
A11103 Miaaoe

STEP (Standard for the Exchange of Product Model Data)
Resource Integration: Semantic & Syntactic Rules

William F. Danner

U.S. DEPARTMENT OF COMMERCE
National Institute of Standards
and Technology
Building and Fire Research Laboratory

Gaithersburg, MD 20899

David T. Sanford

The Boeing Company

Yuhwei Yang

Product Data Integration Technology

U^. DEPARTMENT OF COMMERCE
Robert A. Mosbacher, Secretary
NAnONAL INSTTTIJTE OF STANDARDS
AND TECHNOLOGY
John W. Lyons, Director

h-QC

100

#4528

1991

C.2

NISTIR 4528 I

STEP (Standard for the Exchange of Product Model Data)
Resource Integration: Semantic & Syntactic Ruies

William F. Danner

U.S. DEPARTMENT OF COMMERCE
National Institute of Standards
and Technology
Building and Fire Research Laboratory

Gaithersburg, MD 20899

David T. Sanford

The Boeing Company

Yuhwei Yang

Product Data Integration Technology

March 1991

U^. DEPARTMEI^ OF COMMERCE
Robert A. Mosbacher, Secretary
NATIONAL INSTTTUn OF STANDARDS
AND TECHNOLOGY
John W. Lyons, Director

Abstract

STEP (Standard for the Exchange of Product Model Data) Resource

Integration: Semantic and Syntactic Rules, documents the rules that are

used in the integration of STEP draft resource models. t The rules are

applied in the development of the STEP Integrated Resource that satisfies

application requirements for STEP.

Keywords

Conceptual Model, Integration, PDES, Product Data Exchange using STEP,
Standard for the Exchange of Product Model Data, STEP

^ This document is N80 of the International Organization for Standardization (ISO)

Technical Committee on Industrial Automation Systems (TC 184) Subcommittee on Manufacturing
Data and Languages (SC4).

iii

Contents

page

INTRODUCTION 1

1 SEMANTIC INTEGRATION RULES 2

1.1 Modularization of Construct 2

1.2 Generic and Conceptual Nature of Construct 3

1.3 Product Data Scope of Construct 4

1.4 Application Requirements for Construct 4

1.5 Construct Uniqueness 4

1.6 Functional Adequacy of Construct 5

1.7 Conceptual Structure of Construct 5

1.7.1 Structure Stability 5

1.7.2 Structure Completeness 5

1.7.3 Structure Correctness 5

1.8 Construct Specialization and Extension 6

1.9 Placement in the STEP Integrated Schema Architecture 6

1.10 Thoroughness of Integration 7

2 SYNTACTIC INTEGRATION RULES 7

2.1 Modularization by Schema Specification 7

2.2 Controlled References between and within Modules 8

2.2.1 Existence Dependence 8

2.2.2 Definitional Dependence 10

2.3 Placement of SUPERTYPE/SUBTYPE Entities 11

2.4 Placement of Entity Definition and Description 12

3 SUMMARY 13

REFERENCES 14

ACKNOWLEDGMENTS 14

List of Figures

1. Example of Resource Modularization 3

2. Specification of Existence Dependence 9

V

Definitions

Definitions concerning conceptual modeling [1] useful in the discussion of

STEP resource integration include:

abstraction the result of a conceptualization process which includes

generalization /specialization, aggregation, association, and
classification.

aggregation an abstraction in which relationships between low level types of

objects can be considered as parts of a higher level object

association an abstraction in which a relationship between similar types of

objects is considered as a higher level set object type

classification an abstraction in which a type of object is defined as a set of

instances

concept an abstraction derived from the observation of particular

instances

conceptual

model
information requirements in terms of concepts that are specified

as formal structures using the syntax of a modeling language

construct a logical grouping of conceptual model elements that conveys a

semantic idea

draft resource a conceptual model that has been approved by a data-

model modeling project that serves as an origin of resource constructs

generalization an abstraction in which differences among similar objects are

ignored to form a higher level type of object that emphasizes
similarities

interpretation the use of resource constructs to specify context specific

relationships and constraints that satisfy application

resource

requirements

a construct that has been integrated, and is available for use in

the specification of context specific relationships and constraints

that satisfy application requirements

specialization an abstraction in which differences among similar objects are

emphesized to form lower level types of objects that maintain

the similarities identified in a higher level type of object

VI

STEP (Standard for the Exchange of Product Model Data)

Resource Integration: Semantic & Syntactic Rules

INTRODUCTION

Several principles have been used in the development of these rules .

2

They are

stated briefly here, and are elaborated upon in subsequent sections.

1) STEP must contain a cohesive and functionally adequate integrated

resource for application protocol [2] interpretation that has an

architecture which reduces the impact of change in a phased release

environment. It is important to produce a successful STEP Version

1.0 with the ability to add and modify constructs in future versions.

2) STEP will be a collection of Parts each of which is an individual

standard with its own scope and unique content. The content of

Parts containing semantic constructs is to be conceptual in nature.

3) Constructs are to be within the scope of product data.

4) Constructs . are provided for the purpose of supporting application

requirements.

5) Constructs are to be functionally adequate for the stated purpose.

6) Constructs are to be functionally unique (i.e., non-redundant).

7) Constructs are to be stable, complete, and correct.

8) Constructs can build upon (i.e., specialize) the semantics of other

more generic constructs.

9) Constructs included in a version of STEP are to have an explicit

place and role within the schema architecture of the STEP
Integration Framework [3].

10) Constructs included in a version of STEP are to be thoroughly

integrated with one another.

2 This document does not represent an official position of ISO TC184/SC4. Rather, it is a

working document of the authors for consideration by WG4, Qualification and Integration, and
WG5, STEP Development Methods.

Integration must ensure that the constructs within the STEP Parts form a

cohesive whole. Consideration shall be given to all work produced in STEP.

Proper training, thorough understanding of the STEP Integration Framework
and strategy, and participation in the Integration Project activities (which

involves a detailed understanding of most if not all ongoing work in STEP) is

required for membership on the Integration Project team. Ad hoc integration

conducted by resource model development teams in isolation of the Integration

Project team can be a serious hindrance to thorough integration. These efforts

often evolve into individually and independently integrated constructs that are

inconsistent with the schema architecture of the STEP Integration Framework
and are not readily amenable to the integration practices and rules.

This paper describes the methods and rules that shall be followed to ensure that

STEP is thoroughly integrated. The rules apply to constructs that make up the

STEP integrated resource, namely contained within the 40 and 100 series STEP
Parts. The rules are categorized into semantic and syntactic integration rules.

1 SEMANTIC INTEGRATION RULES

The following rules shall be applied to the draft resource models as they are

semantically integrated. Following a detailed presentation and discussion of a

draft resource model, the rules are typically applied in the sequence presented.

1.1 MODULARIZATION OF CONSTRUCT

Model elements that convey the logical grouping of a semantic concept form a

conceptual construct. Each construct is a "module" within the schema
architecture of the STEP Integration Framework and shall be specified in

EXPRESS as a schema.

construct a logical grouping based on meaning (i.e., semantics)

module an architectural element of the STEP Integration Architecture

that contains a construct

schema the EXPRESS syntax used in the specification of a module

Construct, module, and schema are used throughout this paper based on this

definition of modularization. Using an analogous approach to structured

programming, the modularization rule partitions product data concepts into

manageable groups.

Modularization of constructs provides the following benefits:

A) The modules are concise to promote readability and understandability.

2

B) Changes in a phased release environment requires a sound strategy for

maintainability. The modularization rule improves the manageability of

the specification. This is particularly true because STEP has such large

scope and complex concepts.

C) Construct changes can be effected exclusively within modules so long as

interfaces between modules are maintained.

Examples include the modules of the Generic Product Data Resources (GPDR) [4]

which form the foundation of the integration architecture, and modules that

reference the GPDR (e.g.. Product Structure & Configuration Manaement).

1.2 GENERIC AND CONCEPTUAL NATURE OF CONSTRUCT

Constructs shall be generic and conceptual in nature. Constructs shall convey
semantics that logically describe product data concepts. Constructs shall not

include ideas or mechanisms that are motivated by convenience in practices,

computer technologies, or efficiency requirements for implementation.

generic shareable among multiple product types, application

domains, and life cycle phases; free of context constraints

conceptual demonstrates consistency (i.e., invarience) of meaning for

implementations in heterogeneous computing environments

3

1.3

PRODUCT DATA SCOPE OF CONSTRUCT

The STEP resource data constructs shall contain semantics that are used to

describe a product within the established scope of STEP. STEP should not

contain constructs of data necessary to develop an application system that creates

or manages the product data. Conceptual constructs of data that are needed for

the control, management, and production of a computer system are not to be

included as part of the integrated STEP resource specification. Examples of such

data semantics are: settings of variables which control the user interface in a

CAD system , information necessary to administer data in a DBMS , mechanisms
for grouping data that is to be managed in a certain fashion, and control variables

in navigating a process or a data structure.

1.4

APPLICATION REQUIREMENTS FOR CONSTRUCT

Constructs that demonstrate support for application requirements shall be given

the highest priority for inclusion as part of the integrated STEP resources.

Integration will focus on constructs that are required by application protocols.

Many draft resource models have been developed in the absence of formal

application requirements or of the recently established application protocol

development framework. Consequently, while the models may convey
semantics of product data, they are not traceable to an application requirement.

The application protocols will ensure that data in the standard is traceable to a

requirement, and is therefore testable and implementable.

However, documentation and distribution for wide review of draft resource

models that lack specific application requirements is not prohibited. A different

status of publication is necessary to motivate progress, expand scope, and
stimulate application protocol development that require additional constructs.

These publications should be able to formally solicit review and comments
without the negative effects of upward compatibility concerns and without
constraints on improvements that would result if formal application

requirements suggest different constructs.

1.5

FUNCTIONAL UNIQUENESS OF CONSTRUCT

A construct shall not be a functional duplicate of another construct. This is not

to be confused with structural duplication (i.e., use of templates). Integration

applies this rule in the identification of commonality of construct and
elimination of duplication. A new construct is developed that is a synthesis of

the duplicate constructs (i.e., it fulfills all identified requirements). The new
construct is then placed appropriately in the integration architecture based on
semantic considerations.

4

1.6 FUNCTIONAL ADEQUACY OF CONSTRUCT

A model development project shall have well defined goals and scope. Each of

the constructs in a draft resource model shall be traceable to an element of the

established goals and fit within the established scope. Every construct shall fulfill

a defined purpose. Inclusion of specific concepts will be based on the semantic

necessity for the concept. Examples and test cases shall be employed to evaluate

the usability (functional adequacy) of the construct against its declared purpose

(e.g., collection and population of representative data).

1.7 CONCEPTUAL STRUCTURE OF CONSTRUCT

The stability, completeness, and correctness of the conceptual structure of a

construct must be examined for integration. The intent is to promote the goal of

integration: to develop the best quality in STEP exemplified by cohesiveness and
unification. The following criteria shall be used as guiding principles for the

joint review and potential restructuring of a candidate construct by the

Integration project team and the technical experts who developed the model.

1.7.1

Structure Stability

The structure of a construct shall be considered stable by both the integration and
technical expert teams using heuristic criteria. There shall not be an outstanding

issue regarding stability raised by either team. The intent of the stability rule is to

ensure that the structure of a construct has had sufficient review and that broad

agreement is obtained before a construct is documented in a STEP Part.

1.7.2

Structure Completeness

The structure of a construct shall completely accommodate the goal for which it

is intended. Constructs shall have demonstrated relationships among entities

(i.e., do not provide a "container" for miscellaneous entities). The integration

team, based on requirements for shareability across disciplines, will determine if

the construct serves common goals within the overall STEP architecture.

1.7.3

Structure Correctness

The structure of a construct shall be technically correct in its modelling approach

to the defined goals and within the defined scope. Template structures shall be

used when similarity of semantics warrant there applicability. Integration

applies this rule to examine issues of generality, consistency, and compatibility

with other constructs in the integrated resource.

5

1.8 CONSTRUCT SPECIALIZATION AND EXTENSION

A construct that specializes or extends the semantics of generic entities shall

reference those entities from the more generic modules. The Generic Product

Data Resources (GPDR) and Generic Product-Data Management Resources

(GPMR) [5] constructs are the most generic. Constructs shall reference the GPDR
or GPMR in order to specialize or extend concepts.

All entities in the integrated 40 series STEP Parts shall be unique. An entity or

construct within a draft resource model, identified as necessary to convey an

understanding of the STEP architecture, shall be moved to Part 41, the GPDR and
GPMR. The construct may require modification in order to be generic (i.e.,

context independent) and shareable. Syntactic rules 2.1 and 2.2 address the

mechanism by which this is accomplished.

The construct specialization rule is applied to address the overview function of

the generic constructs contained within the GPDR and GPMR modules. It is

applied to establish control of the amount of detail in the generic and extending

constructs. By controlling the amount of details in a given module, the

references across module boundaries can be minimized and better managed.
Minimization of such references (i.e., interface points) between modules
facilitates the accommodation of change.

1.9 PLACEMENT IN THE STEP INTEGRATED SCHEMA ARCHITECTURE

A construct that is to be integrated shall have a logical place in the schema
architecture of the STEP Integration Framework. If this is not possible, then

either the construct or the architecture must change. Over time, because of the

impact on the already integrated constructs, it is going to be easier to consider

changes in a proposed additional construct than in the integration architecture.

This is not meant to preclude change in the integration architecture where it is

warranted.

Resource constructs, as they are placed in the architecture, must be

understandable in that broader context. Thus, in applying this rule, integration

will raise issues of understandability, correctness, and completeness of a

construct in an integrated context, which may be different than the context in

which the draft resource model was developed.

It is anticipated that the application of this rule will have significant impact on
some projects that have developed models prior to the establishment of the

STEP Integration Framework. To prevent similar problems in the future, draft

resource model developers are encouraged to begin communication with the

Integration Project as early as possible in the development of their models.

6

1.10 THOROUGHNESS OF INTEGRATION

A construct shall be integrated within the entire scope of STEP. Individual draft

resource model development project teams shall not attempt integration of their

work without the participation of the Integration Project team. An integrated

resource shall have consistent levels of abstraction and usage of specification

languages. A STEP Part shall document only those constructs from a draft

resource model that have been fully integrated. It must accommodate an

unambiguous method of interpretation for application requirements.

2 SYNTACTIC INTEGRATION RULES

The following rules have been developed to provide guidelines for syntactic

integration. They define the mechanisms which are used to implement the

semantic integration rules. Where possible the relationships between the

syntactic rules and the semantic rules are identified. There is no priority implied

by the numbering of the syntactic rules.

2.1 CONSTRUCT MODULARIZATION BY SCHEMA SPECIFICATION

A construct that becomes a module in the STEP Integration Architecture, as a

result of the integration process, shall be specified as a schema. It shall be

specified as a subschema of the STEP Integrated Resource Schema.

A referencing module shall specialize or extend at most one generic

construct.

A draft resource model that is a specialization or extension of multiple constructs

or contains disjoint ideas, will be split into multiple schemas. The modules will

be placed in semantically appropriate STEP Parts.

A more particular construct references a more generic construct to

which it adds (i.e., extends) or specializes semantics.

Modules in the 40 series STEP Parts shall use the EXPRESS "REFERENCE"
keyword to specialize or extend concepts from the GPDR modules. They must
specialize or extend the semantics of a single GPDR construct (i.e., the module
must fit at a single specific location in the GPDR structure).

An example can be found in the draft resource model for Part 43. The original

model had only one schema. It included such definitional items as shape_aspect

and such representational items as shape_aspect_representation. These entities

are now separated into two modules that deal with shape aspect definition and
shape aspect representation.

7

2.2 CONTROLLED REFERENCES BETWEEN AND WITHIN MODULES

References between entity types are a primary integration issue. Both inter- and
intra-module references shall be controlled to ensure consistency of semantic

interpretation and manageability of the specification. (Semantic Rules 1.1 & 1.9)

Attribute references from one entity type to another, where the two entities span

module boundaries, are controlled by the integrated schema architecture.

Reference direction between modules shall be determined on the

basis of existence dependence and definitional dependence.

Reference direction from one entity to another within the same
module shall be determined on the basis of existence dependence.

2.2.1 Existence Dependence

Existence dependence involves a relationship between entities where an instance

of one entity cannot be present without the presence of an instance of another

entity. Existence dependence is most easily identified by the cardinality

constraints of the relationship between two entities.

A is existence dependent on B when:

1) A is related to one and only one B (1,1), AND
B is related to zero, one, or many As (0,n), OR
B is related to zero or one A (0,1);

or

2) A is related to one or many Bs (l,n), AND
B is related to zero, one, or many As (0,n), OR
B is related to zero or one A (0,1).

The EXPRESS specification of relationships involving existence dependence
shall use an attribute in the dependent entity, that has as its type, the entity upon
which it is dependent.

ENTITY entity_a; — specification of A
attribute_of_a: entity_b; — reference to B 3

END_ENTITY;

The application of the existence dependence rule results in a consistent manner
by which EXPRESS specifications are made and a consistent way of translating

between NIAM and IDEFlx representations of these relationships.

3 The cardinality of the reverse relationship between B and A must also be specified.

8

Figure 2. Specification of Existence Dependence

7

8

Cardinality

b NIAM
B

IDEF lx EXPRESS-G

(1 , 1) (0,n) -v-| a I b— b/a

(0,n) (1,1) —Ljib
a/b

INVbOPT SET [1:#]

INVaOPT SET[1:#]

(1 , 1) (0,1) MZLb

(0,1) (1,1) —TaTb
a/b z

o o

INVb OI^

b
INVaOPT

(l,n)

(0,n)

(0,n)

(l,n)

-VH a
I
b — a/b .P aSET[l:#],

—
I al bh*- a/b

INVbOPT SET[1:#]

b SET [1:#]

INVaOPT SET[1:#]

(l,n)

(0, 1)

(0,1)

(l,n)

-V-] a
I
b —

—TiTbW-

aZb_^P a SET[b#l^ INV b OPT

bSETIl:#]
INVaOPT

A,B Object Type or Entity Name NOTE: Pairs 1 -2, 3-4, 5-6, and 7-8

a,b Role, Relationship, or Attribute Name are inverses of one another.

(x,y) Cardinality NOTE: Syntax of inverse specification

in EXPRESS-G has not been established.

Danner NIST 1/91

An example from the GPDR involves the relationship between a "product" and
a "product_version." An intuitive approach to this relationship suggests that a

product may have many versions (i.e., a cardinality of(0,n)). The reverse of this

relationship is that a given product version can be of only one product (i.e., a

cardinality of (1,1)). The existence of a product version is dependent on there

being a product. Therefore, the EXPRESS specification of this relationship has an

attribute in the "product_version" entity that has as its type "product."

ENTITY product_version;

of_product: product;

END_ENTITY;

9

The resulting EXPRESS specification may seem to be counter-intuitive.

Unfortunately, rules for a computer sensible specification can not be based on
often inconsistent human intuitions. A consistent use of this rule minimizes

many upward compatibility issues. Along with the practice of this rule, the

inclusion of EXPRESS-G which graphically presents references with explicit

inverse information will improve the human understandability.

2.2.2 Definitional Dependence

Definitional dependence exists between two modules when one module, the

dependent or referencing module, must have access to a type name in another

module, the referenced module, for compilation.

When references are required between modules that are of the same level of

conceptualization (e.g., the GPDR and its extensions) the REFERENCE keyword
will be used in whichever module has the definitional dependence on an entity

of another module.

An example is the references required between the PSCM configuration

management schema and the GPDR product definition schema. Through the

application of the existence dependence rule, the "configuration_design" entity

remains in the PSCM configuration management schema because of its

dependence on the "generic_configuration_item" entity. The "configuration_

design" entity is also existence dependent on the "product_version" entity of the

GPDR product definition shcema. However, there is a logical division of concept

between the product definition schema and the configuration management
schema. The former is an extension of the more generic semantics. Therefore,

the configuration management schema must reference the product definition

schema for access to the "product_version" entity.

SCHEMA
product_definition_schema;

SCHEMA
configuration_management_schema;

ENTITY product;

END_ENTITY;

REFERENCE FROM
product_definition_schema

(product_version);

ENTITY product_version;

of_product; product;

END_ENTITY;

ENTITY product_definition;

version: product_version;

ENTITY generic_configuration_item;

END_ENTITY;

ENTITY configuration_design;

design: product_version;

config: generic_configuration_item;

END_ENTITY; END_ENTITY;

END_SCHEMA; END_SCHEMA;

10

Another example that is more historical in nature, rather than due to Integration

Project modularization, exists between topology and geometry. The topology

schema uses the REFERENCE keyword to gain access to entity type names of

geometry.

Such references are an integration issue, since this kind of inter-module

dependence encompasses semantic modularity and upward compatibility issues.

References based on definitional dependence need to be controlled. Such an

inter-module reference should only exist when the entity being referenced is

necessary to the semantics of the construct of which it is a part, and the

referencing module specifies a construct that is adding semantics to that entity.

Inter-module references that do not comply with this principle are most probably

an artifact due to arbitrary schema boundaries based on committee organization

and discipline interest.

The solution in these cases is to move entities from one schema to another to

achieve appropriate definitional and existence dependence. If two schemas have

many low level references between them, it is often an indication that their

scopes are overlapping or their boundaries (i.e., scopes) are not clearly defined.

Where the modules overlap, common entities should be included in only one

schema, or in a third new schema created to be shared by the two if a shared

semantically independent construct is identified.

Ideally, by referencing the entities from a more generic schema, an extension

schema should be self sufficient in its definition. Interfaces are controlled by
generic constructs being definitionally independent, with dependent extensions

adding semantics. This approach creates a very open system, in which
subsequent versions of STEP can, for the most part, simply add new dependent
constructs to the more generic constructs which serve as the foundation of

Version 1.0.

Since many of the draft resource models defined their boundaries long before the

establishment of an integrated architecture, pre-existing boundaries may demand
references between modules that are not as theoretically well founded.

Definitional dependence applied without existence dependence is a temporary
solution. Definitional dependence based on existence dependence is the

preferred mechanism toward which the Integration Project is moving. This

situation is particularly true in the case of the shape models. Proper use of the

rules for controlled references between and within modules will result in fewer

interfaces (i.e., inter-module references) in the integrated resources.

2.3 PLACEMENT OF SUPERTYPE & SUBTYPE ENTITIES

SUBTYPE / SUPERTYPE declarations which span schema boundaries shall be

specified such that the supertype entity exists in the more generic module

11

without the explicit SUPERTYPE declaration (supports the construct

specialization semantic rule, 1.8). The referencing schema (containing a

REFERENCE) shall declare an entity as a SUBTYPE of a referenced entity.

An example of the use of this rule is the placement of the "shape_model" entity

in the GPDR Shape Representation Schema. The "shape_moder' entity is the

supertype of all representation methods. The specializing schema references the

"shape_moder' entity from the GPDR Shape Representation Schema to create

SUBTYPE specializations .

SCHEMA geometric_shape_schema;

REFERENCE FROM
product_shape_representation_schema

Uhape_modeI);

ENTITY surface_model

SUBTYPE OF (shape_model);

END_ENTITY;

END_SCHEMA;

SUBTYPE / SUPERTYPE relationships between two specializing schemas are not

allowed. This is an indication that the supertype entity is of a more generic

nature and, therefore, should be moved to a more generic module, the GPDR or

GPMR schemas defined in Part 41.

SCHEMA
product_shape_representation_ schema;

ENTITY shape_model;

END_ENTITY;

END_SCHEMA;

2.4 PLACEMENT OF ENTITY DEFINITION & DESCRIPTION

If an entity is moved to a more generic module, such as one of the GPDR
schemas, and is referenced in its original source schema, all text which supports

the EXPRESS entity specification definitions, attribute descriptions, constraints,

and proposition descriptions will be moved into the more generic schema. If

the semantics of the entity are further specialized in the domain of the extension

schema, the GPDR schema will provide a generic definition of the entity and the

referencing schema shall include additional descriptions of the entity necessary

in its context. The definitions and descriptions need not be identical but must be

consistent. Also included in the description is an identification of the document
in which the referenced schema appears (e.g., ISO 10303 Part 41).

An example is the definition and description text for the entity "shape_aspect" as

they appear in both the Product Property Definition Schema of the GPDR and the

PSIM (Product Shape Interface Model) Shape Aspect Definition Schema.

12

3 SUMMARY

STEP Resource Integration is a cooperative effort between the Integration

Methods Project of WG5, the Resource Integration Project of WG4, and data

modeling projects of WG3. The experience gained through the interaction of

these STEP projects, at numerous integration meetings and workshops, has led

to the development of the integration rules presented in this paper. The rules

will continue to be refined, and additional rules will be added as we work toward
the development of an integrated resource for STEP.

Semantic Integration Rules

1. Modularization of Construct

2. Generic & Conceptual Nature of

Construct

3. Product Data Scope of Construct

4. Application Requirements
of Construct

5. Uniqueness of Construct

6. Functional Adequacy of Construct

7. Conceptual Structure of Construct

- stability

- completeness
- correctness

8. Specialization & Extension of

Construct

9. STEP Integration Architecture

Placement of Construct

10. Thorough Integration of Construct

Syntactic Integration Rules

1. Construct Modularization by
Schema Specification

2. Control of Inter- & Intra Module
References

- existence dependence
- definitional dependence

3. Placement of SUPERTYPE &
SUBTYPE Entities

4. Placement of Textual Entity

Definitions and Descriptions

13

References

[1] Brodie, M.L., Mylopoulos, J., and Schmidt, J.W.; On Conceptual Modelling,

Springer-Verlag, NY, 1984.

[2] Palmer, M., Gilbert, M., and Andersen, J.; Guidelines for the Development
and Approval of STEP Application Protocols,NISTIR, National Institute of

Standards and Technology, Draft January 1991.

[3] Danner, W.F.; A Proposed Integration Framework for STEP (Standard for the

Exchange of Product Model Data), NISTIR 90-4295, National Institute of

Standards and Technology, April 1990.

[4] Danner, W.F. and Yang, Y.; Generic Product Data Resources (GPDR), NISTIR,

National Institute of Standards and Technology, Draft January 1991.

[5] Danner, W.F., Shaw, N., and Yang, Y.; Generic Product-Data Management
Resources (GPMR), NISTIR, National Institute of Standards and Technology,

Draft January, 1991.

Acknowledgments

The authors wish to thank Dr. Kent Reed, Leader of the Computer
Integrated Construction (CIC) Group, for his continued support and
encouragement in producing this document.

Appreciation is extended to the members of the Integration Methods,
Resource Integration, and product data modeling projects of ISO TC
184/SC4/WG5 (STEP Development Methods), WG4 (Qualification and
Integration), and WG3 (Product Data Modeling). Many hours of direct

integration experience have led to the establishment of the rules contained

in this document.

Special appreciation is extended to Buzz Bloom, who, as the technical

representative of the first draft resource to be integrated with the STEP
generic product data resources, contributed immensely as the catalyst for

the documentation of rules by which integration is to proceed in STEP.

14

NIST-1 14A U.S. DEPARTMENT OF COMMERCE
(REV. 3-90) NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY

BIBLIOGRAPHIC DATA SHEET

1. PUBUCATION OR REPORT NUMBER

NISTIR 4528
2. PERFORMING ORGANIZATION REPORT NUMBER

3. PUBUCATION DATE
MARCH 1991

4. TITLE AND SUBTITLE

STEP (Standard for the Exchange of Product Model Data) Resource Integration: Semantic St

Syntactic Rules

5. AUTHOR(S)

William F. Danner; David Sanford; Yuhwei Yang

6. PERFORMING ORGANIZATION (IF JOINT OR OTHER THAN NIST, SEE INSTRUCTIONS)

U.S. DEPARTMENT OF COMMERCE
NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY
GAITHERSBURG, MD 20a99

7. CONTRACT/GRANT NUMBER

8. TYPE OF REPORT ANO PERIOD COVERED

9. SPONSORINa ORQANIZATION NAME ANO COMPLETE ADDRESS (STREET, CITY, STATE, ZIP)

10. SUPPLEMENTARY NOTES

11. ABSTRACT (A 200-WORO OR LESS FACTUAL SUMMARY OF MOST SIGNIFICANT INFORMATION. IF DOCUMENT INCLUDES A SIGNIFICANT BIBUOGRAPHY OR
UTERATURE SURVEY, MENTION IT HERE)

STEP (Standard for the Exchange of Product Model Data) Resource Integration;
Semantic and Syntactic Rules, documents the rules that are used in the
integration of STEP draft resource models. The rules are applied in the
development of the STEP Integrated Resource that satisfies application
requirements for STEP.

12. KEY WORDS (6 TO 12 ENTRIES; ALPHABETICAL ORDER; CAPITAUZE ONLY PROPER NAMES; AND SEPARATE KEY WORDS BY SEMICOLONS)

Conceptual Model; Integration; PDES; Product Data Exchange using STEP; Standard

for the exchange of Product Model Data, STEP

13. AVAILABIUTY

UNUMITED

FOR OFFICIAL DISTRIBUTION. DO NOT RELEASE TO NATIONAL TECHNICAL INFORMATION SERVICE (NTIS).

X

ORDER FROM SUPERINTENDENT OF DOCUMENTS, U.S. GOVERNMENT PRINTING OFFICE,
WASHINGTON, DC 20402.

ORDER FROM NATIONAL TECHNICAL INFORMATION SERVICE (NTIS), SPRINOnELD, VA 22161.

14. NUMBER OF PRINTED PAGES
20

IS. PRICE

A02

ELECTRONIC FORM

-.vf; ;

I'V

Ti»c^
SIM':;. . S'jM

(’ : r:
'’-,^-

- -y<*v« —^-f
T- i-rjrf|1-t-’ T‘-“n i01---r- ' j'[l~*ll'r ''T tl>''l^ '

''>LU ‘

~
<># I ^'' yw-'^r

-i-r. ;v''
.

i

'

'

^
'. .

,

' - s '

ur i .,/»•

, 'A* .' -’J'S' '. -« -A.

•• *- •.•— '•.V* -V"^*-- .y*^- -^v •• •.'~- ' II. (•*•• ^Kj***/ ’ •*.:ifc*^x,-^'»*-»» » 'Wij'. cfi *-,<j^ii»r-5i«'»'i*'*».' !>«
' '^‘ - • ._ - -.uA

n >

;

, •. . . .trvi^m^ ^'*--

:;y,
,.' .,;Vf;n^rir I’ ,;,;:'i44:;.: 0^.

Sii', •.•.•:' /-.^' ' • '"

^
.''

ii\

pMv ;', .C' „. ':;.i?^r5;- • f

i^T ,J,

r^Dl: •MCTJS K ti:f'!.

" ‘u
;,

‘

'
!•- li 'i

.

'
'

,

'

'
'

I ' ''^

''>,'..v'a/ .."’rii i,«

.

'-

'.K
<>

V .1
,

:'p-

h .,.
.

' •'

.f
•

'; ^ ; _'.-c;><'^,^, '
;

. ; .
'

(/ ^S'ii;,C': i.,
^

1
^ i "••-e .

.
,' i'i:

I- -•V.

’*ii

'p.il -^''J ' Ah
"

.;>

‘

; Sh; ^:'wmU../'.. "S'

, iJ.h.:, d^tt^

v . ’;'i ,i^'' '
''.

T>’'-.'- '"'rf''--..' «' .'„.* '''.l.'-f v

.' ‘A'S 3i#X»''.^»'7 Wv A’k.wH
V'

...-tMi*- .i.'»..ii’<i»»**»'*r,u*l»'’ -'M
-i,:)^m .Jti

i

SO*

