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1.0 INTRODUCTION

For the last six years, the National Institute of Standards and Technology
(NIST) has pursued a program in network protocol performance.^ This program
studied the performance of OSI Transport Class 4 [1] over a satellite link

[2,3,4]. More recent work studied OSI Transport Class 4 over local area
networks [5,6,7] IEEE 802.3 (CSMA/CD) [8] and IEEE 802.4 (token bus) [9].

NIST is now studying scheduling algorithms for OSI Transport Class 4. Most
work on scheduling in communications protocols has considered only the MAC
layer. Token bus, token ring [10], and FDDI [11] all have priority mechanisms.
But mechanisms for scheduling must be extended into the upper OSI layers to be

effective

.

The Mills-Franx paper [6] referenced above investigates the usefulness of

Transport Class 4 for real-time factory applications. This paper concludes
that "OSI protocol standards, as now specified, do not provide adequate
mechanisms for guaranteeing real-time performance for selected connections or

messages .

"

The Transport service standard provides for Quality of Service (QOS)

parameters allowing the Transport users to communicate to the Transport layer
their performance needs for a particular connection. These QOS parameters
include desired throughput, desired delay, priority of connection, and
residual error rate. QOS parameters are negotiated between the two Transport
users and the Transport service provider at connection establishment time.

However, no guidance is given in the Transport standards as to how to

implement QOS. In addition, in current implementations, no use is made of the

QOS parameters. In order to give a particular connection a higher QOS, such

as shorter delay or more throughput than other connections, it is necessary to

give the connection more access to resources such as CPU time and channel
capacity via scheduling algorithms. QOS quantities (throughput, delay) should
be measured on an ongoing basis. Resources would then be reassigned
dynamically to meet quality of service goals.

In one interesting study of how to implement QOS in higher protocol layers.
Jacquet and Sedillot [12] investigated real-time message scheduling for a

general layered protocol architecture such as OSI. In their scheme, each
message is given a priority and a deadline. There is a central scheduler
which allocates the CPU to a message based on a function of each message's
priority and deadline. If a message misses its deadline, it is discarded to

' Certain commercial equipment is indentified in this paper in order to adequately specify the experimental procedure. Such indentificalion

does not imply recommendation or endorsement by NIST, rK)r does it imply that the equipment identified is necessarily the best available for

the purpose.
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avoid congesting the network with old messages.

NIST has chosen to study possible scheduling mechanisms for Transport Class 4

by first developing a detailed Transport Class 4 simulator. This discrete
event simulator is written in Simscript II. 5 and simulates the Intel iNA960
implementation [13] of Transport Class 4 running on a 186/51 front-end board
with a 286/10 host. Processing times such as the time required for
communication between the host and the front-end board and the time required
to send a data (DT) Transport Protocol Data Unit (TPDU) were measured by
instrumenting the iNA960 code. These processing times are inputs into the

model. A set of experiments were performed on both the iNA960 software and
the Simscript model and the results were compared in order to validate the

model

.

In this paper, the model is described, the processing times which serve as

inputs into the model are specified and the validation experiments are
documented

.

As a continuation of the work, NIST plans to implement various scheduling
algorithms for implementing QOS in the Simscript Transport Class 4 model.
Since the model has been carefully validated, the results of experiments with
different algorithms using the model should be similar to the results obtained
by actually changing the iNA960 to implement these algorithms. Changing the

model instead of the iNA960 implementation is attractive because far fewer
resources are required to implement model changes. Running model experiments
is also less time-consuming than running live experiments.

In section 2, the OSI protocols with which we are working are described. The
live testbed, hardware and software, is described in section 3. The simulator
is discussed in section 4, including a list of the processing times which are

part of the input to the simulator. Section 5 contains the validation
experiments. The report is summarized in section 6.

2.0 PROTOCOL LAYERS

2.1 TERMINOLOGY

In this paper, the terms Transport Service Data Unit (TSDU) and Transport
Protocol Data Unit (TPDU) are frequently used. The Transport user passes data
to Transport as TSDUs . These TSDUs are also referred to as user messages. A
Transport entity communicates with another Transport entity via TPDUs . The
Transport layer uses Network layer services to transmit TPDUs. Each TSDU is

transferred as one or more Data Transfer (DT) TPDUs.

2.2 TRANSPORT

Transport Class 4 offers virtual circuits, error detection and recovery, flow
control, segmentation of messages, and in-order delivery of messages. The
error detection, recovery, and flow control functions are accomplished using
AK (acknowledge) TPDUs transmitted by the receiving station. Each DT TPDU has

a field containing a sequence number. Every AK TPDU contains the

acknowledgment of receipt of all DT TPDUs with lower sequence numbers. The AK
also contains a credit field. The transmitting station is allowed to send DT
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TPDUs with sequence number K where

AK seq no <- K < (AK seq no + AK credit)

This range of permitted sequence numbers is known as the window. There are

retransmission timers on the transmitting station which are started when DTs

are sent and restarted when AKs are received. If no AK is received for a

period of time and the retransmission timer expires, then unacknowledged DT

TPDUs are retransmitted.

In order to understand the results of the validation experiments, it is

important to understand segmentation. The user may wish to send TSDUs that

are too large to send over the communications network in a single packet. An
IEEE 802.3 LAN, for example, limits the maximum Data Link frame size to 1518

octets. One of the services offered by Transport Class 4 is to segment TSDUs
that are too large to fit into network packets into multiple TPDUs where each
TPDU fits into a single network packet. Thus the user of Transport Class 4

can pass arbitrarily large TSDUs to Transport without knowledge of the network
packet size.

2.3 NETWORK

The Network protocol is the Connectionless Network Protocol (CLNP) [14]. The

CLNP has the capability to segment messages but, for the validation
experiments, the non- segmenting subset was used.

2.4 DATA LINK

The Data Link layer is divided into two sublayers. The top sublayer is

Logical Link Control (LLC) [15] Class 1 Type 1 which provides a datagram
service. The bottom sublayer is the Medium Access Control (MAC) layer. For
the validation experiments, the IEEE 802.3 Carrier Sense Multiple Access with
Collision Detection (CSMA/CD) MAC protocol was used.

3.0 LIVE EXPERIMENTAL ENVIRONMENT

3 . 1 HARDWARE OVERVIEV

The Intel 310 system, as shown in Figure 1, consists of a 286/10 host
processor board, a 1 megabyte Multibus memory board, and a 186/51 front-end
communications board. A 286/10 host board has a 6 MHz 80286 CPU and a 186/51
front-end board has a 6 MHz 80186 CPU. The Multibus memory is accessible by
both the 286/10 host and the 186/51 front-end communication boards. The
286/10 host board can access the Multibus memory over the local bus extension
(LBX) and the 186/51 front-end board can access the Multibus memory via the
Multibus.

The 186/51 board also includes 256 kilobytes of local memory, an 82586 local
area network coprocessor, and an 82501 Ethernet serial interface. The 286/10
host board runs a traffic generation program which produces and consumes the
traffic using communication services of the front-end board. The 186/51
front-end board runs the iNA960 software which is explained in detail in the
next section.
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The 82586 coprocessor and the 82501 together implement the IEEE 802.3 medium
access control sublayer. The 82586 LAN coprocessor manages the processes of
transmitting and receiving frames over a network. The 82586 receives and
transmits frames from the local memory by direct memory access (DMA)

.

iLBX Interface

Figure 1. Simple Block Diagram of the System 310

Each system includes 3 processors running independently: the host board, the

186/51 front-end board, and the 82586 coprocessor. MIPS in Figure 1 is the

acronym for "million instructions per second"

.

3.2 SOFTWARE OVERVIEW (iNA960 RELEASE 2.0)

The iNA960 Release 2.0 is the OSI Transport software package developed by
Intel. In our validation experiments, the iNA960 Release 2,0 is configured
with OSI Transport Class 4, Connectionless Network Protocol, LLC Type 1, Class
1 and the IEEE 802.3 medium access control. The iNA960 implementation offers
both Transport Class 4 (TP 4) virtual circuit services (normal and expedited
data) and Transport datagram (DC) services as shown in Figure 2. Transport
datagram service is used to transfer data between users without setting up a

connection and does not guarantee delivery.

The Network layer may be configured with one of the two protocol options: a

Connectionless Network Protocol or a Null Network layer. If CLNP is chosen,
nodes on interconnected subnets can be addressed. If a Null Network layer is

chosen, only nodes on the same subnet may be addressed. The iNA960 offers
external data link services (a direct user access to the Data Link layer)

.
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The Network Management Facility (NMF) in the iNA960 software provides the

network management services for the Transport layer, Network layer, and Data
Link layer. The NMF enables the user to monitor the network operations either
local or remote and tune the network parameters for better performance (e.g.,

set new values for the retransmission timer and maximum window size)

.

Implemented by

iNA960

Implemented by

82586/82501

t

Figure 2. iNA960 Services

In our simulator, OSI Transport Class 4 services for normal data are modeled
in detail. The model does not simulate: Transport services for expedited
data; Transport datagram services; the external data link services; and the

network management facility. For the validation experiments, the simulator is

configured with OSI Transport Class 4 with CLNP and the CSMA/CD local area
network.

3.2.1 iNA960 USER INTERFACE

A user process running on the 286/10 host interfaces with an iNA960
communications software running on the 186/51 front-end board via request
blocks (RB) . The RB contains information about the services being requested.
When the user process requests the iNA960 to transmit or receive data, the RB
contains a pointer to an associated transmit or receive data buffer. When
the services are completed, the RB is returned to the user with a response
code by the iNA960. The returned RB also contains a pointer to the user
buffer.
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The communications between the host board and the front-end board is done via
Multibus Interprocessor Protocol (MIP) [16]. Figure 3 shows the one-way
message transfer from the host to the communications (comm) board via MIP.

The host MIP send task delivers the RB to the comm MIP receive task by writing
the buffer into Multibus memory and then generating a channel attention
interrupt at the comm board. The comm MIP receive task passes the buffer to

the destination process on the comm board and then sends an acknowledgement to

the host MIP receive task. The message transfer in the reverse direction from
the comm board to the host board is done in the same way.

Host Comm

Figure 3. One-wav Message Transfer via MIP

3.2.2 iNA960 BUFFER MANAGEMENT

The iNA960 . implementation reserves a number of Data Link buffers in the 256

kilobytes local memory on the 186/51 board. The size of each transmit buffer
is 1500 octets, large enough to store the memory image of a full IEEE 802.3

frame. Receive buffers are 256 octets each; these buffers are chained
together to store the memory image of a received Data Link frame.

When the user sends iNA960 a request to transmit data, as explained in section

3.2.1, the request contains a pointer to an associated Multibus data buffer
which contains the TSDU (or user message) . The data in the user data buffer
is copied by the iNA960 software into one or more Data Link transmit buffers
on the 186/51 board. It is copied into more than one Data Link transmit
buffer if Transport Class 4 segments the data into more than one TPDU. Then
the data is sent out on the LAN by the 82586 LAN coprocessor. On the
receiving side, the same set of events happens in reverse. The 82586 LAN
coprocessor receives the data and stores it in Data Link receive buffers. The

data in the Data Link receive buffers is copied into user receive data buffers
previously posted by the host user process. When the buffers are full or when
they contain a complete TSDU, they are returned to the user on the host. Note

that the data is copied twice during the end-to-end transmission, from
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Multibus memory to local memory at the transmit side and from local memory to
Multibus memory at the receive side.

3.2.3 iNA960 CONFIGURATION PARAMETERS

The default values for the important configuration parameters in the iNA960
implementation for the validation are shown in Table 1.

Table 1. System Configuration Parameters

Number of data link transmit buffers 5

Size of data link transmit buffers (bytes) 1500
Number of receive packet descriptors 200

Number of data link receive buffers 255

Size of data link receive buffer (bytes) 256

Inactivity timeout (secs) 30

Abort timeout (secs) 240

Transport retransmission time (milliseconds) 500

Maximum Transport window 15

Minimum Transport credit 1

Maximum TPDU size (octets) 2048
Transport checksum OFF

The credit returned in AKs in the iNA960 implementation is based on the amount
- of receive buffer space available. ..at the Transport level. _In addition,, the

credit may not be larger than the maximum Transport window parameter or less

than the minimum Transport credit parameter. Since the minimum credit is one,

each AK always contains permission to send at least one DT TPDU.

The actual TPDU size used is the minimum of the maximum TPDU size
configuration parameter and the network packet size (minus lower layer
headers). Unless otherwise noted, parameters are set to their default values
in the validation experiments reported.

3.3 TRAFFIC- GENERATION PROGRAM

A traffic generator running on the 286/10 host board was used to get the live

results. The traffic generator generates the traffic in accordance with the

following input variables: 1) Message delay (time between two successive user
messages)

; 2) Duplex or simplex data flow; 3) User message size (TSDU size)

;

4) Total data sent for all connections; 5) Number of connections; 6) Number of

user transmit (TX) and receive (RX) buffers for each connection. Other
variables such as retransmission timer and maximum window size can be set on a

connection-by-connection basis using network management services.

An external global clock system with 100 microseconds accuracy is connected to

the 286/10 host board in all systems and makes it possible to get accurate
measurements for all experiments, in particular accurate end-to-end delay
measurements

.
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The traffic generation program provides throughput and delay measurements.
The delay metric in this measurement program includes three measurements:
request accept delay, request return delay, and one-way delay. Throughput is

the total amount of user data transferred divided by the time required to send
them. The time is measured from when the first TSDU is sent by the sending
Transport user until the last TSDU is received by the receiving Transport
user. Each delay measurement is described below.

An application task running in the host sends a request for communication
services to the iNA960 program via a subroutine call. The subroutine call
returns after the host sends the message (request block) containing the

request for communication services to the comm board and receives an
acknowledgement which indicates that the comm board has received the request
(but has not necessarily processed it)

.

Request accept delay is the time
required for this subroutine call. When iNA960 has completed the requested
service, the request block is returned to the user task. Request return delay
is the delay from the time the request block is sent to the comm board by a

user to the time the request block is returned to the user. One-way delay is

the time required to send a message from a user on the host in the sending
station to a user on the host in the receiving station.

4.0 SIMULATION MODEL

4.1 MODEL OVERVIEW

This section discusses the model which simulates the Intel 310 hardware ..system

and the iNA960 communications software. The applications modeled include:
simplex and duplex file transfers, database query, periodic status report,
data entry, request response, and virtual terminal. Definitions of these
applications are documented in the Experiment Plan [17]. For the validation
experiments simplex and duplex file transfers, and periodic status report
applications are used.

Host Front-end

Figure 4. Main Tasks of the Simulated System



As shown in Figure 4, each simulated process maps directly to a process in the
Intel 310 system. The simulated host processor contains the host MIP
processes and the user processes which produce the traffic for Transport on
the communications board. The user process controls generation of the traffic
in accordance with the data input parameters provided by the experimenter for

each simulation run. The host and the comm MIP processes, and the
communications between the host board and the comm board are simulated in

detail

.

The simulated communications software provides the OSI Transport Class 4

services for normal data and performs in detail Transport Class 4 mechanisms
for segmenting, flow control, recovery, reassembly, and error detection. As

in the iNA960, Transport segments TSDUs which are bigger than network packets
into multiple TPDUs where each TPDU fits into a network packet. The maximum
size of the user data field of Data Link transmit buffer with CLNP is 1401

octets. The remaining octets are for the Transport and the lower layer
headers (CLNP, LLC) . The iNA960 buffer management is also modeled in detail.

Retransmission timers are simulated. If an AK is not received before the

retransmission timer expires, then retransmission of unacknowledged data
occurs. The MAC networks modeled are IEEE 802.3 CSMA/CD and IEEE 802.4 token
bus

.

In our simulator, the connection establishment and release phases are not
modeled. Connections are open at the beginning of the experiment and are not
closed during the experiment. The time spent context switching between
software processes on the communications board is also not simulated in the

model. The time required for the context switching has been roughly estimated
by counting the instructions in the code. The time estimated is .1

milliseconds (ms) . Since the overhead is small compared to the variation seen
in the measurements of the processing times in the iNA960 software (see Figure
5 below), the context switching is ignored in the model. Transport services
for expedited data, Transport datagram services, the external Data Link
services, and the network management facility are not modeled.

The model used for the validation runs on a Digital Equipment Corporation
Micro -Vax II under the Ultrix operating system version 1.1. The model can be
executed in one of two modes: interactive or batch. For the interactive mode,
the experimenter can monitor performance parameters during the experiment.
This is especially useful for analysis of unexpected results. For the batch
mode, all experiments can be done in the background or overnight.

A typical model run for one of the throughput (simplex) validation experiments
where 300 messages of 10000 bytes are transmitted from one station to a second
station takes 304 CPU seconds.

4.2 PROCESSING TIKE FOR EACH JOB

The simulation model contains a set of jobs such as posting a TX buffer and
receiving a DT TPDU as does the iNA960 software. The processing time for each
job in the iNA960 software has been measured by instrumentation of the source
code using a hardware timer on the 186/51 board. The timer's granularity is

.67 microseconds. Processing times for jobs on the host board have been
estimated from the results of the live experiments. The estimation method for

these jobs is explained in the following section.
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4.2.1 MEASURED PROCESSING TIMES

The input parameters used for the measurement and the estimation experiments
using the traffic generation program were as follows: 1) inter-message
delay - 100 milliseconds, 2) TSDU size - 100 bytes, 3) total data sent - 10000
bytes, 4) number of connections - 1, 5) number of the user buffers - 1 TX
buffer and 1 RX buffer.

The starting time and the ending time of each job were saved and 100

measurements were made. The minimum processing time, the maximum processing
time, and the average processing time were computed when the experiment was

completed

.

Figure 5 shows the measured CPU time of each job obtained from the

experiments. The average processing time for each job is used as input to

the model. A brief description of the parameters is in Appendix A.

Figure 5 . Measured CPU Time For Each Job

Mininum Maximum Average
(ms) (ms) (ms)

Comm MIP Send (send a message)
Coram MIP Send (time taken for the

.921 1.271 .956

buffer to be acknowledged) 2.371 6.398 2.802
Comm MIP Receive (receive a message) 1 .

5-85-' 1.661 1.6 3
5'

Comm MIP Receive (receive an AK) .897 .927 .921

Post TX Buffer 1.361 1.703 1.378

Post RX Buffer .861 .872 .865

Sent DT 5.499 5.854 5.575
Send DT Overhead .388 .405 .395

Send DT Fail .421 .636 .494

Send AK (includes overhead) 5.877 7.773 7.210
Receive DT 5.057 5.408 5.181
Receive AK 3.954 4.303 4.071
DL TX Interrupt .096 .337 .329

DL RX Interrupt .181 .193 .187

4.2.2 ESTIMATED PROCESSING TIMES

The "host MIP send" processing time was estimated in the following way. As

explained in section 3.3, an application task interfaces to the iNA960 program
via a subroutine call. The time measured across this subroutine call, which
is "request accept delay", is 4.1 milliseconds. The time measured in the

"comm MIP receive" task, to receive the message and acknowledge i't, is 1.635
milliseconds. The difference between these two numbers is 2.47 milliseconds.
Thus, 2.47 milliseconds should be the amount of processing time taken in the

host by the "host MIP send" processing plus the software interface between the

applications task and the "host MIP send" task. 1.257 milliseconds of this is

attributed to "host MIP send" (send a message) and 1.211 milliseconds is

attributed to "host MIP receive" (receive an AK) . This is the same proportion
as the .956 milliseconds that the comm board requires to send a message and
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the .921 milliseconds that the comm board requires to receive an AK.

The "host MIP receive" processing was also estimated from another measurement.
The amount of time spent from transmission of a message in the "comm MIP send"
task to acknowledgement of the message was measured at 2.8 milliseconds. If
the amount of processing required for the comm board to receive an AK, .921

milliseconds, is subtracted from 2.8 milliseconds, the difference is 1.879
milliseconds. This is approximately the amount of processing required to

receive a message and send an AK in the host board.

The "host recycle RX buffer" time, the time required in the traffic generation
program to process a RX buffer and return it to the comm board, and the "host
recycle TX buffer" time, the time required in the traffic generation program
to process a TX buffer and return it to the comm board, are obtained from the

traffic generation program. For the "host recycle RX buffer" time the traffic
generation task receives an RX buffer from the iNA960 program on the comm
board after a request for communication services has been processed. The

traffic generation task recycles the RX buffer and returns it to the iNA960
program. The time measured in the total host recycle RX process is 4.49

milliseconds. When the traffic generation task returns the RX buffer for

communication services to the iNA960 program, the interface (subroutine call)
which is described in section 3.3 is called. The time required for the

subroutine call, 4.1 milliseconds, is included in the total host recycle RX
process. The "host recycle RX buffer" time is the difference between these
two numbers, which is .39 milliseconds. The "host recycle TX buffer" time is

estimated in the same way. The "host recycle TX buffer" time obtained from
the experiment is .43 milliseconds. Of this-;—0.21 milliseconds is attributed
to the "host generate TX buffer" time and 0.22 milliseconds is attributed to

the "host consume returned TX buffer" time.

In order to get the "copy byte Multibus (M) to local (L)" and the "copy byte L
to M" times we used data obtained from a delay vs. TSDU size experiment.
Parameters used for the experiment were as follows: inter-message delay - 100
milliseconds, number of user buffers - 1 TX buffer and 2 RX buffers, number of
connections - 1, and TSDU size - 100 bytes, 500 bytes, 1000 bytes, and 1400
bytes. As shown in Figure 6 the best fit (least squares) line has the

equation:

y •= 3.84E - 03 * X -H 17.29

The variable x represents TSDU size in bytes while y is the delay in
milliseconds. The processing time that depends on the number of bytes, i.e.,

the time required for the "copy byte from M to L" on the sending station, the
"copy byte from L to M" on the receiving station plus the transmission time
should be approximately 3.84 microseconds. The maximum transmission speed for
communication is 10 megabits per second and a byte is 8 bits. Therefore the
minimum transmission time is .8 microseconds per byte. If the transmission
time, 0.8 microseconds, is subtracted from 3.84 microseconds, the difference
is 3.04 microseconds. This should be the amount of time for the "copy byte
from M to L" and the "copy byte from L to M" . Thus, assuming that the two
copies take the same amount of time, it takes approximately 1.52 microseconds
to do either one of .the "copy byte L to M" or the "copy byte M to L" . The
estimated CPU time for jobs are shown in Table 2.

11
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Table 2. Estimated CPU Time For Each Job

Host MIP send (send a message) 1.257 (ms)

Host MIP receive (receive, an, AK) . - 1.211(ms)
Host MIP receive (receive a message) 1.879 (ms)

Host recycle RX buffer .39 (ms)

Host generate TX buffer .21 (ms)

Host consume returned TX buffer .22 (ms)

Copy byte M to L 1 . 52 (microsecs)
Copy byte L to M 1 . 52 (microsecs)

4.3 MODEL INPUT FILES

There are three input files for the Simscript II. 5 model: the system
configuration file, the network description file, and the connection data
file. The system configuration file provides the system configuration
parameters and the processing time for each job. The characteristics for the

network modeled are provided in the network description file. Each system is

initialized in accordance with the system configuration file and the network
description file. It is possible to have different system configuration files

for different stations in order to simulate a network where stations are not
all homogeneous, e.g., some stations are faster than others. The default
values for the system configuration parameters in the model for the validation
are the same as those in the iNA960 shown in Table 1 in section 3.2.3. Table
3 shows the characteristics for the CSMA/CD network modeled.

12



Table 3. Simulated CSMA/CD Network Characteristics

Link Speed
Average Propagation Delay
Slot Time
Collision Overhead
Jam Time
Interpacket Delay
Preamble (octets)

LLC and MAC Header (octets)

Bit Error Rate

10 Mbps
2 microsecs

51.2 microsecs
0 microsecs
3.2 microsecs
9.6 microsecs
7 octets

24 octets
0

(Note: The bit error rate for CSMA/DC networks is low enough that the
probability of error in the simulator is set to 0)

.

The connection data file provides the connection data parameters on a per
connection basis. The experimenter may provide as many stations and
connections as desired. Each connection may choose one of the application
types explained in section 4,1. The source and the destination stations of

the connection are given by the experimenter. The experimenter also provides
TSDU size distributions, TSDU arrival time distributions, and a probability
for each type of message (or TSDU) on a connection, based on the application
type. Parameters such as the maximum window, the minimum credit, and the size

of buffers are specified for each connection.

4.4 MODEL OUTPUT FILE

The output file contains the performance statistics for each run. The model
provides program execution statistics such as actual system elapsed time, CPU

time used, and the simulated time used for a run. The following performance
metrics are measured and provided for each run. For the validation
experiments, throughput and delay measurements are only used,

4.4.1 THROUGHPUT

User throughput is defined as the total amount of user data transferred
divided by the time required to send them. The time is measured from when the

first TSDU is sent by the sending Transport user until the last TSDU is

received by the receiving Transport user. In the validation experiments this

measurement is of interest in both the simplex file transfer and duplex file
transfer. User throughput is measured for each connection and for each
direction of data flow on a connection. The sum of user throughput for all
connections per Transport entity is also reported.

4.4.2 DELAY

One-way end-to-end delay is the time a TSDU takes to be transferred from a

sending Transport user to a receiving Transport user. Average, minimum,
maximum, and the standard deviation are reported on a per connection basis and
each direction of data flow on a connection for each Transport entity. The
average one-way delay measurement is used in the validation.

Two-way delay is measured from when the first byte of a request TSDU is

transmitted by the initiating Transport user until the last byte of the
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corresponding response TSDU is received by the initiating Transport user.
Average, minimum, maximum, and standard deviation are reported on a per
connection basis and each direction of data flow on a connection for each
Transport entity. The two-way delay is applicable to applications such as
request response, database query, data entry, and virtual terminal.

4.4.3 TRANSPORT TRANSMIT AND RECEIVE DELAY

Transport transmit delay is measured from the time a TSDU is accepted by
Transport from the user to the time the end of the TSDU is sent into the
network. In the same way. Transport receive delay is the elapsed time between
the time a TSDU is accepted by Transport from the network and the time the

complete TSDU is sent to the user.

Average, minimum, maximum, and standard deviation are reported for each end
station in each connection. The measure of the delay metric includes
Transport processing time and internal queueing delay.

4.4.4 PROTOCOL EFFICIENCY

The protocol efficiency is defined as the ratio of the Transport user data
sent to the total data sent (including AKs and headers) by the Transport
entity. The measurement is reported for each end station in each connection.

4.4.5 RETRANSMISSIONS

The measures of retransmission include the total number of retransmissions,
the average number of retransmissions per DT TPDU, and the distribution of
retransmissions. The measurement is reported for each end station in each
connection

.

4.4.6 RESOURCE UTILIZATION

The model reports the utilization of resources. The resources in the model
include the transmission channel, communications CPU, user buffers, and Data
Link buffers

.

The channel utilization is the total throughput sent on the link (including
both user data and overhead) divided by the link speed.

The measurement of communications CPU utilization is reported on a per
Transport entity basis and also reported on a per connection basis supported
by the Transport entity. The measurement of CPU utilization for each
connection is broken up into the CPU utilization for each process in the

communications system.

The model provides the utilization of the RX and TX buffers for both the user
and the Data Link. The average amount of memory space used is me'asured for
the user RX buffers . The average fraction of buffers used is measured for the

user TX buffers and the Data Link RX and TX buffers. The measurements for
both the user and the Data Link memory are reported on a per connection basis.

5.0 VALIDATION EXPERIMENTS

A number of different types of experiments were conducted for both the live
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measurements and the simulation measurements using the same experimental
parameters . The experimental environment for both measurements was Transport
Class 4 with CLNP configured in and the CSMA/CD LAN network. The network
background traffic was assumed to be zero. Two metrics were measured for the
comparison: one-way delay and throughput.

The experiments divide into three sets: 1) one-way delay, 2) throughput, and

3) multi-application. Each of these is explained in detail below.

5.1 ONE-WAY DELAY

Experiment: One-way Delay vs. TSDU S

Parameters

:

TSDU interarrival time (constant)
Duplex or simplex data flow
TSDU size (constant distribution)
Total data sent

Number of connections
Number of user buffers
Maximum window
Minimum credit

Live and Simulation Results:

One-way delay was measured from the initiating user process to responding user
process for both the live and the simulation experiments. Figure 7 presents
the one-way delay measurements as a function of the message size
(TSDU size) for both the live and the simulation experiments.

Remember that if a TSDU is bigger than the size of the user data field of the

network packet, then the TSDU is segmented into one or more TPDUs . Since the

size of the user data field of Data Link transmit buffer with CLNP is 1401

octets, 1402 octets or more of Transport user data will be segmented into two

or more TPDUs.

The curves in Figure 7 show the same shape. As the message size increases the

delay increases. Of particular interest are those user message sizes at the

boundary where segmentation into an additional TPDU is required; those
messages having (1401 * k) + 1 octets, where k -= 1 , 2, 3, .. e.g., 1402,

2803, 4204, exhibit a sharp increase in delay. It is reasonable to infer
from these results that the time taken to segment the data is the cause of the

sharp jump. The delay curves are higher in the simulation measurement.

e

- 100 milliseconds
- Simplex
- varied between 100 and 17000 octets
- 10 megabyte (live)

100 TSDUs (simulation)
- 1

- 1 TX and 2 RX buffers
- 15

- 1
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Figure 8 shows two curves for the DT-to-AK ratio as a function of the TSDU
size for both the live measurement and the simulation measurement. As can be
seen from Figure 8, not every DT TPDU provides the return of an AK TPDU. The
ratio increases as the message size increases. For the TSDU size of 16813
octets, the DT to AK ratio was 6.5:1 for the live measurement and the DT to AK
ratio was 2.2:1 for the simulation measurement. Thus AKs are sent more often
for the simulation experiment. This is probably the cause of the higher delay
of the simulation results. Our hypothesis for the higher DT to AK ratio in
the live experiments as opposed to the simulation experiments follows.

TSDU SIZE (B^TES)

I-igure 7 DI:EAV \ S . TSDU SIZE

It is clear from the results of the live experiments that at the destination
the "send AK" task is a lower priority than the "receive DT" task. Otherwise
every DT TPDU would be acknowledged. If tasks of different priorities, such
as "receive DT" and "send AK"

,
are being scheduled then the ratio of DTs

received to AKs sent depends on a number of factors: how often DTs are
received, the processing time of "receive DT" and the processing time of "send

AK" . For example, if more DTs are received in a given amount of time, the

processing times being unchanged, then fewer AKs will be sent and the DT to AK
ratio will rise. Or if the arrival rate of DTs is unchanged but. the

processing time of AKs is increased, then fewer AKs will be sent and the DT to

AK ratio will be higher. This is true for preemptive or nonpreemptive
scheduling.

The arrival rate of DTs at the destination node is affected by the priority
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and processing time of the "send DT" task at the origination node. The
priority and processing times of other tasks at both the destination and
origination node may also have an effect on the DT to AK ratio.

The simulation model uses constant processing times for each task. However,
if figure 5 is examined it is seen that in the live model, there is a

variation in processing times. The biggest variation is in "send AK" where
the minimum is

TSDL' SIZE (D^TES)

Figure 8 DT TO AK RATIO FOR ONE-WAY DELAY

5.877 ms, the maximum is 7.773 ms and the average, which is used in the model,
is 7.210 ms. In addition the experiment which was used to obtain the
processing times is described in section 4.2.1. It is possible that in other
experimental situations, the processing times will be different for some
tasks

.

Undoubtedly, the reason for the different processing DT to AK ratios in the

live experiments and simulation experiments is the inaccuracy of the
processing times in the model. The important question is whether,, with these

inaccuracies, the model is usable for our purposes. This will be addressed in

Section 6, Conclusions.

5.2 THROUGHPUT

For the throughput measurements, bulk data are continuously transferred
memory- to -memory from a transport user on one system to a transport user on
the other system in one direction (simplex) and both directions (duplex) . For
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both the live and the simulation experiments, all receive buffers are posted
before the experiment starts. On the transmitting station, the user process
sends all transmit buffers containing user data to the communications board
before waiting for any acknowledged buffer to be returned at the beginning of
the experiment. As soon as all the data in a user buffer are

acknowledged, the user buffer is returned to the user and recycled for the

next transmission of data. On the receiving station, a receive buffer is

returned to the user when a buffer is full or the end of TSDU is received at

the Transport. The user process then reposts the receive buffer.

Experiment #1: Throughput vs. TSDU Size

Parameters

:

Duplex or simplex data flow
TSDU size (constant distribution)
Total data sent

Number of connections
Number of user buffers
Maximum window
Minimum credit

Live and Simulation Results:

This experiment is divided into two subsets: simplex and duplex file

transfers

.

Figures 9 and 10 show simplex and duplex throughput versus message size for

both the live and the simulation measurements. Both graphs exhibit the same

shape. Throughput increases rapidly as the user messages increase up to 5600

octets for both the live and the simulation measurements. Beyond this figure

the rate of throughput increases more slowly for both the live and the

simulation measurements. As pointed out in the delay case, throughput drops

down sharply at the point where the user messages are segmented into an
additional TPDU, resulting in additional processing for each user message.

The DT-to-AK ratio of the simplex experiment for both the live and the

simulation are shown in Figure 11. The DT-to-AK ratio for both the live and

the simulation are almost the same for message sizes up to 2000 octets. As

shown in Figure 11, the difference in DT-to-AK ratio between the live and the

simulation measurements increases as the user messages increase. For the user
message size of 16813 octets, the DT to AK ratio was 5.2:1 for the live
measurement and the DT to AK ratio was 2.8:1 for the simulation measurement.
More AKs are sent for the simulation as in the delay experiment.

It seems probable that the time taken to send additional AKs is the cause of

the lower throughput of the simulation measurements compared to the live
measurements. This may be the reason for the lower throughput of the

simulation measurement for all remaining experiments done for the validation.

- Simplex and duplex
- varied between 100 and 25000 octets
- 10 megabyte (live)

300 TSDUs (simulation)
- 1

- 10 TX buffers and 10 RX buffers
- 15
- 1
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Experiment #2: Throughput vs. Number of Receive Buffers

Parameters

:

Duplex or simplex data

TSDU size
Total data sent

Number of connections

Number of user buffers

Maximum window
Minimum credit

flow - Simplex
- 10000 bytes
- 1 megabyte (live)

300 TSDUs (simulation)
- 1

- TX buffers : 10 and

RX buffers: 1, 2, 3, 4, 6,

- 15
- 1

TSDU SIZi; (BYTKS)

Figure 9 THROUGHPUT (SIMPLEX) VS. TSDU SIZE

8 and 10
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S S imu 1 a t ed
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Live and Simulation Results:

For the experiment where the number of receive buffers was varied, the number
of transmit buffers was held constant at 10 for the live and the simulation
measurements . Figure 12 shows two curves for the throughput as a function of
the number of receive buffers.

For the live measurements, when two user receive buffers are made available,
measured throughput is increased by 18k bytes per second. There is no change
in throughput when three or more user receive buffers are made available.
Thus, at least three receive buffers are necessary for the maximum throughput.

For the simulation measurement, when two user receive buffers are made
available, measured throughput is increased by 20k bytes per second. There is

no further change in throughput when two or more user receive buffers are made
available. Thus, at least two receive buffers are necessary for the maximum
throughput since the receive buffer is always available at the front-end
level. When there is only one receive buffer, the front-end board on the
receiving station sends a receive buffer filled with the received data back to

the host board and waits for it to be reposted for data to be received. This
causes the transmitting Transport to run out of credit, resulting in reduced
throughput. The maximum throughput for live measurements is about 119K
bytes/sec and the maximum throughput for simulation measurements is about
103K bytes/sec.

NUSmER Ol- RECEIVE BUIM'ERS

Eigure 12 TIIROCGIIPUT VS. NUMBER OE RECEIVE nUEECRS
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Experiment #3 : Throughput vs . Number of Transmit Buffers

Parameters

:

Duplex or simplex data flow
TSDU size
Total data sent

Number of connections
Number of user buffers

Maximum window
Minimum credit

Live and Simulation Results:

- Simplex
- 10000 bytes
- 1 megabyte (live)

300 TSDUs (simulation)
- 1

- RX buffers : 10 and
TX buffers: 1,2, 3, 4, 6, 8. and 10

- 15
- 1

Measurements for throughput versus number of transmit buffers are graphed in

Figure 13. The number of receive buffers was held constant at 10 while the

number of transmit buffers was varied.

As shown in Figure 13, the two curves for the live and the simulation
measurements exhibit the same shape, and the measured throughput for both
remains about the same (119k bytes/sec for the live and 103k bytes/sec for the

simulation) for two or more user transmit buffers. Thus, the optimal number
of transmit buffers is two for both measurements. VJhen there is only one TX
buffer

Figure 1 THROLGHPLT VS. .\U\fnF.R OF TRANSMIT BUFFERS
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available, the front-end board on the sending station sends a TX buffer back
to the user as soon as the data in the buffer is acknowledged and waits for it

to be reposted for the next data to be sent. This results in lower throughput
since data to be transmitted is not available all the time.

Experiment #4: Throughput vs. Maximum Window

Parameters

:

Duplex or simplex data flow

TSDU size
Total data sent

Number of connections
Number of user buffers
Maximum window
Minimum credit

Live and Simulation Results:

Throughput as a function of maximum window is graphed in Figure 14. For the

live measurement, throughput increases sharply as the maximum number of window
increases up to 4. Above this figure throughput levels off and grows much
more slowly. For^ the simulation measurement, throughput increases sharply up

to a maximum window of 3 and more slowly after that.

- Simplex
- 10000 bytes
- 10 megabyte (live)

300 TSDUs (simulation)
- 1

- 10 RX and 10 TX buffers
- 1,2,3,4,5,6,8,12 and 15
- 1
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Maximum throughput was achieved when a maximum window was set equal to 12 for

both the live and the simulation experiments. Since an AK is not necessarily

returned for each DT TPDU, as seen in Figures 8 and 11, the maximum window

size has to be large enough to allow several DTs to be received before an AK

is sent, to decrease AK processing and thereby increase throughput.

Experiment #5: Throughput vs. Retransmission Timer

Parameters

:

Duplex or simplex data flow

TSDU size
Total data sent

Number of connections
Number of user buffers
Retransmission timer

Maximum window
Minimum credit

^ 1.

s s

—L— Live— S Simulated

J 1
1 1 1 1 1 1

(—

e 5« 15C 2e« 250 3ec 550 450

RETRANSMISSION TINOCR (MILLISECONDS)

Figure 15 THROUGHPUT VS. RETRANSMISSION TIMER
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- Simplex
- 10000 bytes
- 10 megabyte (live)

100 TSDUs (simulation)
- 1

- 10 TX and 10 RX buffers
- 50,100,250 and 500 milliseconds
- 15
- 1
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Experiment #6: Throughput vs. Number of Connections

Live and Simulation Results:

Figure 15 shows the throughput versus retransmission timer. For both
measurements, throughput remains the same independent of the timer values of
100 milliseconds or above, because no retransmission occurs. When the
retransmission timer is set equal to 50 milliseconds, the retransmission
timeouts occur since the retransmission timeout interval is too short. If no

AK is received and the retransmission timer expires, all unacknowledged data
are retransmitted, leading to reduced throughput for both the live and the

simulation measurements.

Parameters

:

Duplex or simplex data flow -

TSDU size
Total data sent

Number of connections
Number of user buffers
for each connection
Maximum window
Minimum credit

Simplex
10000 bytes
10 megabyte (live)

100 TSDUs (simulation)

1, 2, 3, 4, 5, 6, 8 and 10

10 TX and 10 RX buffers
15
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Figure 16 presents throughput versus number of connections for both the live
measurement and the simulation measurement. For the live measurement,
throughput measured increases sharply up to 3 connections and more slowly up
to 5 connections. Throughput drops sharply after which it increases slowly.
The optimal number is 5. This suggests that the amount of overhead increases
in maintaining multiple connections more than 5.

For the simulation measurement, throughput measured increases sharply up to 3

connections and more slowly up to 5 connections. For 6 or more connections,
throughput drops slightly. The optimal number is 5 which is the same as the
live measurement.

- - o- -

- - -

Simulated
Simulated
Live TPl
Live TP2

TPl
TP2

MAXIMUM WINIXKV

I' i g u r e 17 THROUGHPUT VS . MAXIMUM WI NDCXV
IWO STATIONS TRAN SM IT TO ONL STATION
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Experiment #7 : Throughput vs . Maximtim Window
(Two Stations Transmit to One Station)

Live and Simulation Results:

Parameters

:

Duplex or simplex data flow
TSDU size
Total data sent

Number of stations
Number of connections
Number of user buffers
for each connection
Maximum window

Minimum credit

Live and Simulation Results:

Two senders are continuously sending memory to memory bulk data to one

receiver. Figure 17 shows throughput of Transport 1 and Transport 2 for both
the live and the simulation experiments while the maximum window is varied.
As the maximum window increases, throughput of both senders increases
respectively toward 66K bytes for the simulation and 70K bytes for the live

measurements

.

For the live measurement, the throughputs seen at Transport 1 and Transport 2

seem to be fair since the two connections have achieved almost the same
throughput. The same fairness is also observed for the simulation
experiments

.

- Simplex
- 10000 bytes
- 10 megabyte (live)

100 TSDUs (simulation)
- 3

- 2

- 10 TX and 10 RX buffers
- 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,

11, 12, 13, 14, and 15
- 1

5 . 3 Multi-Application Experiments

Experiment: Two Connections with Two Applications
(Simplex File Transfer and Periodic Status Report)

Parameters

:

Duplex or simplex data flow
TSDU size

Total data sent
Number of stations
Number of connections
Number of user buffers
for each connection
Maximum window

Minimum credit

Simplex
10000 bytes (simplex file transfer)

100 bytes (periodic status report)

100 TSDUs
2

2

10 TX and 10 RX buffers

1, 2. 3, 4, 5. 6. 7. 8, 9,

10, 11, 12, 13, 14 and 15

1
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Live and Simulation Results:

The experiments involve a pair of applications between two stations. For the
first application, the simplex file transfer generates bulk data traffic while
in the second application, a periodic status report submits messages at a

constant rate of 100 milliseconds. The data flow for both connections is in
the same direction.

One-way delay vs. maximum window for both the live and the simulation
experiments is shown in Figure 18. For the simulation experiments, one-way
delay increases sharply as the maximum window increases up to 5. After this

point one-way delay levels off and grows sharply to the maximum window of 7.

One-way delay remains the same for the maximum window of 8 and more. For the

live experiments, one-way delay increases sharply as the maximum window size

increases up to 7 and more slowly after that.

Figure 19 shows the throughput vs. maximum window for both the live and the

simulation measurements. The two curves have the same shape. Throughput
increases sharply as the maximum window size increases up to 5 for both
measurements. Above this figure throughput increases more slowly for the live

measurement. For the simulation measurement, throughput remains the same

above window size 5.

6 . 0 Conclusions

No model, whether a mathematical model or a simulation, is an exact duplicate
of the system being modeled. The model will not produce the same outputs as

the real system in all situations. The model used in this study exhibited
throughput and delay differences of 6% to 20% compared to the real system.

Thus, the model would not be a good predictor of the performance of a real
system.

What the transport simulation model does a good job of predicting is which of

two scheduling algorithms for implementing QOS at the transport layer would
work better in a real local area network. This is illustrated by the fact
that the output curves of the live system and the simulator follow one
another. It is, therefore, felt that the simulator would predict relative
performance of QOS algorithms. If it accomplishes this, then for the purposes
of this study it is considered a successful simulator.
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APPENDIX A

Description of Parameters

Host Recycle RX Buffer: Length of time between the time the traffic generator
receives a RX buffer or RX Interface Data Unit (IDU)

from iNA960 and recycles the RX buffer and returns it

to iNA960.

Host Generate TX Buffer: Time it takes the traffic generator to generate
and send a TX buffer or IDU to iNA960,

Host Consume Returned TX Buffer: Time it takes the traffic generator to

receive a returned TX buffer from iNA960.

Host MIP Send (send a message) : Time it takes the host MIP send process to

send a message

.

Host MIP Receive (receive an AK) : Time it takes the host MIP receive task to

receive an AK.

Host MIP Receive (receive a message) : Time required by the host MIP
receive task to receive a message
and acknowledge it.

Comm MIP Send (send a message): Time taken by the comm MIP send task to

send a message.

Comm MIP Send (time taken for the buffer to be acknowledged): The elapsed time

between transmission of a message in the comm MIP send task and an AK of the

message .

Comm MIP Receive (receive a msg) : Time it takes the comm MIP receive task to

receive a message and acknowledge it.

Comm MIP Receive (receive an AK) : Time taken by the comm MIP receive task to

receive an AK.

Post TX Buffer: Time taken to post a TX buffer.

Post RX Buffer: Time taken to post a RX buffer.

Send DT : Time taken to send a DT TPDU successfully.

Send DT Overhead: Overhead time to send a DT TPDU on a specific .connection

Send DT Fail: Time taken to discover that a DT TPDU cannot be sent. The

send DT may fail because there is no network layer buffer
available

.
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Send AK: Time taken to send an AK TPDU successfully. This time includes
the overhead time

.

Receive DT : Time taken to receive a DT TPDU.

Receive AK: Time taken to receive an AK TPDU,

DL TX Interrupt: Time it takes the Data Link transmit interrupt service
routine to be completed.

DL RX Interrupt: The time it takes the Data Link receive interrupt routine to

be completed.

Copy Byte M to L: Time a byte takes to be copied from Multibus memory to local

Copy Byte L to M:

memory

.

Time a byte takes to be copied from local memory to Multibus
memory

.
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