,k-i) + “ 'Wi^k-i) = 0

or

where

dpik

di
+ F'pxifc + Fpzik H" (^/^)Pik^ik — 0

A,jt =
^^3 / ik 7Po Rp^

J ik

Rpxik — Pi-1,k) i^i,k 1,A:)

(
8

)

p "TT {pi+l,k Pi—l,k) {^i,k 4“ 1,/:)

48 X
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Fpzik — (P»,fc+1 Pj,A:+i) ^t.fc— l)

{PiMl - Pi,k-l){^i,k + U?,- Jb_i)
A8z

Finally, use the same nondimensionalization as cited above, using p =
1 4- d{po,ik + pik)‘ Note that only pik and p.jt depend upon time. Also, note

that, we can divide by l3 and then allow it formally to vanish as done above

for the PDE to obtain the finite difference equation for the Boussinesq

model.

Fpnk + Fpzxk + Dik = 0 (9)

where

Fpxik — (pO,i+l,Jb + P0,i-l,jb 4" Pt+l,/fc 4- pi-l,k) {^i,k ”

4”
4(5^

(P0,»+l,fc Po,i—l,k 4" Pi-\-\,k Pi—\,k) {^i,k 4“ ^i—l,k^

F
*ozik ~

^
(Po,i,A:+l 4" Po,i,k+l 4“ Pi,k+1 4" Pi,k—l) {^i,k l)

1

‘^Sz
{Po,i,k+\ Po,i,k—l 4“ Pi,k+1 Pi,fc— l) 4” ^i,k—l^

and where Dik is the dimensionless form of A,jt divided by /3,

7- 1 Q
Dik =

7 Po

- «vV)
ik

Here k = KKpCp).
At boundaries, the density fluxes are determined by the no-inflow, no-

outflow conditions. Also, we must specify adiabatic or cold-wall boundary

conditions, which determine the temperature and hence the density (since

the perturbation density is the negative of the perturbation temperature)

in ficticious cells adjacent to the boundaries.

At i = 1:

Dpxlk = 2^ (P0,2,A: 4- P2,k) U2,k

Po.Jk
=

(10)
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At i = I:

^oxlk —
2Sx

{pO,I-l,k + pi-l,k) Ul-l,k

pl+l,k = ±p/,jfc

(
11

)

At A; = 1:

Fpzil — Pi,2)'^i,2

Pi,0 = ±Pi,i

At k = K:

^oziK — ^^{pO,i,K-l + Pi,K-l)^i,K-l

Pi,K+l = ^Pi,K

( 12 )

(13)

Here, the plus sign corresponds to adiabatic boundary conditions (BC) and

the minus sign to cold wall BC. Adiabatic BC imply zero derivative in the

temperature (density) perturbation across the boundary whereas cold wall

BC imply the temperature (density) perturbation is zero at the boundary.

Two different discretizations in time have been used. In each case, the

discretizations of the time derivative has been chosen as a leap frog.

^ dt ’ 2SV^''‘
'

In the first case, we use a lagged-diffusion temporal discretization for the

dissipation.

= J^{P0,i,k+l "* 2/?0,iA: + P0,i,k-l) “ + P7k^)

+ P'i-lk) + Plk-l)
Sx^ Sz^

Define

^p,tk
— ~^px,ik ~ ^pz,ik Q?k + ’^^{P0,i,k+1 '^p0,ik + Po,i,k-l)px,ik pz,ik

-2(^ + + TZ^ip’i+lk + P"-u) + + Plk\)
8x'^ 8z^
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We also define to be the same as but with all quantities defined

at time level n. In this case, the temporal discretization for second-order

time steps yields

= 28tRi,, + (14)

and for the first-order time steps (initially)

pT = + Plk (15)

On the other hand, when we use the DuFort-Frankel temporal dis-

cretization scheme

(vv)r* = (v^w^)+p])”.

= —
2po,.fc + PO,t-,fc-l) - + p'xk^)

8x^

In this case, we define

px,ik pz,ik^p,ik ~ ^px,ik ^pz,ik
^

Q ik 2po,tA: + PO,i,A:-l

)

(P"+I,jb + ?i-\,k) + TZl^^tk^X + Kk-\)
Sx^ Sz2

The temporal distretization yields

1

We define

r, = 2KSt(±+±)

Then, for the second-order time steps

P^' = (1 + r,r^l2StK., + (1 -

and for the first-order time steps (initially)

p?<t'
= + (1 - ^.)pa

(16)

(17)
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In these calculations, the following forms for the heat source have been
used:

Q?k = rQr..Q..k (18)

where /"is either

/" = Asinh(ar)

or

f'^ = B sin(Q^")

for 0 < ^ < (ir/a), and /" = 0 for t > n/a . Also,

Qx,x = \/^7/^exp[-l3j,{xi - Xc)^]

Qz,k = \/l3z/7Texp[-l3^(zk - Zcf]

or

Q^,k = Aexpf-A^rjt]

4.2 The Momentum Equations

In the velocity equations, we use the following difference scheme:

du
+ Fxik + {Pi+i,k - Pi,k)/{Sx) - gx{pi+i,k + pi,k)/2 = u{V'^u)ik

dxv
+ F,ik -h (pi,k+i - Pi,k)l{^z) - gz{pi,k+i + P»-,A:)/2 = v{V'^w)ik (19)

The velocity fluxes are defined as follows:

Fxxk = + 0.6{w^ikUJik + w^i,k-i<-^i,k-i)

Fzik ~ (kQx,k+l
~ “1“ ^u;*— l,fc)

where

qfk
= 0.25[(u,ib + -h {wik +

u;,A: = {Ui,k+1 - Uik)l{Sz) - {Wi^i^k - w,k)l{Sx)

Wujik = 0.5 * {wik + Wi+i^k)

Uujik = 0.5 * {Uik 4- Ui^k+i)

12



The temporal discretization is done exactly els for the density equation; we
either used a lagged dissipation or a DuFort Frankel scheme. In both cases,

the temporal derivatives are handled by a leap-frog discretization

1

28i

When we use a lagged dissipation method, we define the dissipation terms

as follows:

6z^ Sx^

n
tk

1
(V + ^?-i,k) + 777(^a+i + ^i,k-i) “ 2(— +

62 ^ 8x^ 82 ^

And we define the right hand sides as follows:

u?, = -f:„ - (pr+:,.

wr, = -F^., -

“ P?,k)li^^) + 9z(p'i+i,k + pZk)!"^ +

“ Ptk)/(^^) + dzip'i.k+l + p'i.k)!^ +

urk = -F"k - ip?+i,k - pWKSx) + g,{p"+,,k + PlkM'i +

WPk S -F:,k - {p?Mi - Plk)/{ix) + + Plk)l2 +

+u(V^w)lk

For the second-order time steps using the lagged-dissipation scheme,

ur+i = 28tU", +
= 28tWl‘^ + U'.T'

13



and for the first-order time steps (initially) using the lagged dissipation

= stwr, + w".

In the DuFort-Frankel scheme,

+ K-i.k) + j^^Kk+i + “.Vi) + ‘

Sz^

(V^U))";, = ^(“’"+1,* + W^-l,k) + ^(“'.>+1 + ^?,k-l) + (^ +

In this case, we define

tk

n+l

k

n-1
* +«':r‘)

^ik —

wr,=

~^xik ~ {P’i+l,k ~ P",k)l(^^) + 9i{p?+l,k + P",k)l^ +

*"[^(“r+ l ,* + “"-
I ,*) + S^^^lk+l + “

l!/b- l)l

~^?ik ~ (P?,k+1 ~ P?,k)ti^^) + 9z{p"k+l + P?,k)/^ +

+ <- l ,
k ) + ^(“’"*+1 + <*- l)l

We define

r^2uSt{^+±)

Then, for the second-order time steps using the DuFort-Frankel scheme

= (1 + rr^i^StUPi, + (1 - r)«rr']

= (1 + rr^[2StWp, + (1 - r)«,.V‘]

and for the first-order time steps (initially) using DuFort-Frankel

= StWp, + (1 - r)u;.’i

4.3 Stability

The Linear stability of each of the two schemes, the DuFort-Frankel or

Fromm method and the lagged-dissipation method, has been checked for a

single convection-diffusion equation. Derivation of the dispersion relation

14



in each case is straightforwcird; however, analysis of the stabihty (loca-

tion of the roots of the quadratic in the dispersion relation) in the Fromm
method is not easy, and we have resorted to a theorem derived by Miller

[16] referenced in the book of Peyret and Taylor [17] to guarantee the

stability. Assessing stabihty and study of the dispersion relation for the

lagged-dissipation method is much simpler.

We start with a single convection-diffusion equation

09 ^09 09
+ eV^9

where 9 is the single dependent variable, U and V are the loccd hnearized

vector velocity components, e is the dissipation coefficient and is the

Laplacian. define

d(t"yXj,Zk) = 6%

and let Xj = j8x, Zk = kSz, = nSt.

First, consider the DuFort-Frankel or Fromm method, and difference

the convection-diffusion equation as follows:

9^V -
J,k J,k u w

8z^
['•'(^"+

1 ,* + - (1 +'"W + = 0

where r = 8zl 8x. Now let

9^3,

k

= A„exp[i(5z(;7(^Ax) +

Then

“h iAfi

8z'^

2Q8t,Ur

8z

8z^

.
,8z W

.
8z.

28i€, o . 8z ,8z,
cos(—

+

cos(-]

where Q = \/V'^ -f W'^,

15



Define

28ie{l-^r^)

6z^

^_2QU.Ur . It ,^W . I,

then

An+i{l + d)- An-i{l -d)- An{Pd - 2iT) = 0

or, with An = and dividing through by 9'^~^

S\1 4- d) - 0{Pd - 2iT) - (1 - d) = 0

Now, according to the theorem of Miller [16], if we define

f(e) = 9^- 9^^—^ - IzA
' l + d l + d

and a polynomial, constructed from /(^), a<s follows:

m = 1 - ^
Pd + 2iT 1 — d

^2

l + d l + d
0^

then, we can construct a polynomial fi(0) of one degree lower than /(^),

which in this ca^e is of first degree, as follows:

l.r.

= 9

1
cs1rH

r

1
1

\^ + d)
\

l+d

= ^imm - /(o)/(^)i

Pd(l + - 2iT fl
l+d l + d

The theorem, proved in Miller [16], states that, if |/(0)| = 1 > 1/(0)| =

(1 — d)/(l + d) and |^i| < 1, where 9i is the zero of /i(^i) = 0, then both

of the zeros of f{9) = 0 are such that |^| < 1. Now

9i = P/2 - iT

16



With the assumption that r = 1, we can write P and T as follows:

2QSt Sz 1 1 8z 11
T =_ cos a cos[-(- - -)] sm[y (^ + j;)l

_ ^ ,Sz

.

1 1 .. .Sz, 1 1
p = 2cos[-(-+-)]cos[-(---)]

If the Courant condition, < 1, is satisfied, then |^i| < 1, and Fromm’s

method is stable, a conclusion determined by MiUer [16] and restated by

Peyret and Taylor [17] for the one-dimensional convection-diffusion equa-

tion.

For the lagged-diffusion scheme, a similar analysis can be performed;

we start with the difference form of the convection-diffusion equation:

u w

+ {ejil, + erk-,) - (i + = o

The equation for the amplitude A„ in this case becomes

-'i-n+l[l +
28e{l -f- r^)

8z‘^

2Q8t^Ur

8z

— ^n-l[l —
28e(l H- r^)

8z^

^ . 8z W 8z .

^
28te, 2 / X

[r cos(—)+cos(-)]

or,

An+i(l d) — A„_i(l — d) — An-iPd An2iT = 0

where the same notion as for the Fromm method is used. Substitution of

An = and division by yields the dispersion relation for the lagged-

diffusion scheme

0^1 + d) + e2iT - [1 - d(l - P)] = 0

The roots of this quadratic equation, the amplification factors for the

scheme, are

9 = Y^[-iT ± v^-T2 + (1 + </)[! - </(!- P)]]

17



If the Courant condition, < 1, is satisfied and d = < 1, then,

for both roots,

1 -d(l -P)
l + d

< 1

since |P| < 1, and the scheme is stable.

4.4 The Pressure Equation

The incompressibility condition is

{ui^k - - Wi^k-\)ISz = 0
(
20 )

and this condition can be used to derive the Hnear algebraic equation system

for the pressure. Away from boundaries, that is for 2 < i < I — 1^2 < k <
— 1, we have

Pi+l,k ~ + Pi-1,k Pi,k+1
—

'^Pi,k + Pi,k-l _
6'^X 8'^Z

~‘r{~F'x,i,k + Fx,i-i,k) /8x + {—Fz^i^k H“ Fz,i^k-i)/8z

+9xl—{pi+i,k + Pi,k) + (pi,k + Pi-i,k)]/i2Sx) +

9z[— {pi,k+l + pi,k) + {pi,k + Pi,k-l)]/{28z) + Tik

Here the matrix Tik is due to the viscous terms (T is proportional to u),

and, as above, the lack of a superscript implies that all quantities are to be

evaluated at time level n.

At the boundaries, we have four edges and four comers at which to

determine the equations. Along each of the edges and corners, we system-

atically write out the equations using the conditions normal to the boundary

that there is no velocity nor velocity flux and the pressure is hydrostatic.

For 1 < k < K

uok = 0

ujk = 0

Fx,ok = 0

Fxjk = 0

Pok = {8xgx/2){pik + POAr)

Pi+i,k - Pik = {8xgxl2){pi+i^k 4- pik)

18



For 1 < i < I

w,o = 0

WiK = 0

^z,iO = 0

Fz,tK = 0

Pil - Pio = {Szgz/2){p,i -h /5,o)

Pi,K+l — PiK — + PiK)

Also, we must either apply free-slip or no-slip BC. For 0 < /? < AT,

and for 0 < ^ < /

h?/"“i,o — ^“i,l

u n
i.K = ±U n

i,K-l

where the plus sign corresponds to free-slip and the minus sign to no-slip

BC.

To account for tangential boundary conditions, we have included the

matrix T^. The expression for the matrix T,,j is straightforward but tedious

to derive. In the paragraphs below, we indicate a derivation for this matrix.

Define the divergence bls follows

D"k = (Kk - (21)

If we impose the condition on all interior cells (at the center where the

divergence is defined) that the divergence be zero after any time step, then

= 0 translates into the condition that

{Ullk
- - W",_,)l6z = 0 ( 22 )

where and are the right hand sides of the momentum equations

defined above. Substitution for these expressions for the DuFort-Frankel
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scheme (the expressions for the lagged-dissipation scheme can be similarly

derived) then yields

Pi+i,k — + Pi-1,

k

Pt,fc-t-i - 4- Pi,k-i _

~^{~^x,i,k + Fx^i^i^k)/Sx + {—Fg^i^k + Fz^i^k-l)/Sz

~^9x[—{pi+i,k 4- Pi,k) + {pi,k + Pi-\,k)]/i2Sx) -h

9z[— {pi,k+l H- Pi,k) + (pi,Jt + P,-,A:-i)]/(2^z) —

(“i.Jfc "I" ^i~2,k)
~

“i-l,*-!)]
(5^2

+ “'-i.-fc) + 7^(“’a+i + <k-i)

^(“’"+1,*-! + “'"-l,fc-l)
- -^(Kk + <fc-2)l

If we define

D?.k = {D?+i.k + Di-i,k)li^' + {D?m + D",.,)/Sz^ (23)

then, the pressure equation can be rewritten els

Pi+l,k
—

*^Pi,k H- Pi~.l,k Pi\fc+1 ~ ^Pi,k + Pi,k-1 __

8'^X 8'^Z

~^{~Fx,i,k 4- Fx,i-\,k) /8x + {—Fz,i,k 4- Fz^i^k-i)/8z

-\-9x[~{pi+i,k 4- Pi,k) 4- {pi,k 4- pi-i^k)]/i^8x) -4

9z[—{pi,k+i 4- Pi,k) 4- (pi,k 4- pi,k-i)]/{^8z) + i^D^^k

Now, in cells away from boundaries, 2 < i < I — 1 and 2 < A; < A" — 1,

by imposition, aH of the = 0 and therefore all of the = 0. Hence

T-jt = I'D'^k — only in cells adjacent to the boundaries (and in

corner cells) where the matrix will in general be nonzero. To derive an

expression for this matrix, consider the cells adjacent to the left boundary,

i = 1,2 < k < K — 1. Along this boimdary, Uq^. = 0 for all n so that

Uq
i^
= 0 implies

1



Subtracting this equation from the general equation for pressure with i = 1

yields the equation

P2,k^ Pi
, ^

gl,fc+l

Sx^

— 9x(P2,k + Pi

^ — \-^z,l,k — JT OZ

^k)l{2Sx) 4- gz[—(pi,k+i 4- pi,k) -f {p\,k 4- pi,k-i)]/i2Sz)

Now, we impose the condition that the divergence be zero in the ficti-

cious cell outside of the left boundary (which we are free to do) Dqj^ = 0.

This condition implies that

= (<^'o.k
-

“’o,fc-l)/^Z

Similarly, the condition that the divergence be zero in the cell adjacent to

the left boundary = 0 implies that

u

Now, for free-slip BC,

= -(Kk -

^0,k — ^l,k

and, for no-sHp BC,

^0,k
— ~

Using all of these relations implies that

~ ^^l,k

where the minus sign applies for free-sHp BC and the plus sign for no-slip

BC. Using the imposed condition that Dq^. = 0 implies that = 0.

Hence

t'D?,k + + “-!.<=)
=

or, = 0 for free-sHp BC, while j 8x^ for no-slip BC.

In a similar fashion, the matrix can be derived at all other cells

adjacent to boundaries. In this fashion, we find that for free-slip BC, T,’J = 0

for all i and k^l<i<I^l<k<K. For no-slip BC, the matrix is still

zero at cells removed from the boundary; i.e., T,’J = 0 for 2<z</ — 1,2<
k < K — 1. At cells adjacent to the boundary, i.e., edge or corner cells, the

matrix is specified below.
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4.4.1 Edges

For A; = 1, 2 < ^ < / — 1,

Pi+1,1 — + Pt-1,1 Pi, 2 — Pi,i __

Sx^ 6z^
^

+^x["-(pi+i,i + Pi,i) + (pi,i + Pi=i,i)]/{25x)

~'9z{pi,2 + Pt,i)/(2^z) + r,-,i

For k ^ K,2 < i < J — 1, we have

Pi+1,K — ^Pi,K + Pi~l,K -^Pi,K 4- Pi,K-l _
Sx"^ Sz'^

4-(“F’x,i,ic + Fx,i=i,K)l 8x H- Fz,i,K-\l 8z

-^[-~9x{Pi-¥l,K 4- pi,K) + 9x{pi,K 4- p,_i,^)]/(2^®)

9z{Pi,K + Pi,K~l)/{^8z) -h Ti^K

Next do the vertical edges; i = l,2<^<Ff--l.

P2,k - Pi,k Pi,k+i - 2pi,A; 4-pi,fe-i __

8 x'^ 82
^^

—Fx,i,k/ 8x 4- {—Fz,\,k 4- Fz,i,k--i)l8z

—9x{p2,k 4- pi,k)/{28x) 4- [— Pz(pi,jfc+i 4- Pi,k) 4-

9z{pi,k 4- Pi,fc-i)]/ {
282 ) 4- Ti^k

For i = /, 2 < ib < iF - 1.

—Ppk 4- Pi-i,k Pi,k+i 2p/,fc 4- pi,k-i __

8x^ 82 ^

+Fx,i-i,k/8x + {-’Fz,i,k 4- Fz,i,k-\)l8z

+9x{pi,k 4* pi-\,k)l{28x) 4- [~9z{pi,k+i 4- pr,k) 4-

9z{pi,k 4- p/,*;_i)]/(2^2:) 4- Ti^k

4.4.2 Corners

Finally, do the comers. First, i = 1, — 1

P2,l ~P\,i
,

Pi ,

2

“Pl,l __4-

8x^ ' Sz^
F’-.u/'5*

-Fz,i,il8z - Px(P2,i 4- p\,i)l{28x)

—9z{p\a 4- pi,i)l{28z) 4- Ti,i
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= Fxj-i,ilSx

Next, 2 = /, A; = 1.

~Pi,\ + P/-i,i . PL2 — P/,1

8x^ ^ 8z^

8z + Px(p/,i + pi~i,\) ! {28x)

—9z(pi,2 H- Pi,i)/{28z) -f- T/,1

Next i = l^k = K

.

P2,K - P\,K
,

-Pl,K + P\,K-l „
6x2

+ = -F.,..k/Sx

-\-Fz^i^k-\/8z — gx{p2,K + Pi,k)/{28x)

-^9z{pi,K H" P\,k-\)I{2‘8z) -h Ti^k

For i = I^k = K.

-PI,K + Pl-1,K
,

-Pl,K + Pl,K-l „ /X-+
s?

=

+^z,/,K-i/ 8z + 9x{pi,K + Pi-i,k)I {28x)

-\-9z{pi,K + Pi,k-i)I{‘28z) + T/,k

Thus, the viscous matrix is defined as follows: For free-slip BC, for 1 < i <

1,1 <k<K
Ta = 0

For no-shp BC, for 2 < 2 </ — l,2<A;<i^ — 1

Ti,k = 0

for 2 < k < K — 1

^ 2v
“

6x3“'’*

_ 2u

and for 2 < i < / — 1

.r,
2i/

T... -

Ti,K =
2u

8z^

23



Finally, at the corners

2i/ 2u
Ti.i =

2u 2u
Ti^k — 11

«

+

Ti,i = -

2z/ 2u

Once again, no superscript implies quantities evaluated at time level n.

5 Results

In this section samples of results generated using a code implementing the

algorithm described above are presented and discussed. The results repre-

sent some problems of interest to scientists concerned with enclosure fires.

The aim of the computations is to investigate basic phenomena which occur

in enclosure fires using current computational and graphical capabilities.

The computations were performed on the Convex C120 in the Computa-

tional Combustion Facility, which is a joint facility of the Computing and

Applied Mathematics Laboratory and Building and Fire Research Lab-

oratory at NIST. The graphics were generated on four Silicon Graphics

Personal Iris 4D20s, which are also part of this facility.

The scale of these computations is substantial. Runs have now been

performed using almost one-half million grid points; they require nearly

50 megabytes and take up to 24 hours of CPU time. They are performed

in 64 bit arithmetic. If we were to save any major fraction of the data

generated, we would be overwhelmed. Therefore, a significant effort has

been expended in trying to select only those data required to understand

the phenomena being studied. We have concluded that Lagrangian particle

tracking for transient phenomena is the most convenient method for saving

and examining data from our computations, and this procedure is described

below.

The flows are visualized by introducing Lagrangian particles into the

heat source representing the fire. These particles are introduced by means
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of a random number generator which mimics the spatial distribution of

heat in the source. Therefore, in general in the results shown, the particles

are introduced according to a Gaussian distribution centered at the center

of the heat source and with a half-width equal to that of the source. The
particles are introduced at regular intervals of time, again mimicing the

temporal dependence of the heat source, which is “turned on” rather quickly

(on the dimensionless time of the computations) to a constant rate of heat

release. Each set of particles is then allowed to move with the flow field

so that one can see the movement of the “smoke and hot gases”. The
graphics are generated in color with the color representing the temperature

of the particle. In this fashion, one can also discern where the flow is

hot and where it has cooled by mixing and conduction. The color and the

dynamic aspect of the graphics (a sequence of frames such as those exhibited

below is displayed rapidly on the computer screen) enhance enormously the

information which can be extracted from the computations.

The amount of computer memory, the CPU time and the data storage

all increase as the resolution of the computations increases. If /, K are the

number of grid points in the x and y directions, then the memory require-

ments scale B.S IK. If we assume that I = K, then the CPU time scales

as and the disk space scales as also if we retain data computed

on the grid. If, on the other hand, we retain particle data, then the disk

requirements can be decoupled from the grid size and are dependent on the

number of Lagrangian particles introduced and the number of times these

particle data are dumped. (Some additional time is required to compute

the particle trajectories; however, as long as the number of particles intro-

duced is small compared to the number of grid points, this additional CPU
time is relatively small. In fact, for most computations we have done, this

additional time amoimts to only ten percent or less of the total CPU time.)

The resolution of the computation determines the Reynolds number of

the flow which can be calculated, and this is a very important feature of

the computations. Since the size of the Reynolds number for the 2-D flow

scales as with the grids that we have been able to use, approximately

one-half million grid cells, flows with a Reynolds number of nearly one-half

million can in principle be computed. We have not yet computed flows with

this large a value of the Reynolds number, primarily because we have been

examining non-square geometries. However, we have computed results for

flows with Reynolds numbers of up to 1 x 10^. One comforting aspect of the
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algorithm and the code is that it will “bomb” if the Reynolds number is too

large for the resolution of the grid. This feature, plus the fact that there

are no adjustable parameters in the code, lead us to have great confidence

in the predictive capability of the computations.

5.1 Stratified Background Fluid

A problem of some general interest is that of fire in an enclosure where the

background fluid has been stratified [9], [10], [11], [12]. Stratification occurs

naturally in any room that is relatively quiescent. In the summer, solar

heating generally produces significant stratification, and during the winter,

unless the stratification is disrupted, normal house heating also produces it.

A small fire under this circumstance will have its induced flows significantly

altered by the ambient stratification. Also, if a fire has started, produced a

stratified upper layer in a room, temporarily died down, and then revives

again, the plmne dynamics wiU be affected by the stratification.

The first example is of a heat source (a line source in these 2-D calcula-

tions) at the floor of a rectangular enclosure. The aspect ratio of the room
is 0.8, the stratified layer occurs at 0.6 the height of the enclosure and the

difference in density between the lower and upper layers is 5 times the char-

acteristic density induced by the heat source. The heat source is centered

on the floor, one-half unit (the length unit being the height of the room)

from the left wall with a Gaussian half-width of approrimately one-tenth

unit. Four frames of a sequence are shown in Figure 1. The first frame

shows the starting plume at 2.6 dimensionless time units. Note both the

symmetry of the starting plume at this time and the detailed structure of

the head of the starting plume. This structure is due to the high resolution

of the computation, which has 600 x 480 grid cells, and has a Reynolds num-

ber of 1 X 10®. The second frame in Figure 1 shows the plume at 3.2 time

units. At this time, the plume has encountered the upper stratified layer;

part of the plume penetrates the layer, but most of the plume is deflected

laterally. Note the asymmetry which has begun to appear due to the fact

that the heat source is not symmetrically placed in the room. In the third

and fourth frames the plume continues to be deflected laterally because the

upper layer is so strongly stratified. Again, note the asymmetry in the flow

field.

Computations have also been carried out for other levels of stratification
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of the upper layer. As this stratification becomes stronger, the amount of

penetration of the plume into the upper layer is reduced. On the other

hand, as this stratification becomes smaller, more penetration occurs with

the plume reaching the ceiling, and finally, with the stratification having

little effect when it becomes very weak.

5.2 Gravity Currents

When lighter fluid is introduced at the top of an ambient fluid (or heavier

fluid at the bottom of ambient fluid), the light fluid spreads over the am-

bient. The process by which this spreading takes place is called a gravity

current. Gravity currents are well-known in the geophysical literature and

have been studied both experimentally and theoretically for many years

[13]. We have used our 2-D model, since gravity currents are primarily

two-dimensional phenomena, to compute gravity currents with very high

resolution and relatively high Reynolds numbers (up to 3 x 10"^). In Fig-

ure 2, we show several frames from a sequence of computed frames of a

gravity current generated at the left of an enclosure and progressing to

the right. The gravity current has the weU-known characteristic “head”

and progresses at a nearly uniform speed. The enclosure is 11 units long

and one unit high, and has 1584 cells in the horizontal direction and 144

in the vertical (228,000 grid cells). The Reynolds for this computation is

1 X lO'^. From these computations, we can compare results with experimen-

tal measurements carried out elsewhere. First we can compare the velocity

of the head of the gravity current and determine its variation with Reynolds

number for example and later we may be able to make more detailed com-

parisons, comparing velocity or density profiles through the gravity current

for example.

5.3 The ^‘Trench Effect”

Fires in buildings involve the transport of heat and mass by gravity-induced

or buoyant convection. Generally, this convection occurs in rectangular

enclosures where the direction of gravity is parallel to the surfaces of the

enclosure, the wails. However, under certain circumstances, such as a fire in

a stair well or an escalator, the enclosure may be sloped relative to gravity.

A very important example of a fire in a sloped enclosure was the devastat-
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ing fire in the King’s Cross underground station in England in 1987, where
there was significant loss of fife as well as property damage. Numerical

simulation of this fire uncovered an unexpected phenomenon which caused

a very rapid spread of the fire and led to much of the devastation [14],

[15]. This phenomenon was termed the “trench effect”, and caused some
controvery during investigations of the King’s Cross fire in England. The
phenomenon was ultimately confirmed by experiments and additional sim-

ulation, but transient aspects of the fire simulation are stiU of interest. We
have examined this phenomenon using our 2-D code for Reynolds numbers

of interest for enclosure fires.

In Figure 3, we present a sequence of frames from a 2-D, high-resolution

computation for the flow generated in an enclosure by a heat source (fire)

located on the floor one quarter of the length form the left wall. The resolu-

tion is 1296 X 324 (419,904 grid cells) in this 4x1 enclosure. The Reynolds

number for this computation is 5 x 10"*, and free-slip and adiabatic boimd-

ary conditions have been imposed. The enclosure is inclined 35 degrees

with respect to horizontal. In this flgure, the plume rises, but is bent back

toward the back wadi. After the hot gases hit the ceiling, they progress both

toward the back wall and up the ceiling toward the high end. However, the

hot gases leaving the heat source are pinned along the floor and form a

hot gas jet which progresses up along the floor, shedding hot gases near its

front; this phenomenon we interpret as the “trench effect”. These results

were imexpected and were the reason that the “trench effect” caused so

much controversary.
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A Appendix: Particle Tracking Algorithm

A.l Particle Injection

The initial location of each particle is selected at random from a distri-

bution function which is normal in the x-direction with mean value equal

to the location of the center of the heat source and variance equal to the

mean width of the heat source. In the z-direction the distribution func-

tion is either normal with characteristics similar to that in the x-direction

or exponential. In all cases, the distribution functions mimic the spatial

distribution of the heat source. Also, particles are injected at a rate that

follows the rate of heat addition.

A. 2 Interpolation of the Fields at Particles Locations

Take the 2-D case and let a?” and Zj be the coodinates of particle <

j < Np at time t”. Let the grid be our standard uniform grid,

Xi = iSx, 0 < i < I

Zk = kSz^ 0 < k < K (24)

Let

I, = [x^/Sx + 1/2]

ICj = [z’^/Sz + 1/2]

ri = x1ISx-{I,-\l2) (25)

3^ = z"l8z - {ICj - 1/2)

and let

r.^lx^/sx]

K.r = [zysz]

r' = x"/5z - I, (26)

s'j = Zj /Sz — Kj

where [...] is the integer part of the quantity in square brackets.
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Define the function F as follows:

^(-*^1,1 5 -*^1,2 1 -*12,11 ^2,2, ^) = ^4i,i(l — r)(l—

,

s)H-

.

42,1 r(l—s)+Ai,2(1— r)^+A2,2^5

and let Uj, iDj, pj be the velocity components and the density respectively

at the location of the jth particle. Then by biHnear interpolation:

w

~n IT /'ll” 11 ” 11” 11” -n' a\Uj — -r Uj;^2,a:j+ii ^ij+i,x:j+2i “jj+2,;Cj+2i

n ZT'/'iii” im” 11,” 11,” T, a'\
j
— r \^2j + i,lC'j-\-l^^Ij+2,K'j+l'^Ij+ l,/C'j+2^ ^Jj+2,K'j+2^ ^ )

~n 77/ .n n n n / f\

Pj — ^ lPjj+i,x:'.+ii Pi'-i-2,x:'.+i’ Pjj+i,/c'+2i Pi'+2,x:'.+2i ^ 1 ;

A. 3 Time Advancement Scheme for Particles

Now, each particle is advanced through the differential equation:

dxj

(27)

(28)

(29)

dt

dzj

dt

~ ^3)

(30)

The particles are advanced in time according to a second order Runge-

Kutta time integration scheme as follows.

Then, with

rj =

3 1 —

hl^ = u"(x", z")St

K,i = w'j{x’j,Zj)St

I, = [(x’; + hl^)/6x + l/2]

K, = [(
2" + hl,)l6z + 1/2]

{x" + hl,)ISx - {I, - 1/2)

{z] + hl^ysz - (IC, - 1/2)

(31)

and let

i;. = [(x" + hiy/sx]

)C’j = [(
2 " + Ky/5z]

r' = (x" + h",)/Sx - Ij

= iz" + hiy/Sz - Ki

(32)
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The new extrapolated velocity components at location H- h" + h”
3 ^i3' J z,j

are

~ “i;+2,AC>+l’ “l;+l,Kj+2) “rj+2,/Cj+2i

~
“’rj+2,/cj+i! “^ij+i,;c^+25 “’Ij+2,a:'+2>

r',^)

r, s')

Finally, the location of the particle at time level n + 1 is

x"+' = x] + 0.5(uj"5< + /!"_,)

= z" + 0.5(w’]St + hlj)

(33)

(34)

(35)

(36)

The accuracy of this particle-tracking routine was tested using a steady-

state flow with vorticity in a rectangular enclosure. This flow field was

originally derived to test the algorithms that integrate the fluid equations

and is described in [18]. In the flow, particles follow streamlines which

close upon themselves, a sensitive test of the quality of the particle-tracking

integration scheme.
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