
NISTIR 450aA11i 1D3 MbEllE

Proceedings of the
Object-Oriented Database
Task Group Workshop
Tuesday, May 22, 1990
Atiantic City, NJ

Edited by:

Elizabeth N. Fong

U.S. DEPARTMENT OF COMMERCE
National Institute of Standards

and Technology

Computer Systems Laboratory

Gaithersburg, MD 20899

Craig W. Thompson

Texas Instruments Incorporated

Dallas, TX 75265

-QC
100

.U56

#4503

1991

us. DEPARTMENT OF COMMERCE
Robert A. Mosbacher, Secretary
NAnONAL INSTITUTE OFSTANDARDS
AND TECHNOLOGY
John W. Lyons, Director

NIST

NISTIR 4503:

Proceedings of the
Object-Oriented Database
Task Group Workshop
Tuesday, May 22, 1990
Atlantic City, NJ

Edited by:
Elizabeth N. Fong

U.S. DEPARTMENT OF COMMERCE
National Institute of Standards

and Technology

Computer Systems Laboratory

Gaithersburg, MD 20899

Craig W. Thompson

Texas Instruments Incorporated

Dallas, TX 75265

February 1991

\
0*

'

US. DEPARTMENT OF COMMERCE
Robert A. Mosbacher, Secretary
NATIONAL INSTTTUTE OF STANDARDS
AND TECHNOLOGY
John W. Lyons, Director

PROCEEDING OF THE

FIRST OODB STANDARDIZATION
WORKSHOP

X3/SPARC/DBSSG/OODBTG

Atlantic City, New Jersey

May 22, 1990

Edited by:

Elizabeth Fong
Craig W. Thompson

Program Committee:
Gordon Everest, University of Minnesota
Elizabeth Fong, National Institute of Standards

and Technology
Bill Kent, Hewlett-Packard Laboratories
Haim Kilov, Bellcore

Ken Moore, Digital Equipment Corporation
Allen Otis, Servio Corporation
Mark Sastry, Honeywell
Craig Thompson, Texas Instruments Incorporated

1 i i

ABSTRACT

This report constitutes the proceedings of a one-day
workshop on standardization of object database systems
held in Atlantic City, New Jersey, on May 22, 1990. The
workshop was sponsored by the Object-Oriented Database
Task Group (OODBTG) of the ASC/X3/SPARC Database Systems
Study Group (DBSSG)

.

This workshop, held the day before the ACM International
Conference on Management of Data (SIGMOD ’90 conference)

,

was the first of two workshops held to solicit public
input to identify what aspects of object database systems
may be candidates for consensus that can lead to
standards. The second companion workshop was held on
October 23, 1990, in Ottawa, Canada, coincident with the
Conference on Object Oriented Programming, Systems,
Languages, and Applications (OOPSLA)

.

The workshop attempted to focus on concrete proposals
for language or module interfaces, exchange mechanisms,
abstract specifications , common libraries, or benchmarks

.

The workshop announcement also solicited papers on the
relationship of object database system capabilities to
existing standards, including assertions that question
the wisdom of standardization.

This proceedings consists of 22 position papers covering
various aspects where standardization on object database
systems may be possible.

NIST is publishing the proceedings of both of these
workshops to disseminate information on object
standardization activities. The proceedings of the
second workshop on standardization of object database
systems appeared as NISTIR 4488.

Key words: Database; database management system; DBMS; data model;
object-oriented; OODB; programming languages; standards.

V

DISCLAIMER

The views expressed in this report are those of the authors, and
do not necessarily reflect the views of the National Institute of
Standards and Technology (NIST) or any of its staff. The specific
vendors and cominercial products identified in this report do not
imply recommendation or endorsement by the NIST.

The report has not been subject to policy review or direction by
the NIST, nor by Accredited Standards Committee X3 Information
Processing Systems, Standards Planning and Requirements Committee
(SPARC)

,

VI

FOREWORD

Object-oriented database systems (OODBs) have reached the point where it

makes sense to consider their potential for formal standardization. There are

now several OODB products and substantial research prototypes. Several

authors have stated requirements for OODBs and have offered definitions and
Initial specifications for consideration.

In January, 1989, the Database Systems Study Group (DBSSG), one of the

advisory groups to the Accredited Standards Committee X3 (ASC/X3),
Standards Planning and Requirements Committee (SPARC), operating under
the procedures of the American National Standards Institute (ANSI),

established a task group on Object-Oriented Databases (OODBTG). To
facilitate further development and use of OODB technology, OODBTG seeks:

o To define a common reference model for an Object-Oriented Database,
based on object-oriented programming and database management
system models.

o To assess whether and where standardization on OODBs is possible

and useful. Some areas of possible standardization include glossary,

reference model, operational model, interfaces, and data exchange.

o To complete a Final Report in 1991 containing recommendations
regarding future ASC/X3 standards activities in the object-oriented

database area, including how these standards would relate to existing

standards.

OODBTG meets quarterly. Persons interested in OODBTG should contact

Elizabeth Fong, National Institute of Standards and Technology, Building 225,

Room A266, Gaithersburg, MD 20899 (301-975-3250).

The purpose of the May 22 OODBTG Workshop is to identify areas where
consensus on OODBs may be possible and desirable in a setting where
authors can expect feedback and possible action on their ideas. This workshop
solicits public feedback from the database community. A companion workshop
planned for October 23, 1990, at OOPSLA'90 will canvas the programming
language community.

The Call for Participation attracted 22 papers, all of which appear in the

proceedings. The program committee selected 14 papers for presentation,

based on relevance to OODBTG's mission. Fifty-five people participated in the

workshop.

The papers reprinted in this volume represent the opinions of the individual

authors. These papers are neither approved standards nor recommendations
of OODBTG. Neither OODBTG nor the Program Committee have made any

vn

judgements as to whether any topic of any paper complies with the Reference
Model currently under development by OODBTG.

As evidence of the wide-spread Interest in OODB standardization, we received

papers and preregistrations from:

Australia, Canada, England, France, Japan, Republic of Korea,

Netherlands, USA, W. Germany

Object Design, Objectivity, Object Sciences, Ontologic, Altair 02,
Servio Corporation, Oracle, EIS, CAD Framework Initiative, OSF, Mentor,

Ashton-Tate, Concurrent Computer Corp, DEC, Xerox, Honeywell, Texas
Instruments, Hewlett-Packard, McDonnell-Douglas, Boeing, Tandem,
Grumman, NEC, Nixdorf, Bell Communications Research, MCC, DARPA,
CECOM, NIST, NOSC, U Toronto, Kyoto U, U Michigan, U Maryland, UT
Austin, U Wisconsin, Stanford, Columbia, Rensselaer U, U Alberta,

Australian National University at Canberra, AT&T, UC Berkeley, IBM
Research, Tandem Computers, University of Wisconsin, DEC, and Oracle

Corporation, Summa International

The workshop proceedings begins with background material on OODBTG, then

shifts to selected presentations. The workshop Itself ends with a Feedback
Panel and Is followed by a Birds of a Feather session to be held during SIgmod.
At the workshop conclusion, participants will be asked to complete feedback
forms to indicate areas where they think consensus may be possible, areas

where roadblocks might block consensus, and comments on the OODBTG ODB
Reference Model. The results of the workshop are Inputs to OODBTG which
affect the OODBTG ODB Reference Model and the OODBTG Final Report.

I express my thanks to all authors who submitted papers and to the members of

the program committee who reviewed them. Special thanks goes to Elizabeth

Fong, NIST, who co-edited the proceedings.

Craig Thompson
Workshop Chairman

vn 1

Table of Contents

PAGE
WORKSHOP ATTENDEES LIST 5

OODBTG STATUS
'^Workshop Objecti 1

1

OODBTG Workshop Chairman, Craig Thompson,
Texas Instruments Incorporated

The Role of Standards'^ 15
X3/SPARC/DBSSG Chairman, Ed Stull, Summa
International

"OODBTG Charter^ Progress, and Plan" 2 4

OODBTG Chairman, Tim Andrews, Ontologic

"OODB Reference Model (Draft)" 3 0

OODBTG, presented by Allen . Otis, Servio Corporation

REQUIREMENTS, REFERENCE MODELS
"Object-Oriented DBMS Requirements" 6 0

Keith A. Marrs and Laila G. Robinson,
McDonnell-Douglas Corporation

"Third Generation Data Base System Manifesto" 6 8

Michael Stonebraker, Lawrence Rowe, Bruce Lindsay,
James Gray, Michael Carey, Philip Bernstein, and David
Beech, {UC Berkeley, UC Berkeley, IBM Research, Tandem
Computers, University of Wisconsin, DEC, and Oracle
Corporation, respectively}

TAXONOMY OF STANDARDS
"ANSI OODBTG Workshop Position Paper" 8 4

Leon Guzenda and Andrew Wade, Objectivity, Inc.

OO DATA MODELS
"The Object Standardization Challenge" 9 4
Bill Kent, Hewlett Packard Corporation

"Application Object Model for Engineering
Information Systems" 100
Jonathan W. Krueger, Honeywell Systems and
Research Center

PERSISTENT LANGUAGE
"Principles for Persistent Object Access” 110
Fred Loney, Mentor Graphics Corporation

"Notes toward a Standard Object-Oriented DDL
and DML" 116
Thomas Atwood and Jack Ornstein, Object Design Inc.

1 .

Table of Contents (continued)

PAGE
OBJECT Qmm-LAmiLAGE

"A Model for OODB Queries" 12 6
David D. Straube and M. Tamer Ozsu, The University of

Alberta, Edmonton, Alberta, Canada.

"Intelligent SQL" 13 6
Setrag Khoshafian, presented by Razmik Abnous,
AshtonTate

"Strawman Reference Model for Object Query
Language" 166
Jose' Blakeley, Craig Thompson, Abdallah Alashqur,
Texas Instruments, Incorporated

"Important Features of Iris OSQL" 180
Bill Kent, Hewlett Packard Corporation

CHANGE MANAGEMENT
"Strawman Reference Model for Change Management
of Objects" 19 0

John Joseph, Mark Shadowens, John Chen, and Craig
Thompson, Texas Instruments Incorporated

OO INTEROPERABILITY FRAMEWORK
"EIS/XAIT Project: An Object-based Interoperability

Framework for Heterogeneous Systems" 212
Girish Pathak, Bill Stackhouse, and Sandra Heiler, Xerox
Advanced Information Technology, Cambridge, MA.

"Goals and Requirements^ Storage Manager (SM)
Working Group" 22 2

Andrew Wade (editor and chairman SMWG/CFI),
Design Data Management TSC, CAD Framework
Initiative, presented by Jason Browning, AT&T

FEEDBACK PANEL, moderator: Allen Otis, Servio Corporation
-Tim Andrews, Ontologic -Bill Kent, Hewlett Packard
-Mike Carey, U Wisconsin -Tom Atwood, Object Design

X3/OODBTG BIRDS-OF-A-FEATHER MEETING (during SIGMOD)
-OODBTG’s OODB Reference Model
-Taxonomy of Potential OODB Standards
-Issues, Roadblocks

2 .

Table of Contents (continued)

PAGE
PAPERS NOT PRESENTED AT THE WORKSHOP

"Object-Oriented Data Modelling in Rule-Based
Software Development Environments" 234
Naser S. Barghouti and Michael H. Sokoisky, Columbia
University

"An Entity-Oriented Data Model--MIX" 242
Tzy-Hey Chang, Digital Equipment Corporation

"Object Data Model = Object-Oriented + Semantic
Models" 258
Qing Li, Australian National University, Canberra

"Towards an Optimum Language Data Model" 26 6

Ed Lowry, Digital Equipment Corporation

"A Neutral Object-Oriented Data Model" 274
Robert Marcus, Boeing Advanced Technology Center

"OODB Standardization" 27 6

Roger Osborn, Concurrent Computer Corporation Ltd.

"Standardization of Object-Oriented Database Systems" 28 6

Daniel O. Sanderson, Digital Equipment Corporation

"OODBTG Workshop on Standards Position Paper" 294
Donald Sanderson, Rensselaer Polytechnic Institute

OODB Workshop Attendees

Razmik Abnous
Ashton-Tate
2033 N. Main #980
Walnut Creek, CA 94596
Tel: 415-746-3262

Fax: 415-746-1559

Email: abnous@alexis.a-t.com

Mark Anderson
Texas Instruments

PO Box 655012 M/S 3635

Dallas, TX 75265
Tel: (214) 917-2210

Email: anderson@ticipa.ticom,

anderson%ANDM@timsg.cs.ti.com

Tim Andrews
Ontologic, Inc.

Three Burlington Woods
Burlington, MA 01803
Tel: 617-270-9797

Email: uunet!ontologic!andrews

Thomas Atwood
Object Design, Inc.

One New England Executive Park

Burlington, MA 01803
Tel: 617-270-9797

Email: tom@odi.com

Naser S. Barghouti

Department of Computer Science

Columbia University

New York, NY 10027
Tel: 212-854-8182

Email: naser@cs.columbia.edu

Doug Barry

Itasca Systems, Inc.

2850 Metro Drive, Suite 300
Minneapolis, MN 55425
tel: 612-851-3155

fax: 612-854-4834

Don Batory

Department of computer Science
The University of Texas at Austin

Austin, TX 78712
Tel: 512-471-9711

Fax: 512-471-8885

Email: dsb@cs.utexas.edu

David Beech
Oracle Corporation

20 Davis Drive

Belmont, CA 94002
Tel: 415-358-3457

Fax: 415-349-6374

Email: dbeech@us.oracle.com

Jose’ Blakeley

Texas Instruments Incorporated

PO Box 655474, MS 238
Dallas, TX 75265
Tel: 214-995-0328

Fax: 214-995-0304

Email: blakeley@csc.ti.com

Mike Carey
Computer Sciences Department
University of Wisconsin
1210 West Dayton St.

Madison, WI 53706
Tel: 608-262-2252

Fax: 608-262-9777

Email: carey@cs.wisc.edu

Leon Cejas

67 E 2nd St. #7

New York, NY 10003

Tel: 212-529-8674

Tzy-Hey Chang
Applied Intelligent System Group
Digital Equipment Corporation

5 Scottswood Dr.

Sudbury, MA 01776
Tel: 508-490-8926 (or 8826?)

Email: chang@aisg.enet.dec.com

J. Charles Crabb

OOjC
MC 610

6565 Frantz Rd.

Dublin, OH 43017-0702

Tel: 614-761-5118

Email: jcc@rsch.oclc.org

Vineeta Darnis

GIP Altair

Domaine Voluceau BP 105

Le Chesnay cedex 78153
FRANCE
Fax: (33) 1 39 63 58 88 or 90

Email: vineeta@bdblues.altair.fr

5 .

OODB Workshop Attendees

Linda Dodge
Shell Development Company
PO Box 481

Houston, TX 77001
Tel; 713-663-2196

Email: linda(2)shell.com

Andrew J. Eisenberg

Digital Equipment Corp
55 Northeastern Blvd NU01-1/B09
Nashua, NH 03062
Tel: 508-884-1857

Fax: 508-884-0829

Email: eisenberg(a)sqlrus.enet.dec.

com,decwrl Isqlrus.enet ! eisenberg

Elizabeth Fong
National Institute of Standards and
Technology
Building 225, Room A266
Gaithersburg, MD 20899
Tel: 301-975-3250

Fax: 301-590-0932

Email: fong(g)ise.ncsl.nist.gov

Juergen Friedrich

Nixdorf Computer AG / CADLAB
Bahnhofstrasse 32
D-4790 Paderborn
West Germany
Tel: (49) 52 51 284 128

Fax: (49) 52 51 284 140

Email: frido@cadlab.de,

frido@cadIab.uucp

John Joseph
Texas Instruments Incorporated
PO Box 655474, MS 238

Dallas, TX 75265
Tel: 214-995-0305

Fax: 214-995-0304

Email: joseph@csc.ti.com

Staffan Karlquist

Swedish Embassy
600 New Hampshire Ave NW
Washington D.C. 20037
Tel: 202-337-5187

Fax: 202-337-6108

Bill Kent
Hewlett Packard Laboratories

1501 Page Mill Road
P. O. Box 10490

Palo Alto, CA 94303-0969
Tel: 415-857-8723

Fax: 415-852-8137

Email: kent@hplabs.hp.com

Setrag Khoshafian
Ashton-Tate
2033 N. Main #980
Walnut Creek, CA 94596
Tel: 415-746-1550

Haim Kilov

Bell Communications Research
MRE 1E243

435 South Street

Morristown, NJ 07960
Tel: 201-829-2816

Fax: 201-292-0477

Kazuya Koda
Manager System Software

Fujitsu America, Inc.

Email: kazuk@fai.com

Jonathan W. Krueger
Honeywell SRC
3660 Technology Dr.

M/S MN65-2100
Minneapolis, MN 55418
Tel: 612-782-7642

Fax: 612-782-7438

Email: kreuger@src.honeywell.com

Krishna G. Kulkarni

Digital Equipment Corp.

1175 Chapel Hills Drive

Colorado Springs, CO 80919
Tel: 719-260-2718

Misook Lim
Human Computers, Inc.

Samyoung B/D
840 Yoksam-dong Kangnam-ku
Seoul 135-080

Republic of Korea
Tel: +82-2-553-0818

Fax: +82-2-553-0817

Email: jhhur@cosmos.kaist.ac.kr

6 .

OODB Workshop Attendees

Qing Li

Department of Computer Science

Australian National University

Canberra, ACT 2601, Australia

Tel: (062)-49-3783

Fax: (062)-49-0010

Email: qing@anucsd.anu.oz.au

Ken Moore
Digital Equipment Corporation

Mail Stop ZK02-1/N20
110 Spit Brook Road
Nashua, NH 03062-2698
Tel: 603-881-0547

Fax: 603-881-0120

Penny Muncaster-Jewell
McDonnell Douglas Space Systems
MS TB218
16055 Space Center Blvd
Houston, TX 77062-6208
Tel: 713-283-4350

Fax: 713-283-4020

Email: penny@mpad.span.nasa.gov

Patrick O'Connor
Data General Corp
4400 Computer Drive

Westobor, MA 01580
Tel: 508-870-6911

Fax: 508-898-2785

Email:

"Patrick_0—Connor@oa.ceo.dg.com"

Jack Ornstein

Object Design, Inc.

One New England Executive Park
Burlington, MA 01803
Tel: 617-270-9797

Email: Jack@odi.com

Roger Osborn
European Software Development
Group
Concurrent Computer Corp Ltd.

227 Bath Rd.

Slough, Berkshire SLl 4AX
ENGLAND
Tel: 44-753-34511

Fax: 44-753-71661

Email: ro@concurrent.co.uk

Allen Otis

Servio Corporation
15220 NW Greenbrier Pkwy
Suite 100

Beaverton, OR 97006
Tel: 503-629-8383

Fax: 503-629-8556

Email:

uunet ! servio lotisa,otisa@slc.com

M. Tamer Ozsu
Department of Computing Science

815 General Services Bldg.

The University of Alberta

Edmonton, Alberta

CANADA
Tel: 403-429-2860

Fax: 403-429-1071

Email: oszu@cs.ualberta.ca

Girish C. Pathak

Xerox Advanced Information

Technology
4 Cambridge Center, 4th Floor

Cambridge, MA 02142
Tel: 617-499-4498

Fax: 617-499-4409

Email: pathak@xait.Xerox.COM

Ravi S. Raman
Bell Atlantic Knowledge Systems

9 South High St.

Morgantown, WV 26505
Tel: 304-291-2651 (BAKS), 304-293-

7226 (CERC)
Fax:304-284-1391 (BAKS), 304-293-

7541 (CERC)
Email:rsr@ cerc.wvu.wvnet.edu

Laila G. Robinson
McDonnell Douglas Corporation

Dept 469, MC 0861020

PO Box 516

St. Louis, Missouri 63166
Tel: 314-298-4653

Fax: 314-298-4624

Daniel O. Sanderson

Digital Equipment Corporation

1175 Chapel Hills Drive

Colorado Springs, CO 80920
Tel: 712-260-2795 (or 217-260-2730)

Email: sanderson@cookie.dec.com

7 .

OODB Workshop Attendees

Donald Sanderson
Design Research Center
Rensselaer Polytechnic Institute

Bldg Cll Room 7015
Troy, NY 12180-3590

Tel: 518-276-6751

Fax: 518-276-2702

Email: sandersn(a> rdrc.rpi.edu

Chander Sarna

Chips and Technologies

3050 Zanker Rd.

San Jose, CA 95134
Tel: 408-434-0600

Email: chander@chips.com

Michael H. Sokolsky

Department of Computer Science

Columbia University

New York, NY 10027
Tel: 212-854-8348

Email: sokolsky@cs.columbia.edu

Ellen M. Staelin

Spang Robinson Wiley Publications

PO Box 82228

Wellesley, MA 02181
Tel: 617-235-3631

Ed Stull

DBSSG chair

Sumraa International

13241 Osterport Dr.

Silver Spring, MD 20906
Tel: 301-942-4355

Mary-Ellen Stull

Summa International

13241 Osterport Dr.

Silver Spring, MD 20906
Tel: 301-942-4355

Satish M. Thatte

Texas Instruments Incorporated
PO Box 655474, MS 238

Dallas, TX 75265
Tel: 214-995-0340

Fax: 214-995-0304

Email: thatte@csc.ti.com

Peter Thiesen
XIDAK, Inc.

3475 Deer Creek Road, Bldg. C
Palo Alto, CA 94304
Tel: 415-855-9271

Fax: 415-855-9005

Email: peter@xidak.com

Craig Thompson
Texas Instruments Incorporated

PO Box 655474, MS 238

Dallas, TX 75265

Tel: 214-995-0347

Fax: 214-995-0304

Email: thompson@csc.ti.com

Stephen Turczyn
US Army CECOM
Center for Software Engineering

Attn: AMSEL-RP-SE-AST-SS (S.

Turczyn)
Bldg 1210

Fort Monmouth, NJ 07703-5000

Tel: 918-532-2672

Email: turczyns@ajpo.sei.cmu.edu

Eugene N. Vasilescu

Grumman Data Systems

100 Woodbury Rd.

Woodbury, NY 11797

MS D12-237
Email: vasilesc@ajpo.sei.cmu.edu

Andrew E. Wade
Objectivity, Inc.

800 El Camino Real, 4th Floor

Menlo Park, CA 94025

Tel: 415-688-8000

Fax: 415-325-0939

Email: drew@objy.com

Charles Wan
David Sarnoff Research Center

Princeton, NJ
Tel: 609-734-2596

Fax: 609-734-2313

Email: csw@sarnoff.com

8

OODB Workshop Attendees

Ouri Wolfson
Computer Science Department
Columbia University

New York, NY 10027

Fax: 212-666-0140

Email: wolfson@cs.columbia.edu

Masatoshi Yoshikawa
Kyoto Sangyo University

Dept of Info and Communication
Sciences
Kyoto 603

JAPAN
Tel: +81(75)701-2151

Fax: +81(75)722-3034
Email: yosikawa@kyoto-su.ac.jp

9 .

10

Workshop Objective

Workshop Chairman Craig Thompson^
Texas Instruments Incorporated

11 .

12

WORKSHOP OBJECTIVE

The goal of this one-day workshop is to solicit public input from
the database community and to identify what aspects of OODBs may
be candidates for consensus that can lead to standards. A
companion workshop planned for OOPSLA'90 will canvas the

programming language community.

We are seeking detailed position papers on OODB topics including

the following

Object Data Model
Persistent Language
Query and Data Manipulation Languages
Persistent Object Store
OODB System Architecture and interfaces

Distributed Object Transport Protocol
Change Management
Transactions

Papers should be specific, focusing on concrete proposals for

language or module interfaces, exchange mechanisms, abstract
specifications, common libraries, or benchmarks. They should
identify capabilities that it may be possible to reach community
consensus on. Papers on relationships of these OODB capabilities

to existing standards are also welcome as are papers that question

the wisdom of OODB standardization. OODB system designers and
implementers are especially encouraged to share their practical

experience where it can lead to consensus.

The workshop itself will begin with some background on OODBTG,
then shift to presentations and/or panels with speakers invited

based on paper submissions. Workshop attendees will receive

OODBTG draft documents (OODB Reference Model, etc) before the

workshop. All contributed papers will be available to workshop
participants and will be identified in the OODBTG document
register. Following the workshop, selected papers will be bound
into a workshop proceedings to be available as a National Institute

of Standards and Technology (NIST) technical report.

13 .

X3/SPARCIDBSSG

OODB

Task

Group

Workshop

(/>

UJ
>
H
O
111

"D
CD

o
OH
CD
O
O
O
O
CO
CO
CD
O
O
C£
<
CL
CO
CO
X

(0

m
Q

0)D
o
E
0
o
c
0
0
0
C
o
E
E
o

0
0
.E4—
0
Q

0

‘w
w
O
Q.
0
0m
Q
O
O
c
o
c
o
0
N

0
*a
c
0
0
0
0

S I0 ^
0 *0

< 0

o>co
E X

^ <o
o 0

C0
o>

O)
c c
tr "E
O 0
Q. 0>
0 0
cc 0̂
c Q
Li- 0
0 "g

0 0
1 E

E o
o o
O E

•si
^ 0

•“ o>
0 C
E <5
0 X
m ^
Q 5
O 0
O ^
0 0

O 0
0 TD
0 c
T3 0
0 0
"D 0
C 0
0 0
0

o
p-l

SB

I °

IIw
4- H

c ^
r9CJ TD

. ^
>>'13

Os
OS
ooO
CN

X)
V3
Vh

gw .

00

13
e
o

o
(U

s

«
Q
O
O

o
to
Cs|

bDCO
TJ

x:o
0)

H

to

os
I

o
CO

CO

CM
CM

>
<

0
D>
TD
C
0
0a
o

CO
UJ
> 2
h“O
UJ
"O
CD
O
a
O
X
CO
X
X
o

0
o
c
E
0H—
0
cc

o
h” ^
CQ E
n-2sO ®
5
0 9

cc a

0
E
0

“5
CO
X

o
CO
CM
X
COX

oo

0 0
- 10 o
c £
0
_o

q
0
Q.
0

C
0
"O

0
c
o0
,0

_0 0
0 ~

> +
0 +
Q O

o o>& T-

<5 £
C 0)
rr 3

14

OCT.

23

WORKSHOP

IN

OTTAWA

PLANNED

The Role of Standards

X3/SPARC/DBSSG Chairman Ed Stally Summa Inti.

15 .

£LO
O
o

tom
8
tc
£L

til

5m
e
CO

iS
2:
ill

OL
D

16

OPEN

SYSTEMS

INTERCONNECTION

ENVIRONMENT(OSIE)

U.S.

DOMESTIC

STANDARDS

PROCESSING

s

CO

t

liCj

o
|mi»

III!

1^1
QC
UJ

o
h“
<0
Ly

o
Q

*m
•15

^

CQ C
N o
gM«

C
(0 g
CD :S

,1
^-

i

o S o^ ?A

S c* 4no ^
"•5
CD

£ ^
<u

>•
££iaiw

%
’ ••5'^

o
IB

CO
«

IMM
SgtSiliS

o ^
•C2 CD^ C
mmrn
E ^
Co %Z

B ^
o 'c (/>

iiiWiP'
< <0 ^

h*Z
Ui

Ml
cc
Hi
iil
o
o
CO

111115^^^^

C3)

O
O

WSmm
O Q
o £
<MW

B T5

0) (0

JE tn
mmmm
g S
o ?
Irt SCo ^2 W

16 a.

CiSIN)

Life

Cycle

of

IT

Voluntary

Standards

17 .

Trade

Agreements

18 .

o
CO
o>

19 .

CO
X

r
(0

O
"co

c
o
1^

"co

N
1^
c
C3
O)

20 .

ill

INTERNATIONAL

PROCESSING

I

FOR

DATABASE-RELATED

STANDARDS

C
o

Vi

o
a.

c/i

(0
Q.

O
>
o
•a

21

Summa

International,

IncJ

I

</>

€L
3

O O
(/> cc
(/> o
CQ ^
jQ

<

s
xo.

8
-CO.

0
.v-SK-v

-s

F
. . .Ihwh . .

CD.

1
c&
C

CO.

Iff

i»

8
‘.v.v.'.'.’.'.llftar-

to
.•.V.V.V.VJ*^.-

Q
& WMM

o
• £

8 E
5 5

E W
£ms

<a CO
A-^.Xviiliv'

S 2
41^ A^ <S
r-x ^^ taO
U.

23

ts

.waim.'.’j

.v.wnr.'.v

Ul
iAOO
o

m
xa.

c:

<
to

Q

II
. C9

^ i-

CO

TO .Q
a» 2;-:

G Q o
(*** H' A xn
^xxxv: D Q CO Q
a < < O
o UL jQ- O o

>»

m

^ Or

s ^
S? «tt

JW10
:.^S:
v.wiw.'

fa —
>*:« cu

jLii

u

<ft

10

S
ma
TO
02

C
O

O
AMT

Q>

.'/aCl.v

o

CQQ
CO
O
c

:«;•
Q>

ixC;::

O
u

.•.‘Iw.'.

*&MI

<0

<ft ^
S (ft

00

S iS

w ^
CL mo ^

OODBTG Charter, Progress, and Plan

OODBTG Chairman Tim Andrews, Ontologic

24 .

25

Object-Oriented Database Task Group
Charter and Work Plan

Updated May 1990

PLAN AND ORGANIZATION
FOR

OBJECT-ORIENTED DATABASE TASK GROUP (OODBTG)

OBJECTIVE

:

In recognition that the rapid emergence of a new information
management technology, called Object Database Systems, and the lack
of a common definition of these terms is causing confusion among
the vendors, users and standards developers in the database
community, the Object-Oriented Database Task Group seeks:

1) To establish a working definition for the term "Object
Database,

"

2) To establish the relationship between Object Database
technology and "object-oriented" methods and technology in
other fields, including programming languages, user interface
methodologies and information modeling methodologies, and

3) To establish a framework for future data management standards
activities, both extensions to ongoing SQL and IRDS
development, and related future standards.

These results are to be presented in the form of a Technical Report
on Object Database Technology and a Recommendation For Standards
Planning.

SCOPE:

The Task Group will review existing and under development products
claiming to be object databases or object-oriented products with
database capabilities. The Task Group will also review published
literature and research activities concerning object database
technology world wide, and will seek to generate discussion among
practitioners in the field.

OPERATIONAL APPROACH:

The Task Group divided the work into five related areas:

o Glossary definition of object-oriented terms.

o Compilation of object-oriented bibliographic references.

o Identification of characteristics and features for object
database managmenet systems.

26 .

o Survey of coinmercial and research prototype object database
management systems using the features identified.

o Reference model for object database management system.

o Issues relating to recommendations to data management
standards planning.

The Task Group plans to meet its objectives in about two years.
The final product will be the publication of the Technical Report
and recommendations for standards planning.

The Task Group plans to hold guarterly meetings, in conjunction
with DBSSG quarterly meetings when possible. Additional geographic
subgroup meetings will be held to permit more technical work
progression. Subgroups may be created on an ad-hoc basis by the
Task Group Chairperson. The Task Group Chairperson will report
quarterly, either directly or through a representative, to the
DBSSG, and will include in the report a list of active subgroups
and the issues being addressed, and a statement of progress made
during the previous quarter.

Workshops and panels are also planned to generate discussion among
practitioners in the database and programming language fields.

PLANNED MILESTONES AND SCHEDULES:

Jan 1989: Formation of the Task Group by DBSSG

Apr 1989: Statement of Issues to be Addressed. Listing and
classification of Concepts going by the name Object
Database

Jul 1989:

Jan 1990:

Apr 1990:

Jul 1990:

Outline for Reference Model and Technical Report

Initial Draft Tutorial Collected.
Initial features explained for the survey form.

Initial Draft Reference Model Collected.
Preliminary data collected for a few OODBMSs

Draft Reference Model and Recommendations submitted
to DBSSG

Oct 1990: Comments and Requests for Revision back to the Task
Group

Jan 1991: Final Technical Report and Recommendations
Submitted to DBSSG for submission to X3/SPARC

Jul 1991: ODBTG Disbanded after responding to questions and
comments from SPARC and X3 Technical Committees

27 .

Object Database Task Group Organization

Chairperson: Timothy Andrews
Ontologic Inc
47 Manning Road
Billerica, MA 01821
(508) 667-2383

Vice Chairperson: Bill Kent
Hewlett Packard Laboratories
1501 Page Mill Road
P.O. Box 10490
Palo Alto, CA 94303-0969
(415) 857-8723

Secretary: (designated at each meeting)

Correspondence Secretary: Elizabeth Fong
National Inst, of Standards & Technology
Technology Building A266
Gaithersburg, MD 20899
(301) 975-3250

Reference Model Editor: Allen Otis
Servio Logic Development Corp.

OODBMS Survey Subgroup Liaison: Gordon Everest
University of Minnesota

Bibliography Subgroup Liaison: Mark Sastry
Honeywell Inc.

Glossary Subgroup Liaison: Roy Gates
Rand Corporation

MEMBERSHIP:

As specified in X3 Procedures, members of OODBTG serve as
individual experts. The rules for OODBTG membership is the same
as memebrship for DBSSG.

The OODBTG has divided its membership into "active" and
"correspondence" members. The active members need to attend at
least two consecutive meetings in order to be qualified as
"active." "Correspondence" members are those who are interested
in the activities of OODBTG, but may not wish to attend and
participate in meetings.

28 .

29 .

OODBTG Reference Model (Draft)

Editor: Allen Otis, Servio Corporation

30 .

31 .

Accredited Standards Committee Document Number: OODB 89-0 1R4
X3, INFORMATION PROCESSING SYSTEMS

Project: DBSSG/OODBTG
Ref Doc: "ODM Reference Model”, OODB 89-01R3,
Reply to: Allen Otis,

Servio Corporation
15220 NW Greenbrier #100
Beaverton, OR 97006

503 629 8383 / FAX 503 629 8556
otisa@servio.slc.com
uimet! servio !otisa

Date: 6 May, 1990

TO: OODBTG members

FROM: Allen Otis

SUBJECT: Revised draft of Reference Model for Object Data Management

This document is a working draft that wiU become a section of the final report of

the Object Oriented Database Task Group (OODBTG) of the Database Systems
Study Group (DBSSG).

This revision of the reference model is based on discussions at the April
OODBTG Meeting in Berkeley, and will be distributed to attendees of the
workshop in May.

32 .

DBSSG/OODBTG ODM Reference Model Draft - 6 May, 1990 - R4 - Page 2

A Reference Model for Object Data Management

Contents

Preface 3

1. Introduction 5
1.1 Motivation 5
1.2 Purpose of Document 5
1.3 Intended Audience 6
1.4 Relationship to Standards Activities 6
1.5 Organization of the document 7

2. The Object Data Management Paradigm 8
2.1 Overview 8

2.2 Object Paradigm Characteristics 9
2.2.1 Encapsulation 10
2.2.2 Objects, Behavior, Messages, and States 10
2.2.3 Identity 12
2.2.4 Types and Classes 14
2.2.5 Composition 14
2.2.6 Binding amd Polymorphism 15
2.2.7 Inheritance and Delegation 16
2,2.9 Extensibility 17
2.2.10. Information semantics 17

2.3 Database Paradigm Characteristics 18
2.3.1 Persistence and Object Lifetimes 18
2.3.2 Data Language 20
2.3.3 Integrity Constraints 21
2.3.4 Transactions and Concurrency Control 22
2.3.5 Recovery 22
2.3.6 Versions and Change Management 23
2.3.7 Distribution 23
2.3.8 Security 24

3. ODM System Interfaces 24
3.1 User Roles and Class Libraries 24
3.2 Application Progrsim Interfaces 27

33 .

DBSSG/OODBTG ODM Reference Model Draft - 6 May, 1990 - R4 - Page 3

A Reference Model for Object Data Management

Preface

This is a report produced by the Object-Oriented Databases Task Group
(OODBTG) of the Database Systems Study Group (DBSSG). The DBSSG is one
of the advisory groups to the Accredited Standards Committee X3 (ASC/X3),
Standards Planning and Requirements Committee (SPARC), operating under
the procedures of the American National Standards Institute (ANSI).

Note: This document is currently at the working draft stage, and has not
been approved by the OODBTG nor by DBSSG for incorporation in the
final report of the OODBTG. OODBTG welcomes comments, and invites

attendance by technical contributors at o\ir meetings and workshops.

In this report, we have elected to use the term Object rather than
Object-Oriented. We have decided not to spend any of our effort on the
formalities required to change the name of the task group, which remains
OODBTG.

The OODBTG was established in January 1989. Consistent with usual practice

when confronted with a complex subject, DBSSG charged the OODBTG to

investigate the subject of Object Databases with the objective of determining
which, if any, aspects of such systems are, at present, suitable candidates for the
development of standards.

Object Databases represent a rapidly emerging technology which combines
object software and database management technologies. Object technology has
now reached a point where formal standardization is a viable option. This report
represents the consensus ofmembers ofOODBTG to initiate some specialized

standardization efforts. The purposes of this technical report are:

* To state informal definitions and requirements for an Object Database
Management System, which can be used as a base document by a
specialized standardization technical committee.

* To define a common reference model for an Object Database, based on
object software and database management systems models.

* To enable OODBTG to make recommendations regarding future ASC/X3
standards activities in the areas of data management, data languages
such as SQL, IRDS, ODP development, and related standards.

This technical report represents the work ofmany individuals who attended
quarterly meetings in conjunction with DBSSG meetings, and several ad-hoc
subgroup meetings held in the east coast, west coast, and midwestem regions.

The technical work represents the careful distillation of direct contributions by
the members of OODBTG. The opinions and ideas expressed here are not
necessarily endorsed by all of the members nor by the members' sponsoring
organizations.

34 ,

DBSSG/OODBTG ODM Reference Model Draift - 6 May, 1990 - R4 - Page 4

This report is being edited by:

Allen Otis, Servio Corp.

In addition, regional subgroups ofOODBTG held technical meetings to

develop the document. These meetings were chaired by:

Tim Andrews, Ontologic
Gordon Everest, University of Minnesota
Wilham Kent, Hewlett Packard

The following individuals have attended at least one of the task group
meetings and have made technical contributions to the report:

Stephanie Cammarata, Rand Corporation
Richard T. Due, Thomsen Due & Associates Ltd.
Larry English, Information Impact International Inc.

Elizabeth Fong, NIST
Roy Gates, Rand Corporation
Pat Hagey, P.H. Hagey Consulting Ltd.
Sandra Heiler, Xerox
Ken Jacobs, ORACLE
Michael Jende, UNISYS
Haim Kilov, Bellcore
William McKenney, Workers Compensation Board
Ken Moore, Digital Equipment Corporation
Bhadra Patel, Hughes Aircraft
Girish Pathak, Xerox
Paul Perkovic, Informix Software Inc.

Gary Rivord, Sandia National Labs
Katie Rotzell, Object Sciences
Mark Sastry, Honeywell, Inc.

Jay Smith, Anderson Consulting
Tom Soon, Pacific Bell
Ed Stull, Summa II

Craig Thompson, Texas Instruments
Andrew Wade, Objectivity Inc.

Miya Yuen, Andersen Consulting

35 .

DBSSG/OODBTG ODM Reference Model Draft - 6 May, 1990 - R4 - Page 5

1. Introduction

This section summarizes the motivation behind the development of Object Data
Management technology. It also summairizes the purpose, intended audience,
related activities, and organization of this document.

1.1 Motivation

There are several threads in the roots and motivation of object database.

One thread is the need to improve various phases of application management,
including development, maintenance, enhancement, portabiHty, information
integrity, extensibility, and interoperability. Another is the emergence of new
classes of applications in such areas as office automation, document processing,
and various engineering disciplines. These new applications involve managing
complex objects, behavior of objects, and multimedia forms of information.
These areas impose new requirements in terms of the complexity in the nature
and form of information to be represented and manipulated, as well as more
elaborate modes of data sharing.

In programming, the use of objects emerged as a technique that made more
complex data types available to programs while simultaneously making
pro^ams less aware of, and less dependent on, details of how such structures
are implemented. More recently recognized is a need for such objects to be made
available to other programs than the ones which created them, i.e., for persistent
objects. The first approach to persistence is to store such objects in files. Soon,
however, the need arose for additional functionality, such as recovery,
concurrency control, access control, and query - i.e., database.

Thus one aspect of object database is an improved approach to the development
of applications and the management of information, involving such principles as
abstraction, identity, classification, inheritance, and so on. Object database has
also come to include other responses to the application environments, such as
change management (versions and configurations), different transaction
concepts in support of long and group work.

1.2 Purpose of Document

This docximent defines a reference model for Object Data Management Systems
(ODM systems) and provides a framework within which we can distinguish an
ODM system^m other data management systems.

This document is an abstract description that will support concrete
specifications of multiple ODM systems. This document forms a reference model
from which to recommend future standards activities.

Good examples of successful reference models, not necessarily related to Object
Databases are the OSI 7-layer reference model for data communications, and the
ANSI/SPARC 3-schema architecture.

36 ,

DBSSG/OODBTG ODM Reference Model Draft - 6 May, 1990 - R4 - Page 6

1.3 Intended Audience

The intended audience for this reference model consists of:

1. Those who are managing the standards process and will influence the
direction of further work in the area of object databases.

2. Those who are developing standards based on this reference model.

3. Those who are building or using products relevant to standards proposed
by this reference model.

4. Those seeking to imderstand what the object paradigm adds to the
traditional database paradigm and data management systems

1.4 Relationship to Standards Activities

It is necessary to put this Reference Model document into the context of the
overall OODBTG charter and statement of work. The Final Technical Report of
the OODBTG, due to its parent organization ASC X3/SPARC/DBSSG in mid
1991, must recommend what standards would be reasonable and useful in the
area ofODM. This Reference Model document is an important instrument in

gaining consensus to answer this question. It provides a basis and framework
for comparing different ODM systems.

Other activities related to OODBTG are:

0 A Survey ofODM systems. The data collected by OODBTG in this

survey will be analyzed to provide refinements to the Reference Model
including dimensions of comparison for how ODM systems differ. .

0 Workshops on the potential for ODM Standardization which will provide
data points for consideration as possible ODM standards. As such, they
may provide one or more concrete extensions of the abstract reference
model. If enough consensus exists that these proposed standards will be
useful, they will be included in the recommendations of the OODBTG
Final Report. OODBTG is currently planning to hold workshops in May
1990 and October 1990.

0 The 3rd Joint Standards Meeting at Anaheim, CA, January 1991. The
topic of this meeting is Objects in Data Management. This meeting
brings together many different technical committees working on
standards related to data management. A goal of this meeting is to

identify and possibly resolve co^icting issues with respect to the object

paradigm. DBSSG is one of the organizers of this meeting.

37 .

DBSSG/OODBTG ODM Reference Model Draft - 6 May, 1990 - R4 - Page 7

1.5 Organization of the document

Following the introduction, this document consists of two major sections, the
Object Data Management Paradigm, and User Roles and Interfaces. The ODM
Paradigm section explains the fundamental concepts embodied of this paradigm.
The User Roles and Interfaces section discusses interfaces and users' roles

envisioned for ODM systems.

Recommendations for the futixre standards activities will appear in the
OODBTG Technical Report, which is the parent docximent to this document.

38 .

DBSSG/OODBTG ODM Reference Model Draft - 6 May, 1990 - R4 - Page 8

2. The Object Data Management Paradigm

The section contains Overview, Object Paradigm, and Database Paradigm sub-
sections, and explains the fundamental concepts embodied in the ODM
Paradigm.

2.1 Overview

As described in Section 1, a reference model provides a framework that
defines a system, process, or other artifact, providing criteria and features that
cover important aspects of existing and future systems, thus permitting them to

be compared. In addition, a reference model must be useful in providing a road
map for identifying and developing concrete standards.

This section presents a reference model for ODM systems. The framework is

presented as a design space of characteristics (features, capabilities, functions).

A design space is a methodological tool that provides an organized way to record
the space of design characteristics and design decisions. It takes the form of an
AND-OR graph. AND layers show how a module is composed into functions,

parts, or characteristics. OR layers represent alternative ways to realize a
function. AND layers show similarities shared by all decompositions. OR layers
provide dimensions of comparison. The upper layers of a design space are more
abstract. As the space is refined, it covers more system-specific and concrete
design details.

Figure 1 shows the design space for ODM systems. Only the top AND-layer is

shown. The remainder of section 2 describes these characteristics in detail. As
can be seen in the diaCTam, the characteristics are grouped by heritage, since
ODM systems inherit both object and database characteristics.

Based on the consensus of the OODBTG, the characteristics shown in Figure 1

are the commonly shared characteristics ofODM systems. The design space
we describe is maximal in the sense that not aU ODM systems have all

features in this AND layer. For instance, some ODM systems may not have
user interfaces. In addition, some of the characteristics (e.g. transactions,
recovery, distribution, security) appear to be largely data model independent;
that is, they do not differ finm similar notions for other relational and other
databases, except as noted in the related sections. Finally, OR layers are not
shown in Figure 1. They provide differentia, or dimensions of comparison,
where different ODM S3rstems may take different approaches in defining a
characteristic. Some ODM systems may implement more than one OR-
altemative (e.g. both pessimistic and optimistic transactions). Since only the
top level of the design space is described in this document, it is most accurate to

consider that our reference model to date is an "abstract reference model" for

ODM systems. That is, at this level of detail, it provides a way to compare ODM
systems but does not provide an implementable specification.

39 .

DBSSG/OODBTG ODM Reference Model Draft - 6 May, 1990 - R4 - Page 9

Object Data Management

Object Paradigm Characteristics:

I —Encapsulation
I —Objects
I —Identity
I —Types and Classes
I —Composition
I —Polymorphism
I —Inheritance
I —Extensibility

Data Management Paradigm Characteristics:

I —Persistence
I —Data Language
I —Integrity Constraints
I —Transactions
I —Recovery
I —Versions
I —Distribution
I —Security

User Interfaces

Figure 1: ODM Design Space

It is worth noting that the ODM design space includes elements from both the
Programming Language and Database sectors of computer science. One of the
goals of this document is to describe the ODM design space in a way that
accommodates both the programming language and database perspectives of

ODM systems.

The rest of section 2 describes the OODB Reference Model and is structured to

match Figure 1. A consequence is that Section 2.2 on the object data model or

subsections of Section 2.3 on the database paradigm could almost stand alone as
mini-reference models. For example, the description of objects in Section 2.2

could be used in other reference models having little to do with databases, such
as interoperability frameworks, object-oriented programming languages, or

remote data access facilities. The subsections of 2.3 could, when developed in
more detail, find independent use in reference models dealing with such topics

as persistence, transactions, query languages, or change management.

2.2 Object Paradigm Characteristics

In the generalized Object Paradigm we define the following terms:

Encapsulation, Objects, Identity, Types and Classes, Composition,
Poljmiorphism, Inheritance, and Extensibility

These terms are defined independently of any distinction between Programming
and Database domains.

40 .

DBSSG/OODBTG ODM Reference Model Draft - 6 May, 1990 - R4 - Page 10

2.2.1 Encapsulation

The essence of the object paradigm is encapsulation, i.e. a clear separation
between the external behavioral semantics of objects and their internal
implementation. Encapsulation means that a black box specification of objects is

provided, and that the internal implementation, state variables, or data are not
visible in this specification. In this spirit, the very nature of objects can be
defined behaviorally, in terms of the behavior of executing operations. The
generalized behavior, when progressively restricted, corresponds to various
forms of such object concepts as messaging and state. The approach is general
enough to encompass notions of objects both as static (passive) recipients of
messages smd as d3nnamic (active) agents capable of such activities as sending
messages.

The core concept of the object paradigm may be explained in terms of operations.
An object is something which can play a role in an operation, either as an
operamd, as its result, or as the method which performs the operation. For
example:

An operation is applied to an object, which may be a simple object or an
aggregate of other objects.

Application of the operation causes a method to be executed.

The effect of executing the method may be to return a result object (simple
or aggregate) and/or to modify the result the some other operation will

produce.

The users of objects may be proCTams or people. Such users observe the
behavior of objects in terms of the operations which may be applied to objects,

and in terms of the result objects returned by such operations. An operation
may be implemented (i.e. supported or realized) bv a variety of different program
code and data structures. Encapsulation means that these implementations are
not visible to the user of the object.

We describe these concepts in more detail in the following sections

2.2.2 Objects, Behavior, Messages, and States

Most object models define the concept of "object" in a way which corresponds to

one or more of the definitions in the following list of increasingly restrictive

definitions. A "thing" is an object if it fits one or more of these definitions.

The most general concept of an object is the generalized operation model of
an object:

1. An object is something which plays a role in an operation. The object may
be an operand, a result, or a performer of an operation. Operations may
return large or small literal values (numbers, strings), aggregate objects

(sets, lists), or any other kinds of objects.

To define objects only in terms of their visible external behavior, we exclude
performer objects:

41 .

DBSSG/OODBTG ODM Reference Model Draft - 6 May, 1990 - R4 - Page 11

2. An object is an operand or result of an operation.

In (2), an object is accessible only through its behavior, which consists of all

operations defined for the object. The list of defined operations is not necessarily

fixed, and is often changeable at run-time. However only an operation may not
be applied to sin object before it has been defined.

Focusing on objects as the passive subjects of activity, we arrive at this

restricted notion of object:

3. An object is an operand of an operation. Thus, for example, in a
Connect(wirel,pin2) operation, wirel is the first operand and pin2 is the
second operand.

As smother example consider document, person and chapter objects. The
operation AssignAuthor(document, person) chsmges the author of the
document. The operation Author(document) returns the person who is the
author of the document. AddChapter(document, chapter) adds a chapter
to the document. Length(document) retxims the number of chapters in

the docximent.

The messaging model is introduced by distinguishing one of the operands as
the recipient of the operation. The operation can then be called a message, and
the other operands are then called parsimeters. In the messaging model,
behavior is defined in terms of how the object responds to messages.

4. An object is something which is a distinguished operand of an operation,
i.e. the recipient of a message.

A common syntactic convention for (4) is to so distinguish the first operand.
Under this convention, the Connect(wirel,pin2) operation is considered a
message to wirel, taking pin2 as a parameter. Another common syntax places
the recipient first: wirel.Connect(pin2). Or, AddChapter(document, chapter)
has document as the receiver and AddChapter as the message.

The operation and messaging paradigms are indistinguishable for unary (single-

operand) operations. Thus I^ngth(wirel) is both an operation applied to wirel
and a message sent to wirel, though in message S3mtax it may take the form
wirel.Length.

The result objects retiimed by some operations may change over time. Object
state may be characterized by the result of such accessing op>erations at a
particular time. Change of state may be described in terms state-changing
operations which alter the subsequent results of accessing operations. Object
state may be implemented by various configurations of stored data structures
inside of objects for recording the effects of state-changing operations. For
example:

If the accessing operation IsConnected(wirel,pin2) returns True or False
depending on whether they are connected, then the result of IsConnected
may be changed by the state-changing operation Connect(wirel,pin2).
AddChapter(document, chapter) is a state-changing operation amd
Length(document) is an accessing operation.

42 .

DBSSG/OODBTG ODM Reference Model Draft - 6 May, 1990 - R4 - Page 12

This leads to a behavioral characterization of state which is a refinement of

(3):

5. Objects are things whose states are reflected in the results of accessing
operations. These objects have state-changing operations which will

change the subsequent results of at least some of the accessing operations.

In (5), we have one kind of encapsulation. The states of objects are known only
by the results of operations, and not in terms of internal structure. The states of

objects are thus collectively encapsulated from users of the objects but not
necessarily from other closely related objects. State may jointiy characterize
several objects, such as wires and pins from the connection example.

A stronger form of encapsulation, common in many object models, also isolates

the states of objects from each other. The operation IsConnected(wirel,pin2),
perceived as a message to wirel, is perceived to reflect the state of wirel but not
of pin2. This isolated-state encapsvdation model is the intersection of (4) and (5):

6. Objects are things whose states are reflected in the current values of

accessing messages for which the objects are receivers.

In (6) the implementation of objects is disjoint between objects; all methods and
states belong exclusively to individual objects.

If all of the accessing operations have only one operand (i.e. are imary), such as
Length, then (5) and (6) are the same.

Some objects may have accessing operations but no state-changing operations,
either because the objects contain no state, or because the objects are
immutable. For example, a literal number such as the integer 25, has no state-

changing operations, but might have an accessing operation such as Print that
returns an ASCII string representation of the integer.

2.2.3 Identity

Identity is a semantic concept. Identity provides a means to denote an object

independent of its behavior, state, or content. The concept of identity is

independent of which definition of "Object” is being used. The definition of
identity includes the concepts of identity compare operation, logical identifiers,

object identifiers, object creation, literal values, and aggregates.

Let X and Y refer to objects. The identity concept can be described in terms of an
identity compare operation == such that X == Y implies

A) h(X) and hW have the same result for any operation h(), where h() has no
side effects (i.e. h() is not a state-changing method of either X or Y), and

B) the set { X, Y } has a cardinality of 1, i.e. it is really { X

}

NOTE: In this section we are using the mathematical definition of a set

taken from set theory, rather than any of the computer science or
computer language related definitions of sets.

43 .

DBSSG/OODBTG ODM Reference Model Draft - 6 May, 1990 - R4 - Page 13

A common realization of object references is by means of logical identifiers. We
use the term logical identifier (LID) to mean an implementation-free token
that is uniquely associated with a specific object. The term object identifier
(OID) frequently means a specific implementation of a logical identifier using a
fixed number of bits.

A LID is meaningful within some limited scope which we shall call an object

space. A LID from one object space may not be a valid LID in another object

space, or may identify a different object. Therefore, identity comparison between
LIDs must take into consideration whether or not they are in the same space.

An object identifier is unique within a particular object space.

Given A and B are different LIDs (perhaps from different spaces) and given A ==
B, then if f(A) and f[B) have the same behavior, the operation f is an object-
based operation, otherwise f is a value-based operation. Value based
operations are sensitive to the representation of operands; object based
operations give the same behavior regardless of representation.

Object creation occurs within an object space. Each creation event must result

in a LID that identifies the created object and that does not identify any other
object currently existing in that space. The creation event creates a
representation of the object in the space.

Literal values are objects such as numbers and character strings. The definitions

of what distinguishes a literal from a created object may be implementation
dependent.

Literal values are similar to created objects in that both may occur as operands
of operations.

Literal values are different from created objects in that:

1. Literals have immutable state.

2. Literals do not have a create operation because their representations are
explicitly recognized.

For example, multiple occurrences of the same literal number are all references
to the same point on the number line. Operations which return literal values
are constructing references to objects, not creating objects.

With respect to identity, there are two kinds of aggregate objects such as sets.

Intentional sets have an identity based upon their creation event. Two
intentional sets may have different identities but the same members.
Extensional sets have an identity based upon their membership, that is two
sets with the same members have the same identity.

IfX and Y are the LIDs of extensional sets, then X == Y if and only ifX and Y
have the same members. For an Intentional set, the membership at amy point in

time corresponds to an extensional set. Two Intentional sets remain distinct

objects if they have the same members. If the membership of an Intentional set

changes, the identity of the set does not change. For Intentional sets "shallow
equality" is the same as identity, while "deep equality" means having the same
members (i.e. having identical extensional sets as membership).

44 .

DBSSG/OODBTG ODM Reference Model Draft - 6 May, 1990 - R4 - Page 14

2.2.4 Types and Classes

The object paradigm deals with both abstract external behavior and the
implementation of that behavior. Objects may be grouped into types by
commonality of behavior, and into classes by commonality of implementations.

The behavior portion of an object definition defines the protocol for the object.

In the generalized operation model, the protocol is the set of roles that the object

can play in various operations. In the messaging model, the protocol is the set

of operations for which this object may be the distinguished operand (message
receiver). The protocol does not provide any visibility of the implementation of

the behavior. The protocol completely specifies the behavior of an object. Only
operations specified in the protocol are ^owed; if a data management system
allows operations which are not predefined, then the system is violating the
principles of abstraction and encapsulation.

A type defines the protocol of a similar group of objects; these objects are
instances of the type. The type itselfmay also be an object. The ability to define
types is required in order to be able to define semantic integrity constraints for a
database schema.

A class defines the methods, messages, and properties of a similar ^oup of
objects; these objects are instances of the class. A class may be considered an
implementation of a type. The class itselfmay also an object; methods may also

be objects. Classes are necessary in an object based system to organize the
implementation of a large number of operations, i.e. a large number of methods.

The implementation of the behavior of an object specifies the code, such as
procedural code expressed in some programming language, or query which
implements the behavior for each specific message, fii a class-based system, the
code for a message may access private state of the object, may send messages to

the object or to other objects, but may not directly access the state of other kinds
of objects.

Classes can be defined by the users of an ODM system. A class may be defined
in terms of properties, constraints, and behavior of instances, or by intentional

inclusion ofmembers (i.e. instances). These new classes appear to be
substantially identical to classes defined as part of the basic system, i.e. they
can be used in the same manner as any classes provided as part of the basic
system by the vendor of the ODM system.

2.2.5 Composition

A composite object is an object which is logically composed of other objects,

which are its constituent objects. A composite object is a special kind of
aggregate object. The constituent objects are often considered to be dependent
upon the composite object. Composition implies propagation (usually
automatic propagation) of operations to the constituent objects, whereas with
aggregate objects such as sets, iteration over the members of the set are required
to propagate operations to the constituent objects.

45 .

DBSSG/OODBTG ODM Reference Model Draft - 6 May, 1990 - R4 - Page 15

An example of composite objects is a parts list and is-part-of relationship. Some
parent object is a composite object composed of a list of constituent parts. Each
part object has an is-part-of operation which returns the parent object.

There are two approaches to providing the ability to define composite objects, a
behavioral approach and a structural approach .

The behavioral approach - Assume that objects are defined by their behavior;
i.e. by accessing and state-changing messages. In this case, composition may be
provided by defining additional behavior corresponding to each of the new
properties being modelled, such as by defining a "listOfSubParts" operation
which returns a collection of objects. Operations may be defined which apply
transitively to all objects of which an object is composed.

The structural approach - Composite objects may be built by appl3dng
constructors to simpler objects. Constructors may be implemented either by
defining new classes or by creating new instances. For example, a new class

Part may have several properties each of which is an instance of some other
class. A Part might have a TistOfSubparts" property, which is a collection of

Parts. Constructors are orthogonal to types or classes, any constructor can apply
to any class of objects. Thus by creating collections of collections a "composed-of

’

hierarchy may be created with arbitrary breadth and depth.

The semantics of composite objects may be further characterized as follows:

1. Certain operations return objects which are considered components of a
given object. A Components operation might return a list of diagrams
when applied to a document. A diagram might be a component of several
documents. Also, there might be several such operations, corresponding
to different "views”. For example, one such operation applied to a file

cabinet might return some file folders, while another might return the
frame, drawers, locks, etc.

2. Certain operations propagate fit)m one object to another. For example,
displaying, copying, or destro3ring a document causes some diagrams to be
displayed, copied, or destroyed.

3. Certain properties propagate from one object to another, in a form of

inheritance. For example, the authors and typesetting font of a book
become the authors and t^esetting font of each of the book's chapters.

2.2.6 Binding and Polymorphism

Binding is the act of associating an operation with a method. For example, a
message sent to an object must be boimd to some method which provides an
implementation of that message for that object. The method is then executed in

response to the message.

Polymorphism means that binding of an operation involves a choice among
multiple implementations of the operation. Polymorphism allows overloading of

operations. An operation may be implemented in several alternative methods,
t^icaUy associated with different classes.

46 .

DBSSG/OODBTG ODM Reference Model Draft - 6 May, 1990 - R4 - Page 16

Different systems support different criteria and times for binding an operation to

a method for execution. Examples are early binding, such as compile-time
binding and late binding, such as run-time binding.

2.2.7 Inheritance and Delegation

Inheritance means new characteristics are derived from existing characteristics .

In type-type inheritance, t)npes can be arranged in a graph. Types are nodes in

the graph, and unidirectional links between nodes define inheritance paths.
Defmitions of protocol, behavior, and state may be inherited along paths of the
graph. The two most common forms of type-type inheritance are single

inherit2ince, where the CTaph is a tree, and multiple inheritance, where the
graph is a directed acyclic graph. When creating a subt3rpe, properties may be
added to those inherited from the supertypes, or they may selectively replace
(override or cancel) those from the supertype. Class-class inheritance is similar
to t)T>e-type inheritance.

Note’: A directed acyclic graph (DAG) is a graph where each node has a
unidirectional link to one or more nodes, and each node is the target of
one or more links from other nodes. It is not possible to follow a series of
links from a node and wind up back at the starting node (i.e. there are no
cycles). A tree restricts each node to be the target of exactly one link.

In type-instance or class-instance inheritance, instances of a type or class

inherit behavior aind an initial state (default or initial values of certain
properties) from the type or class.

In type-based or class-based systems, all behavior of an instance is defined by its

type or class.

Delegation-based systems, do not differentiate between class and instances.
Objects contain definitions and implementations of operations, and selectively

delegate certain definitions and/or implementations to other objects. Object to

object delegation replaces both type-type inheritance and type-instance
inheritance.

Subclasses (subtypes) represent specialization of their superclasses
(supertypes). Superclasses(supertypes) represent generalization of their
subclasses (subt3^es).

47 .

DBSSG/OODBTG ODM Reference Model Draft - 6 May, 1990 - R4 - Page 17

2.2.9 Extensibility

An extensible system provides the ability to define new types, classes, and/or
operations. The new types, classes or operations obey the same object semantics
as the previously existing ones. There are several kinds of extensibility:

1. New types and classes may be defined.

2. Types and classes may be modified to add new behavior, properties,

constraints, or implementations.

3. Existing types and classes may be used as the basis from which to define
new ones.

4. Existing objects may be extended by acquiring new types and
corresponding classes.

Additional discussion on extensibility is foimd in section 3.

2.2.10. Information semantics

The encapsulation characteristic makes it possible to define information
semantics in an implementation-independent manner to have the semantics
enforced by an ODM system rather than by a set of application proCTams. In
this manner, only semantically meaningful operations are applicable to data.

In order to specify operation semantics in a completely implementation-
independent manner, it would be necessary to utilize pre-conditions and post-

conditions (i.e., Boolean expressions using constants and results of operations).

Namely, for each operation the pre-condition specifies the condition
which should be TRUE immediately before execution of the operation
(otherwise an attempt to execute the operation will result in an error). In the
same manner, the post-condition specifies the condition which should be TRUE
immediately after execution of the operation, i.e., as a result of its execution.

A pre-condition and a post-condition completely specify an operation. A set of

applicable operations completely specifies a type or class.

Most currently existing data management systems and ODM systems specify

results of operations either in a natural language or by means of the code used to

implement a method. These approaches provide a less rigorous means of

specifying behavior than formal pre-conditions and post-conditions approach
wo\ild allow.

48 .

DBSSG/OODBTG ODM Reference Model Draft - 6 May, 1990 - R4 - Page 18

2.3 Database Paradigm Characteristics

This section discusses some of the major chairacteristics of an ODM system.
Some of these characteristics originate with the object paradigm, others have
always been part of data management systems but are modified by the object

paradigm, and a few are relatively imchanged. The characteristics discussed in

the following subsections are essentially orthogonal to each other.

This section does not provide an exhaustive treatment of each characteristic.

Rather the goal is to provide a brief description of each characteristic, with
emphasis on the aspects which are unique or changed because of the object

paradigm.

2.3.1 Persistence and Object Lifetimes

In most programming languages, objects are transient by default. That is they
disappear when the program terminates, unless their representations have been
exphcitly saved in a file. In databases, information is usually persistent by
default. Once created, database objects typically persist until they are explicitly

deleted.

In the ODM paradigm, new rules about persistence are needed to manage both
the transient objects needed for method execution and the persistent desired for

database objects. The rules governing persistence and transience of objects are
system dependent.

An object is reachable if and only if there exists an operation that returns the
object as a restdt. An object is perceived to exist if and only if it is reachable.

The life of an object is the period during which it is reachable. An object begins
life as the result of a create operation. An object's life is ended by applying a
destroy operation to it. Some objects such as literals, have eternal lives and are
neither created nor destroyed. An object which lives longer than the execution of

a single transaction or session is usu^ly called a persistent object. An object

whose life begins and ends within a single transaction or session is usually
called a transient object.

Destruction of an object makes it imreachable. Operations which render an
object unreachable have the effect of destroying the object.

Destruction of an object may occur as a result of an explicit destroy operation for

which the object is an operand, or the object may be destroyed implicitly when a
destroy operation is applied to some other object

49 .

DBSSG/OODBTG ODM Reference Model Draft - 6 May, 1990 - R4 - Page 19

The rules for destruction of objects are system dependent. If existence of object

A depends on the existence of objects B and C, then possible rules include:

1. A will be destroyed when both B and C no longer exist.

2. A may be explicitly destroyed while B or C still exist.

3. A may not be explicitly destroyed until both B and C have been destroyed.

If object A depends on the single object D, then possible rules include:

4. An attempt to destroy D results in both D and A being destroyed

5. An attempt to destroy D results in an error (A must be destroyed first)

6. An attempt to explicitly destroy A results in an error unless D is destroyed
first

7. Explicit destruction ofA is allowed at any time.

The rules for making a transient object persistent, for destroying transient
objects, and for destroying persistent objects are system dependent and may
include some combination of the above rules. For example, the session may be
an object upon which transient objects are dependent. \^en the session ends,
objects whose existence is not dependent upon a persistent object are transient
and are destroyed at the end of the session.

Possible rules for making a transient object persistent include:

8. An transient object must be explicitly made persistent by means of a
"save" operation

9. At transaction commit, any transient object which is reachable from some
persistent object will be automatically made persistent.

At the implementation level, destruction or deletion of objects may involve
reclaiming the storage space occupied bv such objects and may involve
reclaiming for later re-use the LIDs ancJ/or OIDs of such objects.

An ODM system which implements garbage collection typically exhibits the
following behavior with respect to persistent and/or transient objects:

A) the system has one or more scavenge operations which take as an
operand one or more root object(s) and returns as a result a list of

otherwise unreachable objects. The scavenge operation is a special

operation that can find an object not reachable by any other operation.

B) the system automatically (such as when free storage space is low) or

under user or program control executes the scavenge operation and makes
the storage space occupied by unreachable objects (and possibly their

LIDs or OEDs) available for re-use by subsequent create operations.

50 .

DBSSG/OODBTG ODM Reference Model Draft - 6 May, 1990 - R4 - Page 20

If the ODM system implements garbage collection and enforces rules 1,3,4, 6,

and 9 above, then the ODM system can enforce object identity-based referential

integrity. Other combinations of rules may provide referential integrity, but this

is one example of a sufficient set of rules for doing so.

2.3.2 Data Language

The Data Language (DL) of an ODM encompasses the Data Definition Language
(DDL), Data Manipulation Language (DML), and Query Language facilities of
other database paradigms. The DL has the following uses and capabilities:

Schema Definition - The DL is used as the language with which to manipulate
the schema. This includes creating, defining, and modifying types, classes, aind

operations.

Object Manipulation - The DL is used as the lan^age with which to

manipulate (i.e. create, query, modify and destroy) instances of t3^es or classes.

The DL is also used to invoke other operations on obiects. The object

manipulation portion of a DL is often computationally complete, in which case,

query and general computation expressions may be combined to provide flexible

manipulation capabilities.

Method Definition - The DL may be used to specify operations on objects. In
the implementation of methods, the object manipulation portion of the DL may
be used to manipulate the private data structures of objects. Methods may be
implemented in the DL and/or in other programming language(s).

Base Data Language and Class Libraries

In most ODM systems, the base Data Language is very simple and only the most
basic schema definition, object manipulation, and method definition constructs
are intrinsic to the language. In the limit, only the most basic abilities to define
t3q)es or classes, define methods, and invoke operations are required elements of
the DL. All other capabilities and operations are usually provided by means of
extensible class libraries which define operations that provide all higher levels of
functionality. The class libraries effectively become part of the schema of the
object database.

Query capabilities of the DL

Query is one of the object manipulation operations provided by the DL. Queries
are operations that return objects like any other operations. ODM query
operations may be extended with respect to traditional query languages in such
ways as:

Querying and/or returning complex data structures

Providing a richer, extendible set of query operations

Operating on user defined t3q)es and classes of objects.

Making use of encapsulation, inheritance, or operation overloading

51 .

DBSSG/OODBTG ODM Reference Model Draft - 6 May, 1990 - R4 - Page 21

In object terms, a sample query operation would have one or more operand
objects which are collections of objects, one or more operand objects which
represent predicates, and would return a collection of objects as a result.

NOTE ; Detailed specifications of query languages, be they SQL,
object derivatives of SQL, or direct manipulation query
languages, are outside the scope of this reference model. The
DBSSG/OODBTG Technical Report will make recommendations
for future ODM standards activities which may include query
languages.

2.3.3 Integrity Constraints

If Data Language of an ODM system allows definition of consistency rules as
part of the schema, and if the OE^M enforces these rules with respect to

operations that affect objects covered by the consistency rules, then the ODM
provides support for information integrity.

These consistency rules are known as integrity constraints, and are an
integral part of the schema of an ODM system. This means that integrity

constraints are part of the definition of a type or class. Examples of integrity
constraints are:

Behavioral rules

Only pre-specified operations should be allowed on objects; i.e. the
protocol of objects should be enforced.

If protocol is enforced, then the implementation of operations, i.e. the
methods of classes will allow expression of arbitrary constraints in terms
of behavioral rules.

Constraints expressed in terms of behavioral rules involving multiple
operands of operations, or multiple objects.

Typing constraints

Constraints on the allowed types of operands and results of operations.

Constraints on the allowed types or classes for values of properties of

objects.

Uniqueness constraints on values of a property, across the domain of

instances of a class, or across members of some collection.

Referential integrity

If the rules governing Identity, including control over creation ofLIDs and
OIDs are enforced then referential integrity of identity-based references is

maintained.

Enforcement of referential integrity of key-valued references may also

apply to ODM systems.

52 .

DBSSG/OODBTG ODM Reference Model Draft - 6 May, 1990 - R4 - Page 22

Enforcement of integrity constraints

Enforcement of encapsulation is necessary to ensure integrity in an ODM
system.

Constraints may apply to all instances of a class, or only to specific

objects.

Depending on the ODM system, constraints may be automatically
enforced at run-time, may be enforced at compile time, and/or may be
enforced only when a particular message is sent.

2.3.4 Transactions and Concurrency Control

A transaction is a sequence of operations which have been grouped into an
atomic or indivisible unit of work. Concurrency control consists of those
mechanisms provided to implement transactions and control the sharing of
objects in the presence of multiple simultaneous transactions.

Existing transaction and concurrency control concepts continue to apply in ODM
systems. Characteristics of that are unique to or more common in ODM systems
include:

Long transactions Casting hours or days instead of seconds).

Nested transactions.

Cooperative transactions with more flexible rules for sharing objects

between transactions.

Optimistic concurrency control in addition to or in place of traditional
locking or pessimistic control. In optimistic control, a transaction access
objects without locking by assuming that conflict is unlikely and checking
for conflict at the end of the transaction, as opposed to assuming that
conflict is likely and locking objects at the beginning of or during the
transaction.

2.3.5 Recovery

Recovery is the process ofproducing a database that has consistent contents
after failure of a process or failure of underlying computer system hardware or
operating system. Recovery includes handling cases where a process was in the
middle oi modifying the database when the failure occurred.

In ODM systems, recovery means producing a consistent set of persistent objects

in the database ailer a failure.

53 o

DBSSG/OODBTG ODM Reference Model Draft - 6 May, 1990 - R4 - Page 23

2.3.6 Versions and Change Management

Versions and Change Management reflect the influence of such application

domains as CAD and Document Management. Management of information in

these domains usually includes managing and controlling versions of designs or

documents. These domains also rely on configuration control, i.e. the grouping
of compatible versions of different documents or designs into a higher level

document or design.

ODM systems frequently provide operations, types, classes, and/or methods to

manage versions of objects. These operations provide means for the application
developer or database user to define application-specific operations for

configuration control, and propagation of versioning operations. The developers
and/or users of these operations must decide on answers to such questions as:

When creating a new version of a composite object, how deep does the
versioning operation propagate into the components of the object?

What is the protocol for referencing a versioned object? Does each version
have a separate identity?

How are versions other than the current version referenced?

Do references to a versioned object refer to a specific version, or do they
track the "current" version?

2.3.7 Distribution

The distribution characteristic of a data management system is essentially
orthogonal to the object paradigm. A distributed data management system is

one in which information managed by the system or components of the system
exist on more than one computer system, and in which the computer systems are
connected by communication links. In an ODM system, things which may be
distributed include objects, types and/or classes (i.e. the schema), ODM system
functions, ODM system processes, and user processes. The granularity of

partitioning the distributed things, and the degree of replication are system
dependent.

Distribution of objects may involve either making objects the unit of
partitioning, such that an object or replica of an object lives on one computer
system, or may involve spreading a single object across multiple computer
systems.

The extent to which ODM operations are affected by distribution is described by
the system-dependent transparency attribute of distribution. For example, in

non-transparent distribution, a query operation must include location
information as one of its operand objects. In transparent distribution, a query
operation does not include location information as an operand because the
implementation of the query operation is capable of resolving location
automatically.

54 .

DBSSG/OODBTG ODM Reference Model Draft - 6 May, 1990 - R4 - Page 24

2.3.8 Security

The security characteristic of a data management system is essentially

orthogonal to the object paradigm. Security has at least four essential aspects:

1. The subjects or users of the system must be named

2. The subjects must be authenticated, such as through a login procedure at

the start of a session or transaction

3. Authorization operations are provided to specify which operations a
subject is permitted to perform, and to specify which objects may be
operated upon or used as operands of the permitted operations.

4. An auditing operation is needed to record such events as authorization
operations, operations completed or denied, and authentication attempts
succeeded or failed.

In an ODM system, the security facilities should be integrated with the concepts
of encapsulation, objects, inheritance, and identity.

3. ODM System Interfaces

This section discusses the typical interfaces and users' roles which are
envisioned for systems within the scope of this reference model. A common
characteristic ofmany ODM systems is that they include one or more user
interfaces, in addition to application program interfaces.

The user interfaces may be command-line-oriented, but often are graphical and
allow browsing aind editing of object types, classes, and/or instances. A variety of
generic user interfaces (e.g. forms or reports) and domain or application-specific
interfaces will also be common.

3.1 User Roles and Class Libraries

The roles of users of an ODM system may be characterized in terms of:

* User interfaces employed

* Class Libraries visible to the role

* Relationships to other roles

* Placement of the role in a business organization

DBSSG/OODBTG ODM Reference Model Draft - 6 May, 1990 - R4 - Page 25

Under previous database paradigms, users of database systems might play one
or more of the following roles. These same roles exist in the ODM paradigm:

End User
Information Modeler or Data Modeler
Application Developer
System Administrator or Database Administrator
System Builder or DBMS Vendor

In addition, the ODM paradigm brings with it some new roles:

Class Library Developer or Vendor
Class Definer
Method Programmer

This section presents a layered description of an ODM system in an attempt to

characterize the different interfaces and class libraries of an ODM system
corresponding to the above roles. Each role represents use of the system at a
different layer of abstraction.

Each layer of abstraction corresponds to one or more Class Libraries defining an
interface through which certain objects and operations on those objects are
visible. The Class Libraries define a vocabulary of messages that are understood
by that interface.

The objects and operations visible at a given interface are implemented in terms
of operations and objects defined by lower layers, since each layer provides the
Extensibility attribute. The objects of the lower layers are not directly visible,

since each layer preserves the Encapsulation attribute.

The users of each interface may define new objects (i.e. instances of some class

visible at that interface), define new operations or methods, or define new
classes (via extensibility).

Figure 2 on the next page shows a layered view of the roles and class libraries.

User Roles

End Users, accesses the objects directly

through ad-hoc query interfaces, and
indirectly through other turn-key
programs

Application Developer, for building
end-user applications

System Analyst, for analyzing
operations of the business, to perform
tasks such as auditing, reporting,

forecasting, and planning.

Database Administrator, for system
administration functions such as backup,
tuning, etc.

Database Designer, for defining the
Enterprise Objects.

Database Method Pro^ammer, for

implementing the operations or methods
for the Enterprise Objects

ODM systems programmer, to

implement Kernel Objects and Data
Language, or write primitive methods
such as access methods.

ODM vendor systems programmer, to

implement the ODM System Internals.

Class Libraries
(used by roles at this level

Application Specific Class Libraries

Enterprise or Business Class Library
These objects might implement an
enterprise-wide schema which could be
shared by a variety of applications.

ODM System DL & Kernel Objects

The ODM sytem's Data Language, and
Kernel Objects typically include the
object equivalents of Relations and built-

in datatypes of an RDBMS, as well as
Objects or Classes which provide a Data
Dictionary or System Catalog function.

ODM System Internals, i.e.

,

Implementation Objects or Fimction
Libraries

Operating System run-time library and
system programming languages

Computer CPU, Storage, and Networking
hardware

Figure 2 User Roles and Class Libraries

57 .

3.2 Application Program Interfaces

There are several possible configurations for connecting an application program
to an ODM system. These configurations may be chairacterized in terms of:

* Language characteristics of the application program and/or the data
language of the ODM system - How many languages are used to write
the application? Is the language(s) object based?

* Level of automation of persistence - What is the distinction, if any, between
transient and persistent objects? Does the application programmer have
to write explicit statements to save persistent objects?

* Number of object spaces - How many different universes of object

identifiers exist? Is there more than one "heap" of temporary and/or
persistent objects?

* Number of operation execution spaces - How many execution spaces are
there? If one space, is it in the ODM system or in the application
programming lan^age space? Are there execution spaces in both the
ODM system and in the application program?

There are at least four possible configurations for using an ODM system . These
alternatives are representative of ciirrently available ODM technology.

1. Single data language with automatic persistence and a single object space.
In this configuration, the language compiler and/or ODM system
implement the automatic persistence.

2. Single language with semi-automatic or programmer-controlled
persistence and two object spaces (transient objects and persistent objects)

3. Two object languages (application language, ODM data language) with
semi-automatic or programmer controlled persistence and two object

spaces (application space, database space)

4. Conventional language (such as C or Cobol) plus ODM data language,
with programmer controlled persistence and two object spaces
(application stack or heap, database)

Another dimension for characterizing an application program interface to an
ODM system is whether structural access is allowed. Structural access involves
simple, low-level messages to the database where the arguments and results of
operations are very closely related to the state or information encapsulated
inside of the receiver object. In the limit, structural access may reduce to

navigationail fetch and store operations which violate encapsulation.

58 .

59

Export Authority: 22 CFR 125.4 (b) (13)

OBJECT-ORIENTED DBMS REgUIREMENTS

by
Keith A. Marrs

Lalla G. Robinson

McDonnell Douglas Corporation
McDonnell Aircraft Company

P.O. Box 516. Mail Code 0861020
St. Louis, Mo. 63166

INTRODUCTION

The information management requirements of a large, complex enterprise as the McDonnell
Douglas Corporation (MDC) are best served in an environment wherein:

• Data sharing is enabled among organizations that need to share information.

• The addition of new systems and reorganization of existing systems are facilitated

through the use of staiidards and open architectures.

• Navigational data access is hidden from applications so that physical databaises can
be revised without impacting application code.

• Application and data portability encourage reuse and lessen redundancy of software
development.

• Data semantics across the enterprise are integrated so that there is one common
understanding of the data.

• These semantics are captured and managed by Intelligent data management systems
so that they can be enforced consistently through these systems and data integrity is

assured.

The progress towards achieving this has been impeded by various factors such as:

• The use of heterogeneous vendor data management products with proprietary
interfaces.

• The Inadequacy of data management products to capture and store data semantics.

• The lack of capabilities to access data from various heterogeneous databases
distributed across the enterprise.

The addition of systems to the heterogeneous environment, particularly those using new
technology such as object-oriented database management should alleviate instead of
exacerbate this condition.

requirements

Object-Oriented database management systems (OODBMSs) have emerged as a way to capture
and implement more data semantics than current DBMSs. OODBMSs can manage more

60 .

complicated data structures and operations, and they enable the enforcement of more rules on
the data. Therefore we view OODBMSs as strong candidates in managing databases such as
those residing In engineering and manufacturing which are heretofore managed by application

code due to inadequacies of current DBMSs.

We have investigated the state of the art of OODBMSs, modeled several application data to

determine their semantics, and we are developing a design for a data management prototype
using object-oriented design methodologies. From these works we have defined a set of

requirements for OODBMSs which will aid the achievement of the information management
environment discussed above. These requirements were reviewed and approved by
representatives from several component companies of MDC. They address several of the areas
of interest for this woxicshop, including Object Data Model, Query and Data Manipulation
Languages. OODB System Architecture and Interfaces, Change Management, and Transactions.
The requirements are given below, listed by topic area.

Object Data Model

1. The object dehnitlon must Include the following.

• The object structures (Le., the instance variables of the object).

• The valid messages to the object.

• The methods corresponding to the messages - these should be defined with a robust
language.

• The constraints on the object - these Include constraints on the structures and
methods, and constraints to enforce semantic integrity rules, including:

- referential integrity which guarantees that every object referenced by another
object exists in the database;

- domain integrity which asserts that the value of an instance variable of an
object must be a member of a set of eligible values (i.e.. the domain) for that

instance variable:

° the handling of null values for object instance variables in methods and
queries should correspond to the treatment of null values by ANSI standard
SQL;

- default values for object instance variables;

• assertions; and

- support for triggers such that the firing of these triggers is deterministic (i.e..

predictable results).

• The identiiler of the object which is persistent and known to the user but which is not

updatable and does not cany any semantics.

2. The following object features must be supported.

• Encapsulation - only the interface (messages) of an object must be visible to a use*

61 .

Abstraction mechanisms, specifically:

- classification which Is the grouping of objects with common semantics into a
class (Le.. a class defines the structures, messages, methods, and constraints for

Its group of objects—instances of the class; and because a class is also an object.

It may define additional structures, messages, methods, and constraints which
are used to Identify properties and operations for the class itself or to store

constant or default values for all the Instances of the class);

- generalization which is the grouping of similar classes into superclasses (i.e..

all of the common structures, messages, methods, and constraints of the
similar classes are associated with the superclass);

- aggregation which is an abstraction in which a relationship between objects is

regarded as a higher-level object (Le., an aggregate object refers to other objects

in its definition);

- composition/dependent subpaits which is an abstraction in which a group of

objects are combined to form a composite object such that the existence of the

component objects are dependent on the existence of the composite object; and

- collections which are groups of objects that may be aibitraiy or instances of the
same class; these collections can be used for domains or to support ad hoc
queries over all the instances of a class.

• Inheritance and multiple inheritance of properties, methods, constraints, and
values. More spedflcalfy this includes:

- class-class inheritance where a class inherits all the structures, messages,
methods, and constraints of its superclasses;

- class-instance inheritance where each instance of a class has values for the
instance variables defined for the class and inherits the messages, methods,
and constraints of the class; and

- instance-instance inheritance where one instance inherits the value of an
instance variable and the messages, methods, and constraints associated with
this instance variable from another instance; this is often used for composite
objects to allow component objects to assume certain features of the composite
object (e.g., the color of a car door is inherited from the color of the car).

• Extensibility, specifically:

- a base set of objects (e.g., integers and dates), which are extensible and can be
used to construct other objects, must be provided; and

- users must be allowed to define new structures, operations, and access methods
to handle application entitles.

• Name conflict resolution at all levels such that a user is notified of conflicts during
schema definition.

• Aliases/synonyms for objects and object instance variables should be supported.
This will reduce name scopes, avoid possible name conflicts, and allow context
dependent names.

62 .

3. The following types of objects must be supported.

• Recursive objects which are objects that are composed of other objects of the same
class.

• Spatial objects which are objects whose position and area/volume in 2- or 3-D space
needs to be supported. Queries such as how near one object is to another object, or
what objects are contained within some area must be supported for these objects.

• Temporal objects which are objects whose relevant Information depends on time.

• Large ol^ects such as maps and schematic layouts.

• Multimedia ol^ects such as 3-D graphics, text, and Image.

• Temporary objects which are objects needed for some transaction or application but
do not ne^ to persist.

Query and Data Manipulation Languages

ANSI SQL with appropriate object-oriented extensions should be used as both the data
definition and data manipulation language. One appropriate extension is to allow object

methods to be invoked from a SQL statement.

QQDB System Architecture and Interfaces

1.

The OODBMS must be able to be integrated with other DBMSs by means ofANSI standard
SQL. This implies an open architecture. Interoperability, and distributed operations
across DBMSs.

2.

The three-schema architecture must be supported. More specifically, this must include
support for the following.

• Derived objects (views) • this Includes mapping between external objects and
conceptual objects, and mapping between conceptual objects and internal objects.

Creation, manipulation, and access operation must be supported for these derived
objects.

• User-specified external object presentation formats - these should be stored and
persistent In the database.

• Information for the persistent objects (e.g., class information) at each level of the
three-schema architecture, and the schema mappings must be stored m the data
dictionary/directory and automatically managed. This Includes automatic
execution ofmappings between the schemas during data access and manipulation.

3.

Participation in a distributed DBMS must be supported.

• Initially, the OODBMS should run on the client/server architecture using the
ANSI/ISO RDA standards.

63 .

• Access to relational DBMSs must be supported. In this situation, the object-oriented

DBMS could be both client amd server.

• To support replicated data and multi-user access within the distributed DBMS
environment, the distributed system must support:

- snapshots of objects: and

- deferred and immediate updates of copies of objects.

• A true heterogeneous distributed architecture must be supported in the future. It must
include:

- management of a global conceptual schema, that is, a conceptual schema that

applies to all of the participants in the distributed system:

- a distributed database manager:

- support of other vendor's DBMSs: and

- user transparencies to DBMS heterogeneity (l.e., the distributed nature of the

DBMS should be transparent to the user).

4.

A single data dictionary/directory facility must be supported. More specifically.

• It must be based on ANSI IRDS standards.

• It must be an active data dictionary. The data dictionary should be an integral part

of constraint enforcement and three-schema mapping at run time.

• It must be a dynamic data dictionary. The data dictionary can be updated at run
time.

• It must be loosely coupled with the DBMS such that it can interface with other
DBMSs.

• Schema modification must be allowed - this includes modifying or extending object

definitions.

• A browser must be provided for interactively examining the data dictionary.

5.

Archlvlng/restorlng of objects to cheaper storage devices must be supported. This includes
storing immutable objects on CD-ROM devices.

6.

The following language Interfaces aiKl characteristics must be supported.

• ANSI SQL with appropriate object-oriented extensions should be used as both the

data definition and data manipulation language. One appropriate extension is to

allow object methods to be invoked from a SQL statement.

• Host language Interfaces, including embedded and module interfaces. An embedded
interface is one in which SQL statements can be mixed with the host language
statements. A module interface is one in which separate modules are defined for

64 .

Interacting with the database and these modules can be called from the host
language.

• A 4GL tool that can provide access across DBMSs and interfaces with ANSI standard
SQL.

• A graphics Interface for schema definition and management.

• Access to multiple levels of a composite object In the same query must be supported.
This capability allows a part-of hierarchy to be examined in one query.

• Late, or dynamic, binding of objects and methods, that is binding at runtime instead
of compile time. This will reduce code maintenance due to schema changes, such as
changes In the class hierarchy.

7.

Portability of applications and the DBMS across hardware and operating system
platforms must be supported.

8.

Data modeling must be supported. (IDEF, NIAM, EXPRESS, IDEFlx - extensions for

objects) These tools should Interface to the DBMS through the data dictionary/directory

of the DBMS.

9.

Prototyping tools must be supported. These tools should provide mechanisms for schema
creation and management, and for popiilatlng a database.

Change Management

Configuration management must be supported, this includes support for versions of

objects and versions ^ schema.

Transactions

Transaction management facilities for the following types of transactions must be
supported.

• Long transactions In which objects may be checked out for hours or days.

• Stored transactions.

• Nested transactions.

• Interactive, on-line transactions.

• Partial rollbacks in which a transaction is rolled back to the last savepoint defined
In the transaction.

In addition to all the above, the following traditional DBMS features must be supported.

• Multi-user envlromnent.

65 .

• Backup and recovery mechanisms to handle crashes.

• Concurrency control mechanisms to allow concurrent sharing of objects.

• Authorization and security mechanisms where the object is the lowest level of

granularity.

• Authorization and security mechanisms where the properties of an object are the

lowest level of granularity.

• Privileges on the access and manipulation of objects and object properties.

• Performance tuning features, including clustering of objects, indexing, and user-

detlned access methods.

• Import and export (often between DBMSs) facilities for objects.

• Interactive sessions and batch processing.

CONCLUSION

For OODBMSs to be useful in large complex enterprises, they must be able to participate and
integrate into a data sharing, heterogeneous information management environment. The
adoption of standards is a major mechanism for this integration. To reduce additional
software development and maintenance by end users when integrating this new technology,
extension of existing standards must be given the highest priority. New standards should then
be created for the remaining areas, such as the Object Data Model, which are not covered by the

extended standards.

66 .

67

THIRD-GENERATION DATA BASE SYSTEM MANIFESTO

The Committeefor AdvancedDBMS Function^

Abstract

We call the older hierarchical and network systems first generation database systems and refer to

the current collection of relational systems as the second generation. In this paper we consider the charac-

teristics that must be satisfied by the next generation of data managers, which we call third generation

database systems.

Our requirements are collected into three basis tenets along with 13 more detailed propositions.

1. INTRODUCTION
The network and hierarchical database systems that were prevalent in the 1970’s are apdy classified

as first generation database systems because they were the first systems to offer substantial DBMS func-

tion in a unified system with a data defiitition and data manipulation language for collections of records.^

CODASYL systems [CODA71] and IMS [DATE86] typify such first generation systems.

In the 1980’s first generation systems were largely supplanted by the current collection of relational

DBMSs which we term second generation database systems. These are widely believed to be a substan-

tial step forward for many applications over first generation systems because of their use of a non-

procedural data manipulation l^guage and their provision of a substantial degree of data ind^ndence.

Second generation systems are typified by DB2, INGRES, NON-STOP SQL, ORACLE and Rdb/VMS.^

However, second generation systems were focused on business data processing applications, and

many researchers have pointed out that they are inadequate for a broader class of s^lications. Computer
aided design (CAD), computer aided software engineering (CASE) and hypertext applications are often

singled out as examples that could effectively utilize a different kind of DBMS with specialized capabili-

ties. Consider, for example, a publishing application in which a client wishes to arrange the layout of a

newspaper and then print it This application requires storing text segments, graphics, icons, and the

myriad of other kinds of data elements found in most hypertext environments. Supporting such data ele-

ments is usually difficult in second generation systems.

However, critics of the relational model fail to realize a crucial facL Second generation systems do

not support most business data processing applications all that well. For example, consider an insurance

application that processes claims. This application requires traditional data elements such as the name and

coverage of each person insured. However, it is desirable to store images of photographs of the event to

‘The oomminee ii compnxid of Michad Stoaebriker of the Univenity of CaUfomia, Berkeley, Lawrence A. Rowe of the

Universiiy of CaUfomia, Berkeley, Brace liadsay ofIBM Research, James Gray ofTmdem Compaters, \fichael Carey of the Uoiver-

fity of Wiscoosin, Michael Btodie of GTE Labonttxies, Philip Bernstem of Di^iial Eryiipmens CorporatiaD, aod David Beech ofOra**

cle Corporation.

*To disaiss relational and other systems withoot confasion, we will use nentral terms in this paper. Therefore, we define a data

element as an atomic data value that is stored in the database. Every data eknoent has a data type (or type for abort), and data ele-

menu can be assembled into a record whkh is a set of one or more named dau elements. Lastly, a coUectioo is a named set of

lecords, each with the tame number and typte of dau elements.

*DB2, INGRES, NON-STOP SQL, ORACLE and Rdb/VMS are trademarks respectively of IBM, INGRES Corporation, Tan-

dem, ORACLE Corporation, and Digital Equipment Corporation.

68 .

which a claim is related as well as a facsimile of the origiiiai hand-written claim form. Such data elements

are also difficult to store in second generation DBMSs. Moreover, all informadon related to a specific claim

is aggregated into a folder which contains tradidonal data, images and perhaps procedural data as well. A
folder is often very complex and makes the data elements and aggregates of CAD and CASE systems seem
fairly routine by comparison.

Thus, almost everybody requires a better DBMS, and there have been several efforts to construct

prototypes with advanced funcdon. Moreover, most current DBMS vendors are woiking on major func-

tional enhancements of their second generadon DBMSs. There is a surprising degree of consensus on the

desired capabiliues of these next-generadon systems, which we term third generation database systems.

In this paper, we present the three basic tenets that should guide the development of third generadon sys-

tems. In addidon, we indicate 13 proposidons which discuss more detailed requirements for such systems.

Our paper should be contrasted with those of [ATKI89, KIM90, ZDON90] which suggest different sets of

tenets.

2. THE TENETS OF THIRD-GENERATION DBMSs
The first tenet deals with the definidon of third generadon DBMSs.

TENET 1: Besides traditional data management services, third generation DBMSs will

provide support for richer object structures and rules.

D;ita management characterizes the things that current reladonal systems do well, such as processing 100

transacdons per second from 1000 on-line terminals and efficiendy executing six way joins. Richer object

structures characterize the capabilides required to store and manipulate non-tradidonal data elements such

as text and spadal data. In addidon, an applicadon designer should be given the capability of specifying a

set of rules about data elements, records and collecdons.^ Referential integrity in a reladonal context is one

simple example of such a rule; however, there are many more complex ones.

We now consider two simple examples that illustrate this tenet Return to the newspaper applicadon

described earlier. It contains many non-tradidonal data elements such as text, icons, maps, and adverdse-

ment copy; hence richer object structures are clearly required. Furthermore, consider the classified adver-

tisements for the paper. Besides the text for the advertisement, there are a coUecdon of business data pro-

cessing data elements, such as the rate, the number of days the advertisement win run, the classificadon,

the billing address, etc. Any automatic newspaper layout program requires access to this data to decide

whether to place any pardcular advertisement in the current newspaper. Moreover, selling classified adver-

tisements in a large newspaper is a standard transaction processing applicadon which requires tradidonal

data management services. In addidon, there are many rules that control the layout of a newspaper. For

example, one caimot put an advertisement for Macy*s on the same page as an advertisement for Nordstrom.

The move toward semi-automatic or automadc layout requires capturing and then enforcing such rules. As
a result there is need for rule management in our example applicadon as welL

Consider next our insurance example. As noted earlier, there is the requirement for storing non-

tradidonal data elements such as photographs and claims. Moreover, making ch^ges to the insurance cov-

erage for customers is a standard transacdon processing applicadon. In addidon, an insurance applicadon

requires a large collection of rules such as

Cancel the coverage of any customer who has had a claim of type Y over value X.

F^scalate any claim that is more than N days old.

We have briefly considered two applicadons and demonstrated that a DBMS must have data, object

aixl rules services to successfully solve each problem. Although it is certainiy possible that niche martets

will be available to systems with lesser capabilities, the successful DBMSs of the 90's will have services in

all three areas.

*See the previoQS footnote for definiticns of these tenns.

We now turn to our second fundamental tenet

TENET 2: Third generation DBMSs must subsume second generation DBMSs.

Put differently, second genoation systems made a majOT contribution in two areas:

non-procedural access

data independence

and these advances must not be compromised by third generation systems.

Some argue that there are applications which never wish to run queries because of the simplicity of

their DBMS accesses. CAD is often suggested as an example with this characteristic [CHAN89]. There-

fore, some suggest that future systems will not require a query language and consequently do not need to

subsume second generation systems. Several of the authors of this paper have tailed to numerous CAD
application designers with an interest in databases, and all have specified a query language as a necessity.

For example, consider a mechanical CAD system which stores the parts which compose a product such as

an automobile. Along with the spatial geometry of each part, a CAD system must store a collection of

attribute data, such as the cost of the part, the color of the part, the mean time to failure, the supplier of the

part, etc. CAD applications require a query language to specify ad-hoc queries on the attribute data such

as:

How much does the cost of my automobile increase if supplier X raises his prices by Y percent?

Consequently, we are led to a query language as an absolute requirement

The second advance of second generation systems was the notion of data independence. In the area

of physical data independence, second generation systems automatically maintain the consistency of all

access paths to data, and a query optimizer automatically chooses the best way to execute any given user

command. In addition, second generation systems provide views whereby a user can be insulated from

changes to the underlying set of collections stored in the database. These characteristics have dramatically

lowered the amount of program maintenance that must be done by applications and should not be aban-

doned.

Tenet 3 discusses the final philosophical premise which must guide third generation DBMSs.

TENET 3: Third generation DBMSs must be open to other subsystems.

Stated in different terms, any DBMS which expects broad applicability must have a fourth generation

language (4GL), various decision support tools, firiendly access from many programming languages,

friendly access to popular subsystems such as LOTUS 1-2-3, interfaces to business graphics packages, the

ability to run the application on a different machine from the database, and a distributed DBMS. All tools

and the DBMS must run effectively on a wide variety of hardware platforms and operating systems.

This fact has two implications. First, any successful third generation system must support most of

the tools described above. Second, a third generation DBMS must be open, i.e. it must allow access from

additional tools ruiming in a variety of environments. Moreover, each third generation system must be wil-

ling to participate with other third generation DBMSs in future distributed database systems.

These three tenets lead to a variety of more detailed propositions on which we now focus.

3. THE THIRTEEN PROPOSITIONS
There are three groups of detailed propositions which we feel must be followed by the successful

third generation database systems of the i990s. The first group discusses propositions which result from

Tenet 1 and refine the requirements of object and rule management. The secoixi group contains a collec-

tion of pn^x)sitioDS which follow from the requirement that third generation DBMSs subsume second gen-

eration ones. Hnally, we treat propositions which result firom the requirement that a third generation sys-

tem be open.

70 .

3.1. Propositions Concerning Object and Rule Management

DBMSs cannot possibly anticipate all the kinds of data elements that an application might want
Most people think, for example, that time is measured in seconds and days. Howevo’. all months have 30

days in bond trading applications, the day ends at 15:30 for most banks, and "yesterday" skips over week-

ends and holidays for stock market applications. Hence, it is imperative that a third generation DBMS
manage a diversity of objects and we have 4 propositions that deal with object management and consider

type constructors, inheritance, functions and unique identifiers.

PROPOSITION 1.1: A third generation DBMS must have a rich type system.

All of the following are desirable:

1) an abstract data type system to construct new base types

2) an array type constructor

3) a sequence type constructor

4) a record type constructor

5) a set type constructor

6) functions as a type

7) a union type constructor

8) recursive composition of the above constructors

The first mechanism allows one to construct new base types in addition to the standard integers, floats and

character strings available in most systems. These include bit strings, points, lines, complex numbers, etc.

The second mechanism allows one to have arrays of data elements, such as found in many scientific appli-

cations. Arrays normally have the property that a new element cannot be inserted into the middle of the

array and cause all the subsequent members to have their position incremented. In some applications such

as the lines of text in a document, one requires this insertion property, and the third type constructor sup-

ports such sequences. The fourth mechariism allows one to group d^ elements into records. Using this

type constructor one could form, for example, a record of data items for a person who is one of the "old

guard" of a particular university. The fifth mechanism is required to form unordered collections of data

elements or records. Fot example, the set type constructed' is required to form the set of all the old guard.

We discuss the sixth mechanism, functions (methods) in Proposition 1.3; hence, it is desirable to have a

DBMS which naturally stores such constructs. The next mechanism allows one to construct a data element

which can take a value from one of several types. Examples of the utility of this construct are presented in

[COPE84]. The last mechanism allows type constructors to be recursively composed to suj^rt complex

objects which have internal structure such as documents, spatial geometries, etc. Moreover, there is no

requirement that the last type constructor applied be the one which forms sets, as is true for second genera-

tion systems.

Besides implementing these type constructors, a DBMS must also extend the underlying query

language with appropriate constructs. Consider, for example, the SALESPERSON collection, in which

each salesperson has a name and a quota which is an array of 12 integers. In this case, one would like to be

able to request the names of sale^msons with i^jril quotas over $5(X)0 as follows:

select name
from SALESPERSON
where quota[4] > 5000

Consequently, the query language must be extended with syntax for addressing into arrays. Prototype syn-

tax for a variety of type constructors is contained in [CARE88].

The utility of these type constructors is well understood by DBMS clients who have data to store

with a richer structure. Moreover, such type constructors will al» make it easier to implement the per-

sistent programming languages discussed in Proposition 3.2. Furthermore, as time unfolds it is certainly

possible that additional type constructors may become desirable. For example, transaction processing sys-

tems manage queues of messages [BERN90]. Hence, it may be desirable to have a type constructor which

forms queues.

Second generation systems have few of these type constructors, and the advocates of Object-oriented

Data Bases (OODB) claim that entirely new DBMSs must come into existence to support these features. In

this regard, we wish to take strong exception. There are prototypes that demonstrate how to add many of

the above type constructors to relational systems. For example, [STON83] shows how to add sequences of

records to a relational system, [21AN183] and [DADA86] indicate how to construct certain complex

objects, and [0SB086, STON86] show how to include an ADT system. We claim that all these type con-

structed can be added to relational systems as natural enhancements and that the technology is relatively

well understood.^ Moreover, commercial relational systems with some of these features have already

started to appear.

Our second object management proposition concerns inheritance.

PROPOSITION 1^: Inheritance is a good idea.

Much has been said about this construct, and we feel we can be very brief. Allowing types to be organized

into an inheritance hierarchy is a good idea. Moreover, we feel that multiple inheritance is essential, so the

inheritance hierarchy must be a directed graph. If only single inheritance is supported, then we feel that

there are too many situations that cannot be adequately modeled. For example, consider a collection of

instances of PERSON. There are two specializations of the PERSON type, namely STUDENT and

EMPLOYEE. Lastly, there is a STUDENT EMPLOYEE, which should inherit from both STUDENT and

EMPLOYEE. In each collection, data items appropriate to the collection would be specified when the col-

lection was defined and others would be inherit^ from the parent collections. A diagram of this situation,

which demands multiple inheritance, is indicated in Figure 1. While [ATKI89] advocates inheritance, it

lists multiple inheritance as an optional feature.

Moreover, it is also desirable to have collections which specify no additional fields. For example,

TEENAGER might be a collection having the same data elements as PERSON, but having a restriction on

ages. Again, there have been prototype demonstrations on how to add these features to reladonal systems,

and we expect commercial relational systems to move in this direction.

Our third pre^sidon concerns the inclusion of funedons in a third generadon DBMS.

PROPOSITION U: Functions, including database procedures and methods, and

A Typical Multiple Inheritance Hierarchy

Hguie 1

^One mi^ irgne that a relational tystem with all these extexmens can no loofer be considered "relational”, bat that is not the

poinL The point is thi such extensions are possible and quite

72 .

encapsulation are a good idea.

Second generation systems support functions and encapsulation in restricted ways. For example, the opera-

tions available for tables in SQL are implemented by the functions create, alter, and drop. Hence, the

table abstraction is only available by executing one of the above functions.

Obviously, the benefits of encapsulation should be made available to application designers so they

can associate functions with user collections. For example, the functions HIRE(EMPLOYEE),
FIRE(EMPLOYEE) and RAISE-SAL(EMPLOYEE) should be associated with the familiar EMPLOYEE
collection. If uscts are not allowed direct access to the EMPLOYEE collection but are given these func-

tions instead, then all knowledge of the internal structure of the EMPLOYEE collection is encapsulated

within these functions.

Encapsulation has administrative advantages by encouraging modularity and by registering functions

along with the data they encapsulate. If the EMPLOYEE coUection changes in such a way that its previous

contents caimot be defined as a view, then all the code which must be changed is localized in one place,

and will therefore be easier to change.

Encapsulation often has performance advantages in a protected or distributed system. For example,

the function HIRE(EMPLOYE^ may make a number of accesses to the database while executing. If it is

specified as a function to be executed internally by the data manager, then only one round trip message

between the application and the DBMS is executed. On the other hand, if the function runs in the user pro-

gram then one round trip message will be executed for each access. Moving functions inside the DBMS
has been shown to improve performance on the popular Debit-Credit benchmark [ANON85].

Lastly, such functions can be inherited and possibly overridden down the inheritance hierarchy.

Therefore, the function HIRE(EMPLOYEE) can automaticily be applied to the STUDENT EMPLOYS
collection. With overriding, the implementation of the function HIRE can be rewritten for the for the STU-
DENT EMPLOYEE collection. In summary, encapsulated functions have performance and structuring

benefits and are highly desirable. However, there are three comments which we must make concerning

functions.

Fust, we feel that users should write functions in a higher level language (HLL) and obtain DBMS
access through a high-level non-procedural access language. This language may be available through an

embedding via a preprocessor or through direct extension of the HLL itself. Put differently, functions

should run queries and not perform their own navigation using calls to some lower level DBMS interface.

Proposition 2.1 will discuss the undesirability of constructing user programs with low-level data access

interfaces, and the same discussion applies equally to the construction of functions.

There are occasional requirements for a function to directly access internal interfaces of a DBMS.
This will require violating our admonition above about only accessing the database through the query

language, and an example of such a function is presented in [STON90]. Gxisequently, direct access to

system internals should probably be an allowable but highly discouraged (I) way to write functions.

Our second comment concerns the notion of opaque types. Some OODB enthusiasts claim that the

only way that a user should be able to access a collection is to execute some function available for the col-

lection. For example, the only way to access the EMPLOYEE collection would be to execute a function

such as HIRE(EMFLOYEE)e Such a restriction ignores the needs of the query language whose execution

engine requires access to each data element directly. Consider, for exampl^

select*

from EMPLOYEE
where salary > 10000

To solve this query, the execution engine must have direa access to the salary data elements and any auxi-

liary access paths indexes) available for them. Therefore, we believe that a mechanism is required to

makes types transparent, so that data elements inside them can be accessed through the query language.

It is possible that this can be accomplished through an automatically defined "accessor" function for each

data element or through some other means. An authorization system is obviously required to control

access to the database through the query language.

Our last conunent concerns the commercial marketplace. All major vendois of second generation

DBMSs already support functions coded in a HLL (usually the 4GL supported by the vendor) that can

73 .

make DBMS calls in SQL, Moreover, such functions can be used to encapsulate accesses to the data they

manage. Hence, functions stored in the database with DBMS calls in the query language are already com-

monplace commCTcially. The work remaining for the commercial relational vendors to support this propo-

sition is to allow inheritance of functions. Again there have been several prototypes which ^ow that this is

a relatively straightforward extension to a relational DBMS. Yet again, we see a clear path by which

current relational systems can move towards satisfying this proposition.

Our last object management proposition deals with the automatic assignment of unique identifiers.

PROPOSITION 1.4: Unique Identifiers (UIDs) for records should be assigned by the

DBMS only if a user-defined primary key is not available.

Second generation systems support the notion of a primary key, which is a user-assigned unique identifier.

If a primary key exists for a collection that is known never to change, for example social security number,

student registration number, or employee number, then no additional system-assigned UID is required. An
immutable primary key has an extra advantage over a system-assigned unique identifier because it has a

natural, human readable meaning. Consequently, in data interchange or debugging this may be an advan-

tage.

If no primary key is available for a collection, then it is imperative that a system-assigned UID be

provided. Because SQL supports update through a cursor, second generation systems must be able to

update the last record retrieved, and this is only possible if it can be uniquely identified. If no primary key

serves this purpose, the system must include an extra UID. Therefore, several second generation systems

already obey this pix^sition.

Moreover, as will be noted in Proposition 2.3, some collections, e.g. views, do not necessarily have

system assigned UIDs, so building a system that requires them is likely to be proven undesirable. We close

our discussion on Tenet 1 with a final proposition that deals with the notion of rules.

PROPOSITION 1.5: Rules (triggers, constraints) will become a major feature in future sys-

tems. They should not be associated with a specific function or collection.

OODB researchers have generally ignored the importance of rules, in spite of the pioneering use of active

data values and daemons in some programming languages utilizing object concepts. When questioned

about rules, most OODB enthusiasts either are silent or suggest that rules be implemented by including

code to sui^rt them in one or more functions that operate on a collection. For example, if one has a rule

that every employee must earn a smaller salary than his manager, then code ^Tprx^niate to this constraint

would be inserted into both the HIRE(EMPLOYEE) and the RAISE-SAL(EMPLOYEE) functions.

There are two fundamental problems with associating rules with functions. First, whenever a new
function is added, such as PENSION-CHANGE(EMPLOYEE), then one must ensure that the function in

turn calls RAISE-SAL(EMPLOYEE), or one must include code for the rule in the new function. There is

no way to guarantee that a programmer does either, consequently, there is no way to guarantee rule

enforcement Moreover, code for the rule must be placed in at least two functions, HIRE(EMPLOYEE)
and RAISE-SAL(EMPLOYEE). This requires duplication of effort and will make changing the rule at

some future time more difficult

Next, consider the following rule:

Whenever Joe gets a salary adjustment propagate the change to Sant

Under the OODB scheme, one must add appropriate code to both the HIRE and the RAISE-SAL functions.

Now suppose a second rule is added:

Whenever Sam gets a salary adjustment propagate the change to Fred.

This rule will require inserting additional code into the same functions. Moreover, since the two rules

interaa with each other, the writer of the code for the second rule must understand all the rules that appear

in the function he is modifying so he can correctly deal with the interactions. The same problem arises

when a rule is subsequently deleted.

Lastly, it would be valuable if users could ask queries about the rules currently being enforced. If

they are buried in functions, there is no easy way to do this.

74 .

In our opinion there is only one reasonable solution; rules must be enforced by the DBMS but not

bound to any function or collection. This has two consequences. First, the OODB par^gm of "everything

is expressed as a method” simply does not apply to rules. Second, one cannot dir^dy access any internal

interfaces in the DBMS below the rule activation code, which would allow a user to bypass the nm time

system that wakes up rules at the correct time.

In closing, there are already products from second generation commercial vendors which are faithful

to the above proposition. Hence, the commercial relational marketplace is ahead of OODB thinking con-

cerning this particular proposidon.

3.2. Propositions Concerning Increasing DBMS Function

We claimed earlier that third generadon systems could not take a step backwards, Le. they must sub-

sume all the capabilides of second generadon systems. The capabilides of concern are query languages,

the specihcadon of sets of data elements and data independence. We have four proposidons in this secdon

that deal with these matters.

PROPOSITION 2.1: All programatic access to a database should be through a non-

procedural, high-level access language.

Much of the OODB literature has underesdmated the cridcal importance of high-level data access

languages with expressive power equivalent to a reladonal query language. For example, [ATXI89] pro-

poses that the DBMS offer an ad hoc query facility in any convenient form. We make a much stronger

statement: the expressive power of a query language must be present in every programmadc interface and

it is the only way to access DBMS data. Long term, this service can be provid^ by adding query language

constructs to the muldple persistent programming languages that we discuss fu^er in Proposidon 3.2.

Short term, this service can be provided by embedding a query language in convendonal programming

languages.

Second generadon systems have demonstrated that dramadcally lower program maintenance costs

result from using this approach reladve to first generadon systems. In our opinion, third generadon data-

base systems must not compromise this advance. By contrast, many OODB researchers state that the

appdcadons for which they are designing their systems wish to navigate to desired data using a low-level

procedural interface. Spe^cally, they want an interface to a DBMS in which they can access a specific

record. One or more data elements in this record would be of type "reference to a record in some other col-

lection" typically represented by some sort of pointer to this other record, e.g an object identifier. Then, the

application would dereference one of these pointers to establish a new current record. This process would

be repeated until the application had navigat^ to the desired records.

This navigational point of view is well articulated in the Turing Award presentation by Charles

Bachman [BACH73]. We feel that the subsequent 17 years of history has demonstrated that this kind of

interface is undesirable and should not be used. Here we summarize only two of the more important prob-

lems with navigation. First, when the programmer navigates to desired data in this fashion, he is replacing

the function of the query optimizer by hand-coded lower level calls. It has been clearly demonstrked by
history that a weU-written, well-tuned, optimizer can almost always do better than a programmer can do by
hand. Hence, the programmer will produce a program which has inferior performance. Moreover, the pro-

grammer must be considerably smarter to code against a more complex lower level interface.

However, the real killer concerns schema evolution. If the number of indexes changes or the data is

reorganized to be differently clustered, there is no way fw the navigation interface to automatically take

advantage of such changes. Hence, if the physical access paths to data change, then a programmer must

modify his program. On the other hand, a query optimizer simply produces a new plan which is optimized

for the new environment Moreover, if there is a change in the collections that are physically straed, then

the support for views prevalent in secoiid generation systems can be used to insulate the application from

the change. To avoid these problems of schema evolution and required optimization of database access in

each program, a user should specify the set of data elements in which he is interested as a query in a non-

procedural language.

75 ,

However, consider a user who is browsing the database, i.e. navigating from one record to another.

Such a user wishes to see all the records on any path through the database that he explores. Moreover,

which path he examines next may depend on the composition of the current record. Such a user is clearly

accessing a single recwd at a time algorithmically. Our position on such users is straight-forward, namely

they should run a sequence of queries that return a single record, such as:

select*

from collection

where collectionJcey = value

Although there is little room for optimization of such queries, one is still insulated from required program

maintenance in the event that the schema changes. One does not obtain this service if a lower level inter-

face is used, such as:

dereference (pointer)

Moreover, we claim that our approach yields comparable performance to that available frx)m a lower

level interface. This perhaps counter-intuitive assertion deserves stxne explanation. The vast majority of

current OODB enthusiasts suggest that a pointer be soft, i.e. that its value not change even if the data ele-

ment that it points to is moved This cha^teiistic, location independence, is desirable because it allows

data elements to be moved without compromising the structure of the database. Such data element move-

ment is often inevitable during database reorganization or during crash recovery. Therefore, OODB
enthusiasts recommend that location independent unique identifrers be used for pointers. As a result, dere-

ferencing a points requires an access to a hashed or indexed structure of unique identifiers.

In the SQL representation, the pain

(relation-name, key)

is exactly a location independent unique identifier which entails the same kind of hashed or indexed

lookup. Any overhead associated with the SQL syntax will presumably be removed at compile time.

Therefore we claim that thou is little, if any, perfonnance benefit to using the lower level interface

when a single data element is returned. On the other hand, if multiple data elements are returned then

replacing a high level query with multiple lower level calls may degrade performance, because of the cost

of those multiple calls from the application to the DBMS.

The last claim that is often asserted by OODB enthusiasts is that programmers, e.g. CAD program-

mers, want to perform their own navigation, and therefore, a system should encourage navigation with a

low-level interface. We recognize that certain programmers probably prefer navigation. There woe pro-

grammers who resisted the move firom assembly language to higher level programming languages and oth-

ers who resisted moving to relational systems because they would have a less complex task to do and there-

fore a less interesting job. Moreover, they thought they could do a better job than compile and q}timizers.

We feel that the arguments against navigation are compelling and that some programmers simply require

education.

Therefore, we are led to conclude that all DBMS access should be specified by queries in a non-

procedural high-level access notation. In Proposition 32 we will discuss issues of integrating such queries

with current HLLs.

We now turn to a second topic for which we believe that a step backwards must also be avoided.

Third generation systems will support a variety of type constructors for collections as noted in Proposition

1.1, and our next proposition deals with the specification of such collections, especially collections which

are sets.

PROPOSITION 22: There should be at least two ways to specify collections, one using

enumeration of members and one using the query language to specify membership.

The OODB literature suggests specifying sets by enumerating the members of a set, typically by means of

a linked list or array of identifiers for members [DEWI90]. We believe that this specification is generally

an inferior choice. To explore our reasoning, consider the following example.

ALUMNI (name, age, address)

GROUPS (g-name, composition)

76 .

Here we have a collection of alumni for a particular university along with a collection of groups of alumni.

Each group has a name, e.g. old guard, young turks, elders, etc. and the composition field indicates the

alumni who are membCTS of each of these groups. It is clearly possible to specify composition as an array

of pointers to qualifying alumni. However, this specification will be quite inefficient because the sets in

this example are likely to be quite large and have substantial overlap. More s^iously, when a new person

is added to the ALUMNI collection, it is the responsibility of the application programmer to add the new
person to all the appropriate groups. In other words, the various sets of alumni are specified extensionally

by enumerating their members, and membership in any set is manually deteimined by the application pro-

grammer.

On the other hand, it is also possible to represent GROUPS as follows:

GROUPS(g-name, min-age, max-age, composition)

Here, composition is specified intensionally by the following SQL expression:

selea*

from ALUMNI
where age > GROUPSjnin-age and age < GROUPSjnax-age

In this specification, there is one query for each group, parameterized by the age requirement for the group.

Not only is this a more compact specification for the various sets, but also it has the advantage that set

membership is automatic. Hence, whenever a new alumnus is added to the database, he is automatically

placed in the appropriate sets. Such sets are guaranteed to be semantically consistent

Besides assured consistency, there is one further advantage of automatic sets, namely they have a

possible performance advantage over manual sets. Suppose the user asks a query such as:

select g-name
from GROUPS
where compositionJiame = "Bill”

This query requests the groups in which Bill is a member and uses the "nested dot” notation popularized by
GEM [ZAN183] to address into the members of a set If an array of pointers specification is u^ for com-
position, the query optimizer may sequentially scan all records in GROUPS and then dereference each

pointer looking for BilL Alternately, it might look up the identifier for BUI, and then scan aU composition

fields looking for the identifier. On the other hand, if the intensionai rqnesentation is used, then the above

query can be transformed by the query optimizer into:

selea g-name
from GROUPS, ALUMNI
where ALUMNIjiame * "Bill"

and ALUMNLage > GROUPS.min-age and ALUMNLage < GROUPSjnax-age

If there is an index on GROUPSjnin-age or GROUPS.max-age and on ALUMNIjiame, this query may
substantially outperform either of the previous query plans.

In summary, there are at least two ways to specify collections such as sets, arrays, sequences, etc.

They can be specified either extensionally through coUections of pointers, or intensionally through expres-

sions. Intensionai specification maintains automatic set membership [CODA71], whi^ is desirable in

most applications, ^tensional ^lecifications are desirable only whra there is no structural connection

between the set members or when automatic membership is not desired.

Also with an intensionai specification, semantic transformations can be performed by the optimizer,

which is then free to use whate^ access path is best for a given query, rather than being limited in any

way by pointer structures. Hence, physical representation decisions can be delegated to the DBA where

they bekmg. He can decide what access paths to maintain, such as linked lists or pointer arrays [CARE90].

Our point of view is that both representations are required, and that intensionai representation should

be favored. On the other hand, OODB enthusiasts typic^y recommend only extensional techniques. It

should be pointed out that there was considerable attention dedicated in the mid 1970*s to the adv^tages
of automatic sets relative to manual sets [CODD74]. In order to avoid a step backwards, third generation

systems must favor automatic sets.

77 .

Our third proposition in this section concerns views and their crucial role in database applications.

PROPOSITION 23 : Updatable views are essentiai

We see very few static databases; rather, most are dynamic and ever changing. In such a scenario, when-
ever the set of collections changes, then program maintenance may be required. Clearly, the encapsulation

of database access into functions and the encapsulation of functions with a single collection is a helpful

step. This will allow the functions which must be changed to be easily identified. However, this solution,

by itself, is inadequate. If a change is made to the schema it may take weeks or even months to rewrite the

affected functions. During this intervening time the database cannot simply be "down". Moreover, if

changes occur rapidly, the resources consumed may be unjustifiable.

A clearly better ^proach is to support virtual collections (views). Second generation systems were

an advance over first generation systems in part because they provided some support in this area. Unfor-

tunately, it is often not possible to update relational views. Consequently, if a user performs a schema

modification and then defines his previous collections as views, application programs which previously ran

may or may not continue to do so. Third generation systems will have to do a bettCT job on updatable

views.

The traditional way to support view updates is to perform command transformations along the lines

of [STON75]. To disambiguate view updates, addition^ semantic information must be provided by the

definer of the view. One approach is to require that each collection be opaque which might become a view

at a later time. In this case there is a group of functions through which all accesses to the collection are fun-

neled [ROWE79], and the view definer must perform program maintenance on each of these functions.

This will entail substantial program maintenance as well as disallow updates through the query language.

Alternately, it has been shown [STON90B] that a suitable rules system can be used to provide the neces-

sary semantics. This approach has the advantage that only one (or a small number) of rules need be

specified to provide view update semantics. This will be simpler than changing the code in a collection of

functions.

Notice that the members of a virtual collection do not necessarily have a unique identifier because

they do not physically exist Hence, it will be difficult to require that each record in a collection have a

unique identifier, as dictated in many current OODB prototypes.

Our last point is that data independence cannot be given up, which requires that all physical details

must be hidden from application programmers.

PROPOSITION 2.4: Performance indicators have almost nothing to do with data models

and must not appear in them.

In general, the main determiners of performance using either the SQL or lower level specification

are:

the amount of performance tuning done on the DBMS
the usage of compilation techniques by the DBMS
the location of the buffer pool (in the client or DBMS address space)

the kind of indexing avail^le

the performance of the client-DBMS interface

and the clustering that is performed.

Such issues have nothing to do with the data model or with the usage of a higher level language like SQL
versus a lower level navigational interface. For example, the tactic of clustering related objects together

has been highlighted as an important OODB feature. However, this tactic has been used by data base sys-

tems for many years, and is a central notion in most IMS access methods. Hence, it is a physical represen-

tation issue that has nothing to do with the data model of a DBMS. Similarly, wheth^ or not a system

builds indexes on unique identifiers and buffers database recOTds on a client machine or even in user space

of an application program are not data model issues.

We have also talked to numerous programmers who are doing non traditional problems such as

CAD, and are convinced that they require a DBMS that will support their q^plication which is optimized

for their environmenL Providing subsecond re^nse time to an engineer adding a line to an engineering

drawing may require one or more of the following:

78 .

an access method for spatial data such as R>trees, hb-trees or grid files

a buffer pool on the engineer’s workstation as opposed to a central server

a buffer pool in his application program

data buffered in screen format rather than DBMS format

These are all performance issues for a workstation/server environment and have nothing to do with the data

model or with the presence or absence of a navigational interface.

For a given workload and database, one should attempt to provide the best perft^mance possible.

Whether these tactics are a good idea depends on the specific application. Moreover, they are readily

available to any database system.

3.3. Propositions that Result from the Necessity of an Open System

So far we have been discussing the characteristics of third generation DBMSs. We now turn to the

Application Programming Interface (API) through which a user program will communicate with the

DBMS. Our first proposition states the obvious.

PROPOSITION 3.1: Third generation DBMSs must be accessible from multiple HLLs.

Some system designers claim that a DBMS should be tightly connected to a particular programming

language. For example, they suggest that a function should yield the same result if it is executed in user

space on transient data or inside the DBMS on persistent data. The only way this can happen is for the exe-

cution model of the DBMS to be identical to that of the specific programming language. We believe that

this approach is wrong.

Rrst, there is no agreement on a single HLL. Applications wiU be coded in a variety of HLLs, and

we see no programming language Esperanto on the hcnizon. Consequently, applications will be written in

a variety of programming languages, and a multi-lingual DBMS results.

However, an open DBMS must be multi-lingual for another reason. It must allow access from a

variety of externally written application subsystems, e.g. Lotus 1-2-3. Such subsystems will be coded in a

variety of programming languages, again requiring multi-lingual DBMS support

As a result a third generation DBMS will be accessed by programs written in a variety of languages.

This leads to the inevitable conclusion that the type system of the HLL will not necessarily match the type

system of the DBMS. Therefore, we are led to our next proposition.

PROPOSITION 3.2: Persistent X for a variety of Xs is a good idea. They will all be sup-

ported on top of a single DBMS by compQer extensions and a (more or less) complex run
time system.

Second generation systems were interfaced to programming languages using a preprocessor partly because

early DBMS developers did not have the cooperation of compiler developers. Moreover, there are certain

advantages to keeping some independence between the DBMS language and the programming language,

for example the programming language and DBMS can be independently enhanced and tested. However,

the resulting interfaces were not very firiendly and were characterized as early as 1977 as "like glueing an

apple on a pancake”. Also, vendors have tended to concentrate on elegant interfaces between their 4GLs
and database services. Obviously it is possible to provide the same level ci elegance fm general purpose

programming languages.

First, it is crucial to have a closer match between the type systems, which win be facilitated by Pro-

position l.I. This is the main problem with current SQL embeddings, not the aesthetics of the SQL syntax.

Second, it would then be nice to aUow any variable in a user’s program to be optionaUy persistent In this

case, the value of any persistent variable is remembered even after the program terminates. There has been

considerable recent interest in such interfaces [LISK82, BUNE86].

In cffder to perform weU, persistent X must maintain a cache of data elements and records in the

program’s address space, and then carefully manage the contents of this cache using some replacement

algorithm. Consider a user who declares a persistent data element and then increments it 1(X) times. With a

user space cache, these updates will require small numbers of microseconds. Otherwise, 1(X) calls across a

79 .

protected boundary to the DMS will be required, and each one will require milliseconds. Hence, a user

space cache will result in a performance improvement of 100 - 1000 for programs with high locality of

reference to persistent data. The run time system for persistent X must therefore inspect the cache to see if

any persistent element is present and fetch it into the cache if not. Moreover, the run time system must also

simulate any types present in X that are not present in the DBMS.

As we noted earlier, functions should be coded by including calls to the DBMS expressed in the

query language. Hence, persistent X also requires some way to express queries. Such queries can be

expressed in a notation appropriate to the HLL in question, as illustrate for C-h- by ODE [AGRA89]. The

run-time system for the HLL must accept and process such queries and deliver the results back to the pro-

gram.

Such a run time system will be more (or less) difficult to build depending on the HLL in question,

how much simulation of types is required, and how far the query language available in the IG.L deviates

from the one available in the DBMS. A suitable run-time system can interface many HLLs to a DBMS.
One of us has successfully built persistent CLOS on top ofPOSTGRES using this approach [ROWE90].

In summary, there will be a variety of persistent X*s designed. Each requires compiler modifications

unique to the language and a run time system particular to the HLL. All of these run time systems will

connect to a common DBMS. The obvious question is "How should queries be expressed?" to this common
DBMS. This leads to the next proposition.

PROPOSITION 33 : For better or worse, SQL is intergalactic dataspeak.

SQL is the universal way of expressing queries today. The early commercial OODB’s did not recognize

this fact, and had to retrofit an SQL query system into their product Unfortunately, some products did not

manage to survive until they completed the job. Although SQL has a variety of well known minor prob-

lems [DATE84], it is necessary for commercial viability. Any OODB which desires to make an impact in

the marketplace is likely to find that customers vote with their dollars for SQL. Moreover, SQL is a rea-

sonable candidate for the new functions suggested in this paper, and prototype syntax for several of the

capabilities has been explored in [BEEC88, ANSI89]. Of course, addition^ query languages may be

appropriate for specific applications or HLLs.

Our last proposition concerns the architecture which should be followed when the application pro-

gram is on one machine interfaced to a DBMS on a second server machine. Since DBMS commands will

be coded in some extended version of SQL, it is certainly possible to transmit SQL queries and receive the

resulting records and/or completion messages. Moreover, a consortium of tool and DBMS vendors, the

SQL Access Group, is actively working to define atKl prototype an SQL remote data access facility. Such a

facility will allow convenient interoperability between SQL tools and SQL DBMSs. Alternately, it is pos-

sible to communicate between client and server at some lower level interface.

last proposition discusses this matter.

PROPOSITON 3.4: Queries and their resulting answers should be the lowest level of com-
munication between a client and a server.

In an environment where a user has a dedicated workstation and is interacting with data at a remote server,

there is a question corx:eming the protocol between the workstation and the server. (X)DB enthusiasts are

debating whether requests should be for single reoHxis, single pages or some other mechanism. Our view

is very simple: expressions in the query language should be the lowest level unit of communication. Of
course, if a collection of queries can be packaged into a fimction, then the user can use a remote procedure

call to cause function execution on the server. This feature is desirable because it will result in less than

one message per query.

If a lower level specification is used, such as page or record transfers, then the protocol is fundamen-
tally more difficult to specify because of the increased amount of state, and machine dependencies may
creep in. Moreover, any interface at a lower level than that of SQL will be much less efficient as noted in

piAGM86, TAND88]. Therefore, remote procedure calls and SQL queries provide an appropriate level of
interface techndogy.

80 .

4. SUMMARY
There are many points upon which we agree with OODB enthusiasts and with [ATKI89]. They

include the benefits of a rich type system, functions, inheritance and encapsulation. However, there are

many areas where we are in strong disagreement First, we see [ATKI89] as too narrowly focused on

object management issues. By contrast, we address the much larger issue of providing solutions that sup-

port data, rule and object management with a complete toolkit, including integration of the DBMS and its

query language into a mult-lingual environment As such, we see the non-SQL, single language systems

proposed by many OODB enthusiasts as appealing to a fairly narrow market

Second, we feel that DBMS access should onlu occur through a query language, and nearly 20 years

of history convinces us that this is conect Physical navigation by a user program and within functions

should be avoided. Third, the use of automatic collections whenever possible should be encouraged, as

they offer many advantages over explicitly maintained collections. Foi^, persistence may well be added

to a variety of programming languages. Because there is no programming l^guage Esperanto, this should

be accomplish^ by changing the compiler and writing a language-specific run-dme system to interface to

a single DBMS. Thoefore, persistent programming languages have little to do with the data model. Fifth,

unique identifiers should be either user-defined or system-defined, in contrast to one of the tenets in

[ATKI89].

However, perhaps the most important disagreement we have with much of the OODB community is

that we see a natural evolution from current relational DBMSs to ones with the capabilides discussed in

this paper. Systems firom aggressive reladonal vendors are faithful to Tenets 1. 2 and 3 and have good sup-

port for proposidons 13, 1.4, 13, 2.1, 23, 2.4, 3.1, 33 and 3.4. To become true third generadon systems

they must a^ inheritance, addidonal type constructors, and implement persistent programming languages.

There have been prototype systems whi(± point the way to inclusion of these capabilides.

On the other hand, current systems that claim to be object-oriented generally are not faithful to any

of our tenets and support proposidons 1.1 (partly), 1.2, 13 a^ 3.2. To become true third generadon sys-

tems, they must add a query language and query optimizer, a rules system, SQL client/server support, sup-

port for views, and persistent programming languages. In addidon, they must undo any hard coded

requirement for UIDs and discourage navigadon. Moreover, they must build 4th generadon languages,

support distributed databases, and tune their systems to perform efficient data management

Of course, there are significant research and development challenges to be overcome in satisfying

these propositions. The design of a persistent programming language for a variety of existing IHXs
presents a unique challenge. The inclusion in such languages of pleasing query language constructs is a

further challenge. Moreover, both logical and physical databa.se design are considered challenging for

current reladonal systems, and they will get much more difficult for systems with richer type systems and

rules. Database design methodologies and tools will be required to assist users in this area. Optimization

of the execution of rules poses a significant challenge. In addidon, tools to allow users to visualize and

debug rule-oriented applications are crucial to the success of this technology. We encourage the research

community to take on these issues.

REFERENCES

[AGRA89]

[ANON85]

[ANSI89]

[ATKI89]

[BACH73]

AgrawaU R. and Gehani, G., "ODE: The Language and the Data Model,” Proc.

1989 ACM'SIGMOD Conference on Mangement of Data, Portland, Ore. June

1989.

Anon et aL, ”A Measure of Transaction Processing Power,” Datamation, 1985.

ANSI-ISO Committee, ”Working Draft, Database Languages SQL2 and SQL3,”

July 1989.

Atkinson, M. eL aL, The Object-Oriented Database System Manifesto,” ALTAIR
Technicai Report No. 30-89, GIP ALTAIR, LeChesnay, France, Sept 1989, also

in Deductive and Object-oriented Databases, Elsevere Science Publishers,

Amsterdam, Netherlands, 1990.

Bachman, C., The Programmer as Navigator,” CACM, November 1973.

81 .

[BEEC88]

[BERN90]

[BUNE86]

[CARE88]

[CARE90]

[CHAN89]

[C0DA71]

[CODD74]

[COPE84]

[DADA86]

[DATE84]

[DATE86]

[DEW190]

[HAGM86]

[KIM90]

[USK82]

[0SB086]

[ROWE79]

[ROWE90]

[STON75]

[STON83]

Beech, D., "A Foundation for Evolution from Relational to Object Databases,"

Proc. Conference on Extending Database Technology, Venice, Italy, April 1988.

Bernstein, P. eL al., "Implementing Recoverable Requests Using Queues", Proc.

ACM SIGMOD Conference on Management of Data, Atlantic City, NJ., May
1990.

Buneman, P. and Atkinson, M., "Inheritance and Persistence in Programming

Languages," Proc. 1986 ACM-SIGMOD Conference on Management of Data,

Washington, D.C., May 1986.

Carey, M., et. al., "A Data Model and Query Language for EXODUS," Proc. 1988

ACM-SIGMOD Conference on Management of Data, Chicago, 111., June 1988.

Carey, M., et al, "An Incremental Join Attachment for Starburst," (in preparation).

Chang, E. and Katz, R., "Exploiting Inheritance and Structure Semantics for

Effective Clustering and Buffering in an Object-oriented DBMS," Proc. 1989

ACM-SIGMOD Conference on Management of Data, Portland, Ore., June 1989.

CODASYL Data Base Task Group Report, April 1971.

Codd, E. and Date, C., "Interactive Support for Non-Programmers: The Relational

and Network Approaches," Proc. 1974 ACM-SIGMOD Debate, Ann Arbor,

Mich., May 1974.

Copeland, G. and Maier, D., "Making Smalltalk a Database System," Proc. 1984

ACM-SIGMOD Conference on Management of Data, Boston, Mass., June 1984.

Dadam, P. et al., "A DBMS Prototype to Support Extended NF^ Relations: An
Integrated View of Flat Tables and Hierarchies," Proc. 1986 ACM-SIGMOD
Conference on Management of Data, Washington, DC, 1986.

Date, C., "A Critique of the SQL Database Language," ACM SIGMOD Record

14(3), November 1984.

Date, C., "An Introduction to Database Systems," Addison-Wesley, Reading,

Mass., 1986.

Dewitt, D. CL al., "A Study of Three Alternative Workstation-Servo- Architectures

for Object Oriented Database Systems," ALTAIR Technical Report 42-90, Le
Chesnay, France, January 1990.

Hagmann, R. and Ferrari, D., "Performance Analysis of Several Back-End Data-

base Architectures," ACM-TODS, March 1986.

Kim, W., "Research Directions in Object-orient^ Databases," MCC Technical

report ACT-OODS-013-90, MCC, Austin, Tx., January 1990.

Liskov, B. and ScheiHer, R., "Guardians and Actions: Linguistic Support for

Robust Distributed Programs," Proc. 9th Symposium on the Principles of Pro-

gramming Languages, January 1982.

Osborne, S. and Heaven, T., “The Design of a Relational System with Abstract

Data Types as Domains,** ACM TODS, Sept 1986.

Rowe, L. and Shoens, K., "Data Abstraction, Views and Updates in RIGEL,"

Proc. 1979 ACM-SIGMOD Conference on Management of Data, Boston, Mass.,

May 1979.

Rowe, Lawrence, "The Design ofPICASSO," (in preparation).

Stonebraker, M., "Implementation of Integrity Constraints and Views by Query

Modification," Proc. 1975 ACM-SIGMOD Conference on Management of Data,

San Jose, May 1975.

Stonebraker, M., "Document Processing in a Relational Database System," ACM
TOOIS, April 1983.

82 .

[STON86] Stonebraker, M., "Inclusion of New Types in Relational Data Base Systems,"

Proc. Second International Conference on Data Base Engineering, Los Angeles,

Ca., Feb. 1986.

[STON90] Stonebraker, M., eL al., "The Implementation of POSTGRES," IEEE Transactions

on Knowledge and Data Engineering, March 1990.

[STON90B] Stonebraker, M. eL aL, "On Rules, Procedures, Caching and Views in Data Base

Systems," Proc. 1990 ACM-SIGMOD Conference on Management of Data,

Atlantic City, NJ., May 1990.

[TAND88] Tandem Performance Group, "A Benchmark of NonStop SQL on the Debit Credit

Transaction," Proc. 1988 ACM-SIGMOD Conference on Management of Data,

Chicago, ni., June 1988.

[ZANI83] Zaniolo, C., "The Database Language GEM," Proc. 1983 ACM-SIGMOD Confer-

ence on Management of Data, San Jose, Ca., May 1983.

[ZDON90] Zdonik, S. and Maier, D., Tundamentals of Object-oriented Databases," in Read-

ings in Object-oriented Database Systems, Morgan-Kaufman, San mateo, Ca.,

1990.

83 .

ANSI OODBTG Workshop
Position Paper
Objectivity, Inc.

May 22, 1990

by
Leon Guzenda

Andrew E. Wade, drew@objy.com

ABSTRACT

Objectivity, Inc., markets an engineering database management system that is

an OODBMS. We arc committed to the idea that standards are beneficial for all

players in the industry. We have played active roles in several standardization

effons, including the CAD Framework Initiative (CFI). This proposal discusses

the motivation for a standardization effort, suggests a direction for its development,

discusses cooperation with other such efforts, and offers some concrete starting

suggestions.

CONTENTS

1 . What to Stardardize; What not to Standardize

2. How to Approach Standardization

2. 1 Areas for S tandards

2.2 Organizations for Standards

3. Philosophy

4. Object Model

4.1 Object Identity

4.2 Complex Objects, Associations, Composite Objects
4.3 The State of an Object

5. DDL

6. Transaction Model

7. DML

8. The Physical Storage Model

9. Data Exchange

10. Processing Queries

1 1. Compliance with the standard

12. Summary

Objectivity OODBTG
84

3/30/90

1. What to Standardize; What not to Standardize

Objectivity markets an engineering database management system that is an OODBMS. We
firmly believe that our customers want increased standardization, and that it is in the best

interest of vendors to encourage and support such standards. To this end, we have

pardcipated in many standards development organizations, including: the CAD Framework
Initiative (CFI), where we are chaner members and chair the Storage Management Working
Group, OSF, X/Open, ANSI OODBTG, and OMG.

What is the motivation for standards? In a word, interoperability. End users would like to

mix and match applications, integrate multiple applications on the same databases, and
communicate from one database to another. Application developers would like to have

some ability to move from one DBMS vendor to another, at least without completely

restarting. With such interoperability, DBMS vendors see the potential for more rapid

market growth and can focus on each delivering their best efforts in the underlying DBMSs
supporting the standards.

What should be standardized? To achieve this inieroperability, the area to be standardized

is the interface between the applications and the DBMS. This allows applications to be

developed with some freedom to move from one DBMS to another. In addition, the

standard should provide some means to communicate and transfer data from one DBMS to

another. This allows the integration of diverse applications.

What should not be standardized? As much freedom as possible should be left to the

DBMS developers to encourage on-going evolution and improvement of the technology

and the products. In particular, the internals of the DBMS should not be standardized No
attempt should be made to impose internal architecture, or low-level design and
implementation details, or data structures used internally or on disk, or internal object

identifier (OID) structure, etc. The measuring stick applied should be, simply: what is the

least that can be done to achieve interoperability?

The result of such a standardization effort should be incremental. Some basic, common
ground can be chosen first, concrete agreements made based on that, and then, over time,

this can be expanded to cover more and more territory as appropriate, and hence become
more and more useful.

2, How to Approach Standardization

Even with the above restrictions, there are many areas to be explored for standardization.

Here we discuss two aspects in approaching standardization: areas for standards and
orgaitizations for standards.

2.1. Areas for Standards

The following diagram (Hg. 1) is a simplified view of the areas for standardization. It can
also serve as a road map for how to proceed.

Objectivity OODBTG
85 .

3/30/90

Characteristics of Objects

DDL

(Structure and

Behavior)

N

Qperations

1
DM.

I
Query

Semantics

I
Physical

Model

Generic

Classes

Query Syntax

Interchange &
Interworking Specialized

Class

Libraries

Verification Suite

Figure 1. Areas for Standardization

The first area indicated covers the first step in an object model; viz., what is an object and
what characteristics and behaviors must it support

The next two areas are the traditional DBMS interfaces: DDL, or Data Definition

Language, and DML, or Data Manipulation Language. For our purposes, we interpret

these broaidly. DDL, then, includes any and all mechanisms to define new object classes,

both structures and methods, and by any means, whether dynamic or static, programmatic,

interactive, or graphicaL Similarly, we interpretDML broadly as any means to directly

access, create, delete, read, write, etc., objects, including invocation of methods, lookup
via indexing, triggers, etc.

The next level includes three areas: Query, Physical Model, and Generic Qasscs. The
term "query” is sometimes used to mean interactive interface. Since we are interpreting

broadly terms like DML, DDL, and Query to include programmatic as well as interactive

interfaces, we use the traditional database meaning for query: a high-level associative

access mechanism. Certainly the relational SQL model should be considered as a starting

point Although it may require extension, we should strive to build on what is there. The
semantics should be defin^, followed by syntax. The Physical Model should include

Objectivity OODBTG
86 .

3/30/90

issues like clustering and DB Administration. The Generic Qasses should include support

for standard database functionality, including security and transactions.

Interchange and Interworking include DBMS-to-DBMS communication mechanisms as

well as mechanisms to move data from one database to another (exporttoport). Inter-

DBMS gateways might include query-level, such as the extensions to SQL discussed

above, and lower-level, such as the new Remote Database Access (RDA) protocol.

Specialized Class Libraries raise the system one level higher to suppon various specific

data models for different domains. Examples include EDIF (Electrical Design Interchange

Format), PDES (Product Data Exchange Standard), the CFI Design Data Representation

(DDR).

2.2. Organizations for Standards

There are many on-going efforts related to the above areas. It is important that these

different groups cooperate, not only so that they can efficiently leverage each other's

efforts, but also so that they converge toward one standard.

Ideally, each such group will focus on some portion of the overall effort, sharing and
cooperating as needed. It remains to be seen, in some cases, exactly what the goals of the

efforts are and where the overlap exists. A practical way to proceed would be for these

organizations, perhaps under the auspices of ANSI, to share where each of them is headed,

what area they see as most critical for their own needs, and what progress they've made to

date.

Though this is not intended to be a complete list, here are some of the ongoing efforts and
the areas where they are currently working:

• CAD Framework Initiative (CFI) Storage Manager (object charaaeristics, DML,
DDL)

• CFI Design Data Representation (application data model)

• CFI Design Data Management (versioning and configuration management, etc.)

• Object Management Group (OMG) (objea reference model, etc.)

• OODBTG (object reference model)

• Object-Oriented Database Manifesto (Atkinson, et aL) (definition ofOODBMS)
• OSF (OS, distributed computing facility, architecture-neutral distribution format.

Motif, etc.)

• X/Open (applications environment, internationalization, endorses POSIX)

• CALS (DOD) (data interchange and sharing, PDES)

• PDES (^plication data noodel)

• ISO (OSI remote database access protocol)

• Workshop on Objea-Oriented Design (WOOD) (terminology definition)

• Various ANSI efforts are related, including SQL, C, etc.

Objectivity OODBTG
87 .

3/30/90

3. Philosophy

We make recommendations in these areas:

• Pragmatic, Iterative Approach

• Cooperation of Diverse Standards Efforts

• Environment to be Supported

It is amply clear that the entire area of standardization is complex. Yet, the need is strong.

For this reason, and also because of the need to check evolving standards against real-

world applications, we recommend a pragmatic approach: seek a useful, non-controversial

subset, agree on common ground, issue this subset as a step forward towards the complete

standard, and then iterate. In each step, then, vendors can support the standard, users can

use it, practical feedback can be obtained, and then the work can extend to the next step.

This pragmatic, iterative approach makes more sense for some organizations than for

others. Some may wish to wait for more complete results before issuing support, which is

fine. This is one way in which different organizations can play different roles.

Also, different organizations can focus on different areas of standardization. For example,

ANSI has an active SQL effort, so perhaps that is the place to pursue query standards.

Also, ANSI may be able to play a role in coordinating the different on-going efforts.

The environment in which the OODBMS standard exists is a rich one. To be successful

and widely used, it must support a wide variety of hardware platforms and operating

systems in a distributed, heterogeneous network. Similarly, it must support a wide variety

of languages (C-h-, C, Ada, Fortran, etc.) It should avoid defining new languages, but

rather use existing ones. Also, it must cooperate synergistically with related applications,

including Computer-Aided Software Engineering (CASE). Finally, it will best serve the

industry at large if it can be supported in an incremental, perhaps layered, approach,

allowing vendors to support various areas or levels of the standard as appropriate.

4. Object Model

Much has been written on the subject of reference models for OODBMSs. The ANSI
OODBTG has made significant progress on their draft OMG is in the early stages of
theirs. WOOD produced results, but never published them. Perhaps most universally

recognized is the work of the Objea-Oriented Database System Manifesto (Atkinson, et

aL, The FirstImemadonal Conference on Deductive and Objea-Oriented Databases
Proceedings^ December 4-6, 1989, Kyoto Research Park, Kyoto, Japan). We endorse
this, and support such efforts as useful in providing an intellectual fiinework for discourse

and common terminology.

4.1 Object Identity

The concepts that must be agreed upon to begin our pragmatic, iterative process are really

quite few. Principally, we must agree on the concepts of objea identity

y

or uitique

existence of an object regardless of its state, and objea identifier (OID)y a means by which
to access such an object uniquely. We need not, and should not, attempt to standardize the

internal format of this ODD.

Objectivity OODBTG
88 .

3/30/90

4.2 Complex Objects, Associations, Composite Objects

We propose, further, that objects may contain rich structure and methods. The methods
should approach arbitrary flexibility in the langmges used. Similarly, the structure should

allow as much flexibility as possible. The applications interested in such systems demand
that objects may contain multiple dynamically varying length components, forming

complex objects. To support ±e complexity of application data structures, we ne^ a

concept of associations

^

or direct inter-object linlb. Groups of such associated objects can

be composed to form composite objectSy which themselves aa as objects with methods
(e.g., delete) operating on them.

Hnally, as a special case of composite object, a container comprises objects (simple,

complex, or composite), with each object residing within a single container. Associated

objects may provide different views for the applications.

4.3 The State of an Object

An object which is currently available to a process is said to be "Open.” Its inverse is

"Clos^.” This is just one ofmany states. The needs of the application, the DML and the

DBMS utilities should all be addressed and this adds some unusual states. For instance,

"Deleted" is of no interest outside of the Storage Manager, which may have to resurrect it if

the transaction fails. It is included because some part of the Reference Model or

compliance tools may need to mention this state. There are also items such as Objea Size

which are omitted because they are probably just generic methods. Here is an initial list of
states:

• Open or closed

• Transient or persistent

• Simple or complex

• Individual or composite

• Unique or versioned [linear or branching]

• Named or anonymous

• Local or remote

• Original or replica [which is checked-out]

• Vulnerable or backed up [a special type of replica until it is restored]

• Online or archived [hc^fiilly, this is well hidden]

• Container or containee

• Protected or public [security/privacy]

• Encrypted or clear

• Compressed or expanded

5. DDL

We would prefer not to define a new Object Definition Language, although an existing

standard, such as PDES/STEP EXPRESS, might be acceptable. We would like to sec

individual ANSI language implementations in suppon of the Reference Model and suggest

Objectivity CX)DBTG

89 .

3/30/90

that C-H- with some enhancements could be a good language to start with [despite its not

having ANSI status at this time]. The DDL must be capable of expressing inter-object

associarions. We would also like to see some generic Class Definition closes in the .

Reference Model. This should make it easier to browse and insert definitions dynamically

in a system containing DBMSs from many vendors. Ideally, the user should be able to

view a definition in a form appropriate to the language to be used to access an objea of that

class.

Database standards have tended to ignore the issue of schema migration. The net result is

that application vendors and end users have to make ad hoc decisions on how and when to

introduce schema changes. If end users are to be able to maintain applications software,

DBMS software, object class libraries and objects from many sources then this issue

should be addressed as an integral part of the Reference Model. At a bare minimum it

should cover

• Versioning of object definitions

• Schema security [privacy], hopefully as a subset of object security

• Generic methods for upgrading object definitions and existing objects

6. Transaction Model

The standard should attempt to meet the diverse requirements of both commercial and
engineering data processing. It should address:

• Atomic short and long transactions with commit and abandon capabilities

• Nested and cooperating transactions

• Transient and persistent locks

• Flexible granularities for locking and enforcing transaction semantics

7. DML

The minimum agreement on DML needed to go forward would include create/delete,

open/close, and read/writc. Various language bindings could be defined. We propose both

C and C-H-. While C-h- provides more power, elegance, and flexibility, C is widely used.

C-H- efforts might be coordinated through an ANSI committee on tiiat language. C would
be a traditional procedural interface, and could be pursued in paralleL

We suggest that at least the following are required:

• New, open, close, delete, copy, validate, upgrade, iterate, export, import,

archive, online, backup, diagnose, restore, lock, unlock, encrypt, decrypt,

compress, expand, name, protea and output

• Methods for connecting to multiple DBMS servdees and also for handling

transaction semantics

• Methods for administering the physical layer of die database, e.g. Move

Objectivity OODBTG
90 .

3/30/90

There should be generic classes to support the following [at minimum]:

• Objea definition

• User and workgroup definition

• Security [e.g. access control lists]

• Basic versioning semantics, such as genealogy and audit trails

• Naming services [logical and physical]

8. The Physical Storage Model

CODASYL defines a physical storage model but SQL docs not We recommend defining a

physical storage model using either POSDC or X/O^n CAE terminology. This will not

unduly constrain suppliers. It will make it much easier for the reference model to:

• Specify basic clustering capabilities

• Reconcile system namespace issues [e.g. filename]

• Provide guidance on database administration facilities.

Note that there is no constraint on the way in which objects map into this physical model.

An implementor should be able to use a ctisk per objea [extreme case!] and still be
compliant At minimum, the model should include processes, volumes and files. The OSF
Distributed Computing Facility might provide a complete solution. There should be a name
server for correlating logical names and their physied counterparts. OSI X.500 might be

useful here.

9. Data Exchange

Defining methods in a manner which will allow users to export data, metadata, and
methods to other sites without having to know the platforms and languages in use at those

sites is a great challenge. The heterogeneity issues are weU understood as far as the data is

concerned. The language issue is more difticulL What use is an objea with embedded
C++ methods if the recipient only has ADA? Maybe the OSF Architecture Neutral

Distribution Format will be of some use here.

The interchange of information between homogeneous DBMSs is relatively straightforward

in either loosely coupled [export^nq>ort] or closely coupled [bridge or gateway] modes.
The Standard should defi^ ±e export^mport protocol Spe^ attention must be paid to

security issues. Qose coupling stould be achieved via a regularDML interface.

Exchanging data between heterogeneous DBMSs is more difficult We believe that this

Task Group should collaborate with the ISO OSI Remote Database Access Protocol Task
Group to enhance their Draft Standard to coverOODBMS requirenaents.

A DBMS is of litde use if end users find that it is awkward or impossible to build databases

using software from a variety of vendors. The standard should address the following

issues:

Objectivity OODBTG
91 .

3/30/90

• Vendors must be able to deliver both public and proprietary object classes without

fear of disclosing trade secrets. For example, the data structures needed to

support a viable solid modeler were closely guarded secrets in the early stages of

the development of the technology.

• Schema and class name conflicts must be easily resolvable at the end user site.

An alternative would be to use a global Name Server to avoid ambiguities.

• The interfaces to standard database administration tools should be defined. This

will help avoid problems in networks involving DBMSs from multiple vendors.
10.

Processing queries

It may be possible to enhance SQL2 to the point where it supports queries on engineering

data types. However, it will also need enhancement to cope with the semantics of single

and mititiple inheritence. Regardless of the outcome, we recommend that the filtering

capabilities of the query language be used to qualify the initial conditions of iterators in the

regular DML.

Some languages [e.g. ALGOL] failed to gain universal approval in pan because they

ignored the issues of formatting output As objects will hold voice, images and text in

addition to conventional data types it is important to define the standard output methods for

the generic classes. These should include output in Office Document Architecture format

and possibly PEX or some equivalent 3D format.

11.

Compliance with the standard

The Standard may allow multiple levels of compliance, e.g. there might be a subset which
is adequate for supporting conventional applications; or a C-h- subset The Task Group
should communicate with interested parties within the industry to establish a suite of tests

which will enable vendors to certify their products as compliant with the standard-

12.

Summary

A standardized OODBMS interface protocol (or set of protocols) need not, indeed should

not, dictate a DBMS’s internal implementation but could greatly facilitate interoperability of

applications across different vendors' platforms both today and in the future. Ideally, such
a standard would address the objea n^el, DDL, transaction model, DML, physical

storage model, data exchange, and query processing. In addition, the best approach to

OODBMS standmds development would be pragmatic and iterative.

Objectivity is committed to cooperating in such standards efforts, and offers to participate

by contributing to the effort

Objectivity OODBTG
92 .

3/30/90

93

The Object Standardization Challenge

William Kent

HewltiUPackard Laboratories

1501 Page Mill Road

Palo AHo, CA 94303

1 Introduction

The challenge for object standardization, as in other areas, is how to reconcile diverse concepts

of objects and object orientation. Many people can tell you in no uncertain terms what “object”

and “object orientation” mean. It’s made the Sunday supplements in Silicon Valley [Pollack], and

there are manifestos [ABDDMS, ADBMS]. Yes, they all know, but they don’t agree.

Titles that were considered for this paper include

• “The Object Paradigm” or “The Object Paradox”

• “The Object Model” or “The Object Muddle”

• “The Object Mystery”

• “The Hunt for the Real Object”

There are different object concepts rooted in the areas of user interfaces, programs, and data;

some of these in turn subdivide into smaJler camps. The vairious views seem to have much in

common, though we’re not quite sure exactly what; there are several efforts under way trying to

figure that out [OODBTG, OMG, Kent90b]. There are also apparent differences, which we hope

aren’t entirely irreconcilable.

This diversity of opinion is at a very coarse-grained level, concerned with the fundamental nature

of what object orientation is. Other issues, like various notions of types, classes, polymorphism,

inheritance, configuration management, complex objects, multimedia data, and so on, are fine

points, almost lost in the noise among the deeper questions.

The outcome seems, at the moment, that consensus will emerge on an object paradigm that

expresses the essential behavior of object orientation. It is less likely that consensus will emerge

on the exact meaning of the term “object” within this paradigm; it will be defined by arbitration

or fiat.

2 Three Perspectives

2.1 User Interfaces

From the point of view of user interfaces, object orientation seems to mean the use of iconic graphic

interfaces. “Object” might refer to the icons themselves, or to the things they represent, but the

key point is that such graphic interfaces are the crux of object orientation.

The other viewpoints don’t seem to insist on auiy particular style of user interface.

°©1990 Hewlett-Packard Company ,

94 .

2.2

Program Objects

From the software development perspective, an object is essentially a program. Object-oriented

programming emerged as a technique for constructing programs from reusable modules of code,

i.e., objects. In a sense, it brings new discipline to the notion of subroutine libraries. In this

view, objects are active things that communicate with each other using well-defined standardized

protocols. Functionality is modularized, so that (a) common functions are provided in a common
way, aind (b) they only need to be implemented once.

For example, a program that prints documents would not include the code to format the documents.

That would be implemented separately in a formatting program which could be invoked not only

by the print program, but perhaps also by a graphic document browser. The printer and the

browser would request the formatting service in a standard way. If a new program, such as a

fzix transmitter, also needed a formatting capability, it could call on the existing progrcim without

having to re-implement the service. The formatting program need only be written once, cutting

development costs. Future maintenance is also more eflScient and economical, since repairs and

enhancements only need be made to one program rather than in gJl the programs that need to

have documents formatted.

The formatting program has a certain interface by which it may be invoked, certain arguments

which it will accept, and certain results that will be returned. Encapsulation, the discipline of

modularization, dictates that formatting be done only in observance of these conventions. No
external user or program may be aware of or depend on the internal mechanisms of the formatter.

Internal implementation of the formatter may thus be freely altered without impacting ciny users,

so long as the conventions are preserved.

Such program objects are the building blocks of reusable code from which new applications are

constructed.

2.3

Data Objects

From a data point of view, objects are the things such programs deal with, e.g., documents or

printers.

Only certain services can be requested on certain objects. Forbidding certain operations protects

the encapsulation of objects by disallowing access to the detailed formats of their implementa-

tion. For example, if some documents are implemented by storing them under a relational storage

manager, external users are not allowed to operate on the underlying tables and tuples; the con-

figurations might change in different implementations.

Data objects can be grouped into “classes” (or “types”) of things on which the same services can

be requested. For example, documents are characterized as the class of things which can be edited,

formatted, and printed.

Data objects are created by end users (directly via user interfaces or indirectly via application

programs), auid there tend to be many of them. They have distinct identity; each one created is

distinct from all others.

Data objects are characterized as being transient or persistent. When the execution of a program

finishes, the transient objects it created disappear, while the persistent ones persist.

2.4

They’re the Same Thing

There is a viewpoint which tries to unify the notions of program object and data object, saying they

are the same thing. In effect, each document is considered to “contain” its own editor, formatter,

and printer. Such objects aire spoken of in an active way. One asks a document to print itself; if

the document contains diagram objects, then the document tisks the diagrzims to print themselves

95 .

during this process.

This metaphor does provide a convenient explanation of “polymorphism”, or “generic operations”.

In spite of the desire to isolate the printing or formatting capability into a single program each,

it often happens that different kinds of documents need different kinds of printing or formatting

programs. Different implementations may be needed for documents with simple text, documents

with multiple fonts, documents with graphics, and documents with color. Or there may be different

implementations for documents produced by different word processors. Generic operations shield

external users from these distinctions, by requiring that the printing and formatting services be

requested for all documents in a uniform way. A user simply requests that a document be printed

or formatted, without concern for the alternative implementations. The appropriate programs

(also called methods) will be invoked for each document.

A common way to explain this is to say that each document contains its own printing and formatting

methods. A request to print or format a particular document invokes its own printing or formatting

method.

However, it is common knowledge that object systems are rarely implemented in this way. Classes

of objects axe further partitioned into subclasses according to their different implementations. Each

edit, format, and print program is typically kept in one place, associated with the corresponding

object class. Space isn’t allocated for a copy of these programs each time a new document is

created.

The utility of the unity metaphor as an explanatory device is uncertain. It’s not likely that many
people will really beheve that each memo they write contains a copy of WordStar, or that eax:h

spreadsheet contains a copy of Lotus- 1-2-3.

The unity of the one and the many seems a mystery, difficult to reconcile with other characteristics

of program and data objects.

Program objects are typically created by system or application developers; data objects by end

users.

Software development methodology urges singularity of programs; if at all possible, there should

only be one print program cind one formatting program. In contrast, there naturally are multiple

occurrences of data objects.

To the extent that a program object has an identity, it is distinct from any of the data objects it

can operate on. The print program has a different identity from any of the documents it can print.

In the programming world, transience is taken to be the default for data objects, but not for

program objects: they tend to survive their execution (deadly pun).

3 Who Gets the Message?

A request to print a document is portrayed in many object models as a message to an object. Which
object? If we are thinking in terms of program objects, it must be to the print program. But that’s

not consistent with generic operations. The message must presumably go to the document, in order

to pick the right print method for that document.

The message metaphor, closely linked to the unity metaphor, is useful up to a point. But if we let

ourselves be aware that data objects rarely contain their own individual copies of programs, then

we know that what “really” happens is that the appropriate print method is chosen on the basis of

the class to which the document belongs. By whom? Well, there is a “system” in the background

taking care of such things as parsing messages, sending them to the right places, returning results,

and so on. We can just as easily say that the system fields the message, choosing the appropriate

method based on the class of the document.

The message metaphor is difficult to sustain if we don’t just ask to print a certain document, but

96 .

ask that it be printed on a certain printer. To whom is the message addressed? Are we asking

the document to print itself on the specified printer, or the printer to print a specified document?

Why should it matter?

The unity metaphor is similarly strained. Suppose there are different kinds of printers, in addition

to different kinds of documents. We might have different methods for printing different kinds of

documents on different kinds of printers, and the choice of method depends on both the document
and the printer. Should we still say that the method is “in” the object? In the document or in the

printer? Why?

An alternative to the messaging metaphor is a general operator paradigm, in which a service is

requested as an operation with one or more operands. The appropriate method is chosen by the

system, based on the classes of the operands. A method may be jointly owned by one or more
classes, corresponding to its operands. The messaging paradigm can be treated as a special case,

in which the “recipient” is considered to be the first (or only) operand.

4 Data Objects: Structure vs. Behavior

Where is data in all of this?

There are two approaches to data objects: structural and behavioral.

The structural approach continues the data modeling tradition of describing data in spatial terms,

using visualizable formats such as tables or hierarchies. Structural object orientation is largely

characterized by more complex structures than prior models, usually defined as recursive applica-

tions of constructors for such things as sets, lists, and tuples (or records). The goal is to provide

direct support for the more complex structural relationships observed in real-life objects.

In the behavioral view, information is defined entirely in terms of the results of operations per-

formed on objects. Documents are characterized, for example, by the fact that it is possible to

ask to know who is the author of a document. Another operation which changes the author of a

document is described as altering the results of the author request, rather than in terms of stored

data formats. The content or state of objects can be characterized as the results returned by a

certain set of operations.

The complex composition of objects can also be described behaviorally, in terms of propagated

operations. The fact that a certain document contains a certain diagram is evident because a

request to display or destroy the document automatically displays or destroys the diagram. It is

not described in terms of a spatial layout such that the space occupied by the diagram is a subset

of the space occupied by the document.

In a sense, the reed difference between the two approaches has to do with who defines the allowable

operations. The structural approach is characterized by a fixed set of operations defined by the

system implementers, for constructing and accessing the data structures. The allowable operations

in the behavioral view we defined by the application developers, with semantics appropriate to

application-specific objects.

In the behavioral view, data structure ought to be hidden, part of the encapsulation. Data struc-

tures may be used by methods as part of their internal implementations, but not by external

object users. This might provide a basis for positioning both approaches in the object paradigm:

structural object orientation is usable by methods which implement operations on objects, while

the behavioral approach ought to be taken by external users of objects.

5 The Object Paradigm

Is there one?

97 .

Certain elements seem to be emerging as common to all views. An object system might be char-

acterized in terms such as those listed below. This is just an illustrative list, not intended to

be complete; we are not competing with the manifestos. Also, we deliberately avoid the word

“object”.

• Subjects are things which may occur as operands or results of requests for service.

• The set of services which may be requested, and the subjects on which they may be requested,

is controlled (encapsulation).

• The set of services and subjects is extensible, in terms semantically meaningful to the appli-

cation domain.

• The implementation of services is designed in modular fashion, maximizing reuse of code.

• The methods which implement services are typically able to request different services on

different objects, corresponding to internal implementations.

• A requested service might be provided by different methods, depending on the operands of

the particular request. These alternative implementations are invoked in a uniform manner.

• Genericity; programs don’t call each other directly. The method that responds to a request

depends on the nature of the operands, beyond the control of the requestor.

• There are standardized syntaxes for requesting services. This may include graphic interface

conventions.

• Certain standardized classes and services are available.

The term “object” might turn out to mean a subject, or a requestor, or a method, or some

combination, or something else.

Database might evolve along several lines in this context. The structural view might be exposed

to end users, providing richer sets of system operations for manipulating data structures.

In a strictly behavioral approach, database will present two interfaces [Kent90a]. Object users will

see a purely operational interface, not manipulating data structures directly. Structures supported

by the database system will be exposed only to the methods which implement object services.

From the object users’ perspective, there is no object data model, just an object model. Database

would be perceived externally as providing services such as persistent storage, recovery, concurrency

control, and so on, but not specific storage structures.

Program objects and data objects are unified, not by becoming the same thing, but by being

managed uniformly in an integrated facility.

6 Conclusions

Standards bodies are currently exploring major questions about the context before plunging into

the specifics of object database standards.

Consensus needs to be established on the overall object paradigm, and the meaning of “object”

and related terms. The relationship between the structural and behavioral approaches needs to be

clarified, together with the interfaces implied by each.

Only after such context has been established will it be meaningful to grapple with specific issues

of object model details, interfaces, syntaxes, and semantics.

98 .

References

[ABDDMS] M. Atkinson, F. Bancilhon, D. DeWitt, K. Dittrich, D. Maier, S. Zdonik. The Object-

Oriented Database System Manifesto. Proc First Inti Conference on Deductive and

Object-Oriented Databases, Dec., 1989, Kyoto, Japan.

[ADBMS] The Committee for Advanced DBMS Function. Third-Generation Data Base System

Manifesto. Memorandum No. UCB/ERX M90/28, UC Berkeley, April 1990.

[Kent90a] Wilham Kent. The Evolving Role of Database in Object Systems. HPL-90-04,

Hewlett-Packard Laboratories, Feb. 1990.

[Kent90b] William Kent. A Framework for Object Concepts. HPL-90-30, Hewlett-Packard

Laboratories, April 1990.

[OODBTG] Technical Report of the ANSI/X3/SPARC/DBSSG Object-Oriented Database Task

Group, (in preparation).

[OMG] Object Management Group Standards Manual, (in preparation).

[Pollack] Andrew Pollack, ‘Industrial revolution’ retools software. San Jose Mercury News,

May 6, 1990, p. IF.

99 ,

Application Object Model
for Engineering Information Systems^

Jonathan W. Krueger

Honeywell Systems and Research Center

Minneapolis, MN

Abstract

An object model for application development is in-

troduced in the context of Engineering Information

Systems (EIS). The model shares features with sev-

eral popular models and offers some less common
ideas, such as operation-dependent state closure. The
model is also unique in its position within the envi-

ronment: it acts as a portability view independent of

the underlying storage servers. The view-mapping is

made most efficient however, if the object model of

the underlying servers matches the structure of the

EIS Application Object Model (AOM); OODB stan-

dardization is significant to the AOM in this respect.

Background

The Engineering Information System (EIS) program

[3] was created by the government in response to in-

creasing concern about engineering information ex-

change between:

• Contractors and the government;

• Contractors on a single team;

• Contractors not on the same team but whom
the government wishes to encourage to share and
leverage technical data; and finally,

^This work is supported by the Air Force Wright Research
and Development Center's EIS project under contract F33615-
87-C.1401.

• Tools at a single site.

This information exchange should be enabled even

when the two endpoints were not originally designed

to facilitate this exchange.

The EIS program addresses heterogeneity of hard-

ware and software platforms, data formats, tools,

site-specific policies and methodologies, and inter-

faces. The program’s goal is to produce a consol-

idated approach to a broad set of functional and

other requirements. This approach consists of pro-

posed standards and guidelines for services which, if

used, enable and accelerate a trend toward uniform

engineering environments and information exchange,

A given EIS site might use proprietary and/or com-

mercial toolsets. Site tailoring includes the specific

design policies which the EIS is to enforce for an or-

ganization. A tool can be a collection of functions

operating in concert with a user interface, or it can

be a single function providing a specialized service.

From the EIS perspective, database management
systems and file systems — collectively called data

servers — are a special kind of tool whose function

is to administer persistent data. There is an addi-

tional facet to data servers in that many contem-

porary tools have already achieved the separation of

data from computation through the use of database

management systems. The EIS is intended to sup-

port attachment of these data and file servers while

maintaining the role of intermediary between tools

and data.

EIS Architecture

EIS stands on two legs — the Engineering Informa-

tion Model (EIM) and the framework.

• The Engineering Information Model (EIM) is

a semantic model of the information flowing

through the framework. The EIM has a can-

didate standard derivation called the Reference

Schema. The Reference Schema is a set of ob-

100

ject types which form a specific, logical organiza-

tion of data and operations that the framework

can manipulate. The EIM and the Reference

Schema may be extended with site-specific se-

mantic models and types, respectively, to cap-

ture the meaning and structure of data particu-

lar to that site.

• An EIS Framework contains the automated ser-

vices, embodied in software, which support the

use of the EIM to manage and control the data

and activities of the engineering process.

The EIM is a conceptual model of administrative

and electronic design information (see Figure 1). It

records common concepts and makes their meaning
explicit for the primary purpose of aiding effective

communication. The EIM is important for everyone

involved with an EIS. A CAD tool builder uses the

EIM to find common names and definitions for the in-

formation he expects to process, A framework vendor

uses the EIM to identify common operations and con-

sider whether to build them into his framework. An
administrator of a CAD environment uses the EIM
to quickly understand the scope and organization of

EIS information. In this way he can plan adaptations

of his current system as he begins to implement EIS

concepts.

The EIS Framework is a collection of software services

used by applications to store, retrieve and manipulate

the modeled by the EIM. The various services can be

organized roughly into layers as shown in Figure 2.

Starting at the bottom of Figure 2, delivery systems

are computing platforms bundled with operating sys-

tem software, communication hardware and periph-

erals. The portability services fill in the services that

some delivery systems do not address, such as bitmap

graphics and higher-level network communications

(above the ISO/OSI Transport level). Newer oper-

ating systems are incorporating these services. The
“servers” layer is populated mostly by database man-
agement systems, data format filters, and special-

purpose computing resources (such as a simulation

accelerator).

System Implementation Structure issa8! Future Work

System Administration Layout

Data Administration Technology

End User Support

Figure 1: Domains of the Engineering Information

Model

The Object Management System (OMS), is responsi-

ble for providing access to objects and operations. In

a sense, it is the common “bus” to which everything

connects, including tools and data servers. Data

servers are files, file systems, databases, database

management systems, computer memory, and any-

thing else that stores data. By being on the same bus

(sometimes via adapters) tools and their users more

readily gain controlled access to data in the various

servers.

The Application Object Model (AOM) is a layer built

on top of the OMS to simplify the development of

applications. It wraps and projects the OMS ser-

vices to yield a view that resembles several popular

object systems. The AOM is the primary focus for

this position paper because it has the most bearing

on the standardization of object-oriented database

management systems (OODBMS), EIS framework

performance goes up as the AOM and underlying

OODBMSs look more like each other, because the

OMS has to do less view-mapping.

Environment Services encompass a broad range of

services of interest to application developers or end

users. Topics include configuration management.

101 .

Users

Us&f Ittierjace K/janagemeMi

Applications

Dprtiairt -ScsJiemafell

EnvjxonmeM Services

Object Mgmt System

Servers

PortabtTfty

Delivery Systems

Framework

Figure 2: EIS Model and Framework

inter-EIS information exchange, policy management,
audit trails, etc. Policies are used to automatically

determine when system activity is needed and ini-

tiate it (system administrators can inject their own
policies to tune system behavior to specific needs).

User Interface Management services couple users with

programs. This involves visually organizing and por-

traying data, as well as interpreting and dispatching

keyboard and pointer events to the appropriate pro-

grams.

The remainder of this paper will elaborate the Appli-

cation Object Model.

behavior -when stimulated and they have state; objects

also have identity, that is, they can be referred to in a

way that is independent of their behavior and state.

Object Behavior

Behavior is elicited from an object by applying op-

erations to it. An operation may take a set of pa-

rameters, with each parameter being an object. The

object given as the first parameter in an operation

request is called the receiver.

There are usually one or more functions^ specified for

the receiver’s type that the system may choose from

to serve the operation request. The function(s) cho-

sen depends on the types of the parameters. Once

a function is chosen, it is given control and may do

just about anything, including manipulating the state

of the parameter objects, and applying other opera-

tions.

There are two kinds of functions that play a role in

servicing an operation request, namely primary func-

tions and encapsulation functions. A primary func-

tion constitutes the main body of an operation’s be-

havior. Encapsulation functions come in two types —
before functions and after functions — and, as their

name implies, encapsulate a primary function or in-

herited operation by executing just before it or just

after it.

Application Object Model

The EIS Application Object Model (AOM) is a fairly

typical model for describing and manipulating ob-

jects. The AOM provides a fixed, high-level view

that supports tool portability. The AOM intention-

ally shares many features with existing object models
such as Smalltalk-80^ [2], the Common Lisp Object
System (CLOS) [1] and C-F-1- [5].

As in nearly all object-oriented systems, AOM ob-

jects have three essential characteristics: they exhibit

^Smalltalk-80 is a trademark of Xerox Corporation.

Operations and Functions

A function identifies the body of code that elicits spe-

cific behavior on an object. An operation is an inter-

face to a set of one or more functions. There are two

kinds of operations: type operations and instance op-

erations. The classification is primarily conceptual,

since the machinery to carry them out is the same for

both. Type operations are those that can be applied

to a type object. An example of such an operation is

create(typeObject). The receiver of this operation is

a type object, and it creates an instance of that type.

^Also known as methods

102 .

Instance operations can be applied only to instances

of the type for which they are defined. An instance

operation on the hypothetical type Pen might be

drawLine(instanceOfPen, xl, yl, x2, y2), causing a

line to be drawn from (xl, yl) to (x2, y2), stylized

according to the pen’s characteristics.

As with types, functions and operations are both

modeled as objects. The essential components of a

function object are its name, signature and set of

implementations. The signature identifies the input

and return parameter types for which it is defined,

A function implementation is a body of code that

implements the behavior.

An operation is a name that is shared by one or more

functions, and contains three ordered sets, contain-

ing the before, primary and after functions with that

name. The system uses the operation name, together

with a set of actual parameters and their respective

types, to select the functions to carry out the oper-

ation. The selection process is called operation reso-

lution, described later.

Encapsulation Functions Encapsulation func-

tions support the tailoring of inherited operations. In

all respects they are regular functions, and therefore

have the same characteristics as any other function.

Since they are not operations, they themselves do not

have before or after functions.

Before functions and after functions can be used to

augment the behavior of an inherited operation to

better suit a new type. For example, suppose the

following two types exist:

• ElectronicDesign, which defines the function

simulate

• IntegratedCircuit, which inherits the function

simulate

and ElectronicDesign is a supertype of IntegratedCir-

cuit.

Suppose that IntegratedCircuit requires a slightly

modified implementation of simulate, where a clock

is started to record the simulation time. Instead of

overriding the inherited function, the IntegratedCir-

cuit type could define a before function and an after

function for simulate to start and stop the clock, re-

spectively. Whenever simulate is called, its before

function is first executed, then simulate is executed,

and finally its after function would be executed. This

is illustrated in Figure 3. Encapsulation functions are

not mandatory, but they will be executed if they exist

for a particular function.

Encapsulation functions are also useful for imple-

menting integrity constraints on instance variables,

such as enforcing the ordinality of a relationship (e.g,,

one-to-many). This can be done by registering the

constraint-checking code as encapsulation functions

on the instance variable accessor operations.

Encapsulation functions can nest through inheri-

tance. If an operation is inherited, the supertype’s

before, primary and after functions are combined

into a unit for the subtype, which views it as a pri-

mary function. The additional encapsulation func-

tions may be defined for the subtype which are ap-

plied before and after the inherited operation. For

example, suppose that encapsulation functions are

defined for the ElectronicDesign type’s simulate func-

tion. The IntegratedCircuit subtype inherits simulate

and its associated encapsulation functions as a unit.

New encapsulation functions are placed around the

inherited unit, as shown in Figure 3. Similarly, a sub-

type of IntegratedCircuit could define an additional

layer of encapsulation on simulate.

In response to a client’s request for the simulate op-

eration, the system:

• Executes all before functions defined for simu-

late. The function defined by the IntegratedCir-

cuit type is executed first; the function defined

by the ElectronicDesign type is executed second.

• Executes simulate.

• Executes all after functions defined for simulate.

The function defined by the ElectronicDesign

103 .

Figure 3: The simulate operation as seen by the In-

tegratedCircuit type

type is executed first, followed by the function

defined by the IntegratedCircuit type.

Operation Resolution Operation resolution is

the process used to find the function(s) needed to

satisfy an operation request. When only one func-

tion is defined for a particular operation, the reso-

lution process is trivial. However, when more than

one function exists the system must resolve which

function(s) to apply based on the objects passed as

arguments. For example, consider two types, Soft-

wareComponent and HardwareComponent, with the

following operations:

SoftwareComponent :

edit(instance) - invokes an editor

compile(instance) - invokes a compiler

HardwareComponent :

edit(instance) - invokes an editor

displayOn(instance,format) - graphically dis-

plays the instance

simulate(instance,stimuli) - runs a simulator on
the instance with the given stimuli

In this example, the operation compile can be exe-

cuted on an instance of SoftwareComponent but not

on an instance of HardwareComponent. Similarly,

displayOn and simulate are specific to HardwareCom-
ponent. However, the edit operation can be requested

for instances of either type.

The user need not specify which function to apply;

the system resolves the operation request to the ap-

propriate functions based on the parameters given in

the request. If an instance of SoftwareComponent

is passed as a parameter to edit, the system will se-

lect the function defined for the SoftwaxeComponent

type; similarly, if an instance of HardwareComponent

is passed, the function defined for HardwareCompo-

nent will be selected. If an instance of a different

type, say HostComponent, which has no edit func-

tion, the system will reject the request and raise an

exception.

The edit operation described above accepts a single

parameter. To see how multiple parameters are used

in resolution, consider three different functions for

HardwareComponent displayOn: one displays an in-

stance on a Sun workstation, one displays an instance

on an Apollo workstation, and one displays an in-

stance on a laser printer. Each function takes an

instance of HardwareComponent, as follows:

displayOn(instanceOfHardwareComponent,sunFormat)
- displays an instance on a Sun workstation.

displayOn(instanceOfHardwareComponent,apolloFormat)

- displays an instance on an Apollo workstation.

displayOn(instanceOfHardwareComponent,laserFormat)

- displays an instance on a laser printer.

Upon receiving a request for displayOn, the system

first examines the receiver (first argument). In this

case, the type of the receiver narrows down the set of

applicable functions to the above three. Examination

of the second argument carries the resolution to a

single function.

The system raises the exception “functionResolution-

Conflict” when it cannot resolve the operation re-

104 .

quest to a single function. ^ An EIS installation

might choose to handle such an exception by com-

pleting the resolution based on an ordering such as

chronological by registration time. A framework ven-

dor might choose to provide a default exception han-

dler that could be removed or replaced according to

a site’s needs.

Likewise, the exception “interfaceMismatch” is raised

if the resolution algorithm fails to come up with a

function whose interface pattern matches the sup-

plied parameters. One interesting way to handle this

exception would be to attempt to convert the param-

eters to types that do match an available function

interface.

Summary of Operations

Operations and functions are used to elicit behavior

from an object. From an application standpoint, the

only way to interact with any object is through its

operations and functions. They are made visible to

programmers in language-specific ways, for example

function calls in structured languages such as Ada
and C.

The requested behavior occurs when one or more

functions corresponding to the operation are exe-

cuted. The system chooses the function(s) to execute

based on the types of all parameters passed in the

call. Depending on the arrangement of the type hier-

archy, functions registered, and encapsulation func-

tions installed, different functions may be applied.

Inheritance and encapsulation functions support the

ability to build up and tailor object behavior. The
AOM does not specify whether the operation —» func-

tion —» implementation binding is established at com-

pile time or at run time. In a compiled environment,

recompilation may be necessary to regain strict AOM
semantics.

^ A compiler could catch many of these conflicts.

Object State

The state of an object, as perceived through the

AOM, is defined by the contents of its instance

variables^, as shown in Figure 4. The contents of an

instance variable are retrieved and updated through

accessor operations that hide the implementation de-

tails (storage format and computation). The imple-

mentations of some accessor operations may be au-

tomatically generated by the EIS framework, while

others may be hand-crafted either in part or in whole.

Instance variables that hold elements of the basic

types (integer, float, string, etc.) are attributes; in-

stance variables that hold object references are rela-

tionships. Attributes contribute to the absolute state

of an object; relationships contribute to the object’s

relative state.

Figure 4: A Prototypical AOM Object

The distinction between attributes and relationships

is useful when exchanging objects between sites or ap-

plications. An object’s absolute state is independent

of all other objects and can be exchanged readily sim-

ply by transferring the contents of the attributes. The

relative state is, by definition, dependent on other

objects. Each relationship references one or more ob-

jects that an application could regard as an essential

^Also known as slots.

105 .

part of the original object. To exchange the rela-

tive state of an object, some of the referenced objects

may need to be part of the exchange. Since those

objects have relative states as well, the algorithm for

determining which objects to transfer is conceptually

recursive. It may not be necessary to transfer all of

the relative state however, since the applications in-

volved may be able to ignore some of the referenced

objects.

The following subsections describe the general char-

acteristics of instance variables and specific charac-

teristics of attributes, relationships, and inherited in-

stance variables.

Instance Variables

An instance variable may be an attribute or a rela-

tionship. Attributes contain values and relationships

refer to objects. Any instance variable may be aiomic

or aggregated, constrained or unconstrained.

Atomic vs. Aggregate An atomic instance vari-

able has only a single object or reference; an aggre-

gate instance variable can have more than one. The
OMS defines several kinds of aggregation, including

sets, lists, and arrays. Aggregate instance variables

have additional access functions not found for atomic

instance variables, e.g., add, remove and select.

Constraints Certain system-enforced constraints

may be associated with all instance variables. The
AOM defines standard constraints for uniqueness,

type, and enumeration. Other constraints may be

placed on instance variables through the use of before

and after functions on the instance variable update

operations.

Uniqueness The scope of uniqueness for an in-

stance variable emcompasses all instances of the type

and its subtypes (the subtypes inherit the instance

variable). Applications must always specify an ini-

tial value for such an instance variable when creating

an instance; instance variables defined to be unique

must not have a default initial value specified, since

a default would only be useful for the first instance

created.

Unique instance variables are analogous to keys in a

relational database and make it easier to locate a sin-

gle instance through query. The OID also uniquely

identifies the object. In fact, an object id is unique

across all types, whereas unique instance variables are

unique only within the domain of a type. However,

the contents of instance variables are usually easier

to work with than an OID since an instance variable

typically contains more mnemonic information, such

as a user-supplied name. An OID can be cryptic and

seemingly arbitrary. Furthermore, the OID of an ob-

ject may change as it moves from EIS to EIS®, but

the contents of its instance variables will not change

unless explicitly modified.”^

Type Constraints Instance variables may be re-

stricted to contain only certain types of data. The
system allows updates to such instance variables only

if the new value (or reference) is of the specified type.

The allowed types include the specified type and all

its subtypes. For example, a relationship instance

variable constrained to type FunctionalUnit can ref-

erence an instance of type Cell as long as Cell is a

subtype of FunctionalUnit.

Enumeration An enumeration defines a domain

by listing, or enumerating, particular items. An enu-

meration constraint prohibits instance variable up-

dates that have items from outside the enumeration.

Enumeration overrides type constraints; that is, if an

instance variable has both an enumeration and a type

constraint, the enumeration takes precedence. Enu-

merations are generally more specific than types (e.g.,

®But an object’s OID is always the same on a given EIS.

^This is an oversimplification. Some instance variables, es-

pecially relationships, may change when moving to a different

EIS, depending on the similarity of the schemas between the

two systems.

106 .

“fred,” “julie,” and “terry” vs. type String), so a type

constraint would have no effect on an enumerated in-

stance variable.

Default Initial Contents When creating an in-

stance of a type, the application may supply the ini-

tial contents for some of the instance variables; the

rest of the instance variables are initialized using de-

faults specified in the instance variable definitions.

For example, consider a type Design with a String

attribute called “name” whose default initial value is

“noname.” An application could either create an in-

stance of Design with a specified name, or it could

accept the default “noname.”

The type of an initial value must be compatible with

the constraints governing the instance variable, or the

system will reject the instance variable definition. Us-

ing the above example, the name instance variable

could not have the Integer value 5 as an initial value.

The system would raise an exception when attempt-

ing to construct the name instance variable for type

Design. .

Attributes

An attribute instance variable can be defined to con-

tain either an atomic value, or an aggregate of values.

Atomic values are single, elemental values commonly
found in programming languages and are classified

into basic types. The AOM recognizes integer, float,

character,string, boolean and byte (“unsigned char”

in C parlance).

Relationships

Relationships always reference other objects (with

OIDs). As with attributes, relationships may refer

to a single object or an aggregate of objects. Rela-

tionships may also be declared inverse, and may carry

property lists.

Inverse Relationships Inverse relationship in-

stance variables always exist in pairs. The specifi-

cation of an inverse relationship must always state

the other relationship instance variable acting as its

inverse. For example, consider two types. Board and

Chip, where Board defines the instance variable con-

tains to be the inverse of Chip instance variable is-

PartOf, as illustrated in Figure 5. When an update

to Chipi is made that removes Boardi from its is-

PartOf instance variable, Chipi is automatically re-

moved from the Boardi contains instance variable.

An inversion is always two-way. An update to Board

automatically triggers an update to Chipi and Chip2 .

^ isParlOf

Board

contain^
Chip

1

^ isPartCX

contains
Chip

2

Figure 5: Example of Inverse relationships

Inheritance of Instance Variables

An inherited instance variable assumes all the charac-

teristics of the original definition. Some characteris-

tics of the inherited instance variable can be changed

for the new type. The new definition must be more

constrained than the inherited definition. For exam-

ple, a type constraint can be narrowed to a subtype,

or an element may be removed from an enumerated

domain. An attempt to relax or shift constraints on

inherited instance variables will be met with an ex-

ception condition; that is, it is not allowed to shift a

type constraint upward in the type lattice, or to an

unrelated type.

All instance variables of the supertypes are inherited;

an inherited instance variable cannot be “masked

out.” It is possible, however, to constrain an instance

variable so much that it is effectively unusable.

107 .

State Closure

Backup, archival and information exchange opera-

tions make use of relationship properties to selectively

track down dependencies for the purpose of manag-

ing the state of a composite object. This subsection

describes relationship properties in more detail and

examines their use.

The description of an object can, and often does go

beyond the contents of its attributes and relation-

ships. An object’s attributes contain values which

need no further description, but its relationships con-

tain references to other objects which may be impor-

tant for understanding the original object. Likewise,

the referenced object may in turn reference still more
objects. Without some guide to limiting the extent

of these relationships, all of the objects in the system

might be considered “part oP the original object.

Relationship properties are a flexible mechanism for

controlling the propagation of operations that track

relationships. In particular, [4] describes two generic

properties which can be used for this purpose, namely
propagate deep and propagate shallow. Refinements of

these properties can be used in EIS to give the type

creator the flexibility to define the dependent objects

for instances of its type for a particular operation

performed on that object.

By defining properties associated with operations

that deal with relationships (e.g. backup, archive,

copy®), the description of an object can be tuned.

Some examples of properties on relationships are:

copyDeep, backupDeep, archiveDeep, changeDeep,

versionDeep.®

A deep property associated with a relationship means
to propagate the object referenced via the relation-

ship recursively. Since the initial object to be oper-

ated on may have several relationship slots and each

of relationship has a separate property list associated

® Exchanging an object with another EIS can be considered
a special case of “copy.”

®Note; <op>Shallow properties on a relationship are im-
plied by the absence of an <op>Deep property.

with it, both deep and shallow (no) propagation can

occur in a single operation request.

The properties described in the previous paragraphs

are used to used to determine what relationships an

object is dependent on. The term state closure is

used to describe the list of objects needed to describe

a particular object for a requested operation. The
state closure of an object can be determined in the

following manner:

1. The requested object is placed in the state clo-

sure.

2. For every object placed in the state closure, a

breadth first search algorithm is followed to de-

termine new objects to be added in the state

closure.

3. The relationships are examined for properties as-

sociated with the requested operation (e.g. copy,

backup, archive, change, version). Whenever the

relationship slot has the deep property, it means

that the object referenced by the relationship is

needed for the description. If it is not already in

the state closure, it is added.

Object Identity

Every object has its own identifier, called an OID
(object identifier). An object is assigned an object

identifier at the time the object is created. Once es-

tablished, an OID always refers to the same object.

An object handle is an indirect reference to an object,

such as a query or a name. Suppose an application

has two different handles, a and /3. If a resolves to

the same OID as /3, then a and /3 are handles for the

same object. Two objects are said to be equivalent

if and only if their states are identical that is, if the

contents of the attributes and relationships of one

match those of the other. Objects that are equivalent

are not necessarily identical (the same object).

Objects that share the same instance variable defini-

tions and functions are instances of the same type.

108 .

An object is also an instance of the supertypes of its

type. Each type is represented by a type object. The
type object’s instance variables and functions are ap-

plicable only to that object. The contents of some
of the instance variables describe the structure and

behavior (instance variables and functions) of the in-

stances of that type. An instance is most often cre-

ated by the execution of a type function, e.g., “new”.

Basic types, such as integers, floats and strings, have

literal representations that completely define their

state and identity.

There are aggregate types, such as set and list, that

contain a collection of items. Aggregates restrict their

membership to a particular type of value or object.

For example, an attribute could be declared to be a

“SetOflnteger,” or a relationship might be declared as

a “ListOfChip,” where Chip is a type. The contents

of an aggregate object may change without affecting

the identity of the aggregate itself.

New types can be defined in terms of old types by

inheriting the old descriptions. In setting up a new
type, the definer can instruct the system to include

the definitions of one or more pre-existing types as

part of the new type definition. The reused types

are called supertypes of the new type; the new type

is called a subtype of each supertype. Inheritance in-

volving only one supertype is called “single inheri-

tance.” Multiple inheritance refers to the case where

more than one supertype is used. Multiple inheri-

tance is essential for EIS in order to support basic

capabilities which can be “mixed in” through inheri-

tance (rather than referral) with application-specific

capabilities.

Type objects are instances of metatypes. The Ap-

plication Object Model does not currently specify

metatype structure or behavior. As of this writing,

metatype design is still considered an art, and a hor-

net’s nest of specification issues. The ANSI CLOS
group, the furthest along in object-model standard-

ization, has not yet developed a metatype specifica-

tion even though their object-level specifications are

relatively stable. One of the many reasons is that

metatypes are often the focus of subtle optimization

techniques that can have a significant impact on sys-

tem performance.

References

[1] Bobrow, D., et al, “Common Lisp Ob-

ject System Specification”, ANSI work-

ing document, 1987

[2] Goldberg, A. and D. Rob-

son, Smalltalk-80: The Language and

Its Implementation^ Addison-Wesley,

1983, Reading, Massachusetts

[3] “The Department of Defense Require-

ments for Engineering Information Sys-

tems” Institute for Defense Analyses

report, July 2, 1986; Joseph L. Linn

and Robert I. Winner, eds., Alexan-

dria, VA.

[4] Rumbaugh, J., “Controlling Propaga-

tion of Operations Using Attributes on

Relations,” Proceedings of OOPLSA
1988.

[5] Stroustrup, B., The C-h-h Pro-

gramming Language, Addison-Wesley,

Reading, Massachusetts, 1986.

109

Principles for persistent object access

Fred Loney
Mentor Graphics Corporation

Summary

Mechanisms for implementing persistent object access are described. Criteria and

opportunities for standardization are identified. Principles are suggested for the

development of an object-oriented database. These principles constrain the interaction of

embedded DBMS constructs within the host programming language and indicate the

appropriate use of existing language features vs. extension of the host language with new

features to support persistence.

1. Introduction

Object orientation offers a new development paradigm for a class of applications

not well-served by traditional database technology. These applications are

characterized by highly interconnected, typed objects of varying size and format. The

applications typically occur in the context of a distributed processing environment.

Besides the usual database amenities, an object-oriented database offers strong identity

for persistent objects and seamless integration into an object-oriented programming

language.

These characteristics dictate a focus for standards. OODB standards should

reflect the need for encapsulation, host language integration and distributed access to

hetereogenous databases. Standards are warranted when the benefits of conformance

exceed the potential for competitive advantage by differentiation.* It is therefore

useful to identify common aspects of OODB features that offer essential functionality.

* In point of fact, standards lag implementations and are more strongly correlated with market

presence than intrinsic merits. The example of ANSI SQL is instructive here. The conceptual

foundation of the relational data model is simplicity itself. Nevertheless, the standard wrought by

the ANSI crucible abuses the model, for example by countenancing “'set" manipulation that admits of

duplicate members.

The true value of OODB standards at this early stage is the opportunity to nudge developers

ever so slightly towards a reasonable implementation. With this in mind, we demur at the heady

issues of object ontology in this paper, and address instead more pedestrian concerns of object use.

no.

but hold forth relatively little promise for productive differences. The
. target of

standardization is the mechanism presented to the client of database services.

This paper considers the mechanisms for implementing persistent object access.

These include transparent use of host language constructs, special-purpose functions,

database classes and programming language extensions. Section 2 discusses pointer

dereference as a standard approach to object access. Section 3 discusses

characteristices of object activation. Encapsulation of database objects is considered

in Section 4. Conditions for extending the host programming language rather than

defining database classes are developed in Section 5.

We note at the outset that when we suggest commonality of features, we are

adopting the perspective of the client of OODB services. A common approach to the

external characteristics of a feature should not be construed as advocating a common
approach to the internal implementation of the feature. About this, we remain silent.

2. Object dereference

Our Starting point is the semantics of a host object-oriented programming

language. For better or worse, the operational semantics of the object data model is

largely defined by the programming language(s) it supports. We call the standard

reference model for the host programming language supported by the DBMS the

reference language of the OODB. We posit the existence of such a language standard,

and remark in passing that OODB standardization depends on language

standardization. Seamless integration of the OODB with the host language motivates

our first

Principle: Use the reference language to implement database features wherever possible.

In most object-oriented programming languages, object identity is established by

an object-oriented pointer (OOP). Access to objects is gained by dereferencing the

pointer. Persistent object access is the crux of an OODBMS data manipulation

language. The principle suggests that persistent object access is best implemented by

using a persistent OOPy a "smart pointer" which extends the behavior of the

dereference operation. We thus get the following

Corollary: Persistent OOP dereference is the standard data manipulation language.

111 .

Alternative methods may be available to, for example, recursively activate the

transitive closure of a composite object. Such methods can be used at the discretion of

the client. However, the dereference operator is always available as a means of

activating a persistent object in a uniform manner.

3. Object activation

The power of the persistent derefence operation lies in the capability for

transparently extending the behavior and properties of the persistent OOP. The

primary behavior is loading an object from secondary storage and enabling it as a

computational agent. The primary property of the referent is uniqueness.

Principle: Persistent OOPs encapsulates all information necessary to enable the

referent.

Principle: Persistent OOPs reference objects with unique identity.

Again, principles are expressed from the perspective of the OODB client. The

encapsulation principle asserts that, as far as the client is concerned, the dereference

operation is sufficient of itself to enable the persistent object to respond to messages.

Likewise, the uniqueness principle asserts that persistent OOPs act as if they reference

objects with unique identity. They may in practice be local identifiers relative to some

unique context. An offset in a virtual memory page may be one such local identifier.

The set of all databases for a given OODBMS product may be one such context.

The uniqueness principle says nothing about the format of the persistent identifier.

The format of persistent identifiers and their mapping to virtual memory is a key

product differentiator. Uniformity of persistent identifier format is best decided in the

marketplace rather than a standards committee.*

We call the procedures associated with an object its type code. This is broadly

construed to include database procedures attached as attributes to an object (triggers).

The seamless integration of an OODB with the host language applies to all type code.

Principle: All type code is expressible in the reference language.

* Object transport may be an exception, and is not considered here.

112 .

This does not preclude the adoption of specialized language features in certain type

code bindings. Rather, it states that wherever type code can be bound to an object, it

can take the form of a reference language construct.

The distributed, heterogenous processing environment of most OODB applications

requires particular care in setting the boundaries of the DBMS execution model. The

notion of an application as a self-contained executable image is replaced by

cooperative interaction among independent computational agents. These agents may be

objects managed by different DBMSs. Traditional DBMSs make quite liberal

assumptions about their domain of control. OODBMSs, on the other hand, should

respect object boundaries. An executing DBMS should gracefully surrender control

upon dereference of a persistent object managed by a different DBMS. This suggests

a standardized approach to dynamic type code binding.

Principle: The database execution model only governs the lexical scope of embedding

methods.

The principle essentially asserts that OODB execution models should not conflict

in ways that jeapordize persistent object encapsulation. This principle is particularly

important for an integrated application framework such as a design environment or

hypertext navigator. Divergent solutions to hetereogeneous database access— to wit

the vendor-specific, ad hoc database "switches'' of the relational DBMS community

—

are not appropriate in the decentralized, distributed processing environment of

object-oriented databases.

4. Database objects

Where the programming language is wanting in features that support persistent

data management, the DBMS architect must supply them. The options available to

developers for specifying these features include:

o Providing a library of functions: e.g., store (), startTransaction().

o Declaring classes with the desired feature: e.g., a PersistentObject class.

o Extending the reference language: e.g., a persistent storage class qualifier

for variable definition.

113 .

Functionality is added to objects by adding methods to classes. Global functions

are an aberration that violate the spirit of object orientation. Database functionality is

no less bound to this principle.

Principle: Encapsulate type—specific functionality.

Encapsulations are appropriate wherever a well-defined database object can be

identified. Transactions come to mind in this regard. The reification of transactions

as coordinator objects demonstrates the usefulness of this principle. Drawing

transactions into the realm of first-class objects leverages the capability of the host

language. A few examples:

o A transaction object has scope (where it can be referenced) and extent (when it

can be referenced) according to the rules of the language, rather than the

restrictive and arbitrary rules of the DBMS.

o Transaction objects encapsulate appropriate behavior (begin, commit, etc.) that

can be extended by clients.

o Parameterized types (e.g., set and graph) support long and nested transactions

in a natural way.

o Transaction constructors can be extended to explicitly identify parent

transactions.

5. Language extension

OODB extensions to the reference language are, by definition, non-standard. This

carries hazards to the OODB client, not the least of which is reliance on a single

source of database services. Language extensions are, however, a simple and elegant

approach to adding features that are orthogonal to type. Arguably, persistence is one

such feature.

Principle: Limit language extensions to type—orthogonal features.

114 .

We can strengthen this principle as follows: Implement type-orthogonal features

with language extensions. However, this is imadvisable; we illustrate this with the

persistence feature. There are two reasonable means of declaring persistence: 1) a

language extension, and 2) a property of a persistent class. While the merits of the

two approaches are debatable, OODB standardization is not (yet) an appropriate

forum for this debate. This is an area of creative research where product

differentiation yields competitive advantage. It is counterproductive at this point to

standardize an approach to declaration of persistence.

6. Summary

We have considered database features of persistent object access and suggested

several principles of OODB development. The principles seek to further the goals of

encapsulation, integration with object-oriented languages, and distributed database

support. We have suggested areas of potential standardization. The task of arriving

at a consensus on the form of these standards is left as open problem for this forum.

115 .

Notes toward a Standard Object-Oriented DDL and DML

THOMAS ATWOOD
JACK ORENSTEIN

Object Design, Inc., Burlington, Massachusetts (617) 270-9797

tom(S)ocii.com

jack(5)odi.com

INTRODUCTION

The effort to define standards in database management systems and programming languages has

historically come after there was some considerable body of commercial experience. If standards in

object-oriented software follow the same pattern, then we are still very early in the cycle for the

formal proposal of standards. However, there is at least one factor that suggests that the transition to

00 data management may occur faster than the transition from CODASYL to relational database

management systems. The transition from CODASYL to relational database management systems

was a relatively 'narrow' phenomenon, one which affected only the DBMS world. The transition from

relational to object-oriented data management is part of a broad-based transition to object-oriented

software that is occuring in user interfaces, programming languages (Smalltalk, the Common Lisp

Object System (CLOS), Object Pascal, C++, ...), object-oriented design methodologies and object

oriented data management The software development community’s conviction that the benefits of

OO programming are real is generating pressure to standardize OO programming languages, and then

in turn OO database management systems, so that ISVs and in-house development organizations at

large companies feel that they can safely take advantage of this new technology. Pressure fm*

standards is therefore emerging earlier in the life cycle of the 00 technology than it did in the life

cycle of relational technology. Database management standards are getting pushed by the fact that

software developers have made/are making the transition to 00 programming languages, and want a

compatible data management substrate.

Although it may therefore be premature to propose specific data models or DML syntax, we think

it is time to articulate some framing perspectives. There are, to our way of thinking, broadly two ways

in which OODBMS standards can be approached: the minimalist position^ and the 00-DBPL position.

The minimalist position argues that although we may define a fairly rich conceptual model, we map

into each programming language only as much of that model as the programming language's type

system and control structures can handle. Consider C++ to give the discussion some concreteness.

116 .

Assume that the OO conceptual model that the OODBTG eventually agrees on is a superset of the

entity-relationship-attribute (ERA) model which has become common as a basis for conceptual design

tools. We replace E with O for object, and add Op for operation, yielding a model which has as its

primitives Objects, Relationships between objects. Attributes of Objects, and Operations. The C-m-

object model is not this strong. Its fundamental assumption is that object types (classes) are defined

by behavior alone - i.e. operations. An object in C++ is a data structure encapsulated by a set of

operations. There is no (abstract) notion of attributes of objects, or relationships between them. The

best the C++ class defmer can do is to define a pair of operations get_x and set_x for each missing

attribute or relationship. (Making x public, and manipulating x directly is possible, but violates

encapsulation.) The minimalist position would map only the operation portion of the OO-DBMS

conceptual model into C++. The OO-DBPL position would restrict the use of 'data members' to the

'private' (implementation) part of the class defmition and would introduce attributes and relationships

as formally distinct members of the public part of the class definition.

Our crystal ball at this early stage in the discussions says that although the OO-DBPL solution is

conceptually the cleanest, the pra^natic politics of change may leave us somewhere between the two

positions. In this note we would like to clarify the minimalist position a bit

CHOICES MADE BY THE RELATIONAL GENERATION

If we step back far enough to gain some perspective, the relational generation seems to have made

two mistakes in its definition of query languages:

1. It attempted to define a single language (SQL) to meet the needs of the interactive

non-professional user and the professional programmer. It proposed the same

language, SQL, as an interactive query language and as a data manipulation

sublanguage for programming languages

Z It forced a single DML (again SQL) into different programming languages without

regard for the syntactic structure the host language.

The problem with the first is that the needs of the programmer and the interactive end user are

very different. A language which attempts to satisfy the requirements of both, ends up satisfying the

requirements of neither. And that is in fact what has ha|^)ened. SQL is rarely actually used directly

as an interactive language that the end-user types in. Instead a series of graphical qu^-building

interfaces and menu-based application specific interfaces have been developed. The end user

117 .

interacts with these and they generate SQL. SQL has become an intermediate representation

language that is generated by a program — something anaiagous to Pcode generated by a compiler —
rather than something the end user interacts with directly.

The problem with the second, forcing a single syntactically constant DML into several

programming languages, is that different programming languages have very different syntax.

Attempting to force a single, uniform DML into aU of them means that it will fit well with none of

tliem. And worse, the consequence of the first decision — to use SQL as both a query language and a

DML — was that SQL had to be a fairly complete language. It had its own notions of variables,

expressions, and statements (e.g, ’GROUP BY ... HAVING’). And these, by definition, clashed with

those of the programming languages in which SQL is embedded. Figure 1 illustrates the situation.

The shaded areas represents the areas of clash.

SQL COBOL

SQL PUI

Clash on variables,

expressions, statements

Figure 1

This may have made sense for programmers who had to write PL/I in the morning and CX)BOL in

the afternoon; at least the SQL stayed the same. Arul it may also have had some rationale in the era

of big mainframes with batch compilation and 24 hour turn around on compile/link/test cycles; the

programmer could test his database access routines interactively, before committing them to the

compiled program. But most programmers write in a single language, and the era of batch

compilation has passed.

118 .

Choices for the object generation

We suggest that any 00-DBMS standards effort make the opposite choices on both of these issues.

1. The syntax of the interactive query language (OQL/I for want of a better name)

should not be the same as the syntax for the DML embedded in programming

languages, and

2. Instead of forcing a single relatively complete DML sublanguage into each

programming language irrespective of its syntactic clash with the programming

language, we should attempt to maintain a common Conceptual Model and map

its DML into each programming language using a syntax appropriate to that

language and using the existing control statements, expressions, defined by the

programming language to the greatest extent possible.

The result will be a series of DML sublanguages which require only a small set of new constructs

for any given programming language and feel right' to the programmer using that language.

THE MINIMAUST APPROACH FOR — AN ILLUSTRATION

The series of code fragments discussed in the remainder of this paper illustrate some of the

specifics of how this approach might be realized for the programming language C++. The examples

demonstrate possible syntax for creating persistent objects, getting/setting attribute values, traversing

relationships, asking queries, and breaking programs into transactions.

As a basis for illustrating these capabilities, we introduce the C++ declaration for the class

PROFESSOR.

class PROFESSOR ; public PERSON

public:

// attributes

int office extension;

119 .

// relationships

DEPARTMENT* department;

set <COURSE*> courses_taught

;

set <STUDENT*> advisees;

};

This declarations of courses_taught and advisees use the parameterized type capability proposed for

C+-K.

OBJECT CREATION

C-H- allows the programmer to create objects with either of two lifetimes — a lifetime limited to

the life of the procedure in which the object was initially created, or a lifetime which is coterminous

with the process in which the object was created. It has no support for creating objects which outlive

the process. Support for persistent objects which outlive the process in which they were created can

be easily added to each of the two constructs for object creation supported by C++: (i) automatic

creation of objects on entry into the scope of the declaration by the program's flow of control and (ii)

explicit pro^ammer control over object creation. The syntactic forms used by C-h- and the extended

forms are illustrated below:

automatic allocation on entry to scope

svntax lifetime allocated in allocated bv

PERSON p;

static PERSON p;

persistent PERSON p;

procedure

process

database

stack

heap

database

PL runtime*

PL runtime

DBMS runtime

* PL: programming language

dynamic allocation

syntax lifetime allocated in allocated bv

PERSON* p - new PERSON; process heap PL runtime

PERSON* p - new (db) PERSON; database database DBMS runtime

120 .

Here, db is used as an argument to new to indicate that the object being allocated should be placed

in the indicated database. This relies on the C-m- “placement** argument to new. In this approach,

lifetime is orthogonal to type - it is a propeny of individual objects, not of object types, and any type

may have both ordinary transient instances, and persistent instances.

ATTRIBUTES

Getting and setting the value of attributes requires no syntactic additions; it is done using the dot

and arrow notation used for data members of a class together with standard C-h- assignment

statements:

PROFESSOR* p;

int X * p">office_extension;

p->office_extension * 345

i

RELATIONSHIPS

One to one relationships are declared using standard data member syntax. 1:N and M:N

relationships are declared using a form of the proposed C'H' parameterized type notation, and a set of

built-in aggregate classes. Fcsr example, the 1:N advisor/advisee relationship between a professor and

his advisees is declared by two mirror declarations, one on the class PROFESSOR, the other on the

class STUDENT:

class PROFESSOR : public PERSON

set <STUDENT*> advisees inverse advisor;

class STUDENT : public PERSON

{

121 .

PROFESSOR advisor inverse advisees;

} ;

The DBMS runtime automatically maintains the inverse relationship. That is, if for a given

student s you assign a professor p to his advisor field,

s->advisor = p;

then the system automatically adds the student s to the set of advisees of p.

Creating and deleting individual relationships between one professor and one student is done using

set insertionMmoval syntax.

p->advisees +- s; // insert s into the set of

// students who are p's advisees.

p->advisees — s; // remove s from the set of

// students who are p's advisees.

In each case, the set update causes maintenance of the relationship by updating the advisor attribute

ofs.

Even the associative retrieval syntax can be a fairly natural extension of C-m-'s syntax fa*

retrieving particular elements of an array — array [element#] , e.g., a [i] . In C+-t> the identifier a is

assumed to refer to an array. In the proposed C-h- DML we aUow it to refer to an instance of any

collection class (formally any subclass of the class collection): set, bag, list, The array

subscript allows selection only by ordinal position. We expand it to allow associative retrieval

expressions which have the full power of OQL queries, i.e., they can select qualifying objects based

on their attribute values and/or on the relationships they participate in with other objects.

It Find Prof. Guttag.

p - PROFESSORS [name “ "Guttag"]

;

/ / Find the teacher of epistemology

p • PROFESSORS [courses_taught [title “ "epistemology]]

;

122 .

The first query locates the professor whose name is Guttag and returns it as the result of the query. The

second query locates the professor whose courses_taught set includes the course whose utle is

epistemology

Finally, to handle what has come to be called the 'impedence mismatch' between set at a time

query languages and one-at-a-time programming languages, the AT&T BeU Labs OO-DBMS group

[Agrawal 89], introduced a "foreach" iterator that seems to provide a simple solution. Example:

foreach (STUDENT* s, p->advisees)

<statement>

This construct executes the statement once for each binding of the loop variable s to a student that is

an advisee of p. The statements within the loop can be any C*h> statements. There is no limitation

that they be only query language statements. Similiarly, the programmer can freely intermix query

language variables and programming language variables in the query expression and does not have to

worry that only one or the other is acceptable in some contexts.

TRANSACTIONS

A concept which has historically been absent from programming languages is the notion of

transactions (although there is some overlap with the notion of exception handling). A nested

transaction model with lexical scoping of transactions might be introduced into C++ as follows:

transaction (<args>)

{

transaction (<args>)

{

if (minor^disaster) transaction: : abort;

if xnajor^disaster transaction: :top_level_abort;

)

}

All of the statements within a transaction block are again standard statements. If exception

handling becomes part of the language, exceptions raised within the scope of a transaction but caught

by handlers outside would have to be carefully implemented to undo any nested transactions until they

^t out to the level of the handler, but that should all be taken care of by the language implementor.

] 23 „

not the application programmer. Dynamic transaction begin could be introduced without any syntactic

extension at all. TRANSACTION could be defined as a class which supported the operations Begin,

Commit, Abort, ... Again, the point is that database functionality can be introduced in a way which fits

smoothly into the base programming language, and in fact, takes advantage of the control statements

and scope delimiters available within that language to keep the data manipulation sublanguage to a

minimum.

CONCLUSION

The sum total of the DML sublanguage constructs which in this minimalist proposal have been

embedded in C-h- are:

• The key word persistent,

• an inverse clause on relationship declarations,

• associative retrieval expressions, and

• the transaction statement

The result is a database programming environment very familiar feeling to the C-h- programmer.

Diagramatically, we get a series of programming language specific DMLs that look like figure 2

rather than figure 1;

Hgurc 2

This notion of a language-^>ecific ^tactic binding is one which is independrat of where the task

group lands along the Minimalist <-> CX!)-DBPL spectrum. We raise it as an issue which deserves

consideration before we delve into the syntax wars.

124 .

To the extent that strong interest in OO data management is emerging first in market segments

moving from C to C-h-, we expect interest in DML standards to mature first within the context of

C-M-. A variant of the C-h- DML illustrated above has been implemented as part of the C-h* DML

preprocessor for our own firm's OO-DBMS product ObjectStore. The same tack could be taken with

Ada or CLOS.

Object Design is making a commitment to be an active contributor to the discusssion and

evolution of a draft standard through the ANSI process. The authors may be reached for comment at

the above address.

125 .

A Model for OODB Queries*

Dave D. Straube

M. Tamer Ozsu

Laboratory for Database Systems Research

Department of Computing Science

University of Alberta

Edmonton, Alberta, Canada T6G 2Hl
{daves,ozsu}@cs.ualberta.ca

Abstract

Variations on what constitutes an object-oriented database are as numerous as the problems

to which these databases are being applied. Given such diversity, standardization efforts should

define a framework which allows many specific models to be defined. We outline a flexible

framework for defining the query component of an object-oriented database and provide a sample

model of queries which fits within this framework.

1 Introduction

It has been said that the nice thing about standards is that there are so many of them to choose

from. This overabundance of standards may be due to the fact that the problems we wish to

solve are not standard at all. In fact, they are so diverse that we need a standard for each of them.

Object-oriented databases (OODB) have emerged in response to problems which are not well served

by traditional database models and as a result, exhibit the same diversity as the problems they

address. One could conclude, then, that developing an OODB standard will reduce the applicability

of object-oriented databases and actually inhibit their acceptance and use. To avoid this dilemma,

we propose that any OODB standard really be a meta-standard; a template within which any of

the many viable OODB database models can be constructed.

We claim that enough contradictory views of what constitutes an object-oriented database exist

to require the meta-standard approach. For example, the following are just a few OODB features

which have caused considerable controversy and over which there is no consensus:

This research has been supported in part by the National Sciences and Engineering Research Council (NSERC)
of Canada under operating grant OGP-0951 .

126 .

• Objects can be viewed as instances of abstract data types whose representation and im-

plementation are hidden or as complex data structures whose components are available for

inspection and modification.

• Each object is an instance of only one class or can be a member of multiple classes.

• Classes can inherit from only one parent (single inheritance) or can inherit from any number

of parents (multiple inheritance).

• The database schema defines one hierarchy for both implementation and behavioral inheri-

tance or may allow implementation to be inherited from classes other than those which specify

inherited behavior.

• Equality operators ignore object structure (e.g. identity equality) or have the ability to

compare structures to some depth.

Each of these tradeoffs presents a divergent view of what constitutes an OODB and strong argu-

ments may be made in favor of any of them. It may be that the only way to resolve the conflicting

views is to base the specific of the data model on the application domain involved. Thus, for

example, the object model for a CAD/CAM database may be different than the object model for

an office information system database. Furthermore, it should be stated that the tradeoffs that we

have specified above are based on our understanding of the issues today. It is difficult to claim that

the solutions developed to date (which form the ba^is of the existing tradeoffs) are the only ones

that will ever be generated or that they are the ones that will stand the test of time. In the absence

of a consensus over these tradeoffs, or even on the set of alternative solutions, the reasonable path

to follow at this time would be to define a meta-standard which specifies what features should be

included in an object-oriented database management system.

Our research program on object-oriented database systems has concentrated on a formal inves-

tigation of query processing issues. In this paper we identify query processing related issues which

a standard should address, followed by a brief overview of the query model we are using in our

research. The query model should be viewed as an example how some of the design tradeoffs can

be addressed and what the interrelationships between the issues are.

127 .

2 Query Model Design Issues

We have defined a query processing methodology for an OODB (Figure 1) similar to that for

relational systems, (see, for example[7, 9]). Queries are expressed in a declarative language which

requires no user knowledge of object implementations, access paths or processing strategies. The

query expression is first reduced to a normalized form and then converted to an equivalent object

algebra expression. This form of the query is a nested expression which can be viewed as a tree

whose nodes are algebra operators and whose leaves represent the extents of classes in the database.

The algebra expression is then checked for type consistency to insure that predicates and methods

are not applied to objects which do not support the requested functions [17]. This is not as

simple as type checking in general programming languages since intermediate results, which are

sets of objects, may be composed of heterogeneous types. The next step in query processing is the

application of equivalence preserving rewrite rules [8, 16] to the type consistent algebra expression.

Lastly, an access plan which takes into account object implementations is generated from the

optimized algebra expression.

normalised object "type optimized
declarative Ccilculns algebra consistent algebra access

query expression expression expression expression plan

Figure 1: Query processing methodology

Definition of the query processing methodology in this way enables us to define the following

design tradeoffs:

What is an object? The query model must fuUy describe the visible components of objects which

can be accessed by query operations. For example, if objects are tuple- valued as in [3], then

query expressions can directly access tuple fields by name.

What are the primitive object operators and their semantics? Examples of primitive ob-

ject operators are the various equality operators such as =o (identity equality) and =, (z-

equality) of [14] and record field selectors of [3]. These operators are used to construct predi-

cates and complex query expressions. Another common operator in object-oriented databases

is that for applying a method to an object [15].

128 .

What data values have a textual representation in the query language? Regardless of

the level of abstraction maintained by objects, the query language must have some way

of expressing literal values. The syntax may permit representation of only atomic values

corresponding to types predefined in the databa.se or may include complex value constructors

such as those of [12] for constructing aggregates and set values.

What is the query language? Query languages can range from formal calculi and algebras to

ad-hoc extensions to a query language or an object-oriented programming language. Any

translation between equivalent query forms should be identified.

How are predicates formed? Predicates are typically formed by combining primitive object

operators with boolean connectives and existential and universal quantifiers. However, user

defined quantifiers such as majority [8] and aggregate operators such as sum or count [6] may

also be allowed.

What is the input to a query? The two most common query inputs are the objects represented

by some type(s) in the database or a user defined collection of objects. Another possibility is

that the query input is a (sub)schema of the database as in [ij.

What is the result of a query? Query results are usually sets of objects, or, as in the case of

[l], a subschema which denotes a set of objects. An important issue here is whether queries

are object preserving oi object creating [13]. Object preserving queries always return a subset

of the query input while object creating queries return new objects which are not part of the

original database. This impacts whether queries can be used as views or compared using the

identity operators.

How are queries type checked? Type checking queries is desirable since it identifies errors early

and without the potentially harmful results which could occur at run time. Furthermore,

almost aU applications have the requirement that a program variable be iteratively bound to

consecutive elements of a query result. The query and application language type checking

mechanisms must be compatible for this binding to be performed in a type safe manner [17].

3 Query Model

This section presents the query model we are using to investigate query processing issues in object-

oriented databases. The model indicates how some of the tradeoffs can be resolved and can also

129 .

serve as a meta-standard since it can easily be extended. For example, the algebra operators that

are defined (Section 3 .5
)
are object preserving. The algebra, however, can easily be extended to

include object creating operators. The description in this paper is relatively intuitive. For a rigorous

and formal definition of these concepts, the reader is referred to
[
16].

3.1 Objects

Objects are viewed as instances of abstract data types (ADT) which can only be manipulated

via functions defined by the type. Types are organized in an inheritance hierarchy which allows

multiple inheritance. Each object has a unique, time invariant identity which is independent of its

state. Relations on object identities such as equality and set inclusion provide the bcisis for query

primitives which qualify algebra operators. All other relations among objects are implemented by

the ADT interfaces.

3.2 Classes and Methods

In accordance with popular object-oriented terminology, a class defines both an ADT interface

via methods and stands for all the objects which are instances of the type. Methods are named

functions whose arguments and result are objects. Each method has a signature of the form

Cl X ... X Cn —» Cresuit where Ci . . . C^ specify the class of the argument objects and Cresuit spec-

ifies the class of the result object. All classes in the database form a lattice where the root node

represents the most general class of objects and any individual class may have multiple parents.

Subclasses inherit behavior from their parents and may define additional methods. Thus, the class

lattice provides inclusion polymorphism
[
4

]
which allows an object of class C to be used in any

context specifying a superclass of C
[
14].

3.3 Primitive Object Operations

Objects encapsulate a state and a behavior. Methods defined on the class which an object is an

instance of define the object’s behavior. Behavior is revealed by applying a method to an object.

The result of a method application is another object. The dot notation <Oi . . .On>.m\.m2 •
• - Trim is

used to denote method application and method composition. Assuming methods m\ and nim take

three arguments each, and method m2 takes 2 arguments, then Figure 2 illustrates the processing

denoted by this operation. Method mi is applied to objects <01,02, 03> resulting in object ri,

method m2 is applied to objects <ri,04> returning object r2, and so on until the final result object

130 .

rm is obtained by applying method mm to objects <r^_i , o„_i , 0n> . <Oi . . .On>.mlist will be used

when the bst of method names is unimportant.

02 , 03 O4 On—l 1
Oj2

Figure 2: Composition of method applications.

An object’s state is captured by its value which is distinct from its identity [10, 15]. Object

values are either an atomic value provided by the database system (int, string, uninterpreted byte

sequence [5]), a set value which is a collection of object identifiers, or a structural value. Structural

values are visible only to cla^s implementors and can encompass attributes (tuples), discriminated

unions, etc. as in [2]. Any aspects of structural values which are required by users of a cIclss should

be revealed by the implementor via a method.

We define four comparison operators which can be used in queries: ==, G, ={} and = whose

semantics are shown in Tables 1 and 2. The == operator tests for object identity equality; i.e.

o, == Oj evaluates to true when o,- and Oj denote the same object. The G and operators apply

to set valued objects and denote set value inclusion and set value equality respectively. As shown

in the tables, one of the operands can denote a value if required. The last operator, =, can only

be used to test the value of an atomic object.

Table 1: Semantics of OiOoj as a function of the object value type.

OiOoj

0
,

Oj == G -{}

atomic

atomic T/F undefined undefined

structural T/F undefined undefined

set T/F T/F undefined

structural

atomic T/F undefined undefined

structural T/F undefined undefined

set T/F T/F undefined

set

atomic T/F undefined undefined

structural T/F undefined undefined

set T/F T/F T/F

Table 2: Semantics of aOoi as a function of the object value type.

a6ot

a Oi = G = {}

atomic T/F undefined undefined

vail structural undefined undefined undefined

set undefined T/F undefined

atomic undefined undefined undefined

{vail, • . va/n} structural undefined undefined undefined

set T/F T/F T/F

3.4 Predicate Formation

Atoms are primitive operations of the data model which return a boolean result. Atoms reference

lower case, single letter object variables which range over sets of objects when used in a query. The

legal atoms are as follows:

• OiOoj where:

— Oi and Oj are object variables or denote an operation of the form <oi . . .On>.mlist where

Oi . .

.

o„ are object variables.

- ^ is one of the operators ==, G or

• aOoi where:

— Oi is an object variable or denotes an operation of the form <Oi . . .On>.mlist where

0 i . .

.

are object variables.

— G is the textual representation of an atomic value or a set of atomic values.

— ^ is one of the operators =, G or

Predicates are formed by connecting atoms with A, V and -i as required.

Example 3.1 Let p, 9 and r be object variables. Then the following are examples of legal atoms

and their semantics:

1. (p == q)
- Are the objects denoted by p and q the same object?

2. (p ^<q,r>.mlist) - Is the identifier of p contained in the set value of the object obtained by

applying the methods in mlist to the objects <q^r>l

132 .

3. {<p, q> .mlist r) - Is the set value of the object obtained by applying the methods in

jnlist to the objects <p, q> pairwise equal to the set value of the object denoted by r?

4. (“59” = p) - Is the atomic value of the object denoted by p “59”?

5. (“59” £ p)
- Does the set value of the object denoted by p include an identifier for the object

whose atomic value is “59”?

6. (“59,61” =Q<p,q,r> .mlist) - Does the set value of the object obtained by applying the

methods in mlist to the objects <p, g, r> contain only two identifiers for objects whose atomic

values are “59” and “61”? O

3.5 Query Language — An Object Algebra

The object algebra contains both binary and n-ary operators. Let 0 be an operator in the algebra.

We wiU use the notation P 0 (Qi ...Qk) for algebra expressions where P and Q,- denote sets of

objects. In the case of a binary operator we will use P Q Q without loss of generality. The algebra

defines five object preserving operators: union, difference, select, generate and map. These are

fundamental operators; other may be defined (e.g. intersection) for convenience in terms of these.

Union (denoted PuQ): The union is the set of objects which are in P or Q or both. An equivalent

expression for union is { o
|

P{o) V Q{o) }.

Difference (denoted P — Q): The difference is the set of objects which are in P and not in Q.

An equivalent expression for difference is { o
|

P{o) A -'Q{o) }. The intersection operator,

P O can be derived hy P — (P — Q).

Select (denoted P crp Select returns the objects denoted by p in each vector

<p,q\ , , .qk> £ P X Qi X . . . X Qk which satisfies the predicate F. An equivalent expres-

sion for select is { p |

P{p) h Qi{qi) A . . . ^ Qk{qk) ^ F{p,qi ...7^) }.

The select is similar to, but more powerful than, that of [14] which allows only one operand.

Multiple operands permit explicit joins as described in [11]. An explicit join is a join between

arbitrary classes which support (a sequence of) method applications resulting in comparable

objects.

Generate (denoted Q\ 7)7 {Q 2 • • - Qk))"- P is a predicate with the condition that it must contain

one or more generating atoms for the target variable i.e. t does not range over any of

133 .

the argument sets. The operation returns the objects denoted by i in F for each vector

<qi . . .qk> € Qi X . . . X Qk which satisfies the predicate F. An equivalent expression for

generate is { i
\
Qi (qi) A ... A Qk (Qk) A . . .q^)) }.

Generating atoms are unique in that they generate values for variables which do not range

over an input set of the query (Table 3). They are called generating atoms because they

generate objects for x from a constant value (entry 5), from the content of other objects

(entries 2,4), or by applying methods to objects (entries 3,4). As an illustration, consider

the query Q rnlist)
Variables q and r range over the argument sets Q and R

respectively and thus can be considered ‘bound’ in the query. However, variable p is not

bound to any argument set and the atom p E:<q,r>.mlist will evaluate to true only when p

ranges over the objects in the set value of the objects obtained by the method applications.

Under these conditions then, the atom generates values for p.

Table 3: Generating atoms for x.

1 X == 0

2 X £ 0

3 0V1111H . .,On>.mlist

4 X G<Oi, .

.

. ,
On>.mlist

5 X = a

Map (denoted Qi ^mlist (Q2 ’ ^ - Qk))' Let mlist be a list of method names of the form

Map applies the sequence of methods in mlist to each object qi E Qi using ob-

jects in {Q2 • ”Qk) 3-s parameters to the methods in mlist. This returns the set of objects

resulting from each sequence appbcation. If no method in mlist requires any parameters, then

{Q2 . . - Qk) is the empty sequence
{ }. Map is a special case of the generate operator whose

equivalent is { i
| Qi{qi) A ... A Qk{qk) A t =~<:qi . . .qk>.mlist }. This form of the generate

operation warrants its own definition cls it occurs frequently and supports several useful op-

timizations. Map is similar to the image operator of [14], except that it is not restricted to

unary methods.

References

[
1

]
A. Alashqur, S. Su, and H. Lam. OQL: A Query Language for Manipulating Object-Oriented

Databases. In Proc. 15th International Conference on Very Large Databases., pages 433-442,

134 .

1989.

[2] A. Albano, L. Cardelli, and R. Orsini. Galileo: A Strongly-Typed, Interactive Conceptual

Language. ACM Transactions on Database Systems^ 10(2):230-260, June 1985.

[3] J. Banerjee, W. Kim, and K. Kim. Queries in Object-Oriented Databases. In Proc. 4th Int’l.

Conf. on Data Engineering^ pages 31-38, February 1988.

[4] L. Cardelli and Peter Wegner. On Understanding Types, Data Abstraction, and Polymor-

phism. ACM Computing Sui^eys^ 17(4):471-522, December 1985.

[5] M. Carey, D. DeWitt, J. Richardson, and E. Shetika. Object and File Management in the

EXODUS Extensible Database System. In Proc. 12th International Conference on Very Large

Databases, pages 91-100, August 1986.

[6] C. J. Date. A Guide to the SQL Standard. Addison Wesley, June 1987.

[7] G. Gardarin and P. Valduriez. Relational Databases and Knowledge Bases. Addison Wesley,

1989.

[8] W. HcLsan and H. Pirahesh. Query Rewrite Optimization in Starburst. Technical Report TR
RJ 6367, IBM Alamden Research Center, August 1988.

[9] M. Jarke and J. Koch. Query Optimization in Database Systems. ACM Computing Surveys,

16(2):112-152, June 1984.

[10] S. N. Khoshafian and G. P. Copeland. Object Identity. In Proc. of the Object-Oriented

Programming Systems and Languages Conference, pages 406-416, September 1986.

[11] W. Kim. A Model of Queries for Object-Oriented Databases. In Proc. 15th International

Conference on Very Large Databases, pages 423-432, 1989.

[12] S. L. Osborn. Identity, Equality and Query Optimization. In K. R. Dittrich, editor. Advances

in Object-Oriented Database Systems, volume 334 of Lecture Notes in Computer Science, pages

346-351. Springer Verlag, 1988.

[13] M. Scholl and H. Schek. A Relational Object Model. Unpublished manuscript.

[14] G. Shaw and S. Zdonik. A Query Algebra for Object-Oriented Databases. In Proc. 6th Int’l.

Conf on Data Engineering, pages 154-162, February 1990.

[15] M. Stefik and D. Bobrow, Object-Oriented Programming: Themes and Variations. The AI
Magazine, pages 40-62, 1985.

[16] D. Straube and M. T. Ozsu. Queries and Query Processing in Object-Oriented Database

Systems. Submitted to ACM Transactions on Information Systems. Also available as University

of Alberta Computing Science technical report TR 90-11, April, 1990.

[17] D. Straube and M. T. Ozsu. Type Consistency of Queries in an Object-Oriented Database

System. Submitted to the Object-Oriented Programming Systems and Languages Conference,

1990.

135 .

Intelligent SQL

by

Setrag Khoshafian

1. Introduction

The database management system technology of the 1 980s, namely relational databases,

fell far short of providing the necessary abstraction or model to act as the repository of the

hypermedia objects and applications of the 1990s. They lacked several fundamental

components to support integrated applications:

(1)
Applications in the 1 990s will increasingly use multi-media data types: long text

fields, raster images, vector images, voice data, animation, video input, to name
just a few. Relational databases provided very limited support for these data

types. In the more advanced relational databases of the 1 980s the multi-media

datatypes as stored as long un-interpreted strings of bits. Most of them do not

have direct support for access methods, associative retrieval or updates on

these fields.

(2) The relational databases of the 1980s could not provide direct and natural

representation of graph structured object spaces. The object spaces in

relational systems are flat tables. Hence complex relationships between

multi-media objects and products are not directly expressible.

(3) The querying languages of relational databases (most notably the SQL
standard) are not expressive enough. Relational algebra is not computationally

complete. For instance it is impossible to evaluate the transitive closure of a

relation using SQL. Relational database also lack declarative inferencing rules.

The deficiencies of relational databases are being solved by the next generation database

management systems, namely intelligent databases. A comprehensive definition and

exposition of intelligent databases is given in the book Intelligent Databases (Parsaye et

al., 1989), by Wiley publications. As defined there intelligent databases are:

Databases that manage information in a natural way, making that

information easy to store, access, and use.

136 .

The emphasis in intelligent databases is on information rather than data, because

intelligent database incorporate not only traditional applications such as inventory

management, but also knowledge bases, automatic discovery systems, imaging

applications, and so on.

Another important concept is the naturalness of the intelligent database model. This

natural representation of the knowledge and information in intelligent databases

expresses itself In:

(1) Strong support of the ’’natural” multi-media data types: text, image, voice,

animation, video, etc.

2) An object oriented database model which allows a more direct representation of

real world models,

(3) The support of declarative rules to express directly and naturally semantic

relationships amongst objects.

Intelligent databases represent a new technology for information management that has

evolved as a result of the integration of traditional approaches to databases with more

recent fields such as:

• Object-oriented concepts

• Expert systems

• Hypermedia

• Information retrieval

“ Distributed Databases

This is illustrtated in Figure 1. The object-oriented capabilities in Intelligent SQL include

abstract data typing, inheritance, and object identity. Each of these features are discussed

in more details in subsequent sections.

In addition, expert systems are integrated in Intelligent SQL through a tight and seamless

integration of rules and SQL. Intelligent SQL incorporates full-text searches on text

attributes (columns). The user-interface of Intelligent SQL is a object-oriented

hypermedia environment. For more details on intelligent hypermedia interfaces to

databases see (Parsaye et al., 1989). Another very important component of Intelligent

SQL is the distributed database capabilities of Intelligent SQL. Through Intelligent SQL

users can introduce foreign and remote databases to the Intelligent SQL engine and use

these foreign tables like local data. The distributed database constructs of Intelligent SQL

137 .

will not be discussed in this paper.

Figure 1: The Technologies Integrated in

Intelligent Databases

1.2 The Three Layered Architecture

Intelligent databases thus represent the evolution of a number of distinct paths of

technological development. Until recently, these technologies were treated in isolation,

with each technology being only weakly linked to others. For instance, expert systems

have relied on little more than file-transfer protocols to gather data from databases. Due to

the phenomenal growth in each field, the connections and correspondences to the other

fields did not have time to form. Now that these technologies have reached a stage of

maturity, it Is possible to define an overall unifying structure for viewing all these fields as

138 .

parts of a blueprint for intelligent databases. Intelligent databases provide a common

approach to the access and use of information for analysis and decision making.

The top-level architecture of the intelligent database consists of three levels:

• High level tools

• High level user interface

" Intelligent database engine

As Figure 2 shows, this is a staircase layered architecture. Users and developers may

independently access different layers at different times. The details and functionality of

each level is given in (Parsaye et al., 1989). Here we present a brief overview.

The first of these levels Is the high level tools level. These tools provide the user with a

number of facilities: intelligent search capabilities, data quality and integrity control, and

automated discovery. These high-level tools represent an external library of powerful

tools. Most of these tools may be broadly classified as information management

techniques, similar to spreadsheets and graphic representation tools. They look and work

much as their stand-alone equivalents, but they are modified so as to be compatible with

the Intelligent database model. They are object oriented, and their basic structure mirrors

the object representation methods of the intelligent database model.

The second level is the high-level userinterface. This is the level that users directly interact

with. This level creates the model of the task and the database environment that users

interact with. It has to deal as much with how the user wants to think about databases and

information management as with how the database engine actually operates. Associated

with this level are a set of representation tools that enhance the functionality of the

intelligent database.

The user interface is presented in two aspects. First, there is a core model that is presented

to the user. This core model consists of the object oriented representation of information,

along with a set of integrated tools for creating new object types, browsing among objects,

searching, and asking questions. In addition, there is a set of high-level tools, which

enhance the functionality of the intelligent database system for certain classes of user.

The base level of the system is the intelligent database engine and its data model. This

model allows for a deductive object oriented representation of Information, which can be

expressed and operated on in a variety of ways. The engine includes backward- and

forward-chaining inference procedures, as well as optimizing compilers, drivers for the

external media devices, and version handlers.

In the rest of the paper, we concentrate on the Intelligent database engine and its interface:

Intelligent SQL. As mentioned earlier, the intelligent database engine incorporates a model

139 ,

that allows for a deductive object-oriented representation of information that c;

expressed and operated on in a variety of ways. The engine includes backward

forward- chaining inference procedures as well as drivers for the external media de

version handlers, optimizing compilers, and the like.

The intelligent database engine with its deductive object oriented data modeling sup

the underlying repository for the integrated applications and products which use th

level tools and high level user interfaces. The engine is the core and the most imp

component of future systems. The intelligent database engine provides the functic

and the performance for supporting the integrated applications. In addition, access tc

databases, distributed inferencing and database management systems are acl"

through the intelligent database engine.

Intelligent database engines consist of two components:

(1) The Deductive Object Oriented Data Model Interface: This provide

interface to the layers above. DOOD is basically the core intelligent dat

language. Applications which intend to use the intelligent database e

submit programs written In the DOOD language, which Is a dialect of SQL,

Intelligent SQL.

(2) The actual engine which compiles, optimizes and executes DOOD proc

Figure 2 indicates some of the components of the architecture: The Opti

The Inference Engine, The Meta-Information Manager, The Trans

Manager, The Multi-Media Data Manager, and The Storage Manager.

The rest of the paper is dedicated to a more detailed of the object-oriented capabih

Intelligent SQL

140 .

Figure 2: The Three Layered Architecture

141 .

1.2 Why Yet Another Dialect of SQL?

The intelligent database strategy is to capture and represent the deductive, object

oriented, multi-media capabilities of intelligent databases as a dialect of the most popular

database language, namely SQL The dialect is called Intelligent SQL This will provide a

natural migration path from existing relational technology.

Extending SQL with full compatibility with the SQL standard provides the most popular and

useful introduction of intelligent database concepts in database management systems for

the following reasons:

(1)
SQL is the most popular relational query language and is endorsed by almost all

the major developers of relational systems. Therefore, an extended and upward

compatible SQL can easily encompass the application programs developed in

SQL, and thus maintain the investment in these programs.

(2) It is the only relational language which has a standard developed for it.

(3) SQL is also being promoted as the interface language of database engines,

such as the Ashton-Tate/Microsoft SQL Server and the Qracle QS/2 Server.

Therefore, new applications developed in the extended SQL can easily call

these database servers for both efficiency and access of remote data.

(4) SQL improves upon "navigational” models such as the hierarchical and network

models, in that it is more declarative. SQL provides higher level database

definition and manipulation constructs allowing the programmers to specify

what they want from a DBMS (vstellingthe system howto obtain and manipulate

the database).

Supporting powerful language extensions to model the real world as closely as possible is

just the interface of an intelligent database engine. To be usable, the additional

functionalities must be supported natively in the underlying engine, to guarantee higher

performance. Furthermore, the Incorporation of the SQL extensions should not penalize

the less sophisticated users of "vanilla” SQL. The intelligent database engine described

here is driven by these performance and efficiency requirements. In this paper we primarily

concentrate on the object-oriented capabilities of Intelligent SQL. A description of the Al

(Artificial Intelligence) and IR (Information Retrieval) capabilities of Intelligent SQL is given

in (Khoshafian et al., 1990) and (Khoshafian and Abnous, 1990).

3. Encapsulation

Qne of the most important features of object orientation Is encapsulation. Encapsulation is

an abstraction mechanism whereby an object is accessed and modified only through

142 .

external interface routines and functions or operations (typically known as "methods” in the

object oriented jargon). The internal implementation details, data structures, and storage

elements used to implement the object and Its operations are not visible to the clients

accessing and manipulating the object. The object’s behavior Is fully defined through the

set of abstract operations defined for the objects.

The object ’’types” in SQL are:

(a) Built-in atomic object types, usually known as ’’column types” in SQL jargon. An SQL
implementation will provide a number of built-in atomic types such as Character,

integer. Decimal, Logical, or Date.

(b) The rows or tuples which constitute the elements of the tables. The values of the

attributes (columns) in a row can only be atomic.

(c) The tables (relations) of homogenous tuples (rows).

3.1 User Defined ADTs

Perhaps the most obvious and easiest extension of SQL to incorporate object orientation

would be the support of user-defined abstract data types. In other words allow the ’’base

types” of SQL (integer, decimal, char, etc.) to be extensible with additional types, whose

behavior is encapsulated in methods (operations) written in some high level language such

as C.

Similar attempts include (Osborn and Heaven 1986), POSTGRES (Stonebraker, 1986),

and FAD (Bancilhon et al. 1987). In FAD, the routines defining the abstract datatypes are

written In C. This same technique is incorporated in Intelligent SQL.

CREATE ADT-CLASS <adt-name> [<adt parameters>] (

INSTANCE VARIABLES (<instance-variable declaration>

[, <instance-variable declaration>) /

OPERATIONS (

<operation-description> (<parameter declaration>

[, <parameter declaration>]

<operator-body>

[, <operation-description> (<parameter declaration>

[

,

<parameter declaration>]

<operator-body>]))

where <operation-descriptlon> indicates the operator’s name, the language, and

signature (we assume all operations are functions which return values):

143 .

<operation-description> : := <operation name> <operation signature>

The <operation signature> specifies the types of the input and output parameter of the

operation. Each operation is actually a ’’function” (although operations could have ’’side

effects” updating the internal state of the object).

Both parameter and instance variable declarations contain the name and type of the

variables. The same operator could be overloaded as described in Section 2.2. The

convention is that the first argument determines the operator’s implementation (and hence

its binding). Therefore, the first parameter of the parameter declaration list should always

be the same as the ADT being defined. The instance variable pertain to the first parameter

and can be accessed and updated within an operator body.

The instance variables are accessed by prefixing the instance variable’s name by the

object’s handle, delimited through a Thus if O is an object of ADT type T with instance

variable X, then X is obtained through O.X. The instance variable types are either built-in

or user defined ADTs.

For example, we can define the class Stack as follows:

CREATE CLASS Stack (

INSTANCE VARIABLES (ARRAY StArr [50] of INTEGER,

Top INTEGER,

Size INTEGER)

/

OPERATIONS (Push

Stack X INTEGER -> Stack

(St Stack, Value Integer

St . StArr [St . Top] = Value

St . Top = St . Top + 1

RETURN St) ;

Pop

Stack -> INTEGER

(St Stack

St . Top = St . Top - 1

RETURN StArr [St . Top + 1]) ;

...))

The operations defined in different user-defined abstract data types could be overloaded

In conventional languages such as C or Pascal the same operation could apply to different

object types depending on the context. For example the ”+” operator in 1 1 + 5 is integer

addition; in 1.1 + 5.0 it is floating point addition; in ’aaa’ + ’ccc’ it is string concatenation.

144 .

The overloading of operations (methods) is a powerful concept. To Illustrate its power

assume we have a heterogeneous stack with 1 to Top elements and an overloaded ’’Print”

operation for each type. Then with an object oriented approach the code to print all the

elements of the stack would be:

for i:= 1 to Top do

Print(St[i])

With a more conventional approach we would have to encode the type, have as many

’’Print” operations as there are types (e.g. Printstring, Printlnteger, etc.) and a huge ’’case”

statement to invoke the appropriate print for the object type.

3.2 Parametric Polymorphism

Overloading Is an ”ad-hoc” polymorphism (Cardelli and Wgner 1985), in the sense that the

overloaded operators are totally unrelated. Another powerful object oriented concept is

parametric polymorphism. In the Stack example we specified the maximum number of

elements for the stack (50) and the types of the elements of the stack (INTEGER).

Using this approach we would need a separate declaration for each combination of stack

size and stack element type. Parametric polymorphism solves this problem by

parametrizing types and boundaries. These parameters must be bound at compile time.

For example the parametrized declaration of stacks would be:

CREATE CLASS Stack [Max, EType] (

INSTANCE VARIABLES (ARRAY StArr [Max] of EType,

Top INTEGER,

Size INTEGER)

;

OPERATIONS Push

Stack X EType -> Stack

{ St Stack, Value Integer

St . StArr [St . Top] = Value

St . Top = St . Top + 1

RETURN St) ;

Pop

Stack -> EType

(St Stack

St . Top = St . Top - 1

RETURN StArr [St , Top + 1]) ;

145 .

As we said earlier, when we declare an object to be a stack we must bind the Max and

Etype values. For example we can create a table of Accounts, where Payables is a stack of

dollars:

CREATE TABLE Accounts (

AcountNumber

Location

Payables

3. Tuple Valued Attributes

To motivate the importance and appropriateness of tuple valued attributes consider a

simple example: the address of persons. Addresses have structure: House/Apparment

Number, Street, City, State, Zip, Country, etc.

Thus it is very natural to have a ’’tuple” (record, struct) valued attribute which stores the

address of a person or a company. With the current ’’relational” approach we have the

following choices for storing the address:

(1)
Store the address as a character string and let the ’’user” store and retrieve individual

fields of the address. With user-defined abstract data types the user can define

methods to retrieve each individual address field. However, this alternative introduces

an almost arbitrary partitioning between the user defined types and the types directly

supported by the database management systems. Rows of tables are tuples. There is

no reason why these tuples cannot be values of attributes (columns).

(2) Have AddressStreetNumber, AddressCity, AddressState, etc. fields In the Persons

table. This is not natural since the semantics of the association between the address

fields are lost. Furthermore if the Persons relation has several such ’’tuple” valued

attributes. Its schema will become incomprehensible.

(3) To alleviate some of the problems in (2) store the addresses In a separate table with a

primary key, and for each Persons row store the address foreign key. Although this

strategy is ’’cleaner” than (2), accessing the address fields will involve a join.

The problem with all these strategies stems from the underlying problem of not being able

to have ’’type completeness”.

Thus we introduce ’’tuple” valued attributes and an extended ’’dot” notation to retrieve the

field values of nested tuples.

To declare a tuple, we can either create and name a tuple type, or directly declare an

attribute to be of type TUPLE
(
<tuple attribute declarations>).

INTEGER,

CHAR(20) ,

Stack [10, DOLLAR]

)

146 .

A

To create a names tuple type the syntax is:

<tuple definition> : := CREATE TUPLE <tuple name>

(<tuple elements>)

<tuple element> : := <column definition>

<coluinn definition> : := <column name> <data type>

I
<column name> <tuple declaration>

<tuple declaration> : := TUPLE { <tuple elements>

For example we can create a tuple valued Address attribute (

CREATE TUPLE ADDRESS (

Number INTEGER,

StrtName CHAR(20) ,

AptNumber INTEGER,

City CHAR(20)

State Char (20)

,

Zip INTEGER)

CREATE TABLE Persons (

NAme CHAR(20) ,

Age INTEGER,

HomeAddr ADDRESS)

Alternatively we can have:

CREATE TABLE Persons {

NAme CHAR(20)

,

Age INTEGER,

HomeAddr TUPLE

(

Number

StrtName

AptNumber

City

State

Zip

INTEGER,

CHAR(20) ,

INTEGER,

CHAR(20)

Char (20)

,

INTEGER)

3o1 Extended dot Notation

In SQL columns are referenced by their name either directly or, if there is an ambiguity,

prepended by a table name. The value of a column (attribute) in a row is a base type. Since

147 .

in the proposed extension the value can be a row (tuple), we must have a way to

columns of this row directly.

The extended dot notation would modify the ’column-ref production to:

column-ref ::= [column qualifier .] column-sequence
column-sequence ::= column

I
column-sequence . column

Thus to retrieve the city in which Jerry lives we have:

SELECT HomeAddr .City

FROM Persons

WHERE Name = "jerry"

Note that a nested tuple can contain other nested tuples. For example the City s

Itself be a tuple indicating the name, population, elevation, meyer, et.cof theci

can have

CREATE TUPLE CITY (

Name

Population
Meyer
Elevation

CHAR(20)

,

INTEGER,

CHAR(20)

,

FEET)

We declare the attribute type of City In Address to be CITY:

CREATE TUPLE ADDRESS (

Number INTEGER,

StrtName CHAR(20) ,

AptNumber INTEGER,

City CITY,

State Char (20)

,

Zip INTEGER)

sons {

Name CHAR(20) ,

Age INTEGER,

HomeAddr ADDRESS)

Jerry’s address’s street name and city’s meyeris name could be retrieved thr

148 .

SELECT HomeAddr . StrName, HomeAddr . City . Meyer
FROM Persons

WHERE Name = "jerry"

As we shall see in the next section, the extended dot notation is also used to indicate table

options on nested tuples when creating tables.

3.2 Tuple Expressions

The extended dot notation is used to retrieve tuple or scalar valued attributes of table rows.

Tuple expressions is n additional construct for assigning and seraching with tuple valued

attributes. The general form of a tuple expression is:

TUPLE (<value list>)

where the <value rist> contains a list of scalar and/or tuple expressions seperated by

commas. For example:

TUPLE (1322, "Spring", NULL,

TUPLE ("San Simon", 10000, "Billy Joe",

20000)

)

is a tuple expression whihc can appear in a data manipulation statement (as demonstrated

in the next section) or in a search condtion as In:

SELECT Name, Age ’

FROM Persons

WHERE HomeAddr = TUPLE (1322, "Spring", NULL,

TUPLE ("San Simon", 10000, "Billy Joe",

20000)

)

Tuple expressions can also be used in other DML (data manipulation language

expressions) For example we can modify the entire address of John Smith through:

UPDATE Persons

SET Address = TUPLE (1322, "Spring", NULL,

TUPLE ("San Simon", 10000, "Billy Joe",

20000)

)

WHERE Name = " john Smith"

Similarly the Intelligent SQL INSERT statement also allows tuple expressions to be

Inserted into tbales which have tuple valued attributes. For example we can have:

149 .

INSERT

INTO Persons (Name, Age, HomeAddr)

VALUES ("John Smith", 22,

TUPLE (1322, "Spring", NULL,

TUPLE ("San Simon", 10000, "Billy Joe",

4. Object Identity

20000)

)

A powerful object oriented concept is the incorporation of the strong notion of object

identity (Khoshafian and Copeland 1 986) in a database language. Identity is that property

of an object which distinguishes it from all other objects. Most programming and database

languages use variable names to distinguish objects, mixing addressability and identity.

Most database systems use identifier keys (i.e. attributes which uniquely identity a tuple) to

distinguish objects, mixing data value and identity. Object-oriented languages employ

separate mechanisms for these concepts, so that each object maintains a separate and

consistent notion of identity regardless of how it is accessed, what it contains (i.e. its value),

or how it is modeled with descriptive data (Khoshafian and Copeland 1986).

The importance and power of object identity has been recognized and incorporated in

numerous database languages, including functional languages based on semantic data

models (Shipman 1 981), LDM (Kuper and Vard1 1 985), and more recently FAD (Bancilhon

etal. 1987).

If a language supports the strong notion of identity, it is not necessary for the user to "see”

or "manipulate” the object identity directly. In addition to special operators which

manipulate object identity, in Interactive environments users are given “handles” to an

object. Using these handles users can traverse graphically structured object spaces. In the

sequel we shall incorporate these special operators and handles In SQL.

There are three types of objects in SQL:

(a) Built-in atomic domain types, usually known as "column types” in SQL jargon. These

Include Character, Small Integer, Integer, Decimal, Numeric, Float, and Data.

(b) The rows or tuples which constitute the elements of the tables. The values of the

attributes (columns) in a row can only be atomic.

(c) The tables (relations) of homogenous rows.

In Phase I we implement the extension of SQL which incorporates identity to rows of base

table, tuple valued attributes, and atomic (user defined ADT) attributes only. Phase II will

150 .

generalize object identity in SQL to incoporate ’’own” references and identities for set

valued attributes.

In incorporating object identity we have a clean underlying object model which is based on

the identity based model of FAD.

4.2 Indetity in Intelligent SQL

The main extension in the data (or schema) definition language of SQL is the provision for

an object id of a row from a table as a column data type, or a tuple type, or a user-defined

abstract data type. Thus in the extended SQL BNF we’ll have:

<column definition> : :
=

<column name> <data type>

. I
<column name> <tuple declaration>

I
<column name> OBJECT <ob ject type>

<object type> : :
=

<data type>
<tuple declaration>

ROW <table-name>

Note that if we do not have the keyword OBJECT we will get actually a value of the

indicated type (e.g. a tuple). Thus if we have a Department table declared as:

CREATE TABLE Departments (

DeptName CHAR (20),

DeptNum INTEGER,

Budget FLOAT (2))

Then, assuming each employee works in exactly one department, we can declare an

Employee table as

CREATE TABLE Employees (

EmployeeName

EmployeeAge

Employee Salary

EmployeeRank
EmployeeDept

CHAR(20) ,

INTEGER,

INTEGER,

INTEGER,

OBJECT ROW

Departments)

With object Identity the attribute or column value of a row Is a tuple. Hence the xtended dot

notalon can also be used here to access the attributes of the nested tuples. So with the

151 .

schema of EMployees and Departements we can retrieve the department name of Jo’es

department throughL

SELECT EmployeeDept . DeptName

FROM Employees

WHERE EmployeeName = "Joe"

As far as retrieval is concerned, extended dot natation is basically what we need.

As we mentioned earlier, there are three types of equality associated with object identity.

To simplify the support of identity, in the initial version of Intelligent SQL we shall overload

the predicate to mean:

(1) identical'll the two arguments are OBJECTS

(2) Shallow Equal'll the two arguments are tuples

(3) Comparison of atomic values, otherwise

For instance to rerieve the names of all the employees who work in the same departmet as

Joe we have:

SELECT AllEmps . EmployeeName
FROM Employees AllEmpls, Employees JoeEmps
WHERE JoeEmps . EmployeeName = "Joe" and

AllEmps . EmployeeDEPT = JoeEmps . EmployeeDEPT

For updates, we need a mechanism to have the same object be referenced by multiple

parent objects. To this end we introduce an ASSIGN operation whose general form is:.

ASSIGN <object exprssion> TO <object expression>

where is <object expression> a select statemetn Identifying a single object:

<object expression> : := <selext statement>

This means the <select clause> of the <select statement> is a concatenation of attribute

names separated by ”.”s. For Instance to ASSIGN the address of Mary to Joe we have:

ASSIGN SELECT Address From Persons WHERE Name = "Joe"

TO

SELECT Address From Persons WHERE Name = "Mary"

There must be one Joe and one Mary in Persons

152 .

5. Inheritance For ADTs, Tuples, and Tables

The third powerful object oriented concept to be integrated in SQL is inheritance.

In object oriented systems and languages, using inheritance we can build new classes or

types on top of an existing less specialized hierarchy of classes (types), instead of

re-writing the new classes which resemble existing classes In many aspects, from scratch.

The new classes Inherit from existing classes both representation and behavior (i.e.

operators or methods).

Similar to encapsulation and object identity, inheritance is also a natural model of the real

world. We are used to abstracting and classifying information in inheritance hierarchies.

Thus we think of mammals as a sub-class of vertebrates, and dogs as a sub-class of

mammals, and Yorkshire terriers as a sub-class of dogs.

inheritance allows us to re-use and share the code of the less specialized classes. It

provides us with perhaps the most natural and efficient way of organizing complex system

and application code. As we shall show this provides with the cleanest mechanism for

organizing large application programs.

Inheritance in SQL

Next we illustrate how we introduce inheritance to dBASE/SQL. In dBASE/SQL we have

the ’’base” (atomic) types which are extensible through user defined abstract datatypes as

discussed in Section 2. We also have two type constructors: tuples and tables. In Section 3

we showed how tuple types could be created (very similar to the creation of tables).

As far as inheritance is concerned we shall incorporate the following:

(1) Inheritance of user defined ADT’s allowing specialization and overloading of

representation and/or operations

(2) Inheritance for tuple types

(3) Table inheritance through specialization hierarchies.

Next we detail the strategies, syntax, and semantics for each of these types.

5.1 Inheritance in ADTs

The syntax to indicate the super-classes of an ADT subclass Is through the construct

ADT-SUPER-CLASS <super-class list>

153 .

Thus the production of an ADT declarations becomes:

CREATE ADT”CLASS <class name> (

[ADT-SUPER-CLASS <super-class list>]

[INSTANCE VARIABLES AS <inherited instance var list>]

[OPERATIONS AS <inherited operations list>]]

INSTANCE VARIABLES (<instance-variable decIaration>

[, <instance“-variable declaration>]) ;

OPERATIONS (<operation-description> (

<par”declaration Iist>

<operator-body>

[
, <operation-description>

(

<par“declaration list>

<operator-body>)])

In terms of the semantics of ADT inheritance we follow the following conventions:

(1)
The inherited instance variables are “visible” to the inheriting (sub-class) clients of the

ADT (but not the “instantiating” clients of the ADT).

(2) An ADT class can “specialize” a super-class through either:

(a) Declaring additional instance variables

(b) Declaring additional operations

(c) Specializing (overriding) existing instance variables as described in (4).

(d) Specializing (overriding) existing operations as described in (4).

(3) If an AS clause is not specified then if an ADT class inherits from more than one

super-class and there is a conflict either in the representation (instance variables) or

behavior (operations) than the left-most classes in the ADT-SUPER-CLASS
declaration take precedence.

(4) If an AS clause is specified for either the instance variables or the operations, then all

the instance variables of the super-classes are inherited and given the names
specified in the AS clause, in left to right order.

(5) If a sub-class overrides an instance variable of a super-class than the type of the

instance variable in the sub-class must be a subtype of the type of the overriden

instance variable.

5.2 Inheritance in Tuple Classes

Similar to inheritance in user defined ADT’s we can have (multiple) inheritance of tuple

types through the construct:

154 .

TUPLE-SUPER-TYPE <super-type list>

Thus the tuple definition becomes:

<tuple definition>
CREATE TUPLE <tuple name>
[TUPLE-SUPER-TYPE <super-type list>

[ATTRIBUTES AS <inherited attribute list>]]

(<tuple elements>)

In terms of the semantics of tuple inheritance we follow the following conventions:

(1) A tuple type can “specialize” a super-type through either:

(a) Declaring additional attributes

(c) Specializing (overriding) existing attributes as described in (4)

(2) If an AS clause is not specified then if the tuple type inherits from more than one

super-type and there is a conflict (I.e. an attribute with the same name is declared in

more than one super-type) than the left-most tuple types In the

TUPLE-SUPER-TYPE declaration take precedence.

(3) If an AS clause is specified then a//the attributes are inherited from the super-types

and re-named with the names given in the <inherited attribute list>, in left to right order

of the super types.

(4) If a tuple type overrides an attribute of a super-type than the type of the attribute In the

sub-type must be a subtype of the type of the overriden attribute.

As a simple example for tuple Inheritance, consider business address as a sub-type of

addresses:

CREATE TUPLE ADDRESS (

Number

StrtName

AptNumber
City

State

Zip

INTEGER,

CHAR(20)

INTEGER,

CHAR(20)

Char (20)

INTEGER)

CREATE TUPLE BUSINESS-ADDRESS

TUPLE-SUPER-TYPE ADDRESS

(Of ficeNo INTEGER)

Similarly we can have a foreign address:

155 .

CREATE TUPLE FOREIGN-ADDRESS
TUPLE-SUPER-TYPE ADDRESS

(Country CHAR(20))

And a foreign business address as:

CREATE TUPLE FOREIGN-ADDRESS

TUPLE-SUPER-TYPE BUSINESS-ADDRESS, FOREIGN-ADDRESS

5.3 Inheritance for Tables

There are two mechanisms for creating a sub-table of an existing tables;

(1) Specialization through Additional Column Extensions: where the sub-table

introduces additional columns, specializing the super-table.

(2) Specialization through Restrictions] where the sub-table either restricts the domains

of attributes or introduces arbitrary restrictions on the attributes of a table

In fact we can combine extension and restriction specializations and declare a table T2 to

be a sub-table of a table T 1 ,
where T2 introduces additional atXr^buXesXoT^ and restrict the

domain of the existing attributes of T1

.

Next we shall define the syntax and semantics of both extensions and restrictions.

5.3.1 Additional Column (“Horizontal”) Extensions

Portable inheritance with additional column extensions we follow an SQL 3 proposal. More

specifically the CREATE TABLE construct has the following production:

CREATE TABLE <table name>

<table elements>

I
<sub-table clause> [<table elements>]

where:

<subtable clause> : :
=

SPECIALIZES <super-table name list>

[AS <coIumn name list>]

where:

<table attribute list> : := <table attributes> , <table attributes> . . .

<table attributes > : : = <table name> (<column name list>)

1 56i

In terms of the semantics of table inheritance, we have the following rules:

(1) Each table name in the super-table list is the name of a table

(2) The graph of the table inheritance hierarchies is actually a DAG (directed acyclic

graph): in other words there are no cycles.

(3) If tables In the super-table list have a common predecessor (i.e. they transitively

Inherit from acommon root table), then there will be onecopy of the shared columns. If

shared columns have different names then there must be an AS clause which

specifies the name used in the table beung created.

(4) If the AS clause is not specified, the table inherits from more than one super-table and

there is a conflict (I.e. unrelated column with the same name Is declared in more than

one super-table), the left-most table in the sub-table clause takes precedence. Note

that if the conflicting columns come from the same predecessor rule (3) will still be

valid since there will be one copy of the shared columns.

(5) If we have an AS clause, then the column names from the inherited tables are

re-named.

(6) Whenever we insert/delete/modify a tuple in a table which inherits from other tables,

the sub-tuples corresponding to the super-tables are (logically)

inserted/deleted/modified in the super-tables. More formally, the Inheritance

hierarchy has a set inclusion semantics. This means if T1 is a sub-table of T2, then

T2’s extension (i.e. the set of all rows in T2) will also contain the elements ofT1, A
table as a set contains all its sub-tables as sub-sets.

(7) Whenever we delete/modify a tuple In a super-table, the tuples corresponding to the

deleted/modified tuple in all sub-tables are deleted/modified.

Examples

As a simple example consider the tables Students, Staff, and ResearchAssistants:

CREATE TABLE Persons (

Name

Age

HomeAddr

CREATE TABLE Staff

SPECIALIZES Persons

(ID CHARdO),
OfficeAddress BUSINESS-ADDRESS)

PRIMARY KEY (ID)

CREATE TABLE Students

CHAR (20)

,

INTEGER,

ADDRESS)

157 .

SPECIALIZES Persons

(ID INTEGER,

Advisor OBJECT ROW Staff)

PRIMARY KEY (ID)

CREATE TABLE ResearchAssistants (

SPECIALIZES Students, Staff AS Name, Age, HomeAddr,

StaffID, OAddr, StudentID, Adv

(ResearchArea CHAR (20)

With this definition the ResearchAssistants table will be initially empty. As discussed in

Section 5.3.3, unique constraints on StaffID and StudentID are inherited. Whenever we

insert a row in ResearchAssistants, we can SELECT or modify that row from Staff or

Students.

5.3.1 .1 SELECTS on Super-Tables

The table inheritance has a set inclusion semantics. More specifically, the table Persons

includes not only the elements of Persons but also the elements of all the sub-tables of

Persons (of course withoutXhe additional attributes - i.e. the projections of these tables on

the inherited attributes). Thus when we execute:

SELECT *

FROM Persons

we retrieve the elements of Persons (who are nof Staff or Student), as well as the elements

of Staff, Student, and ResearchAssistants projected on (Name, Age, HomeAddr).

5.3.2 Restriction Specializations (“Vertical” Modifications)

In some cases tables are specialization of super-tables because of certain restrictions

which are relevant only to the more specialized sub-table. Therefore through introducing

restrictions on one or more columns of a table we can create a subset sul>-set

specialization of the table. For example in the table Persons we can create the sub-table

Adults which have a//the attributes of Persons, except that the age attribute is in the range

greater or equal to 21.

There are two ways for indicating restrictions:

(1) Through specifying a WHERE clause

(2) Through indicating the sub-domain of inherited columns

158 .

Syntactically for restriction inheritance we introduce a WHERE clause to indicate the

appropriate restrictions on the columns of a super-table. Thus the table creation clause

becomes:

CREATE TABLE <table name>

<table elements>

I
<sub-table clause> [<table elements>]

where:

<subtable clause> : :
=

SPECIALIZES <super-table restricted name list>

[AS <column name list>]

<super-table restricted name list> : := <restricted table name> , . . .

<restricted table name> : :
=

table name> [<subtable restriction clause>]

<subtable restriction clause> : :
=

WHERE <restriction clause>

<table attribute list> : := <table attributes> , <table attributes> . . .

<table attributes > : : = <table name> (<column name list>)

In terms of semantics we have the following additional rules;

(1 4) If a sub-table restriction clause clause is specified for a super-table then it indicates

the intension that all tuples satisfying the predicate are automatically elements of the

sub-table. Actually subtables which are defined through restrictions could have non

empty intersections.

(15) if a sub-table restriction clause clause is specified and the table also incorporates

column extensions then whenever a tuple in a super-table satisfies the constraint

then that tuple is also an element of the sub-table with the additional columns values

set to DEFAULT or NULL.

(16) If a sub-table restriction clause clause is specified and there are more than one

tables in the super-table name list and there are columns of some tables which are not

joined with columns of other tables then whenever a tuple In a super-table satisfies

the constraint then that tuple Is also an element of the sub-table with the additional

columns values set to DEFAULT or NULL.

(17) In lieau of (15) and (16) with a sub-table restriction, each column which could

potentially be set to null due to super-table tuples which satisfy the constraint must

159 .

i

either have a default clause or, otherwise, must not have a NOT NULL constraint.

(18) If OUTER is specified then the sub-table restriction is unnecessary and will be

ignored.

For example we can create an Employees table and a sub-table which contains the highly paid

employees:

CREATE TABLE Employees (

EmpName

EmpAge

Salary

Department

PRIMARY KEY (EmpName)

CHAR(20)

,

INTEGER,

INTEGER

INTEGER)

CREATE TABLE HighlyPaid

SPECIALIZES Employees

WHERE Salary >= 60000

We can also create hihly-paid / good standing research assistants:

CREATE TABLE Student

StName

StAge

GPA

PRIMARY KEY (StName)

CREATE TABLE HighlyPaidGoodStudentResearchAssistants (

SPECIALIZES Employees WHERE Salary >= 60000,

StudentWHERE GPA >=3.75
JOINED CORRESPOND Employees (EmpName, EmpAge)

Student (StName, StAge)

AS Name, Age, Salary, Department, GPA

(ResearchArea CHAR (20)

CHAR(20) ,

INTEGER,

FLOAT)

6. Intelligent Database Engines

The intelligent database engine implements the features of the deductive object oriented

intelligent database model. Intelligent SQL A query or a request is submitted to the

intelligent database interface. The query is compiled, optimized, and executed through the

different architectural components discussed here.

160 .

The components of the intelligent database engine are illustrated in Figure 3. The

extended Intelligent SQL is compiled to an intelligent database virtual machine code. Many
inference and database engines use a similar strategy. For Instance the Warren engine

has its own virtual machine instruction set which gets interpreted by the underlying system.

The ’’instruction set” which corresponds to the functionality of the intelligent database

engine is much richer than the Instruction set of any existing Inference or database

engines. It incorporates instructions for the deductive, object-oriented, and multi-media

data types supported by the engine.

The following are the fundamental components of the intelligent database engines:

The Optimizer- One of the most important modules of he engine is the optimizer. The
Intelligent SQL which is submitted to the database engine is compiled and globally

optimized. In other words, the optimization takes into account the whole query or

program. This is in sharp contrast to the piece-meal optimization of loosely coupled

database and inference engines. Global optimization greatly Improves upon the

performance of loosely coupled systems, which could be prohibitive for large or

serious applications.

The Inference Engine - Although some of the functionality of a ’’traditional” inference

engine Is handled by other modules of the intelligent database engine, there are some
specific tasks that are performed by an inference engine embedded in the intelligent

database engine. The inference engine handles the flow of control of the forward or

backward chaining inferencing in the execution of the programs. The Inference

engine also keeps track of the explanations to provide to the user the reasons and the

flow of control on goals that succeed or fail. Another responsibility of the inference

engine is the uncertainty algorithms. Since rules can be asserted with associated

certainty factors, goals ar proven with certainties. The deduction and evaluation of

certainty factors for rules is handled by the inference engine.

The Transaction Manager - The transaction manager encapsulates all the algorithms

that are needed to perform concurrency control on concurrently executing

transactions. Some intelligent database applications such as CAD/CAM or CASE
have long duration transactions. To provide intermediate save-points in long duration

transactions the transaction manager of intelligent databases supports nested

transactions.

The Meta-Information Manager - The meta-Informatlon manager handles all the

meta-data Information associated with the persistent database. This includes

schemata, the persistent class inheritance hierarchies, the user defined abstract data

types, information on different Indexes for different collections or sets of objects. In

addition, information on data placement is also Indicated to the meta-Informatlon

manager. For Instance the Information that certain objects are clustered with other

objects in the same storage extent (e.g. a disk page) is recorded in the

meta-information manager. Both the inference engine and the optimizer of the

161 .

intelligent database engine interact with the meta- information manager to obtain

different type of meta-data information during either optimization or inferencing.

The Storage Manager- This is one of the most important and complex modules of the

Intelligent database engine. The main techniques which are used to enhance the

performance of databases Include: indexing, clustering, and query optimization.

Another strategy is caching or buffer management. The storage manager manages

both the primary (RAM) and secondary storage of the databases. The indexes include

single-key indexes, such as B-tree and multi-dimensional indexes. Multidimensional

indexes are very useful in spatial data accesses. Intersection of regions or rectangles

will use multidimensional indexes to accelerate the searches, much the same way

single-key indexes are used in associative single key retrievals.

Multi-Media Manager- Intelligent database engines will handle information from many
diverse sources: on-line databases, CD-ROMS, FAX cards, L_ANs, scanners,

digitizers, optical disks, and so on. The Multi-Media Manager incorporates routines to

handle peripherals such as scanners and digitizers as well as efficient management of

multimedia devices such as write once optical disks, CD-ROMS and so on. For

instance, write once optical disks would need special algorithms to allocate sectors in

order to have more efficient storage utilizatlon.The access and storage of objects on

(from) peripherals is at a much lower physical level in the multi-media manager than

the storage (buffer) manager. Thus the storage manager invokes the multi-media

manager to perform its efficient storage management of the persistent databases.

As this brief description testifies the Internal workings of and architecture of Intelligent

database engines is rather complex. Intelligent database engines provide a functionality

which is a superset of:

• Object-oriented database engines

• Inference engines of expert system shells

• Traditional database engines

• Multi-media data access (e.g. full-text) engines

However, without a the tightly Integrated intelligent database engines of the 1990s, the

performance of the loosely coupled solutions will not be acceptable. Furthermore mapping

the complex Integrated products and objects onto relational database of the 1980s and

attempting to support multi-media data types in these archaic environments will be a

momentous task. The increase In complexity of the development of Intelligent database or

integrated products and objects on top of loosely coupled technologies will be inversely

proportional to the elegance and ease of use of the next generation integrated

environments. In other words, as the trend towards integration and sharing continues,

162 .

tightly cpupled intelligent database engines become a must. Intelligent SQL is an interface

to intelligent database engines.

References

(Bancilhon et al 1987) “FAD- a Simple and Powerful Database Language," F. Bancilhon,

T. Briggs, S. Khoshafian, and P. Valduriez, Proc. of VLDB 1987.

(Cardelli and Wagner 1985) Cardelli L. and Wagner P., “On Understanding Types, Data

Abstraction, and Polymorphism”, ACM Computing Surveys, Vol. 17, No. 4, December

1985.

(Khoshafian and Copeland 1986) “Object Identity”, S. Khoshafian and G. Copeland, Proc.

of 1st Int. Conf. on OOPSLA, Portland, Oregon, October 1986.

(Khoshafian et all. 1990) “Intelligent Database Engines,” S. Khoshafian, K. Parsaye, H.

Wong, to appear In Database Programming and Design, to appear July 1990.

(Khoshafian and Abnous, 1990) Object Orientation, S. Khoshafian and R. Abnous, John

Wiley Publications, to appear July 1990.

(Kuperand Vardi 1985) “On The Expressive Power Of The Logic Data Model,” G. M. Kuper

and M. Y. Vardi, SIGMOD 1985, Austin, Texas, 180-187.

(Osborn and Heaven 1986) “the Design of a RelationsI Database System With Abstract

Data Types,” S. L. Osborn and T. E. Heaven,ACM TODS, Vol. 11, No. 3, 1986.

(Parsaye et al. 1 989) Intelligent Databases, K. parsaye, M. Chignell, S. Khoshafian, and H.

Wong. John Wiley Publications, 1989.

(Shipman 1981) “The Functional Data Model and the Data Language DAPLEX”, ACM
TODS, Vol. 6, No. 1, 1981.

(Stonebraker 1986) “Inclusion of new types in relational database systems,” M.

Stonebraker, Proc. second Inti. Conf. Data Eng., LA, 1986.

163 .

Deductive Object Oriented Data Model

The Optimizer

Transaction Manager Inference Engine

Storage Manager

Figure 3: The Architectural Components of

The Intelligent Database Engine

164 ,

i

\

I

{
f

I

165 .

i

Strawman Reference Model for Object Query Languages

Jose A. Blakeley Craig W. Thompson
Texas Instruments Incorporated

Abdallah M. Alashqur*

Abstract

We begin by describing a descriptive reference model

that identifies the important features that need to

exist in object query languages. This reference

model can be used as a basis for comparing these

languages and helps provide a foundation for fu-

ture standardization efforts in this area. We then

describe the main features of an object query lan-

guage that is based on the type system of C4-+,

which we refer to as OQL[C-|—f-]. A query module
based on OQL[C-|—b] is being developed as part of

the Zeitgeist OODB project at Texas Instruments.

OQL[C-l-+] extends the C-I-+ programming lan-

guage by providing support for managing and asso-

ciatively querying sets of objects in a C-I-+ program.

OQL[C-f+] queries are orthogonal to persistence in

the sense that they can be issued against persistent

&& well as transient sets of objects. The proposed

OQL[C-}-+], provides an evolutionary path from the

industry’s standard query language SQL to an ob-

ject query language. Using ideas similar to those

presented in this paper, one can propose OQL[X]
where X is either an object data model, or the type

system of an object-oriented programming language

such as CLOS or Object Pascal.

1

Introduction

Several commercial object-oriented databases sys-

tems (OODB) and research prototypes have been

developed in the p^t few years [4, 6, 12, 13] to

meet the pressing demand from information tech-

.

nology made by several emerging and existing ap-

plication domains. Many areas of OODBs are now
mature enough to be considered for formal stan-

dardization. One of these areas is object query lan-

guages. In this paper, we provide a strawman ref-

erence model that can be used for comparing and
reasoning about object query languages and suggest

some areas where enough consensus could occur to

make eventuad standardization possible. The ref-

"Authon* ewidresse*: Texa* Instrument! Incorporated,
P-0- Box 655474, MS 238, Dallas, Texas 75265. E-mail;

{blakeley ,
thompson,edashqur }QCSC . ti .cam.

erence model describes the space of design choices

that can be made in developing an object query

language.^

Section 2 expresses the need for the creation of

a standard glossary to provide a common vocabu-

lary for implementors and users of object query lan-

guages. This level of standard promotes communi-
cation among people. Section 3 presents a strawman

object query language reference model In this ref-

erence model, we attempt to provide a framework

that can be helpful for future standardization efforts

in this axea. The reference model describes a design

space of char2u:teristics and defines the criteria and

features that serve as a basis for comparing different

existing and future object query languages. Section

4 describes our object query language OQL[C-l—i-j.

Section 5 provides a comparison between a repre-

sentative sample of query languages based on the

established reference model. Some conclusions are

presented in Section 6.

2 Need for a Glossary

The purpose of a glossary is to register terms and

how they are used in different object query lan-

guages. The value of a glossary in standardization

is to provide a common vocabulary so we all under-

stand common terms the same way and can distin-

guish their various overloaded meanings. In addi-

tion, glossary terms are important in the develop-

ment of a reference model (Section 3) and provide a

simple approximate way to scope a domain. In the

appendix, we provide a list of important terms used

in this area. Although the list is not exhaustive, it

contains many of the terms that eire widely used in

the context of object query Icinguages.

3 Descriptive Reference

Model

A descriptive reference model for an object query

language is an English description of the design

^ comments for the improvement of the descriptive model
or OQL are solicited.

166 .

space of features that “cover” existing (and future)

object query languages and provide people with a

way to compare them.

An object query language contains operators and

provides language constructs for manipulating sets

of objects modeled by an object data model. At

a high-level of abstraction, a query written in

object query language can be viewed as a function

that, when applied to the object base (of sets of

transient and/or persistent objects), returns one or

more sets of objects that satisfy the predicates spec-

ified in the query. These predicates can be based on

the state and/or behavior of objects, which are de-

termined by their classes.

Different query languages have different syn-

tax and support different techniques for express-

ing queries. They also vary in the sophistication

of the predicates that can be specified (e.g., some

of them allow a nested query to be used as an ar-

gument to a predicate). Other languages provide

syntactic short cuts for expressing frequently used

expressions such as using the class name as a range

variable (e.g., as in GEM [24]) where there is no

ambiguity. Query languages also differ in their sup-

port for data abstraction where some of them re-

strict queries to be based on behavior (methods)

such as HP Iris’ OSQL [8], while others such as

MCC ORION [7] allow queries based on state (in

order to simplify the query optimizer). In a design

space of multiple design choices, it may be hard to

decide on an “absolute best” combination of design

alternatives. However, there appears to be a gen-

eral but not unanimous consensus regeirding certain

design choices. We refer to these design choices as

the common features of object query languages and
they are described in subsection 3.1. Other design

choices where consensus seems to be further away
are termed controversied features and are described

in subsection 3.2.

3.1 Common Features

The following can be considered to be common fea-

tures of object query languages. Each of these fea-

tures represents a preferred desgin choice between

two possible alternatives in the design space of ob-

ject query languages. They are considered “com-

mon” because people have studied them in detail

and have experimented with them in several proto-

type systems. They can be used as a starting point

for setting up standards in the area of object query

languages.

SELECT-FROM-WHERE paradigm. One
of the choices that needs to be considered at an

early stage of the design process is whether or not

to make use of the SQL heritage in the object query

language to be developed. Since SQL is a stan-

dard [l], it is advantageous from cin industrial per-

spective to evolve from it toward ein object query

language rather than to introduce a completely new
syntax. Several query language designers have cho-

sen to cast the syntax of their languages into the

Select-From-Where (SFW) structure to maintain an

upward compatibility with SQL and to smooth the

migration to the new languages. The semantics as

well as the expressions that can be specified in the

Select, From, and Where clauses of an object query

language are however different from those in SQL
in that these expressions are richer in object query

languages (e.g., path expressions, behaviour) to be

able to exploit the richness and sophistication of the

object data model. A possible disadvantage of this

appro2Lch is that the feimiliarity with the syntax and

semantics of SQL by many practitioners may hinder

understanding the new semantics associated with

the SFW paradigm of SQL, especially since the shift

from the old semantics to the new semantics is rel-

atively huge.

Path expressions. Many of the existing object

query languages allow for logical navigation at the

schema level by specifying path expressions. For

example, if Class 1 has an attribute whose type is

Class2 and Class2 has an attribute whose type is

Cl£iss3 in some schema, then Clas8l.Class2.Class3

is a path expression that starts at Class 1 and ends

at Class3. Path expressions can be used in speci-

fying predicates or identifying the list of attributes

to be retrieved. For exaunple, “Classl.Class2.Class3

== value” is an associative predicate that identi-

fies all the Classl objects whose related Clas83 ob-

jects are equal to the given value. Different query

languages may use different syntax to express path

expressions. For example, the above path expres-

sion is expressed by functional query l£inguages as

“Class3(Class2(Classl)).” Supporting path expres-

sions in an object query language does not violate

the principle of physical data independence since the

query optimizer may independently choose the ap-

propriate access paths at the physical level in order

to evaluate the given query. Languages that respect

data abstraction permit only the use of messages

in expressing path expressions. This is discussed in

the following subsection in more detail. Path ex-

pressions are used for querying complex objects by

167 .

specifying predicates on attributes that aie deeply

nested within the structure of these objects.

Inheritance. Almost all of the existing object

query languages make use of the inheritance propv-

erty of the object data model. Objects of a class

rjtn be uniformly queried based on the attributes

defined in their class as well as those inherited from

its super classes. However, not all object query lan-

guages support multiple inheritance and those that

support it follow different conflict resolution strate-

gies to resolve n£mie ambiguities.

Explicit joins. In the expression Classl.Class2

there is em implicii (entity-based) join between ob-

jects belonging to Classl and Class2. Clearly, sup-

port for explicit (value-based) joins similar to those'

of the relational query languages is needed. This

permits specifying new relationships among objects

not captured by their class definitions, bcised on

type-compatible values.

Set-valued attributes. In addition to support-

ing scalar-valued attributes and providing scalar

comparison operators for specifying predicates,

many object query languages also support set-

valued attributes. Set comparison operators are

provided in these languages to enable specifying

predicates on such attributes. Also, several of these

languages support the use of existential and univer-

sal quantifiers on sets.

Nested queries (subqueries). The concept of

a nested query is well known and is supported by re-

lational query languages. Several object query lan-

guages also support this feature. Query languages

that support set comparison predicates allow the use

of nested queries as arguments to these predicates.

Aggregate Functions. Several object query

languages support the use of aggregate functions

(e.g., COUNT, AVERAGE, MAX) in specifying

queries. Again, aggregate functions can be used in

the formulation of predicates on which retrieval is to

be performed and/or in the target list specification

(i.e., in a Select clause).

3.2 Controversial Features

In this section, we describe controversial features of

object query languages. Each of these features is

supported by only a few of the existing query lan-

guages and further research and experimentation is

needed before there is acceptable general con-

sensus regarding eaich feature. These features can
be tackled by the standards community in a later

stage after considering the more common features

described in the previous section.

Data abstraction. Some object query lan-

guages restrict the access to objects to be through

their operational (behavioral) interface. The only

way an object can return a value is by responding

to a message that triggers a method that computes

or retrieves the needed vadue. In this approach,

functions can be used in the Where clause to define

predicates and in the Select clause to retrieve re-

lated objects. Other query languages allow queries

to be formulated in terms of the object’s state in

favor of simpler query optimizers. Data abstraction

is important becuase it provides data independence,

thus object query languages that support this fea-

ture achieve a higher degree of data independence.

Functions with or without side effects. Sev-

eral object query languages that support data ab-

straction allow only side-effect-free functions to be

used in the specification of queries. Functions with

side effects may create undesirable changes to the

state of the database that may not be easily de-

tected. This complicates the task of the database in-

tegrity manager. Also, a decision- needs to be made
about the language that can be used to write these

functions or methods.

Queries that result in derived relationships

between objects. Some object query languages al-

low queries to compute a join between objects and

return that as a result. In other words, the result

of a query is not a single set of objects but two (or

more) sets of objects with derived relationships be-

tween objects of the two sets. Some other query

languages support this feature by allowing queries

to return new types whose instances are tuples of

OIDs. Further research is needed in the area of de-

rived behaviour.

Null values. Few object query languages sui>-

port the manipulation of null values. For example,

computing the logical AND between two predicates

if one or both of them returns a null value is not

possible in many of these languages. In addition,

the notion of returning null values as part of the

result of a query (along the lines of the concept of

“outer join” in the relational world) has not been

adequately addressed in the world of object query

languages.

Recursion. Commercicd relational query lan-

guages do not support recursion because of the dif-

ficulty in providing efficient implementation tech-

niques. Database researchers have identified several

useful notions of recursion. Among these, traversal

recursion [17] seems to have a direct application in

object query languages because of the direct map-

168 .

ping of a complex object into a graph. Most existing

object query languages have not yet adequately ad-

dressed this issue.

Relationship to the programming lan-

guage’s type system. One of the design choices

that can be identified early in the design space is

whether to design the query language based on an

object data model that is independent of the type

system of any programming language or to design

it for a specific programming language’s type sys-

tem. In the first approach, a single object query

language that is independent of the syntax £md type

system of any programming language needs to be

embedded in these programming languages. The
advantage of this approach is that the query lan-

guage syntax is uniform across different progreim-

ming languages, which reduces the learning efforts

by programmers who frequently switch among lan-

guages. Also, one language-independent persistent

storage can be used across all applications. In the

second approach, the query language is customized

(or designed) to suit the type system and the syn-

tax of a given programming language. This ap-

proach yields a spectrum of object query Icinguages

OQL[X], where X corresponds to the type system

of a general purpose programming language (e.g.,

C-l—1-, CLOS) to which the query language is cus-

tomized. The advantage of this approach is that

it produces a better integration between the query

£Uid programming languages.

Orthogonal treatment of types and type ex-

tents. Orthogonal treatment of types and type ex-

tents may need to be considered in the query lan-

guage. Not every object must necessarily exist in a

set. Objects not in any set can only be manipulated

by the constructs of the programming language in a

navigational object-at-a-time manner while objects

in sets can in addition be associatively queried. This

requires that a user needs to explicitly create and
populate sets in his program.

Seamlessness. When a query fricility is inte-

grated with a programming language, it is desirable

from a programmer’s point of view to be able to

manipulate sets of transient as well as persistent

objects in a uniform (seamless) way. In addition,

retrieving objects form the persistent storage to the

program space should be as transparent as possible

to the programmer.

Strong typing. Strong typing in a program-

ming language guarantees that the arguments of

functions are type-correct; a programming language

with strong typing is viewed as safer and more ef-

ficient than one that does not support enforcement

of types. In current SQL embeddings, the repre-

sentation of the host language and the database

query language are different and the prograunmer

must break strong typing to copy his data to the

database. Experimental persistent programiming

languages correct this problem, but they lack query

extensions. Many of today’s query languages do not

maintain type-safety at this interface, which is a de-

sirable feature to be incorporated in future systems.

Result generation and result presentation.

Unlike a relational query which returns a set of tu-

ples of values that are readable by the user, an ob-

ject query may return set(s) of OIDs. A set of OIDs
can be further manipulated (e.g., as arguments to

set compeirison predicates) or used by other func-

tions but it cannot be presented to the user since

OIDs are system-generated identifiers that do not

carry any meaning from the user’s point of view. A
presentation manager is to take the set of OIDs re-

turned by a query and presenting their related data

to the user (in the form of a table, a histogram,

etc.). The presentation manager may use Nest and

UnNest operations or a hypermedia interface to pro-

duce the desired format. Most existing object query

languages and systems mix the functions of result

generation and the result presentation.

Table 1 in Section 5 presents a comparison among
a representative sample of query languages (includ-

ing OQL[C4—f-] which is described in the next sec-

tion) in terms of the common eind controversicd fea-

tures they support.

4 The Object Query Lan-

guage OQL[C4-+]

In this section, we describe the syntax and seman-

tics of the object query language OQL[C-}—1-].^ Cur-

rent database management systems (DBMS) allow

query languages (e.g., SQL [10], QUEL [21]) to be

embedded in programming languages (e.g., C, For-

tran, Cobol). The difference between the type sys-

tems of the programming language and the embed-

^OQL[C++] is a module of the Zeitgeist Open OODB.
The current implementation of the 0++ version of Zeitgeist

already provides Persistent C-|— (PC+-f-) (16) as an exten-

sion of C-H-. PC-f--|- allows objects to persist between differ-

ent programming sessions. PC-|-+ uses a preprocessor that

translates PC-I--I- programs into programs that can be

compiled by off-the-shelf compilers. The OQL[C++] module
of Zeitgeist extends the capabilities of PC-|--f by providing

support for maintaining and associatively querying sets of

objects.

169 .

ded query language is highly visible to the appli-

cation programmer. This results in the following

problems and limitations. First, strong typing is

lost at the database interfcu:e and it is a responsi-

bility of the programmer to perform the mapping

from databcise to application program data struc-

tures. By leaving this translation up to application

programmers, the type-safe, strong-typing is poten-

tially broken (not guajanteed by the system) ex-

actly at the program-databeise interface, this loss

of strong typing is a big problem because, within

programs, type-safe behavior is viewed eis a ma-

jor feature and the data stored in the database is

viewed as an enterprise’s chief resource. Second,

set-oriented queries can only be formulated to re-

trieve persistent database objects (e.g., relations) to

the program work space; they cannot be formulated

against transient objects nor against persistent ob-

jects edier they enter the program space. Third, user

defined functions (written in the prograimming lan-

guage) cannot be used in queries. Similarly, queries

cannot be freely mixed with programming language

statements (e.g., as parameters to functions) and

they need to obey specific protocols. Fourth, pro-

gramming languages typically do not provide SET
type as one of their basic types, consequently, sets of

objects returned by a query cannot be manipulated

directly by the programming language constructs.

This forces the introduction of artificial extensions

to the language (e.g., SQL cursors) to bind database

objects to programming language variables so that

queries return their results to the program one ob-

ject at a time. Finally, the syntax and semantics

of the query and programming languages are com-
pletely different and the prograimmer has to learn

and be aware of these differences. Consequences are

that only a small percentage of application program-

mers know how to use embedded SQL, amd that the

advaintage of high-level querying (set-oriented spec-

ification of a database copy) is not available to the

programmer.

The term “OQL” refers to the specific method of

extending any programming lamguage with associa-

tive query statements, while ‘‘OQL[C+-l-]” refers to

the particular coupling of OQL with C-f-f which al-

lows certain C-|—f- expressions to be used in the for-

mulation of queries. In general, the term “OQL[X]”
could be used to designate a coupling of OQL with a

programming language X, where X is, for example,
C++, CLOS, Smalltalk, or Objective-C.

Basically, OQL adopts the SFW structure of the

SQL Select statement smd sdlows appropriate state-

ments of the programming language to be com-

bined within queries. The SFW structure of SQL
is adopted because it provides a standard model for

the formulation of queries in object-oriented pro-

gramming languages that currently enjoys wide use

in database applications.

OQL[C++] extends the type system of C++ with

the support of a parameterized set type, thereby en-

abling C++ to handle sets. Also, OQL[C++] is

more than an embedding of a query language in

C++ because it provides a better integration be-

tween query and programming language statements

by allowing the sets returned from an OQL[C++]
query to be used in any plexe within a C++ pro-

gram expecting to handle a set (e.g., a parameter

to a C++ function), allowing set-valued C++ func-

tions to be used in the From clause of an OQL [C++]

statement, and allowing Boolean-valued C++ func-

tions to be freely combined as part of a predicate in

the Where clause of an OQL[C++] statement.

Unlike many of the existing object-oriented query

languages [7, 8, 9, 11, 14], OQL[C++] provides

a better integration with the object-oriented pro-

gramming language, C++. The design objectives

achieved by OQL[C++] are described below.

Minimal data model de-pendency. This is achieved

by assuming only the knowledge of the type system

of the programming language (in this case C++)
as a “bare-bones” data model rather than defin-

ing a new proprietary data model from scratch. In

our approach, the types and concepts supported by

a programming language (e.g., object, class, data

member, member function, inheritance) provide the

basis of £in object data model on which the query

language operates.

Data ahsiraciion. OQL[C++] requires all queries

to be formulated in terms of the object’s public in-

terface (member functions), thus hiding the object’s

internal representation. This makes the principle of

data independence (i.e., the immunity of applica-

tions to changes in the data structures used to or-

ganise data), which is one of the major advantages

introduced by the relational model, to be preserved

in object-oriented database queries.

Explicit, user-maintained sets. OQL[C++] re-

quires programmers to define variables of type

OQLJSET in their programs. This makes the con-

cepts of class definition and class extent (the set of

instances of a class) to be orthogonal. As a result

of this, not all classes may have sets associated with

them and some classes may more tha^ one set as-

sociated with them, unlike database systems which

170 .

support implicit sets where a class (schema) always

has one set £issociated with it.

Queries on transient and persistent sets. In rela-

tional DBMSs and in cdl current OODBMSs, queries

£ire performed exclusively on persistent data. In

OQL[C++], it is possible to define and query tran-

sient sets, that is, sets whose life span is a single

program invocation. This makes the OQL[C+-f]

approach to querying independent of whether data

is maintained persistently in a DBMS or transiently

in the application’s workspace.^ As a direct con-

sequence of this independence, OQL[C++] can be

used as a tool for supporting query statements in a

programming language.

Better integration with the programming lan-

guage. OQL[C4-+] allows a more flexible combi-

nation of query ^md programming language state-

ments. This is achieved by allowing typed range

variables and user-defined, set-valued functions in

addition to OQL-SETs in the From clause; user-

defined, Boolean-valued functions and inherited

member functions in the Where clause; and typed

objects and substitutability in the Select clause of

a query. This enables OQL[C-|—1-] to be much
more programmable than SQL without requiring

the special purpose, yet-another-language exten-

sions to SQL to extend its DML functionality. Also,

the uniformity of the type systems of the program-

ming and query languages achieved in OQL[C-|—f*]

retains strong typing at the query interface, mak-

ing database programming much easier and more

reliable than conventional databases.

Additionedly, OQL[C-f-+] provides elegant looping

constructs for C-|—f . The progreimmer can take £wl-

vantage of SQL’s relational calculus to specify what

data needs to be retrieved and let the query proces-

sor map the higher level specification into loops that

determine how to retrieve the data efficiently. This

increases the prog^^Lmmer’s productivity by reliev-

ing him/her from the burden of determining efficient

access paths and by making his/her code easier to

write and to read.

We believe that OQL[C-f-|-] provides a reasonable

approach to querying from within a C-f-1- program
by combining essential features of C-H-f with the

industry’s standard query language SQL. We also

believe OQL represents a reasonable evolutionary

path from SQL to “Object SQL.”

The following subsection describes the C-I-+ data

f&ct, the orthogonality to persistence of OQL sets is a
byproduct of the fact that OQL[C++] is coupled with Persis-

tent C4-+ which provides orthogonality of types with respect

to persistence.

model for which OQL[C-f-f] has been designed.

OQL[C-i-+] itself is described in Section 4.3. Fi-

nally, an example of OQL[C-}—1-] queries used as part

of C+-f- programs is given in Section 4.4.

4.1 The C4—h Data Model

In this section, we briefly describe the data model

(also, referred to as the type system) of the C-|—f-

object-oriented programming language, used as a

basis for OQL[C-|—f] [22].

The C++ data model includes a set of predefined

(built-in or primitive) data types: character, inte-

ger, long, short, float, and double. They can be

used in defining more complex user defined types

by means of arrays, structs, or classes.

A class is a user-defined type that determines the

structure and behavior of a collection of objects. The

definition of a class involves defining a set of data

members (attributes or instance variables) and a set

of member functions (operations or methods). A
class member (a member function or a data mem-
ber) can be declared as public, private, or protected.

A public member can be accessed from anywhere in

a program. A private member can be accessed only

by the member functions of its class. A protected

member can be ciccessed by the member functions

of its class as well as the member functions of the

classes derived from it (derived classes are described

later in this section). An abstract data type is a

class that has a public set of member functions and

no public data members (all its data members are

declared as private or protected).

When defining a class, the type of each of its data

members needs to be specified. The type of a data

member can be one of the predefined data types

(e.g., integer, float) or it can be another user-defined

type. This capability in C++ edlows for building ag-

gregation (some times referred to as composition)

hierarchies or graphs to represent complex objects,

which £ire recursively defined in terms of other ob-

jects. Recursive definitions in which the type of a

data member of a class is the same class are also pos-

sible. A class can be derived from one or more base

classes (thus, multiple inheritance is supported). A
derived class can itself serve as the base class for

other derivations. This capability in C++ allows

for building generalization hierarchies or lattices. A
derived class is referred to as a subtype of its base

class. A derived class inherits all the public and

protected members of its base class. Private mem-
bers of a base class ait not eiccessible from any other

class including derived clcisses.

171 .

Finally, C++, like many programming languages

supports free composition of classes, constructors,

and primitive data items. But, like many program-

ming languages, C++ does not support sets as data

constructors. OODB systems, on the other hajid,

support sets ^is type extents either impliciUy or ex-

plicHly. Ex^lmples of implicit support of sets can

be found in systems like Iris [12], ODE [4], and

Orion [6]. In these systems, for each class (type)

defined, the system creates a set in which all the

objects of the class are stored. Queries can then be

targeted to these sets. In other systems (e.g., EXO-
DUS [9] and Encore [18]), the user has to explicitly

create those sets. In this case, multiple sets corre-

sponding to a class can be created where each set

may contain a subset of all the instances of the class.

This is useful in applications where certain persis-

tent objects of some class will be accessed by queries.

Objects of a class may be grouped into different sub-

sets based on some shared semantics (i.e., without

having to create corresponding subtypes). Consider

a class Patient defining information about patients

in a hospital. In addition to the set of all patients in

the hospital it may be convenient to allow the decla-

ration of special sets of patients such as laboratory

patients or pediatrics patients.

In OQL[C++], sets aje declared explicitly by the

user in a C++ program. OQL[C++] sets are in-

stances of C++ parameterized classes^ declared and

defined using the statements

DECLARE 0QL_SET <cla8s-naBie>

;

IMPLEMEHT OQL.SET <clas8-name>

;

respectively. DECLARE and IMPLEMEIIT are keywords

recognized by an OQL[C++] preprocessor. They
trigger the generation of necessary C++ code to

declare and define the parameterized 0QL_SET class,

where 0QL_SET is the name to be given by the user

to the created set (e.g., Lab_Patients). The parsim-

eter class-name is the name of a previously de-

clared class (e.g. Patient) which represents the type

of the instances permitted in the set. The pub-
lic member functions of the OQL-SET claas include

functions to: (a) establish membership in the set

(e.g., add, delete, lind), (b) perform set opera-

tions (e.g., intersection, union, difference), (c)

iterate over the members of the set, and (d) create

^Declaration and definition of OQL-SET classes in

OQL[C+.h] are identical to the way parameterised sets are
declared and defined in Texas Instruments’ C+-t- Object Ori-
ented Library (COOL) [3] which provides an implementation
of parametensed types as proposed by Stroustrup [23].

and drop indices on the set based on v£ilues returned

by public member functions of the parameter class.

^

Set management in OQL[C++] is orthogonal to per-

sistence, thus it is possible to have transient sets

of persistent and/or transient objects, or persistent

sets of persistent objects all of w'hich can be queried.

4.2 The Query Language OQL[CH—h]

In this section we present the object query language.

The description is illustrated by queries against the

schema of Figure 1 which represents clinical infor-

mation about patients. Names in the graph repre-

sent classes. Composition (aggregation) and inher-

itance among classes are represented by continuous

and dashed lines, respectively. For simplicity, data

members and member functions are not shown in

the figure.

A query block in OQL[C++] is similar to that of

SQL and is represented as follows:

SELECT <objects>

FROM <range vaxiable> IN <set>

WHERE <predicate>;

The Select clause identifies the type of the objects

in the answer set. Range variables are declared in

the From clause. Several variables ranging on sev-

eral sets may be declared in this clause. The Where
clause specifies the predicate that defines the propy-

erties to be satisfied by the objects to be retrieved.

In the following examples, we assume that there is a

public member function corresponding to each data

member of a class that returns the data member
vaiue(s). For example, get^hysicianO is a public

member function of Patient, which when invoked

by a particular patient object, it returns the related

physician object. The bidirectional arrow between

Patient auid Physician indicates that Patient has a

class member of type Physician and that Physician

has a class member of type Patient. Arrows in the

above diagram represent member functions. The
following are some examples.

Example 1. Retrieve the patients who are treated

by Dr. J. Smith.

SELECT p FROM Patient p II Pat lent _Set

WHERE p.get_physician() .naaeO * ‘‘J. Saith*'

In this example, p is declared in the From clause

as a range variable over the instances of Patient JSet.

^Implicit (system-rEi&intained) sets c&n &lso be declared

for cia*ses by adding a keyword IMPLICIT-SET to the class

declaration.

172 .

Exam_Report

X_Ray Lab_Analysis Ultrasound

Figure 1: A hospital database.

(Assuming that Patient_Set has been declared in

a C+H- program using the DECLARE statement de-

scribed in Section 2 and contains a set of instances

of type Patient). The member name referenced in

the Where clause is a public member function of

Person inherited by Patient and Physician. The Se-

lect clause states that the objects returned by the

query belong to the class Patient. In other words,

the objects in the answer set of the query cire Pa-

tient objects that behave exactly as Patient objects

defined in a C+H- progr2mi. Path expressions (e.g.,

p.get_physici 2Ln() .nameO) allow the formulation

of predicates on vjdues deeply nested in the struc-

ture of an object. There may be single-valued or set-

valued path expressions. Example 3 shows how set-

valued path expressions are handled in OQL[C++].
In OQL[C-f-+] it is also possible to declare the

type of the members of the £inswer set to be any

of the supertypes of Patient. This type conversion

can be specified in the Select clause €md is consis-

tent with the concept of substitutability in C++.
For example, the following query is directed against

Patient_Set and it returns a set containing Person

objects by casting the returned Patient objects into

Person objects. Therefore, only the member func-

tions of Person in this case can be applied to the

instances of the answer set.

SELECT (Person) p
FROM Patient p IN Patient_Set

VHERE p.get_physician() .naaeO “ ‘‘J. Smith''

The assignment operator can be used to save the

answer set and give it a name. For example, the

answer set in the above query can be named as

Smith-Patients and saved for later use by other

queries where SmithJPatients is a C++ program

variable of type OQLJSET <Patient>. For simplic-

ity, the rest of the examples omit the assignment to

a result variable.

Saith.Patients SELECT p
FROM Patient p IN Patient.Set

¥HERE p. get_phy8icianO .name O “ '*J. Smith''

Example 2. Retrieve the patients who are treated

by Dr. J. Smith and who are more than 60 years

old.

SELECT p
FROM Patient p IN Smith.Patients

VHERE p.ageO > 60

Where Smith-Patients is the set returned by the pre-

vious query.

Example 3. Retrieve male patients who have been

diagnosed with flu prior to October 10, 1989. (Med-

ical-record is a set-valued attribute of Patient.)

SELECT p
FROM Patient p IN Patient.Set

VHERE p.sex “ ‘‘male'' kk

EXISTS (SELECT r

FROM Medical_record r IN

p .
get_«edical_record()

VHERE r. get.date O < “10/10/89" kk

r. get.diagnosiaO “ “llu'*);

173

Because the path expression

p.get_medical_record() is set-valued (i.e., it re-

turns a set of medical records), it is necessary to de-

fine a v2Lriable r to range over the members of that

set. This leads to the use of nested queries (sub-

queries) in an OQL[C++] statement. The EXISTS

keyword in OQL[C++] maintains the same seman-

tics as in SQL.

Predicates in the Where clause can be defined us-

ing comparison operators 6 6 {==,<,<=,>,>=
,! =}, and logical operators hiz (AND),

||
(OR), and

HOT. Note that the syntax of comparison operators

is the same as in C++. Valid atomic terms are:

ti e ta, ti 9 c, IN si, Si CONTAINS sj, v ^ ALL Si,

V 9 ANY si, emd EXISTS si; where ti and fa are

single-v2dued path expressions, 5i and sa are sets, v

is a single-valued path expression or a constant, c is

a constant (integer or string), and ^ is a comparison

operator. The atomic terms involving ANY and ALL
are used for existential and imiversal quantification,

respectively. A predicate is a Boolean combination

of atomic terms.

Data abstraction represents one of the main ad-

vantages offered by OQL[C++]. Consider the bidi-

rectional relationship between Hospital and Physi-

cian shown in Figure 1. Assume that the Hospital —
Physician link is represented explicitly in the Hos-

pital class by a physician-valued member function

get^hysicianO
,
and that the Physician —* Hos-

pital link is represented implicitly in the Physician

class by a getJiospitaTO function (note that no
data member in Physician maintains this informa-

tion) defined as:

Hospital got.hospitalO {

rsturnC SELECT h FROM Hospital IN Hospital.Sst
WHERE h”>g«t_physiciaii() “ this) ;

>

Data abstraction allows OQL[C++] queries on
composite objects to be formulated using a uniform
mechanism (i.e., path expressions) without regajrd

to the way composition is implemented. This is il-

lustrated by the following example.

Example Retrieve patients whose ages are less

than 19 years old and who are treated by physicians

who work for hospitals located in Dallas.

SELECT p
FROM Patient p IN Patient.Set
VHERE p.ageO < 19 kk

P*8*‘^-P^y*ician() .get.hospitalO .locationO— "Dallas"

Other query languages that do not support data

abstraction require different formulations for queries

on composite objects depending on the way the com-

posite relationships aire implemented. In these lan-

guages, an explicit join with objects returned by a

nested query is necessary to express the above query

as shown below.

SELECT p
FROM Patient p IN Patient-Set

VHERE p.ageO < 19 kk

p. physician IN (SELECT s. Physician

FROM Hospital s IN Hospital.Set

VHERE s. locationO “ "DaJ.las")

Example 5. Retrieve patients having X-ray exams

matching a tuberculosis of the lungs pattern.

I.Ray.List *1(Patient p) {

I_Ray_List ex*
p->Bedical_recordO->exaa_list . extract (X.RAY) ;

retumC x) ;

}

X.Ray.Set * Make_set(X_Ray_List * 1) {

X_Ray_Set * x;

X new X.Ray.Set;

1. reset O

;

for(X_Ray •p l.valueO; Kl.endO); l.nextO){
x.addC p)

;

};

retximC x)

;

>

SELECT p
FROM Patient ep IN Patient .Set

VHERE EXISTS (SELECT *

FROM I.Ray.Set *r IN Make.setCiC p))

VlffiRE x.ray.Batch(r->picture 0 , Bitmap •pattern)

)

This query illustrates the use of set-valued, user-

defined functions in an OQL[C++] statement. As-

sume, every medical record of a patient contains

a heterogeneous list of laboratory exams (e.g., X
rays, ultrasounds, blood tests). To be able to query

on a set of X rays, it is necessary to first extract

the X ray objects from the list of laboratory ex-

ams (sec function 1 above) and then make the list

into a set (see function Make .set above). This

is necessary because OQL[C-i—h]
cad only query

sets of homogeneous objects. The user-defined

(Boolean) function x_rayjnatch compares the bit

pattern r->picture() of an X ray with program

174 ,

variable of type Bitmap holding a typical tubercu-

losis pattern.

4.3 Queries in C+-+- Programs

This section illustrates the use of OQL[C-|-+] within

C++ programs. OQL[C++] provides a much bet-

ter coupling of a query language with a program-

ming language than previous embedding language

approaches as illustrated by the example program

of Figure 2.

In the example, Statements 2 and 3 show the

way to declare and define a parameterized set

of patients. Statement 6 declares two pro-

gram variables mypatients, and result of type

OQL-SET<Patient>. Statement 8 shows how sets

are populated using the add member function.

Statements 10-12 show a way to iterate through

all the individual members of a set. Statement

14 shows the query of Example 5 on the set

mypatients. Note the use of user-defined functions

as part of the program. Statements 16-19 represents

code that defines the functions f and MaJce-set.

OQL[C++] queries are recognized by a prepro-

cessor which parses, optimizes, and translates them
into efficient C++ or Persistent C++ code (depend-

ing on whether the set is transient or persistent).

The resulting program is then compiled by a stan-

dard C++ compiler. Until incremental C++ com-
pilers/interpreters are available, OQL[C++] will

not provide interactive queries.

5 Comparison Among Query
Languages

In this section we compare some object query lan-

guages based on some of the common and contro-

versial features described in Section 3 of this pa-

per. The languages included in this compairison are

OSQL [8], ORION query language [7], the object-

oriented query language developed at the Universiy

of Florida OQL(UF) [5], EXCESS [9], GEM [24],

Query Algebra [19], 0++ [4], Postquel [20],

OPAL [2], RELOOP [11]. Object Design Query lan-

guage [15], and OQL[C++].
In the above table, N stands for No, Y stands for

Yes, £ind ? stands for unknown or unclear. Rows in

the table describe languages and columns describe

features.® The first seven columns are for the com-

* Althoxigh we have tried to m&ke our comparison as pre-

cise as possible based on published materisJ, we know the

table may still not be accurate.

mon features while the others describe the contro-

verial features. These features are numbered in the

table as follows.

1. SQL SELECT-FROM-WHERE paradigm

2. Path expressions

3. Support for inheritance

4. Explicit joins

5. Set-valued attributes

6. Nested queries

7. Supporting aggregate funcitons

8. Respecting data abstraction

9. Support for using functions in queries

10. Support for queries that result in join objects

11. Support for Null values

12. Recursion

13. Makes use fo the type system of a programming
language

14. Integration with a programming language has

been considered

15. Orthogonal treatment of types and type extents

16. Orthogonal treatment of result generation and

result presentation

6 Conclusions

This paper has proposed a reference model for

comparing object query languages, identified ar-

eas where consensus is possible and standards can

emerge, eind areas where further experimentation is

needed before consensus can be reached.

We have proposed an object query language

OQL[C++] which provides a better integration of

query and programming languages by adopting the

SFW structure of SQL and extending it with C++
expressions. The language supports strong typing,

data abstraction, queries on transient and persis-

tent sets, user-maintained class extents, and a better

combination of query and programming language

statements.

We feel that work on standards for object query

Ifinguages needs to be actively pursued by stan-

dards committees in parallel with the current efforts

in other aspects of object-orientation. Such com-

mittees include the X3/SPARC/DBSSG/OODBTG
on a reference model for object databases, X3H2
on SQL3, Object Management Group (OMG) on

an object software framework, X3J13.1 on CLOS,
and X3J16 on C++. We propose the creation of a

X3 subcommittee formed from members of the two

committees X3H2 (SQL) and X3J16 (C++) to work

on a proposal for a 8tand^lrd on OQL[C++].

175 .

1. Sinclndd <OQL_Set.li>

2. DECLARE OQL_S 0t<Patient>

3. IMPLEHEIT OQL.S«t<Patient>

4. malnC)

5 . {

6. OQL_S«t<Pati«ttt> ypatieata, rasalt;

7. Patiaat pi, p2;
// code that craatas iastaiicaa of

// of pat last 8 not shoen

8. Mypatiant8.add(pi); // add a aaabar to tha sat

9.

10. Hypatiaat8.ra«at(); // sat itaration

11. for(Boolaan t»Bfpationts.aert() ;
t!*IIVALID; t^mypatiants .nextO) {

12. p2 aypat iants. Talma ()

;

13. };

14. rasmlt SELECT p FROM Patiaat ap II aypatiaats // qmary of Ex. 6

WHERE EXISTS (

Sn.ECT • FROM X.Ray.Sat *r II Make.satC f(p))

WHERE x_ray_aatch(r->pietara(), Bitaap apattarn)

)

15. >;

16. I_Ray_Li8t *t(. Patiaat a p) {

17. }

18. I_Ray„Sat a Haha.satC I.Ray.List * 1)

{

19. >

// haadar fila coataiaiag taaplatas

// daclaras a sat

// dafiaas functions of a sat

Figure 2: Example using OQL in a C4—I- program.

An important byproduct of the work presented in

this paper is that it offers a way to simplify exten-

sions being considered for SQL. In particular, to-

day’s proposals on SQL3 range from how to add

abstract data types (ADTs) and inheritance to how
to extend the eiqjressiveness of the query language

toward computational completeness. By combin-

ing SQL with a programming language’s type sys-

tem “X” to yield SQL[X], the essential value of set-

oriented queries is pr^erved (in fact, added to the

programming language), the interface between the

programming language and the database preserves

strong typing, and the programming language sup-

plies a computationally complete data manipulation

language and a tested data definition language.

Appendix

A Proposed terms for a glos-

sary

database larnguage (i.e., DDL k DHL)

host programming language
,
general

purpose programming language

database programming language

embedded language, impedance mismatch,

seamlessness (w.r.t. a data model

or language)

query language, calculus, relational algebra,

object algebra, graph algebra

logical database language, physical database

language

relational completeness, closure property,

computational completeness

query, query block, nested query, subquery

set, collection, bag

set-oriented query, associative query

176 ,

Language

Common Features Controversiai Features

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

OSQL Y Y Y Y Y Y 7 Y Y 7 N N N Y 7 N
ORION N Y Y Y Y N N N Y Y N Y N N N Y
OQL (UF) N Y Y Y Y Y Y N Y Y Y Y N N N Y
EXCESS N Y Y Y Y Y Y N Y 7 N N N 7 Y 7

GEM N Y Y Y Y 7 Y N N N Y N N N N N
Query Algebra N Y 7 Y Y Y N N 7 Y 7 N N N Y Y
0++ N ? Y Y Y N N N 7 N N N Y Y N N
Postquel N Y Y Y N Y Y N Y Y N N N N N N
OPAL N Y Y N 7 7 N N Y N N N Y 7 Y N
RELOOP Y Y 7 Y Y Y Y Y 7 7 N N 7 7 N 7

Object Design N Y Y 7 7 7 N N 7 N N N Y Y 7 7

OQL[C++) Y Y Y Y Y Y N Y Y Y N N Y Y Y Y

Table 1: Comparison between a representitave sample of query languages.

obj ect-at-a-time retrievaJ., navigation
view definition
transaction

existentiaJ. quantifier

universal quantifier
target list, target set

range variable

aggregate function
path expression

predicate, scalar comparison operator, set

comparison operator
nest, unnest, desset, flatten
join, projection, selection
graph operator

set iteration, iterator
set operators: union, intersection,

difference

recursion, linear recursion, traversal
recursion

data model, object data model, type system
object database, object base
object identity, object identifier, object,

entity

shallow equality, deep equality
inheritance, generalization, specialization
class (type), subclass (derived class),

superclass, metaclass
composition, aggregation, complex object
extension, extent, intension
extensions! database, intensionail database
explicit type extent, explicit set creation
implicit type extent, implicit set creation

behavior, function, member function, method,
message, message passing

attribute, relationship, link, property,

data member, instance vairiable,

slot, state, representation

scalar-valued attribute, set-valued attribute

encapsulation, data abstraction, abstract data

type

integrity constraint, referential integrity,

relationship, mapping constraint, cardinality

constraint

strong typing

set inclusion semeintics

persistent language

persistent object, persistent class,

persistent set

transient (volatile) object, transient class,

tr2Uisient set

query processing, query translation, query

optimization, execution plan
query graph, query tree, operator tree

index

References

[l] Americaji National Standard for Information Systems
- database language - SQL. Tech. Rep. ANSI-X3.135-

1986, American National Standards Institute, Inc., 1430

Broadway, New York, NY 10018, Oct. 1986.

177 .

[2] Programming in OPAL. Tech, rep., Servio Logic Devel-

opment Corp., Beaverton, Oregon, 1986.

[3] C+-I- Object Oriented Libreury User’s M2mual. Tech,

rep., Texas Instruments Incorporated, Information

Technology Group, P.O. Box 149149, MS 2151, Austin,

Texas 78714-9149, Mar. 1990.

[4] Agrawal, R., and Gehani, N. H. ODE (Object Database

and Environment): The language and the data model.

In Proceedings of the 1989 ACM SIGMOD Interna-

tional Conference on the Management of Data (Port-

land, OR, May 1989), pp. 36—45.

[5] Alashqur, A., Su, S., and Lam, H. A Rule-Based Lan-

guage for Deductive Object-Oriented Databases. In Pro-

ceedings of the Sixth International Conference on Data
Engineering, Los Angeles (1990), pp. 58—67.

[6] Attvjood, T., and Orenstein, J. Notes Toward a Stan-

dt-rd Object Oriented DDL and DML. In Proceedings

of the First CODE Standardization Workshop (Atl£Lntic

City, NJ, 1990).

[7] Banerjee, J., Chou, H.-T., Garza, J. F., Kim, W.,

Woelk, D., Ballou, N„ and Kim, H.-J. Data Model
Issues for Object-Oriented Applications. ACM Trans-

actions on Office Information Systems 5, 1 (Jan. 1987),

3-26.

[8] Banerjee, J., Kim, W., and Kim, K.-C. Queries

in Object-Oriented Databases. In Proceedings of the

Fourth International Conference on Data Engineering,

Los Angeles (Feb. 1988), pp. 31-38.

[9] Beech, D. A Foimdation for Evolution from Relational

to object databases. In Advances in Database Tech-

nology - EDTB '88, vol. 303. Springer-Verlag, 1988,

pp. 251-270.

[10] Carey, M. J., DeWitt, D. J., and Vandenherg, S. L.

A Data Model and Query Language for EXODUS. In

Proceedings of ACM-SIGMOD 1988 International Con-
ference on Management of Data (Chicago, IL, 1988),

pp. 413-423.

[11] Chamberlin, D., and et.al. SEQUEL 2: a Unified Ap-
proach to Data Definition, Manipulation and Control.

IBM Journal of Research and Development (Nov. 1976).

[12] Cluet, 5., Delobel, C., Licluse, C., and Richard, P.

RELOOP, and Algebra Based Query Language for an
Object-Oriented Datable System. In Proceedings of
the First International Conference on Deductive and
Object-Oriented Databases (Dec. 1989).

[13] Fishman, D. H., Beech, D., Cate, H. P., Chovj, E. C.,

Connors, T., Davis, J. W., Derrett, N., Hoch, C. G.,

Kent, W., Lyngbaek, P., Mahbod, B., Neimat, M. A.,

Ryan, T. A., and Shan, M. IRIS: An object-oriented

database management system. ACM Transactions on
Office Information Systems 5, 1 (Jan. 1987), 48—69.

[14] Ford, S., Joseph, J., Langworthy, D. E., Lively,

F., Pathak, G., Perez, E. R., Peterson, R. W.,
m. Sparacin, D., Thatte, S. M., Wells, D. L., and Agar-
wala, S. ZEITGEIST: Database Support for Object-
Oriented Programming. In Advances in Object-Oriented
Database Sytems, tnd International Workshop on
Object-Oriented Database Systems (Bad Munster sm
ftein-Ebembxirg, FRG, Sept. 1988), Springer-Verlag,
pp. 23-42.

[15] Maier, D., and Stein, J. Development and Implemen-
tation of an Object-Oriented DBMS. Computer Science

Series. The MIT Press, Cambridge, Ma, 1987, pp. 355-

392.

[16] Peterson, R. W., Bannon, T., Esralian, P., Gupta, A.,

Wang, C., and Wells, D. Persistence for C4-+ Using

Zeitgeist. Technical Report ITL-89-10-02, Rel. 0.1.3,

Texas Instruments Incorporated, P.O. Box 655474, MS
238, Dallas, TX 75265, Jan. 1990.

[17] Rosenthal, A., Heiler, S., Dayal, U., and Manola, F.

TVaversal Recursion: A Preurtical Approach to Support-

ing Recursive Applications. In Proceedings of ACM-
SIGMOD '86 International Conference on Management
of Data (W^lshington, D.C., 1986), pp. 166—175.

[18] Shaw, G. M., and Zdonik, S. B. An object-oriented

query algebra. In Proceedings of the Second Interna-

tional Workshop on Database Programming Languages

(June 1989).

[19] Shaw, G. M., and Zdonik, S. B. A query algebra for

object-oriented databases. In Proceedings of the Sixth

International Conference on Data Engineering (Jan.

1990), pp. 154-162.

[20] Stonebraker, M., and Rowe, L. A. The Design of POST-
GRES. Zxi Proceedings of ACM-SIGMOD '86 Interna-

tional Conference on Management of Data (Washing-

ton, D.C., 1986), pp. 340-355.

[21] Stonebraker, M., Wong, E., Kreps, P., and Held, G.

The Design and Implementation of INGRES. ACM
Transactions on Database Systems 1, 3 (Sept. 1976),

189-222.

[22] Stroustrup, B. The C-h-t Programming Language.

Addison-Wessley, 1986.

[23] Stroustrup, B. Parameterized Types for C-i--|-. In Pro

-

ceedings of the USENIX C-h-h Conference (Denver, CO,
Oct. 1988), pp. 1-18.

[24] Zaniolo, C. The database language GEM. In Proceed-

ings of ACM-SIGMOD 1983 International Conference

on Management of Data (San Jose, CA, May 1983),

pp. 207-218.

178

179 ,

a

Important Features of Iris OSQL

William Kent

Eewleii-Packard Laboratories

1501 Page Mill Road

Palo Aho, CA 94303

1 Introduction

OSQL is the object-oriented database language being developed for the Iris object-oriented data-

base management system at Hewlett-Packard Laboratories [Fishman89].

This paper provides an overview of the underlying concepts and some important features of OSQL
in the current prototype. The language is still under development. Not all features are presented

here, and those presented are subject to change.

2 The Iris Data Model

The Iris Database System is based on a semantic data model that supports abstract data types. Its

roots can be found in previous work on Daplex [ShipmanSl] and Taxis [MylopoulosSO]. A number

of recent data models, such as PDM [Manola86] and Fugue [Heiler88], also share many similarities

with the Iris Data Model. The Iris data model contains three important constructs: objects, types

and functions. These are briefly described below. A more complete description of the Iris Data

Model and the Iris DBMS may be found in [Lyngbaek86, Fishman89].

2.1 Objects and Types

Objects in Iris represent entities and concepts from the application domain being modeled. Some
objects such as integers, strings, and lists are self identifying. Those are called literal objects.

There is a fixed set of hteral objects, that is each literal type has a fixed extension.

A surrogate object is represented by a system-generated, unique, immutable object identifier or

oid. Examples of surrogate objects include system objects, such as types and functions, and user

objects^ such as employees and departments.

Types have unique names and are used to categorize objects into sets that are capable of partici-

pating in a specific set of functions. Objects serve as arguments to functions and may be returned

as results of functions. A function may only be applied to objects that have the types required by

the function.

Types are organized in an acyclic type graph that represents generalization and specialization.

The type graph models inheritance in Iris. A type may be declared to be a subtype of other types

(its supertypes). A function defined on a given type is also defined on all its subtypes. Objects

that are instances of a type are also instances of its supertypes.

User objects may belong to any set of user defined types. In addition, objects may gain and

lose types dynamically. For example, an object representing a given person may be created as an

°(c)1990 Hewlett-Packard Contpany

180 .

instance of the Employee type. Later it may lose the Employee type and acquire the type Retiree.

When that happens, all the functions defined on Retiree become applicable to the object and the

functions on Employee become inapplicable.

2.2 Functions

Attributes of objects, relationships among objects, and computations on objects are expressed

in terms of functions. Iris functions are defined over types, they may take multiple arguments,

they may be many-vzJued and, unlike mathematicad functions, they may have side-effects. In Iris,

the declaration of a function is separated from its implementation, providing a degree of data

independence.

Function names may be overloaded, i.e., functions defined on different types may be given identical

names. When a function call is issued using an overloaded function name, a specific function is

selected for invocation. Iris chooses the function that is defined on the most specific types of the

actual arguments.

The functions apphcable to an object are determined by the functions defined on all of its types.

A type can be characterized by the collection of functions defined on it, or, more precisely, by

its participation in functions of one or more arguments. Thus the Employee type might have the

EmpNo and Salary functions defined on it. It might be further characterized as being the first

argument in cin AsgmtDate function, which returns the date a given employee was assigned to a

given department.

2.3 Database Updates and Retrievals

Iris object semantics aie described entirely in terms of the behavior of functions, i.e., the results re-

turned by their application. Users are shielded from the data structures which internadly implement

these behaviors. As a simple example, function values might be stored in various configurations of

relational tables without affecting their semantic behavior.

Updates, or side effects, are described in terms of altering the results returned by functions. Prop-

erties of objects and relationships among objects are modified by changing the values of functions,

using set, add, and remove statements. A procedure is a function whose implementation has side

effects.

The database can be queried by using the OSQL select statement, described later.

2.4 Function Implementation

Before a function may be invoked, an implemeniaiion must be specified. The implementation of the

function is compiled and optimized into an internal format that is then stored in the system catalog.

When the function is later invoked, the compiled representation is retrieved and interpreted.

Iris supports three methods of function implementation: Stored, Derived, and Foreign.

The extension of a stored function is maintained as stored data.

Derived functions are functions that zire computed by evaluating an Iris expression. The expression

may represent a retrieval or an update. A function may also be derived as a sequence of updates,

which defines a procedure.

A foreign function is implemented as a subroutine written in some general-purpose programming

language and compiled outside of Iris. The implementation of the foreign function must adhere to

certain interface conventions. Beyond that, the implementation is a black box with respect to the

rest of the system.

181 .

2.5 Iris System Objects

In Iris, types and functions are also objects. They are instances of the system types, Type and

Function, respectively. Like user-defined types, system types have functions defined on them.

The collection of system types and functions model the Iris metadata and the Iris data model

operations.

System functions are used to retrieve and update metadata and user data. Examples of re-

trieval functions include, FunctionArgcount, that returns the number of arguments of a function,

SubTypes, that returns the subtypes of a type, and FunctionBody,. that retrieves the compiled rep-

resentation of a function. Sysiem procedures correspond to the operations of the data model and are

used to update metadata and user data. Examples of system procedures include ObjectCreate, to

create a new object, FunctionDelete, to delete a function and IndexCreate, to create an index.

3 An OSQL Sampler

The statements

create type Person;

create Person instance : alien;

create the type Person and one instance, whose object identifier is returned in the host variable

: alien. We can’t do much more than query the type of this object, or the instances of the Person

type, until we introduce some functions:

create function Name(Person) -> String;

create function SocSecHuin(Person) -> Integer;

create function Hobbies (Person) -» String;

These three functions each take a Person as argument, and return results of the indicated types.

The ”» signifies that the function is multi-valued, i.e., its result is a set of objects.

The following statements add and remove values of functions:

set Hobbies (: alien) = {
‘ skiing ‘fishing

;

set Name(:allen) = 'Allen';

set So cS ecNum (: alien) = 999999999;

add Hobbies (: alien) = ‘chess';

remove Hobbies (: alien) = ‘fishing';

These statements have illustrated some fundamental concepts, but OSQL provides more elegant

alternatives. Let’s first undo what we’ve done:

delete : alien;

delete Type Person;

The first statement deletes Allen; all function applications taking that object as argument or result

are thereafter undefined. The second statement deletes the Person type itself. All functions created

with that type as argument or result are also deleted.

Now we restart, getting equivalent results by creating a type using in-live definitions of property

fuiiciions (functions of one argument);

182 .

create type Person-

properties

(

Name String,

SocSecHum Integer,

Hobbies -» String

);

That’s semantically equivalent to the four separate statements used earlier to create the type and

three functions. Any number of property functions may be defined in-line, and any number may
be created separately as before.

Object creation can be bundled, creating several objects at a time, and also initializing some

property values:

create Person

properties (Name, SocSecNum, Hobbies)

instances

: alien (‘Allen’, 999999999, {‘skiing’ , ‘chess ’})

,

:brian (‘Brian’, 888888888, ‘piano’);

The host variables : alien and :brian now contain oid’s of these newly created objects. The

current value of SocSecNum(:brian) is 888888888.

Let’s introduce some more types:

create type Stockholder

properties (NumShcures Integer)

;

create type Employee subtype of Person, Stockholder

properties

(

EmpNo Integer,

Salary Integer

);

By these definitions, an employee is a person and adso a stockholder. All the functions defined

on persons and stockholders are also defined on [tnhenied by) employees. When a new employee

object is created, any of those functions may be initialized:

create Employee

properties (EmpNo, Salary, Name, SocSecNum, NumShares)

instances

:carla (0001, 50000, ‘Carla’, 777777777, 200);

Allen can become an employee by acquiring a new type:

add type Employee to : alien;

That also makes him a stockholder, and we can

set EmpNo(: alien) = 0002;

set Salary (: alien) = 35000;

set NumShares (: alien) = 100;

183 .

Let’s make Brian an employee, too, taking another shortcut:

add type Employee

properties (EmpNo, Salary, NiuuShaxes)

to :brian (0003, 40000, 100);

We need departments:

create type Department

properties (DeptNo Integer);

create Depcirtment

properties (DeptNo)

instcinces :toy (901);

create function CurrentDept (Employee) -> Department;

set CurrentDept (: CcLTla) = :toy;

Our first look at a query, and a function derivation:

create function CurrentEmps (Department d) -> Employee e

as

select each Employee e where CurrentDept (e)=d

;

That defines CurrentEmps of a department as all employees who have that department as their

CurrentDept.

In certain cases, when a derived function is easily recognized as a simple inverse of a stored function,

the derived function can be updated. We can put everybody in the toy department by

add CurrentEmps (: toy)
= •(: alien, :brian}-;

We can fire Allen, without deleting him from the database, by removing the Employee type:

remove type Employee from :al.len;

All the functions defined on Employee are no longer applicable to Allen; he no longer has an

employee number or salary. All the functions having Employee as a result type no longer have

Allen in their results; Allen will not be included in CurrentEmps (: toy).

Bulk updates, resembling queries, can be done. If we haid a Manager function defined on employees,

the following would set the salary of each employee to the salary of his manager:

set ScLlar'y(e) = s

for each Employee e. Integer s

where s = Salaxy (Manager (e))

;

Notice that the semantics of this statement is to update the salary of each employee to the old

salary (e.g., the salary that prevailed immediately before the update) of his or her manager.

Here’s a function with multiple arguments:

create function

AsgmtDatei Employee e, Department d) -> String date;

184 .

This function “belongs” to both the Employee and Department types. It is not a property function,

and can’t be defined in-line.

set AsgmtDatef : carla, : toy) = ‘6/1/90*;

Here’s a function with complex results:

create function

AsgmtHist (Employee e) -> <Department d, String date>

as

select each Department d, String date

where AsgmtDate(e,d)=date;

Assuming more data than we’ve actually shown in these examples, the value of AsgmtHist (: carla)

might be the set of lists

<0sales, ‘ 2/4/87 ’>

<fitoy, ‘5/l/90’>

>

in which we use Osales and fitoy to denote the oid’s of those two departments.

Function overloading can be illustrated in a simple way by imagining that employees have more

stockholder votes than ordinary stockholders, getting an additional vote for each week of employ-

ment. We might then have the Votes function defined twice:

create function Votes (Stockholder s) -> Integer v

as Select NumShares (s)

;

create function Votes (Employee e) -> Integer v

as Select Sum(NumShcLres(e) ,WeeksEmployed(e))

;

While Allen was an employee, Votes (: alien) was computed by the second formula. After we

fired him, it is computed by the first.

4 More About Queries

The Select and Cursor statements return Iris objects. Selects return all items that match the

specified criteria at once. Cursors provide control over how to return the result of a query.

4.1 Select

The general form of a select statement is;

SELECT result-spec

FOR EACH source-spec

VHERE filier

The source-spec specifies a list of select variables and the domain of each. A domain may be

185 .

• a type, in which case the variable ranges over all instances of the type;

• bag of type, in which case the variable ranges over all bags of instances of the type.

The filter (also known as the predicate- expression) gives the criteria to be used in the search.

The result-spec defines the objects or list of objects to be returned in the results; it may include

functions to be applied.

The result of a Select is a bag containing atomic values or lists of atomic values. The bag has

no persistent ordering. Duplicates may occur, unless suppressed by using the distinct keyword.

Non-literal objects in the result are represented by their oid’s.

If the query returns a single result (either atomic or a list), an into option is available for specifying

interface variables into which the values of the result will be placed. It is also possible to assign

the result of a select-expression to host variables for later use.

The semantics of evaluating a select-expression can be described in four steps:

1. Form the cross-product of the domains of the select variables. The cross-product is a set of

lists, each containing a member of the domain of each variable.

2. Apply the specified predicate-expression to each potential result in the cross-product. This

might result in the elimination or replication of lists in the cross-product.

3. Generate the result list(s) by applying the result-spec (e.g., functions) to the occurrence of

each result satisfying the predicate-expression.

4. Eliminate duplicates if the keyword distinct is specified.

The result-spec may be empty, as in

select each Employee e

where Salaxy (e)>50000

;

The semantics of this abbreviated form are that all lists from the cross-product which satisfy the

predicate-expression are returned. In effect, the source-spec doubles as the result-spec.

In general, a predicate-expression is a conjunction and/or concatenation of comparisons. Variables,

constants, function results and lists may be compared, and used as a filter to weed out unwanted

values.

The form y=f (x) is overloaded. It is true in the following cases:

• y is a bag variable and f is multi-valued, such that the bag y contains all the objects in the

result of f(x).

• y is a non-bag vairiable and f is single-valued, such that the value of y is the same as f(x).

• y is a non-bag variable and f is multi-vaJued, such that the value of y is a member of the

result of f(x).

Functions may be applied to variables and constants and to the result of other functions.

The logical operators currently supported are and and concat. The concat operator is equivalent

to a union without removal of duplicates.

The following queries are equivalent, each returning the names of all employees and their managers:

select ne ,
run

for each Employee e. Employee m, String ne , String run

where m=Manager(e) and ne=Name(e) and nm=Naine(m);

136.

select ne, nm

for each Employee e. String ne. String nm

where ne=Name(e) and nm=Name (Manager (e))

;

select Name(e), Name (Manager (e)

)

for each Employee e;

The following query returns the names of all people whose hobbies include both skiing and chess;

select Name(p)

for each Person p
where Hobbies (p)=‘ skiing’ and Hobbies (p)=‘ chess ’

;

No person will be represented in the result more than once, though there may be duplicates in the

result if several people had the same name.

The following query returns the names of all people whose hobbies include either skiing or chess:

select Name(p)

for each Person p
where Hobbies (p)= ‘ skiing’ concat Hobbies (p)=* chess ’

;

In this case, a person whose hobbies include both skiing and chess will occur twice.

Using bag vciriables and the system function Coimt, we can count the number of hobbies each

person has:

select Name(p), n

for each Person p, Integer n, bag of String h

where h=Hobbies(p) and n=Count(h);

The bag variable is implicit in the following equivalent query:

select Hame(p), Count (Hobbies (p)

)

for each Person p;

Cursors allow the results of a Select statement to be obtained one at a time and assigned to host

Variables for later use, or several at a time for display.

To open a cursor csilled : esal for the retrieval of employee names and salaries;

open lesal for

select Name(e), Salary(e)

for each Employee e;

To fetch the names and salaries of employees one at a time into variables:

fetch ;esal into :empl, :sall;

fetch resaJ. into :emp2, :sal2;

To display the names and salaries of the next ten employees:

fetch :esal next 10;

When we’re finished:

close ;esal;

187 .

5 Conclusion

This paper has described some of the main features of Iris OSQL, illustrating its overall semantic

approach to object-oriented database.

References

[Fishman89] D. H. Fishmaji et al. Overview of the Iris DBMS. In W. Kim, F. H. Lochovsky,

editors, Object-Oriented Concepts, Databases, and Applications. ACM Press, New
York, N.Y., 1989.

[Heiler88] S. Heiler and S. Zdonik. Views, Data Abstraction, and Inheritance in the FUGUE
Data Model. In Klaus Dittrich, editor. Lecture Notes in Computer Science 334,

Advances in Object- Oriented Database Systems. Springer-Verlag, September 1988.

[Lyngbaek86] P. Lyngbaek and W. Kent. A Data Modeling Methodology for the Design ajid Im-

plementation of Information Systems. In Proceedings of 1986 International Work-

shop on Object-Oriented Database Systems, Pacific Grove, California, September

1986.

[Mylopoulos80] J. Mylopoulos, P. A. Bernstein, and H. K. T. Wong. A Language Facility for

Designing Database-Intensive Applications. ACM Transactions on Database Sys-

[Manola86]

terns, 5(2), June 1980.

F. Manola and U. Dayal. PDM: An Object-Oriented Data Model. In Proceedings

of 1986 International Workshop on Object-Oriented Database Systems, Pacific

Grove, California, September 1986.

[Shipman81] D. Shipman. The Functional Data Model and the Data Language DAPLEX. ACM
Transactions on Database Systems, 6(1), September 1981.

188 .

189 .

Strawman Reference Model for Change Management of

Objects

John Joseph

Maxk Shadowens

John Chen
Craig Thompson

Texas Instruments Incorporated

Abstract

This paper provides a strawman^ reference model

which can be used for comparing amd reasoning

about change management systems. It begins with

a glossary of change management terms, providing

common ground for people to communicate about

change management. A descriptive reference model

is then described as consisting of a collection of char-

acteristics that can be used, again by people, for

comparing existing and future change management
systems. Finally, based on the descriptive reference

model, a functional reference model is defined that

provides a much more precise description ofhow ma-

chines can realize generic change management oper-

ations. While the glossary and descriptive reference

model are steps on the path to forming standards,

the more precise model is closer to what is needed to

provide interoperability (standards) for machines.

It is hoped that the step-wise refinement exposition

used in this paper, from terms through a descriptive

reference model to em operational reference model,

will provide a good roadmap for OODBTG or sim-

ilar groups to reach consensus leading to standards

in the area of change management.

'Inforzoation Tedmologie* Laboratory, Computer Science

Center, Texas Instruments Incorporated, P.O Box 655474,

MS 238, Dallas, Texas 75265.

^ Email: josephQcsc.ti.com Telephone: (214) 995-0305
^ Comments are welcome!
^ This paper is intended as a good start towards a change

management reference model; its treatment of change man-
agement is not intended to be complete. It is written in such
a way that it is consistent with OODBTG 's OODB Reference

Model. It could be viewed as a mini-reference model refining

the Change Management section of that reference model. Al-

ternatively, it can stand alone as a separate reference model
since it identifies and isolates an orthogonal abstraction.

1 Introduction

1.1 Motivation

Many application areas cannot be modeled in £m

adequate manner by representing only the present

state of the world. Generally, support for modeling

this aspect of an application is left to the application

designer. But, it is now recognized that lifecycle

support requirements for managing change in areas

like computer-elided design (CAD), software engi-

neering (including CASE), and cooperative author-

ing are quite similar. Thus, we can consider provid-

ing common support at the system level, providing

generic ways to represent and manipulate complex

objects, their interrelationships, and their histories.

The above applications need support for the evo-

lution of objects and for constructing and config-

uring objects into layered, hierarchical descriptions.

Information is represented in multiple forms at dif-

ferent stages in the evolution of applications. These

multiple forms correspond to different levels of ab-

straction and transformations among these abstrac-

tions are often necessary. Applications need support

for managing consistency across such transforma-

tions. We define change management as a consis-

tent set of techniques that aid in evolving the de-

sign and implementation of an abstraction. These

techniques can be applied, by cooperating users, at

different levels to record history, reconstruct past

state, explore alternatives, navigate through layered

hierarchical designs, ajid manage multiple sets of

representations of the design information.

Application information includes not only the

data used in the applications but also the schema

which structures or models the information. In

a database, the schema controls the creation and

manipulation of persistent objects. The transient

application schema and data and the persistent

190 .

database schema and data eire often the same in

object oriented applications. Thus, change manage-

ment is going to be needed by object-oriented appli-

cations and databases to manage change uniformly.

1.2 Outline of the Paper

Section 2 defines a glossary of (many of the) terms

that people use in the area of ch£uige management
to describe and communicate about the basic con-

cepts. Section 3 is the descriptive reference model

for change management systems. It identifies char-

£u:teristic8 or properties that any change manage-

ment system must address. Section 4 surveys sev-

eral existing change management systems and com-

pares them with respect to the features identified

in section 3. Finally, in section 5, we define a pre-

cise functional model for change management. The
model can be realized as a collection of three ai-

siraci machines. We have prototype implementa-

tions of two of these machines. These prototypes

are described in the appendices.

2 Glossary of Terms

The glossary defines terms used in the change man-
agement area. It is provided to ensure we are all

talking the same language. It also helps to scope

the concept terrain for change management. Below,

we use a conceptual grouping, placing related terms

near each other.

abstract machine A technique for defining sys-

tems and designing software. In this technique,

a software system is composed of state, or data,

and a set of operations or instructions which

manipulate the machine state.

change management A consistent set of tech-

niques that aid in evolution, composition and
policy management of the design and imple-

mentation of object or system.

version management A consistent set of tech-

niques which aid in the management of the evo-

lution of an object.

version control Sec version management

configuration management A consistent set of

techniques which aid in the management of the

composition of an object.

configuration control See configuration manage-
ment

tremsformation management A consistent set

of techniques which aid in the management of

the dependencies cind constraints which exist

among objects.

transformation control See transformation

management

constraint management See transformation

management

dependency tracking See transformation man-
agement

administrator The person or persons invoking

change management over a set of objects or sys-

tem.

version A variant of the original value of an object.

version graph The data model used to represent

the evolution of versions of an object.

version node A node on a version graph repre-

senting a version of an object.

child version A version of a version of an object.

immediate version See child version.

children versions A set of child versions.

parent version A version from which a certain

child version (or children) evolved.

parents versions A set of parent versions.

primary version The member of the children ver-

sions designated by the administrator to be the

chief representative of the children versions.

major version See primary version.

default version See primary version.

alternate version The members of the children

versions which are not the primary version.

minor version See alternate version.

sibling versions The versions which are members

of the same set of children versions.

initial version See root version

root version The initial value of an object.

original version See root version.

191 .

working version A local copy of a released ver-

sion of an object that is currently undergoing

modification.

experimental version See working version.

checkout The transaction which creates a working

version.

effective version A version of an object that is

not modifiable and represents an object suit-

able for testing prior to its actual release.

checkpoint Sec effective version.

checkin The tremsaction which creates an effective

version.

released version A version of an object that is not

modifiable and has passed all evaluation tests

and has been archived.

baseline See released version.

next version The primary version of a version’s

children

previous version The parent version or parents of

a version.

linear version The policy that a version can only

have a single child version associated with it.

branching versions The policy that a version can

have more than one child version associated

with it.

version history Sec version graph.

merging versions Sibling versions who share a

common child version.

timestamp A method for marking or uniquely

identifying a version chronologically.

delta (version) The information which differenti-

ates a version from members of its immediate

family.

forward delta The delta which
,
when combined

with a version, creates a child version.

backward delta The delta which
,
when combined

with a version, creates a parent version.

configuration graph The data model used to rep-

resent the composition of an object.

configuration node A node on a configuration

graph representing an object component.

component The data model abstraction of an ob-

ject.

supercomponent A component which can be de-

composed into a set of subcomponents.

subcomponent A component which can be com-

posed with other components to form a super-

component.

abstract configuration The configuration graph

of an object in which only the structure of the

composition has been defined without the asso-

ciation of configuration nodes with component

objects.

dynamic configuration The configuration graph

of an object in which the version of some com-

ponents or configuration nodes have not been

boimd.

concrete configurations The
configuration graph of an object in which each

version of a component or configuration node

has been bound.

multiple representations More than one aspect

or combination of aspects representing an ob-

ject or view of an object.

transformation The manner of mapping one rep-

resentation of an object to another representa-

tion of the object.

dependency The manner of determining the rela-

tionship of objects.

constraint A rule or manner of being or interac-

tion of an object that is stated and enforced.

policy A statement of constraint or dependency.

aggregation The composition of objects.

granularity The level or degree of aggregation of

a set of objects.

3 Descriptive Reference

Model for Change Manage-
ment

This section presents a descriptive reference model

for change management. The intent is to isolate the

key concepts that make up the change management
functional abstraction in computer systems. The

192 .

Granularity Flexible, Application level objects

Polymorphism With respect to object types and storage status

Versions Branching, merging, baselining

Deltas ForwMd, backward, delta-sets

Configurations Abstract, concrete, contexts

Multiple Representations Consistency maintenance, transformations

TVansformations Constraint Enforcement, PMtial consistency

Dependancies Dependancy analysis, validation, verfication

Pay as You Need ModulM system, no penalty for unused components

Dociimentation Design decisions, change reasons, dependencies

Policies Policy layer, organizational and change management policies

Security and Authorization Lock, own
,
grant and share access

Multiple Users Co-operative work, nested transactions, concurrency control

Distributed Design Multi-server, multi-client, replication consistency

Persistence Deal with persistent and transient data in a uniform manner
Usability Non-intrusive, low-profile, user interfMe

l^ble 1: Change Management Requirements

approach taken is to determine a minimal basis set

of features or characteristics that change manage-
ment systems must address ^

. Viewed from another

perspective, these characteristics can also be viewed

as requirements for change management that have

been identified from a variety of applications.

- In this section, we discuss the factors involved

in change management. We begin with a discus-

sion of the characteristics of design objects such as

granularity, interface and implementation, eind dif-

ferent views. Changes on objects which cause differ-

ent versions and configurations are then discussed.

We then euidress the issues related to the valida-

tion of designs; namely, transformations and depen-

dencies. At the end we cover the issues more rele-

vant to end users such as query facilities and per-

formance. These requirements may be classified as

the requirements of the logical model(3.1 - 3.11)

and the requirements of the operational model(3.12

- 3.16). It is expected that the application envi-

ronment provides tools to support the operational

model. These latter requirements are typically in-

dependent of change management emd c^m be sepa-

rately specified.

Table 1 provides a summary of the characteristics

identified. The change mangement systems referred

to in this section Me described in Section 4.

^ Often, these characteristics are addressed implicitly, as

when a change management system only provides builtin data
types like module or file.

3.1 Granularity of Objects

In today’s software systems, change meinagement

systems often intereict closely with file systems and

only support files as design objects. The informa-

tion needed for change management is kept partially

by the file system, and partially by either a conven-

tioniil DBMS or by the ch£mge management system

itself. The file system etlso keeps the objects persis-

tent on the secondary storage. Tools available in the

supporting environment, such as editors, can often

be used with the change management system since

they all operate on files. However, often files Me
not the right level for change management. A file is

usually composed of a number of logical units such

8L3 design blocks, function definitions, or sections of

text. From another angle, a file is just an Mtifact of

the storage subsystem. A change mangement sys-

tem should not be tied into the storage system; it

should instead deal with the logical units, namely

objects, of the application. It should be able to

manage change at the level of granulMity that the

application requires. It is the responsibility of the

application to select the grain size of objects to be

change-managed. It should be possible to manage
change at multiple levels of granulMity, including

not only containing objects but contained objects,

recursively. This selection will impact the perfor-

mance and flexibility that the application provides

to its users. The change management system should

not limit the application in this selection.

193 .

3.2

Polymorphism

A general-purpose change mangement system must

be able to deal with user-defined types of objects.

In maxiy systems, the type of objects managed is

restricted to a few built-in types like lines of text or

Lisp S-expressions.3.3

Versions

A design object is represented by many versions

during its lifecycle. Often the interface of the object

is invariant and the implementation chcinges over

time.

The version derivation sequence of an object re-

flects how the object evolves. The simplest way an

object could evolve is linear: changes to the object

always occur on the current version. Support for lin-

ear changes is provided by most data management
systems. In many applications, however, changes

often occur in a non-linear fashion. A designer

may want to explore several design alternatives first,

^md then select one. A change management system

needs to support alternatives or branching versions.

The desired design object may be selected from a

combination of several possibilities, implying that

the system needs to support merging of versions.

Version merging is also important for supporting a

group of designers performing parallel development.

Version baselining is often desired, that is, recording

a system configuration at specific versions, evolving

the configuration through several changes, but at

any point being able to return to any recorded ver-

sion. This is convenient for supporting released or

demo designs that must be available in their original

state, but can also be evolved.

It is not necessary that the evolution of objects

is along a temporal dimension. Versions can be cre-

ated based on other qualitative or queintitative at-

tributes meaningful to the application. Since de-

sign objects are usually structured hierarchically,

the creation of versions of object can trigger ver-

sions of other objects in the hierarchy to be gen-

erated. There are cases when the designer doesn’t

want a 8m£Lll chfinge to a low-level object to ripple

through an entire hierarchy creating a new version

of everything above it. Hence it is desirable to al-

low the designer to control the triggered creation of

versions on objects[32].

3.4 Changes and Change Groups

When an object evolves, new versions of the ob-

ject are created. The changes made to the object

(sometimes referred to as deltas or differential re-p-

resentations
)
are an important part of the design

history. If the object is big and/or the evolution

is frequent, the space needed to keep all the object

versions becomes intolerably large. Since the differ-

ence between object versions may be relatively small

compared to the size of object versions, people have

used changes to represent object versions.

Changes can be forward-going or backward-going.

Forward-going changes make it expensive to obtain

newer versions, but they make it easy to support

version branching. On the other haind, backward-

going changes make it expensive to obtain older ver-

sions. Since designers 2ue most likely to work on

more recent versions, backward-going changes are

often preferred. A change management system can

provide support for both. Also, in both schemes,

periodic full versions may be preserved to trade off

storage space for computations.

• Many change management systems provide a

mechanism which allows the designer to tie related

changes into change groups (or delta-sets). The de-

signer, thus, can treat related changes as a unit and

back out of all these changes at once when they

don’t work. PIE allows the user to include/exclude

change groups when making a new design. A change

group is also an appropriate place to keep aissoci-

ated documentation. High-level documentation can

then be derived and used in the development history

which is useful in maintenance. CLF further allows

the designer to classify the change groups and query

the change groups based on their classifications.

3.5 Configurations

Objects can be primitive or composite. A composite

object is composed of other objects. A specification

of the composition of an object is a configuration.

The relationship between an object and its compo-

nents may be bound on a range of levels:

Versions The versions of components are specified,

as needed in a released design.

Interfaces The interfaces of objects are specified.

Any object version which satisfies the interface

requirements can be used.

Contexts A context is a sequence of change

groups. This allows the designer to specify ob-

ject instances in terms of change groups.

194 .

I

Representations and/or host machines Only

the representations and/or host machines are

specified. This is useful in specifying generic

or representation-independent objects, and dis-

tributed objects.

A configuration in which the components are not

bound, but specified according to a characterestic Is

called an abstract or dyniunic configuration. When
the components are bound to specihc objects, the

configuration is referred to as concrete. A change

management system is required to support dynamic

configurations of objects with respect to user speci-

fied characterestics of an application as well as con-

crete configurations.

3.6

Multiple Representations

The lifecycle of a design involves different represen-

tations of data at different design stages. These rep-

resentations may correspond to different levels of

abstraction or different viewpoints. In VLSI CAD,
a circuit can be represented in register level de-

scription, gate level schematics, and layout geom-

etry. Since these representations all correspond to

the same design object, consistency must be main-

tained among them. When changes are initiated in

different representations, consistency management
becomes more difficult, since changes in represen-

tations which are at lower levels of abstreu:tion are

often not transmitted back to higher level represen-

tations, causing inconsistencies.

Multiple representations may be managed in two

different ways. One way is to designate a primary

representation for changes. Other representations

are automatically generated from it. Most ch£uige

management systems for software development ad-

dress the consistency problem in this way. They
designate the source code as the primary represen-

tation for changes. This approach imposes a se-

vere restriction on the relationship among design

representations: all representations must be auto-

matically generated ffom a primary representation.

Since in general, it is not possible for a high-level

representation to be automatically generated from

a low-level representation, the changes can only be

made at the highest-level representation.

The second way of maintaining the consistency

among different representations is to provide the

designer with interactive tools so that changes on

a lower-level representation can be tracked and ac-

tions to be applied to higher-level representations

can be recorded and presented to the designer. This

approach [4] to maintaining consistency is more gen-

eral as it allows changes made in one representation

to be propagated to other representations, automat-

ing automatable transformations and at least book-

keeping where manual transformations are needed.

3.7 Transformations

Operations applied to objects during their lifecycle

are transformations. There are transformations on

single object representation to achieve specific goals,

such as editing, simulation, and analysis. There are

transformations to bring objects from a higher repH

resentation to a lower representation, such as trans-

lation. Since a design is usually developed jointly

by different designers on different machines, and de-

sign tools are available on different machines, there

are transformations to transport objects across ma-

chines. As a result of transformations, new objects

may be created. These new objects are different

from the original objects in versions, representa-

tions, or host machines.

A major function of chajige management systems

IS to enforce certain pre-defined constraints among
transformations and objects. The constraints may
specify when a transformation can take place or how

the transformations are ordered. For example, a

compilation transformation is performed when the

source code has a newer timestamp than the binary

code; or a transformation of loading binary code

always follows the transformation of compiling the

corresponding source code, when both transforma-

tions need to be performed. There are cases where

it is desirable to have transformations generated by

the change management system. This allows the

user to work with higher-level development opera-

tions.

3.8 Dependencies

Objects are not independent of one euiother. The

dependencies among objects often reflect on trans-

formations. For example, when a macro of a

software system is modified and re-compiled, the

functions which use the macro should cdso be re-

compiled. Some change management systems allow

the designer to specify the dependencies. They then

generate the implied transformations when needed.

Common-Lisp Framework (CLF) has a static anal-

ysis tool which can analyze the dependencies of ob-

jects. The Source Code Control System developed

by James Rice (Rice’s SCCS) provides a way of en-

forcing transitive dependencies.

195 .

One of the most difficult tcisks for a designer mod-

ifying a complex design is for him to understand the

effects of his change. Validation can be thought of

as satisfaction of a constraint. A chcinge manage-

ment system is required to support full and partial

validation of application systems.

3.9 Pay As You Need

An application may not need idl services of a chemge

majiagement system. The system should be con-

hgurable in such a way that an application is not

forced to bear the overhead of a service that it does

not need. A partitioning of the change management
functions into logical groups which can be put to-

gether in a “LEGO” faishion will support such a re-

quirement. The change mangement model proposed

in Section 5 follows this approach.

3.10 Documentation

Design decisions, reasons for changes, configura-

tions, or dependencies need to be recorded. This

information can serve as the basis for communica-
tion of design rationfde among the designers. It also

provides the traceability on design evolution, which

is useful and is often needed for legal accountability.

3.11 Policies

The policies of an organization regarding change

management evolve for legal, accounting or other

reasons. Common cases are policiM regarding audit

tredls, releases, 2Lnd validation items. It is neces-

sary for a diange management system to support

these policy changes without a major perturbance

to applications. This is possible if the policies are

managed by a flexible policy layer. It may be nec-

essary to have policy sub-layers based on applica-

tions, sites or enforcement types. This policy layer

can also be used to manage the evolution of poli-

cies internal to the ch£inge management system;

examples are policies regarding laizy/eager evalua-

tion, caching/memoization, clustering hints to stor-

age managers, and use of deltas.

3.12 Security and Authorization

It must be possible to lock, own, grant, share,

and limit access to objects that are being change-

managed. In most systems, these capabilities are

inherited from the database or file system that the

change management system interacts with. In some

systems, it is possible for users to bypass the change

management system and access change-managed
objects directly. This is dangerous since version his-

tories and other change management state may not

be preserved, unless some triggering scheme detects

the change and alerts the change management sys-

tem.
3.13

Multiple Users

Designs are often created by a group of designers

working as a team. In certain cases, different de-

signers work on disjoint parts of a design; but fre-

quently, designers need to interact with each other

and work on common design objects. Therefore,

change management systems need to support the

concurrent development of shared design objects in

a coordinated manner. Each unit of development,

called a design transaction, brings a design from a

consistent version to a new consistent version^. De-

sign transactions are long duration and ended by

releases of various levels: to the designer himself,

for testing with other changes, for validation, or for

distribution. To ensure the integrity of shared de-

sign objects across tramsactions, some mechanism
for concurrency control is needed. For the reasons of

security and better management of shared objects,

issues such as the protection on design objects and
the authorization of operations on them need to be

resolved.

The most primitive concurrency control mecha-

nism is manual control. Designers avoid conflicts

by conversational arrangements. This might be

acceptable for a small design group physically lo-

cated in the same area when the design objects

are small enough so that concurrent modifications

on the same objects rarely happen. In general,

this kind of concurrency control is not appropriate.

Change management systems need to support co-

operative work and manage parallel development.

It may be necessary to devise protection auid au-

thorization schemes to guard against accidental or

intentional misuse of common data.

^The notion of globally conaistent state used in conven-

tional databases is inappropriate since in designs, the detailed

design does not match the requirements until the design

is completed. Instead, in design transactions, consistency

is with respect to a suite of validation tests that measure
whether sub-designs and design representations are inter-

consistent.

196 .

3.14 Distributed Design

In many applications, different components of the

application tool set are often available on different

kinds of machines. Therefore, objects need to be

transferred across machines. Various design objects

may also be created and developed on different ma-
chines. To improve availability, replicated copies are

used on different machines. These copies need to be

maintcuned consistent. In big projects, application

data can be distributed in different geographic loca-

tions. Change management systems need to provide

support for distributed objects, including uniform

access and information recording, so that these ob-

jects can be used tramsparently by the designer on

any machine.

3.15 Persistence

A change mangement system should be able to deal

with both transient and persistent objects in a uni-

form manner. Traditionally, these systems have

supported persistent objects only. Transient objects

also need support for evolution, configuration into

structured objects, and transformations. “What
iP experimentation and constraint management for

transient objects should be supported. Persistence

is expected to be provided separately in the environ-

ment; change mangement systems are required to

interface to persistent objects as well as be able to

use the provided persistence for storing the change

management information.

3.16 Usability

Usability of a change management system is an
important factor since such systems will only be

adopted if they do not get in the way of progress.

One major criterion in determining the usability of

a system is execution efficiency.

Another criterion is integration. Change manage-
ment users perceive that there is large overhead if

the change management system is intrusive or high

profile. The ideal situation is when the user inter-

face of an application hides the change m^lngement
interface from the user by casting it in application

terms.

The nser interface of a change management sys-

tem also affects the usability of the system. The user

needs to have an easy way of specifying, viewing,

and changing the definition of objects, managing
the configurations, specifying and applying trans-

formations, and enforcing constraints and tracking

dependencies among component objects.

4 Review and Comparison of

Existing Change Manage-
ment Systems

This section is included to provide a kind of litmus

test of the descriptive reference model presented in

section 3. Using the characteristics identified in that

model, it should be possible to compare existing

change management systems. Section 4.1 reviews

selected change management systems. Table 2 lists

a comparison of systems based on the descriptive

reference model of Section 3. The comparison is

based on published literature and is necessarily in-

complete. Section 4.2 touches upon recent work re-

lated to change management.

4.1 Existing CM Systems

4.1.1 Unix Make

Unix Make[18] is a change management system

which provides a primitive mechanism for enforcing

dependency constraints among files. The constraints

are based on the timestamps of the files specified by

the user. Each constraint is composed of a target,

a list of dependent files, and a sequence of actions.

Unix Make ensures that all of the files on which the

target depends exist and are up to date by execut-

ing appropriate actions. The constraints define a

graph of dependencies. Unix Make does a depth-

first search of this graph to determine what work
is necessary. It adopts a simple mechanism to de-

termine the sequence of actions and hence is easy

for the user to understand and to use. However, it

doesn’t have support for versions and its timestamp-

based constreunts are restrictive.

4.1.2 Source Code Control System (SCCS)

sees [38] was developed by Bell Laboratories and

runs on IBM OS/MVT and Unix. SCCS manages
changes on text files. Versions of a text file are rep-

resented by forward deltas consisting of lines of text

and arc stored together with the modified lines. Ver-

sions arc named according to creation order. The
user can restore any version by specifying the ver-

sion name or the time when the version was cur-

rent. Limited version branching and merging are

supported. Branches can be created from, and later

197 .

on merged back to, the default version. When merg-

ing takes place, change conflicts are signaled. SCCS
can only manage single text files. The granularity of

change is individual lines only, not logical chunks of

text. SCCS is not easy to use on branching versions

since version names ^lre assigned rather randomly

and the internal structure maintained by SCCS gets

complex f2ist.

4.1.3 Revision Control System (RCS)

RCS[43] is a change management tool running on

Unix. Similar to SCCS, RCS manages changes on

text files. RCS differs from SCCS by supporting

changes to a group of files; it supports both back-

ward and forward deltas; it keeps changes separate

from the managed text; and it has better perfor-

mance in most cases. The user interface of RCS is

simple and hence easy to use. However, its locking

mechanism seems to be primitive.

4.1.4 MAKE-SYSTEM and PATCH FacH-

ity

MAKE-SYSTEM and PATCH[35] Facility are the

change management tools on Lisp machines for soft-

ware, especially Lisp program, development. The
user specifies objects, transformations, and depen-

dencies involved in a software system. Objects can

be sub-systems, modules, and files. The user is

allowed to specify transformations in partial or-

ders and the conditions under which the trans-

formations are executed. Based on user’s specifi-

cations, MAKE-SYSTEM determines at run-time

what transformations to execute and the sequence

of execution. The PATCH Facility supports changes

to the Lisp programs at the S-Expression level. It

provides a primitive function for the user to doc-

ument the changes. MAKE-SYSTEM only sup-

ports linear evolution of objects and £issumes that

all objects can be decomposed into files. It does

not fully support hierarchically structured objects

and has no mechanism to support multiple users.

The Explorer CM-Patch Facility[6] is a tool on
top of MAKE-SYSTEM and PATCH Facility and
provides multiple-user/workstation support. Under
CM-Patch Facility, a workstation is designated as

the server machine and keeps the change m£inage-

ment information. Systems under development and
their component files are registered to the server.

Users then send requests to the server to check files

out when they need to work on them.

4.1.5 Source Code Control System (Rice’s

SCCS)

Source Code Control System[37] is a change man-
agement tool developed at Stanford University by

James Rice for Lisp program development. It is

built on top of MAKE-SYSTEM. Rice’s SCCS pro-

vides a menu-based user interface so that the user is

freed from learning the syntax of MAKE-SYSTEM.
It has better support for hierarchically structured

systems. Subsystems are allowed to share mod-
ules. It has a locking mechanism to avoid con-

current modifications to files. The locking mech-

anism is implemented at a low level and is easy

to enforce. Three levels of privileges are pro-

vided so that operations can be granted to spe-

cific users. Dependency enforcement is emphasized,

including inter/intra-subsystem dependencies and

transitivc/intransitive dependencies. Although ver-

sioning on systems is different from that supported

by MAKE-SYSTEM, Rice’s SCCS can only handle

linear evolution. Among other uses. Rice’s SCCS
was used to keep Explorer and Symbolics releases

of systems consistent.

4.1.6 Common-Lisp Framework (CLF)

CLF[13], developed at Information Sciences Insti-

tute, University of Southern California, is an object-

oriented programming environment for the design,

implementation, and maintenance of software writ-

ten in Common-Lisp. CLF has four layers of ab-

straction:

Physical object management layer Objects

reside in a uniformly accessible object-base in

the virtual address space of a workstation. The
objects can be accessed associatively.

Logical object management layer Objects are

classified by type which determines their prop-

erties. Types are structured in a directed

euryclic graph such that each successor type in-

herits the properties of its predecessor type.

Each type is associated with a set of consis-

tency conditions which regulate the properties

of the objects of this type and procedures can

be attached to objects and triggered at speci-

fied conditions.

Program development assistant layer Types

of Lisp program development are defined. Lisp

S-expressions are the primitive objects in this

layer. They are grouped into modules which

198 .

are then grouped into systems. A system is as-

sociated with development steps which capture

the linear evolution of programs.

User interface layer The user is able to create,

retrieve, modify, compile, and loaxi the prim-

itive objects supported by the above layer.

Facilities are provided to help the user con-

struct queries on the software objects; an object

browser is provided.

Though built on top of a general-purpose ob-

ject management layer, CLF has several weaknesses.

Only built-in types (Lisp S-expressions, modules,

and systems) are managed, not generic objects. Sys-

tems cannot be hierarchically structured. Shared

modules and dependencies across systems are not

supported. Only linear system evolution is sup-

ported.

4.1.7

PIE

PIE[22,23] is an object-oriented environment imple-

mented in Smalltalk that uses a description lan-

guage to support the interactive development of pro-

gr^lms. The PIE environment is based on a network

of nodes which describe different types of entities

such as methods, classes, categories of classes, spec-

ifications, and configurations of systems. Attributes

of nodes are grouped into perspectives. Each per-

spective reflects a different view of the entity rep-

resented by the node. The values of attributes of

a perspective are relative to a context. Alternative

contexts Me created to store different values for the

attributes in a number of nodes. These contexts al-

low the user to examine or compare alternative de-

signs without leaving the design environment. Since

there is an explicit model of the differences between

contexts, PIE can highlight differences and provide

tools for merging alternative designs. To support

the incremented development of a single alternative,

a context is structured as a series of layers. The
assignment of value to a property is done in a par-

ticular layer. Retrieval from a context is done by

looking up the value of an attribute layer by layer.

New layers may be created by the system or by users

wanting to group related changes in the same layer.

PIE uses contracts between nodes to describe the

dependencies between different elements of a sys-

tem.

Using contexts and layers, PIE supports linear

and non-linear versions, grouping of related changes,

and limited merging. Contracts provide a number
of different mechanisms for describing and enforcing

dependencies between system elements. The layered

network datable facilitates cooperative design by a

group cind coordinated, structured documentation.

4.1.8 Module Update Manager (MUM)

MUM [4] is a system, proposed in John Beetem’s

doctoral dissertation, which provides a general

mechanism for maintaining consistency of multiple

representations (of VLSI data) throughout the de-

sign process. In MUM, data management involves

two aspects: (1) hierarchy management (2) man-

aging isomorphic multiple representations. The ba-

sic idea in hierMchy management is for each design

module to know the other modules that depend on

it (the list of its parents) so that when the interface

of the module changes, the parents can be notifled.

Isomorphic multiple representations is a very power-

ful concept. Beetem’s approach is that starting with

isomorphic representations, one can guarantee iso-

morphism through a system using action buffers and

prompts buffers. When a representation is modified,

the change operations are logged in an action buffer.

These actions are then translated into prompts for

other representations and these prompts are queued

up for manual or automatic resolution by the system

or designer respectively.

4.1.9 Molecular Object Model

Molecular Object Model [3] is proposed by Batory

and Kim as an object model for VLSI designs. A
molecular object has an interface description and

an implementation description, where the former

remains constant and the latter changes over time

and thus has different versions. When an object

is instantiated, only the interface is copied; no im-

plementation of the object is specified. This allows

a composite object to be parameterized, since einy

object with the same interface as specified in the

component object can be used.

Molecular Object Model is notable in that it op>-

erationally defines “version” in terms of object in-

terface and implementation.

4.1.10 Version Server

Version Server[28,5,29] was developed at the Uni-

versity of California, Berkeley, to support an ob-

ject model for representing the evolution of a design

database over time. It interfaces with existing de-

sign tools and can manage conventional files and

199 .

NSE file
component S9X

9)
C yea

99
V
>1

1

yea

1

yea
S9X ssX

yes

Version Server

OeT

object

object

9)
V
>»

V
>%

9)
V
>>

yes
9)

c
>»

yea
99
%>

>»

yes

Molecular

Obj.

Model

object

1

object

I

linear

M
V
>»

D
S

object

>»

yes
99
V
>»

V9
V
>i

a
a.

typed

object

branching

|

e
V
>1

91
V
>>

yea

1

99

>>

99
V

CLF object

and

module

1

object

1

linear

|L

1

9)
u
>»

99

C
9)
o

1

sdX

1

o
c

1

1

1

Rice

's

sees

1
object

module,

1
file,

system

a
K
V
CO

V
2

1

linear

|

9)
V
>»

99
V
>^
1

1

99
V
>^

MAKE-SYSTEM

and

PATeH

object

module,

file,

system

1

file,

S-exp

1

t)

a
o

99
O no

«

>»

99
V
>»

99

>>

1

no

11

1

1

1

o
c

Res
groups

of

text

files

1)

c
branching

1

1

99

C
>>

99
1)

sees

in

V
S
K
V

1)

c yes
9)

>»

99
V

1

Unix make
files

V
2

o
a

o
c

9)

no

99

>»

99
C
>»

o
c
1
1

99
11 0

c
o
c

99
V
>^

1

1

Object

Types

Granularity

Versions

Deltas

1

Configurations

Multiple

Representations

Transformations

|

Dependencies

Documentation

Policies

1

Security

Multiple

Users

|

Distributed

Design

|

Persistence

|

Usability

|

V)

B
V

CO

c
V
B
V
<sC

<
c
«

V
«0
c
«
j:
o
Vm
0
n
C
o
<n

‘w
<
a
B
o
O
CN

c
3
«
H

200

Oct^ objects. The Version Server manages change

of design objects in three orthogonal dimensions:

versions, configurations, and equivalence relation-

ships among multiple representations. The version

history of an object forms a tree where each node

is a version. The derivation sequence of versions

is represented explicitly. A currency indicator is

kept in each version history. Configurations- can be

static or dynamic. Dynamic configurations are sup-

ported by a layer and context mechanism, similar

to that used in the Pie system. The Version Server

has a PROLOG-based validation subsystem to en-

force integrity relationships among multiple repre-

sentations. The basic dimensions of Version Server

can be applied recursively yielding composite ver-

sions, composite equivalences, and versions of equiv-

alences. A Graph Browser[21] is used to display

a interrelated views of versions, configmations and

tremsformations.

4.1.11 Sun NSE

Network Software Environment (NSE) [15] is a soft-

ware development platform to handle administra-

tion and co-ordination activities of a group during

the entire software development life cycle. Software

developers work in individual workspaces called en-

vironmenU concurrently. The environments are hi-

erarchical. Merging of these development paths are

done automatically, if possible, or with manual as-

sistance. There is a notification facility so that

object changes can be monitored network-wide by

defining notification tasks. The notification tasks

are performed when changes which trigger the tasks

occur in the object anywhere in the network.

NSE takes an object-oriented approach to change

management. There are three pre-defined object

types called files, targets, and components. Addi-

tional user defined types can be specified. There is

a policy layer to customize the behaviour of opera-

tions like merging.

4.2 Evolution of Ideas

The problem of change management has been in-

dependently studied in the context of software

development [14] and engineering design [27,11]. Ex-

isting systems can be classified into three general ap-

proaches. The software workbench approach is char-

acterized by loose collections of tools (for example,

Oct is the Data Manager for the Berkeley Synthesis

System.

UNIX MAKE [18]) [35,38,43]. These tools are usu-

ally implemented on top of a file system. The soft-

ware assistant approach is characterized by built-

in change management integrated into the environ-

ment, as in the Common Lisp Framework (CLF)
system [13] and the Ontos system [l]. The software

associate approach is typified by laboratory systems

like CHI [41] and KBEMACS [45] that try to provide

knowledge-based tools for planning, semi-automatic

progr^lmming, theorem proving, or verification. A
history of the evolution of change management ideas

over the last several years is given in [29].

A paper on VLSI CAD modeling [3] introduced

the concept of parameterized versions. A parame-

terized version is a way to support dynamic bind-

ing of specific versions of component objects. In

this model, a component object points to its ver-

sion graph and the binding of the component object

to a particular version can be left unspecified. A
companion paper [11] introduced a context mech-

emism for supporting dynamic configuration bind-

ing. Contexts are also discussed in [23]. Rum-
baugh [39] makes a significant contribution in the

area of controlling change propagation across oi>-

erations. His idea is to associate propagation at-

tributes for operations with the relationships. An
operation propagates from an object to its related

object in a way specified by the propagation at-

tribute. Change notification/propagation schemes

are discussed in [12,11,24]. In [32], Landis intro-

duced the idea of limiting of scope change through

propagation of significant changes.

Consistency maintenance is the princip>al way

that change management supports reuse of objects.

A generic approach to m^mage multiple represen-

tations is outlined in [4]; also, see [10] for a sys-

tem managing multiple representations for docu-

ment generation in TfeX.

Schema evolution is versioning of types; it can

be seen as an application of the change manage-

ment system where type definitions are the objects

to be versioned. Inheritance imposes a configuration

structure on the types. The user is concerned with

the effect that a versioning of a type has on exist-

ing instances, regarding behaviour and structure, of

the type; this is the domain of the transformation

aspect of change m^ulagement. Conceptually, there-

fore, a change management system covers all bases;

but there are interesting practical issues because the

effect of changing a type extend to objects of that

type and programs that use objects of that type.

The problem of type evolution in object-oriented

201 .

database environments is discussed in [40]. Schema

evolution of transient objects is supported in CLOS.

Orion [2] has a taxonomy of schema changes that oc-

cur in common design application; Orion supports

schema changes which occur as a result of change

to the definition of a type as well as change to the

type lattice of the application.

We have listed transformations, dependencies and

consistency of multiple representations as require-

ments for a change management system. What is

required, in general, is a constraint specification and

management component. A body of work exists in

the area of constraint specification and enforcement

[42,33,7,8,9]. Database research[16] is relevant to

both the logical and operational aspects of change

management systems. Integrity constraints, rule-

b^lsed systems, transactions, and concurrency con-

trol are of interest; also, of particular interest is re-

search on tempor2J databases.

During the 1988 OODB Workshop at OOP-
SLA’88, a panel with commercial and research par-

ticipation awidressed the status of change manage-

ment in 00DB8[26]. At that time (and even now),

many OODB systems do not have fully implemented

change mangement systems. Some have imple-

mented limited schema evolution (change mange-

ment of classes or types). There was some agree-

ment that, architecturally, change management is

a distinct functional layer in an OODB (Iris[46,19]

may be an exception). At Sigmod*89, a panel on

version management [30] concluded that consensus

on change management terms and ideas may well

be possible.

5 Functional Reference

Model for Change Manage-
ment

The Descriptive Reference Model of section 3 is use-

ful for identifying the basic dimensions of a change

management system, but it is imprecise. This sec-

tion presents a more precise Functional Reference

Model. While logical or other approaches could

have been taken, we provide an abstract machine

approach. An abstract machine is a specification

of state and operations on that state that together

defines how a system operates. The specification

can then be implemented in one or more program-

ming languages or in different systems to provide a

umform semantics for change management.

Traditionally, change management has been pro-

vided by domain specific software tightly bound to

and bundled with the software application. This apK

proach amounts to re-implementing the same set of

techniques in each application. Oftentimes, change

management support is not provided, or is inade-

quate or inefficient, because of the effort involved in

the implementation. The main drawback of tightly

coupled or embedded support systems is that the

application semantics now has mixed abstractions.

Mixed abstractions lead to softwaxe that is difficult

to design, implement, validate and maintain.

Our approach to a Change Management Func-

tional Reference Model via abstract machines ad-

dresses only the criterial (logical) change manage-

ment characteristics in section 3, not the environ-

mental (operational) characteristics. That is, only

the diange management abstraction is covered.

The key challenge in change management is to

implement a system that involves minimal overhead

and works transparent to the application. Key is-

sues are the granulaxity of objects which are maxi-

aged by the system, whether the system can be

switched on and off, and whether change manage-

ment can be inserted into existing applications with

minimal effort. Our model is an object-oriented,

generic (domain-independent), polymorphic change

management system that interfaces seamlessly to

applications. Polymorphism refers to the fact that

change is managed for all types of objects in a uni-

form manner.

In the functional model, the change management

functions are classified into three orthogonal tasks

for managing Versions, ConfiguraiionSy and Trans-

formations. Each of these tasks is then implemented

using an abstract machine. The model is illustrated

in Figure 1 and the abstrcict machines are described

below.

An abstract machine is a software module which

provides an interfaice to client applications and

maintains an internal state; this is analogous to

machine instructions and machine state in a hard-

ware machine. The clients communicate with ein

abstract machine via the interface. The clients have

no knowledge of the data structures of the machine

and cannot access its internal state. The machine

manages a namespace of the client objects that it

needs to know about. In our model, all informa-

tion relating to change management are stored in

the internal states of the three machines. The idea

of abstract machines as a technique for defining sys-

tems and designing software is illustrated in [17] for

202 .

Figure 1: Functional Reference Model

a hjrpcrtext system.

The abstract machines approach is necessarily a

client server model. The clients, namely the ap>

plications, call on the abstract machines to perform

change mangement services for the application. Ap-

plication data structures do not know about the

change management information structure. The in-

formation is formatted ajid provided to the applica-

tion on request. This contrasts sharply with systems

where change management structures are part of the

application data model. This contrast is illustrated

in Figure 2.

We have chosen to model change management as

a combination of abstract machines to guarantee

that change management is easy to install and use,

involves minimal perturbation to application data

structures and can live seamlessly on top of appli-

cations. The separation of the model into three or-

ihogonal machines ensures that an application which

needs only one aspect of ch«mge management, for

example versions but not transformation manage-

ment, gets only that aspect. Since the model is

polymorphic, application programmers see the same

interface independent of the domain of the applica-

tion «md independent of the underlying persistent

medium, if any.

The reference model has a policy layer which al-

lows it to be customized to implement policies of an

organization regarding the management of change.

For instance, the policies of one organization might

dictate that extensive audit trails be kept; whereais

another organization may have no need for audit

trails. Policy layer is used to communicate global

pairameters like number of versions kept and the

type of differential versions. Parameters at a finer

level of detail can be specified in the interface func-

tion calls; this is also the way to override some pol-

icy temporarily. The policy layer is a very powerful

concept and is another excimple of the separation of

abstractions.

The generic nature of the model implies that it

does not know, until told, about application data

types. There £ire some operations like merging and

creating differentials which require data type or ap-

plication specific information. This information is

provided, during initialization, using function pa,-

rameters. These functions, which execute in the

application work space, are cadled by the abstract

m2ichines when domain specific actions are to oc-

cur.

5.1 Version Abstract Machine
(VAM)

VAM provides support for evolution of objects.

VAM supports linear and branching histories and

merging of histories. The histories may be based on

non-temporal or even non-quantitative attributes in

the application domain. For example, in a circuit

design domain, chips may have histories based on

performance as Fast chip, Faster chip etc.. In the

same domain, entire designs may evolve based on

a confidence level as Completed Design, Validated

Design, Tested Design etc. In the usual case of his-

tories based on time, VAM supports timestamps,

baselining and major/minor/experimental versions.

An Undo facility provides for “what iP type of ex-

perimentation. VAM provides for facilities to spec-

ify how objects are to be merged and how differential

versions aie to be derived.

5.2 Configuration Abstract
Machine (CAM)

CAM provides support for layered or hier^Lrchically

structured objects. A configuration is the specifi-

203 .

40
50

52

54

56

58

'IVaditionad Model Vs Proposed Reference Model

cation of the composition of an object. CAM sup-

ports the composition of objects into graphs. The
configurations that CAM supports may be abstract,

concrete, or dynamic as defined in Section 2. The
binding parameter in a configuration may be ver-

sions as supported by YAM. Using such dynamic
configurations, an application can specify layered

objects which configure themselves as component

hierarchies evolve over time or some other attribute.

For such dynamic configurations, CAM accesses

the Version Abstract Msudiine through its interface.

This is an example of how an application can take

advantage of the separation of abstractions provided

by the model.

5.3 Transformation Abstract Ma-
chine (TAM)

Operations applied to objects during their life cy-

cle sire tratnsformations. There are transformations

such as editing, simulation, and analysis applied to

particular views of an object. There are also trans-

formations, variously called translations, compila-

tions, expansions, or synthesis, to bring an object

from one view to another. In an object-oriented

world, the transformations on an object form part

of the behavior of an object; as such, they are the

concerns of the designer of the object and not of a

change management system. The Tr^msformation

Abstract Machine addresses issues like change noti-

fication, change propagation, dependency tracking,

and constraint maintenance. Object Oriented ap-

plications are typified by complex objects which are

related to each other and are dependent on each

other. The dependencies among objects often re-

flect on transformations; sometimes they are intro-

duced as a result of transformations. TAM should

provide a uniform mechanism to utilize informa-

tion collected by various application tools in enforc-

ing dependencies. It appears that TAM needs to

support a constraint specification and management

component and a component for managing consis-

tency between multiple representations or views of

an abstraction.

At Texas Instruments, we have prototyped the

VAM and CAM abstract machines in a system

called Mirage. The prototypes arc in Lisp on TI Ex-

plorer machines and in C-I-+ on Unix workstations.

The exact nature and design of TAM is not fully

known at this time. The interface of VAM is listed

in Appendix A; the interface of CAM is listed in Ap-

pendix B. We have used the Version Abstract Ma-

chine to implement change management as a layer

on top of the object manager of Lisp Zeitgeist[20].

6 Standards Activity

Some relevant standards work already exists in the

change management eirea. ANSI/IEEE Std 729-

1983 (Glossary of Software Engineering Terminol-

ogy) provides a glossary of over 500 terms includ-

ing terms in change management. ANSI/IEEE
Std 828-1983 (Software Configuration Management
Plans) provides a descriptive reference model for

configuration management of software items. Other

lEEE/ANSI standards in software engine€ring[25]

also relate to some aspects of change management.

204 .

X3J13.1 Common Lisp Object System (CLOS)
provides basic support for (transient) schema mod-
ification and instance evolution.

DoD 2167A documents requirements for manag-

ing the entire lifecycle of software designs, from a

functional decomposition point of view. As such, it

implicitly defines requirements of a change manage-

ment system, but in addition calls for other kinds of

lifecycle support like cost estimation. A key take-

away is that change management is integral, not just

to OODBs, but to lifecycle development. In terms

of application inter-operability frameworks (like Ob-
ject Management Group, Engineering Information

System, or CAD Fr^unework Initiative), it can be

viewed as a service available on the “object bus” or

“software backpl^me”.

There is considerable value in standardizing a

Change Meinagement model. There is a common-
ality of requirements and functionality in the task

of managing change for various applications. Tra-

ditionally, change management systems are cus-

tom built and the work in the area of managing
chemge has been embedded into other application

sub-systems (datab^lses, file systems, interfaces).

There is a growing realization, however, that the

time h£is come for change management to be seen

as a primary function [26, 30].

7 Conclusion

In this paper, we developed a descriptive reference

model by identifying basic characteristics of change

management systems. We then sxirveyed and com-
pared representative existing systems. Change man-
agement systems need to support design objects

on the appropriate level of granularity, of arbitrary

type, with different implementations of the same in-

terface, with multiple data representations, and dis-

tributed across machine boundaries. To appropri-

ately build design objects, change management sys-

tems need to maintain and enforce the transformeir

tions and dependencies on the objects. Since design

objects evolve over their lifecycle, change manage-
ment systems must keep track of the versions and
changes of the objects. Designs can be complex;

so support of configuration, validation, and multi-

ple users is required. Finally, change management
systems need to provide documentation and query

cap>abilities on design objects for the designers and
have to be usable systems.

We then presented (two out of three major sub-

systems of) a precise functionaJ reference model.

in the form of a change management abstract ma-
chine, which refines the descriptive reference model.

The functional reference model describes a domain-

nonspecific, generic change management system.

The functional reference model has been partially

implemented. While part of the Zeitgeist Open
OODB system[44], it is designed to be a sepaira-

ble module. One claim of the model is that it can

be used to insert change management into appli-

cation systems with no perturbance to their data

structures. We conducted an experiment to see how
much effort is required to insert our change man-
agement implementation into an application. The
experiment was done in the context of a health caie

system. The experimental system manages medi-

cal records of physicians in private practice. Ver-

sioning is used to manage patient histories (linear

versioning), consultation records (branching of his-

tory), and diagnosis with information from mul-

tiple sources/consultations (merging). The inser-

tion took very few lines code; the interface did not

change at all except for additional commands in the

interface for the user who wanted to query the ver-

sion information explicitly. Change management is

totally transparent to the user except for such added

functionality.

References

[1] T. Andrews and C. Harris. Combining Lan-

guage and Database Advances in an Object-

Oriented Development Environment. In N.

Meyrowitz, editor, OOPSLA *87 Conference

Proceedings, pages 430-440, ACM, ACM, Or-

lando, FL, October 1987.

[2] J. Banerjec, W. Kim, H.J. Kim, and H. F. Ko-

rth. Semantics and Implementation of Schema
Evolution in Object-Oriented Databases. In

Proc. 1987 ACM-SIGMOD Int. Conf. on Man-
agement of Data, 1987.

[3] D. S. Batory and Won Kim. Modeling Conrepts

for VLSI CAD Objects. ACM Transactions

on Database Systems, 10(3):322-346, Septem-

ber 1985.

[4] John F. Bectem. Structured Design of Elec-

tronic Systems using Isomorphic Multiple Rep-

resentations. PhD thesis, Stanford University,

June 1982.

[5] Bhateja R. and R. H. Katz. A Validation Sub-

system of a Version Server for Computer-Aided

205 .

Design Data. In Ptoc. 2J^ih ACM/IEEE De-

sign Automation Conference, Mi^ni, FL, June

1987.

[6] Blair R. CM-PATCH (User’s Manual). Com-

puter Science Center, Texas Instruments Inc.,

DallM, TX, June 1985.

[7] A. Borning, Thinglab - A contraint-oriented

simulation laboratory. PhD thesis, Stanford

University, 1979.

[8] A. Borning and R. Diusberg. Constraint-

based Tools for Building User Interfaces. ACM
Transactions on Graphics, vol. 5, October

1986.

[9] A. Borning, R. Diusberg, B. Reeman-Benson,

A. Kramer, and M. Woolf. Constraint Hierar-

chic. In Proc. OOPSLA Conf., pp. 48-t.

1987.

[10] Pehong Chen and Michael A. Harrison. Mul-

tiple Representation Document Development,

Technical Report UCB/CSD 87/367, Com-
puter Science Division, UC Berkeley, Berkeley,

CA, July 1987.

[11] H.T. Chou and W. Kim. A Unifying. Frame-

work for Versions in a CAD Environment. In

Proc. 12th VLDB Conference, pages 336-344,

Kyoto, Japan, August 1986.

[12] H.T. Chou and W. Kim. Versions and Change
Notihcation in an Object-Oriented Database

System. In Proc. 25th Design Automation Con-

ference, page 275-281, Anaheim, CA, June

1988.

[13] Introduction to the CLP Environment. CLF
Project, Marina Del Ray, CA, release 1.0 edi-

tion, March 1986.

[14] Dan Conde. Bibliography on Version Control

and Configuration Management. ACM SIG-

SOFT Software Engineering Notes, 11(3):81-

84, July 1986.

[15] W. Courington, J. Feiber, and M. Honda.

Network Software Environment Tackle Large

Scale Programming Issue. Sun Technology,

page 49 - 53, Winter 1988.

[16] C. J. Date. An Introduction to Database Sys-

tems. Reading, MA: Addison-Weley, 1986.

[17] N. M. Delisle and M. D. Schwartz. Nep-

tune: A hypertext system for CAD applica-

tions. In Proc. of the International Conference

on Mangement of Data, page 132-143, Wash-

ington, DC, May 1986.

[18] Stuart I. Feldman. Make - A Program for M^-
taining Computer Programs. Software - Prac-

tice and Experience, 9(4):255-265, April 1979.

[19] D. Fishman, D. Beech, H. Cate, E. Chow,

T. Connors, J. Davis, N. Derrett, C. Hoch,

W. Kent, P. Lyngbaek, B. Mahbod, M. Neimat,

T. Ryan, and M. Shan. Iris; An Object-

Oriented Database Management System. ACM
Transactions on Office Information Systems,

vol. 5, pp. 48-69, January 1987.

[20] S. Ford, J. Joseph, D. L^mgworthy, D. Lively,

G. Pathak, E. Perez, R. Peterson, D. Sparacin,

S. Thatte, D. Wells, and S. AgMwad. Zeitgeist:

Database Support for Object-Oriented Pro-

gramming. In The Proc. of the Second Interna-

tional Workshop on Object-Oriented Database

Systems, pp. 23-42, 1988.

[21] D. M. Gedye and R. H. Katz. Browsing

the Chip Design Databaise. In Proc. 25ih

ACM/IEEE Design Automation Conference,

pages 269-274, Anaheim, CA, June 1988.

[22] I. Goldstein and D. G. Bobrow. Descriptions for

a Programming Environment. In Proc. of Isi

Annual Conference on Artificial Intelligence,

pp. 187-189, Stanford, Ca, 1980.

[23] I. Goldstein and D. G. Bobrow. A layered ap-

proach to software design. In Interactive Pro-

gramming Environments, D. R. Barstow, H. E.

Shrobe, and E. Sandwall, Eds., New York, NY:
McGraw-Hill Book Company, 1984, ch. 19, pp.

387.

[24] Keith Hall. A Framework for Change Propa-

gation in a Design Database. Working Paper,

Computer Science Department, Stanford Uni-

versity, CA., 1989.

[25] lEEE/ANSI. Software Engineering Standards.

IEEE, New York, NY., 1987.

[26] John Joseph, Satish Thatte, Craig Thompson,
and David Wells. Object-Oriented Database

Workshop (OOPSLA ’88) In SIGMOD Record,

September, 1989.

206 .

[27] R. H. Katz. Information Management for Engi-

neering Design. Springer-Verlag, Berlin, 1985.

[28] R. H. Katz, E. Chang, and R. Bhateja. Ver-

sion Modeling Concepts for Computer-Aided

Design Databases. In Proc. ACM SIGMOD
Conference, pages 379—386, Washington, DC,

May 1986.

[29] Randy H. Katz. Towards a Unified Frame-

work for Version Modeling. Technical Re-

port UCB/CSD 88/484, Computer Science Di-

vision, UC Berkeley, Berkeley, CA, December

1988.

[30] William Kent. Panel: an Overview of the

Versioning Problem. Proceedings of SIGMOD
Conference, Portland, 1989.

[31] Won Kim, Jay Banerjee, Hong-Tai Chou,

Jorge F. Garza, €md Darrel Woelk. Com-
posite Object Support in an Object-Oriented

Database System. In Proc. OOPSLA '81 Con-

ference, pages 118-125, Orlando, FL, October

1987.

[32] Gordon S. Landis. Design Evolution and

History in an Object-Oriented CAD/CAM
Database. In Proc. 31st IEEE Computer So-

ciety International Conference, pages 297-303,

Sein Francisco, CA, March 1986.

[33] Wm Leler. Constraint Programming Languages

- Their Specification and Generation. Reading,

MA: Addison-Wesley, 1988.

[34] D. Maier, J. Stein, A. Otis, and A.

Purdy. Development of an Object-Oriented

Dbms. In OOPSLA '86 Conference Proceed-

ings, pages 472-482, ACM, ACM, New York,

NY, September 1986.

[35] D. Moon, R. M. Stallman, and D. Weinreb.

Lisp Machine Manual (6th edition). Cam-
bridge, MA: MIT, 1984.

[36] Alan Purdy, Bruce Schuch£irdt, and David

Maier. Integrating an Object-Server with

Other Worlds. ACM Transactions on Office In-

formation Systems, 5(l):27-47, January 1987.

[37] Rice, J. Source Code Control System (User's

Manual). Stanford University, Stanford, CA.

[38] M. J. Rochkind. The Source Code Control Sys-

tem. IEEE Transactions on Software Engineer-

ing, SE-l(4):364-370, December 1975.

[39] J. Rumbaugh. Controlling Propagation of Op>-

erations Using Attributes on Relations. In

Proc. OOPSLA '88 Conference, pages 285-296,

San Diego, CA, September 1988.

[40] A. Skarra and S. Zdonik. The Manage-

ment of Changing Types in an Object-Oriented

Database. In OOPSLA '86 Conf. Proc., pp. 483

- 495, 1986.

[41] D. Smith, G. Kottik, and S. Westfold. Research

on Knowledge-Based Software Environments at

Krestel Institute. IEEE Transactions on Soft-

ware Engineering, November 1985.

[42] G. L. Steele. The Definition and Implemen-

tation of a Computer Programming Language

Based on Constraints. MIT Tech. Rep. AI-

TR.595, 1980.

[43] Walter F. Tichy. Design, Implementation, and

Evaluation of a Revision Control System. In

Proc. 6th International Conference on Software

Engineering, page
,
Tokyo, Japan, September

1982.

[44] Craig Thompson, David Wells et. al. Open Ar-

chitecture for Object-Oriented Database Sys-

tems. Computer Science Center, Texas Instru-

ments Inc., Dallas, TX, Dec. 1989.

[45] R Waters. KBEmacs: A Step Toward the Pro-

grammer's Apprentice. Technical Report 753,

Massachusetts Institute of technology, Boston,

MA, May 1985.

[46] K. Wilkinson, P. Lyngbaek, and W. Hasan.

The Iris Architecture and Implementation.

IEEE Transactions on Knowledge and Data

Engineering, Vol. 2, pp. 63-75, March 1990.

207

Appendix A: Version Abstract

Machine

A.l Purpose of Module

The Version Abstract Machine allows the clients to

create and manage linear and non-lineax versions of

objects, query the history of objects, support dy-

namic configuration of objects and merge versions

of objects according to user supplied criteria. In

a typical application, the application programmer

would have inserted the server requests to the ma-

chine in the proper places so that versioning takes

place transparent to the application user. The appli-

cation programmer would provide version accessors

written in the application’s terminology to the xiser.

A.2 Design/Implementation

For each object that is versioned, the Version Ab-

stract Machine (VAM) manages a graph of version

nodes. Each version node contains information that

VAM needs to manage versioning and a pointer to

(or an id of) the object that the node versions. In

the presence of branching versions £md merging, this

graph is a rooted directed acyclic graph. In this

graph, if A is directed to B, we will refer to A as

the (immediate) peirent of B and B as the (immedi-

ate) child of A. A node in the graph may have one

or more children (versions). One of these is distin-

guished as the primary version. When nodes are

merged, the merged node becomes a child of each

of the nodes that was merged. VAM knows how to

update the graph for merging two nodes together;

but it has no knowledge about how user objects can

be merged to obtain the object pointed to by the

merged node. The user gives this information to

VAM as described in the fimctioned reference model
(section 5).

Each version node has two timestamps associated

with it: the ^M:tu^d time the node was created (sys-

tem time) and a version time specified by the user. If

the user doM not specify a time, the version time de-

faults to the system time. Time-stamps are resolved

to exact match, if any, or closest match before.

Application programs interface to the Version Ab-
stract Machine Module using Lisp or C functions

with arguments of primitive types. These functions

are described below.

Interface

This section describes the functions available to £in

application programmer who wishes to use the Ver-

sion Abstract Machine (VAM) module. The func-

tions arguments are of type integer, char *, or

Boole£Ln. We refer to the object that a version node

points to as its value.

VAM h£is a context called current.graph and each

graph has a context called current_node. Many of

the functions below take an argument called Gname
which is a character string. If this is optional and is

not specified VAM uses the graph which is known

to it as the current.graph. Similarly, if an optional

Vn^unc is defaulted, VAM uses currentmode. Cur-

rentmode and current.graph are reset by various

VAM operations. They can also be reset by appro-

priate functions described below. You can query

for the current settings of currentmode and cur-

rent.graph also by using functions provided below.

When an interface fimction returns an aggregate

date structure (lists or arrays), the items in the

structure are ordered chronologically.

Table 3 lists the interface functions with their

arguments and return values. Brief descriptions of

the functions are given below. Functions which re-

turn a pointer value (char *, char **) should be

checked for NULL before using the returned value.

Functions which Return TRUE or FALSE should be

checked for TRUE (success) or FALSE (failure).

Create Version Graph creates and returns a

version graph. This is the first call made to

Version Abstract machine to start versioning

an object.

Create Version Node creates and returns a ver-

sion node.

Install Version installs a version node into an ex-

isting version graph.

Delete Version deletes an existing version node.

Merge Versions merges two version nodes. The
merging of the objects that the nodes address

is done by the application. THe merged node

is installed as a version of the two nodes from

which it is merged.

Set Current Version sets the current version.

Set Version Attribute sets an attribute of the

version. Typically this attribute is a user spec-

ified time stamp.

208 .

Set Current Graph sets the current graph.

Return Root Version returns the root version.

Versions With Value returns all the versions

with a given value.

Return Current Graph returns the current

graph.

Return Current Version returns the current

version.

Describe Node And Value describes the ver-

sion node and its value in some form specified

by the user.

Describe Version Graph describes the version

graph beisically as a mathematical graph.

Describe Version Node describes the version

node by listing parents, children, and siblings

with no indication of the node’s value.

All Your Versions gives a linear list of all ver-

sions of a node.

Find Versions By Attribute finds all version

nodes with a given value for a certain attribute.

Typically used to find all versions with a certain

time stamp.

Version Time returns the time that the user as-

sociated with this node, if any. If there is no

user specified time attribute, a system time is

returned.

Return Child Versions returns all immediate

children of a node.

Return Parent Versions returns all immediate

parents of a node.

Return Primary Version returns the primary

version of a node.

There Exists Version returns true or false as ap-

propriate.

List All Version Graphs returns a list of all the

version graphs known to the Version Abstract

Machine. Note that there is one graph for each

object being versioned.

Browse Version Graph browses a version graph

using a browser known to Version Abstract Ma-
chine. It is expected that there is a graph

browsing facility available.

Return Version Object returns the -value of a

version node.

Undo Last undoes the last operation. There is no

Redo in this prototype.

Export To writes out a linearized version of the

machine or a graph that is suitable for writing

to a disk. In the prototype this is an array.

Import From is the opposite of the above.

Appendix B: Configuration

Abstract Machine

B.l Purpose of Module

The Configuration Abstract Machine cdlows clients

to create and manage compositions of objects, ab-

stract configurations, dynamic configurations of ob-

jects that are versioned and concrete configurations

of specific object instances. In a typiccil application,

the application programmer would have inserted the

server requests to the machine in the proper places

so that configuration management takes place trans-

parent to the application user. The application

programmer would provide configuration accessors

written in the application’s terminology to the user.

B.2 Design/Implementation

For each object that is configured, the Configuration

Abstract Machine (CAM) manages a graph of con-

figuration nodes. Eeudi configuration node contains

information that CAM needs to manage the con-

figuration and a pointer to (or an identifier of) the

object that the node configures. The object pointer

is weakly typed since an object can be composed of

a heterogeneous collection of other objects. In the

presence of the sheiring ofsubcomponents among ob-

jects, this graph is a rooted directed acyclic graph

for each component. In this graph, if A is directed

to B, we will refer to A as the (immediate) super-

component or parent of B and B as the (immediate)

subcomponent or child of A. Each node in the graph

may by thought of as a root of a configuration graph.

An object pointer in the configuration node can

also point to a version graph managed by the Ver-

sion Abstract Machine (VAM). In this situation,

any version of ein object associated with the version

graph can act as the object associated with the con-

figuration node. A concrete configuration is a con-

figuration in which specific versions of objects have

209 ,

been identified for each configuration node pointing

to an object version graph. A dynamic configura-

tion is a configuration in which specific versions of

objects have only been identified for some of the con-

figuration nodes pointing to object version graphs.

An abstract configuration is a configuration in which

only the structure of the composition has been de-

fined. For example, a book is composed of chapters.

Application programs interface to the Configu-

ration Abstract Machine Module using Lisp or C
functions with arguments of primitive types. These

functions are described below.

B.3 Interface

This section describes the functions available to an

application programmer who wishes to use the Con-

figuration Abstract Machine (CAM) module. The
function arguments are of type object *, char *, or

Boolean. We refer to the object that a configuration

node points as its value.

Many of the functions below take Mguments
called Node, Root-Node or Parent-Node which are

character strings.

When an interface function returns an aggregate

date structure (lists or arrays), the items in the

structure are ordered in the same order that they

were inserted.

Table 4 lists the interface functions with their

arguments and return values. Brief descriptions of

the fimctions are given below. Functions which re-

turn a pointer value (char char **) should be

checked for NULL before using the returned value.

Functions which Return TRUE or FALSE should be

checked for TRUE (success) or FALSE (failure).

Create Configuration Node creates and returns

a configuration node.

Install Configuration Nodes installs a set of

configuration nodes as the subcomponents of

a supercomponent configuration node.

Delete Configuration Node deletes the configu-

ration graph rooted at the specified configur^^-

tion node from its supercomponent configura-

tion nodes.

Undo Last Operation undoes the last operation.

There is no Redo in this prototype.

Return Children of Node returns the current

set of configuration nodes that are the subcom-
ponents of the current configuration node.

Return Parents of Node returns the current set

of configuration nodes that are the supercom-

ponents of the current configuration node.

Return Configuration Graph returns a new
configuration node rooted at the same configu-

ration graph as the current configuration node

but whose subcomponents configuration nodes

arc determined by a specification function.

Describe Configuration Graph describes

the configuration graph rooted at the current

configuration node.

Find Configuration Graph by Description

finds all configuration nodes rooted at config-

uration graphs whose descriptions match the

given description.

Browse Configuration Graph browses the con-

figuration graph rooted at the current configu-

ration node using a browser known to the Con-

figuration Abstract Machine. It is expected

that there is a graph browsing facility available.

Export To writes out a linearized version of the

machine or of a graph that is suitable for writ-

ing to a disk. In the prototype this is an array.

Import From is the opposite of the above.

210 ,

Function Name Required. Args Optional Args Return Value

Create Version Node Object, Gname Vname Vname

Create Version Graph Gname Nil Gname
Install Version Vname, Gname Parent, Primary-p Boolean

Delete Version Vname Gname Boolean

Merge Versions Vnamel, Vname2 Gname, Merged-Name Merged-Name

Set Current Version Vname Gname Boolean

Set Version Attribute String, Vname Gname Boolean

Set Current Graph Gname Nil Boolean

Return Root Version Nil Gname Vname
Versions With Value Value Gname List-Of-Names

Return Current Graph Nil NU Gname
Return Current Version Nil Gname Vname
Describe Node And Value Vname Gname Void

Describe Version Graph Nil Gname Void

Describe Version Node Vname Gname Void

All Your Versions Vname Gname List-Of-Vnames
Find Versions By Attribute String Gname List-Of-Vnames
Version Time Vname Gname Time-String

Return Child Versions Vname Gname List-Of-Vnames
Return Parent Versions Vname Gname List-Of-Vnames
Return Primary Version Vname Gname Vname
There Exists Version Vname Gname Boolean

List All Version Graphs Nil Nil List-Of-Graphs

Browse Version Graph Gname Nil Void

Return Version Object Vname Gname Object

Undo Last Nil Nil Void

Export To Version-Machine Nil External-Form
Import From External-Form Nil Version-Machine

Table 3: Intcrf2u:e to Version Abstract Machine

\ction Name Required Args Optional Args Return Value

ate Configuration Node Object, Timestring Cname Node
-all Configuration Nodes List-Of-Nodes, Parent-Node Nil Graph
ete Configuration Node Node, Parent-Node Nil Graph
io Last Operation Nil Nil Void

urn Children Of Node Node Nil List-Of-Nodes

urn Parents Of Node Node Graph List-Of-Nodes

urn Configuration Graph Node, Node-Function Nil Graph
cribe Configuration Graph Graph Nil Void
d Configuration Graph By Description String Nil List-Of-Nodes

wse Configuration Graph Graph Nil Void
)ort To Configuration-Machine Nil External-Form
'ort From External-Form Nil Configuration-Machine

Table 4: Interface to Configuration Abstract Machine

211

EIS/XAIT Project: An Object-based Interoperability Framework for

Heterogeneous Systems^

(Position Paper)

Girish Pathak, Bill Stackhouse, and Sandra Heiler

Xerox Advanced Information Technology

Cambridge, Massachusetts

Abstract

This paper briefly describes various technical issues involved in the design and development of an

object-based interoperability framework in support of Engineering Information Systems (EIS). It

also discusses the interaction of such frameworks with various emerging standards and the possibil-

ity of developing standards in the area of object-oriented interoperable frameworks. Finally, it

summarizes on the background and the status of the project.

1. Introduction

Significant investments in existing software systems or tools (some of which may be a

hardware sp>ecific), emergence of large software systems, continued advances in powerful yet user-

friendly languages, and prohibitive cost of building software systems from scratch, have led to the

Tkis work wh.< siipjx>rt»’»l by DoD under routmrt F3G1G-S7-(%14(17. F(‘r further rontHrt (iinr-li

PHthak xt i>;ith;Lk@XKirocen).\.rum on ARTAjiet or (G17) 409-4498.

212 .

research and development of interoperability frameworks or "software infrastructures" as Bershad,

etc [Bershad87] refer to it. The objective of these software frameworks is to decrease the marginal

cost of adding a new type of system to an existing computing environment, and at the same time

to increase the set of common services that users would like to share.

A number of research projects shcire these objectives. The Mixed Language Programming Sys-

tem (MLP) [Hayes87], at the University of Arizona at Tuscon, facilitates construction of programs

in which procedures can be written in different programming languages. The MLP system is built

entirely above the operating system and consists of a runtime system, a translator for each host

language (currently C, Pascal, and Icon) and a linker. Cross language invocations are done by

message passing. Similarly, the Agora project (Bisiani88j at Carnegie-Mellon University supports

the development of multi-language parallel applications on heterogeneous machines.

However, there are two major differences between the objectives of these efforts and that of

ours: the need to support abstraction cind the need to manage non-persistent as well as persistent

objects. Our application, the engineering design and development environments, involves arbi-

trarily complex data types. And these environments must support long and interdependent tasks

that create and manipulate specialized data. Often multiple representations of the same informa-

tion are required to support different tasks. Therefore, the notion of abstraction and the manage-

ment of information becomes a necessity in such environments.

The work described in this paper is the result of a project that is ciddressing the requirements

of [Linn86] for evolving Engineering Information Systems (EIS). These requirements can be briefly

stated as follows:

• make arbitrary tools and databases interoperable.

213 .

• avoid requiring changes to underlying systems and repositories,

• enforce management controls,

• provide tailorability,

• ensure compatibility among EISs, and between EISs and non-EIS systems, and

• provide a uniform environment for tool builders.

2. The Object-Based Interoperability Framework

In response to the requirements of engineering information systems described in [Linn86),

Xerox Advanced Information Technology (XAIT) has designed an object-based interoperability

framework, hereafter referred as Object Management System (OMS). The relationship of OMS

w-ith rest of the components of an EIS is shov^Ti in Figure 1. The benefits of using an object model

include (but are not limited to):

214 .

• a richer data model which closely matches applications,

• typing and inheritance facilitaties that promote reuse of software components,

• data abstraction and encapsulation,

• facilitating modular development,

• simplified management of policies and protocols,

• allowing different levels of integration, etc.

The object model of OMS provides the following facilities to enable interoperability:

1. It provides built-in abstract data types and constructors for user-defined abstract data

tyF>es that allow their components to be described in ways that hide their heterogeneity.

2. It provides reference resolution, type checking, and function resolution mechanism to refer-

ence and operate over objects from heterogeneous systems.

3. It provides various execution related primitives including transaction management support

and exception handling for invoking function.

In the following two subsections, we describe how a combination of three primitives cind a

function applier facilitate interoperability cimong heterogeneous EIS systems.

2.1 Primitives

The object model is based on three primitives: object, function, and type. An object is an

abstraction (structure and behavior) with an identity which is independent of its value or relation-

ship to any other entity in the system. The identity of an object is captured by a unique zind

immutable identifier referred to as the OID. Each object is associated with a typ>e that describes

its structure and behavior. Everything, including functions cind types, is defined as an object in

the model. Integers, employees, designs, network nodes, bytes, and string are all objects.

215c

A function is a mapping from some input objects to output objects. Functions are applied to

an object to yield its properties (attributes) or related objects, to perform operations on it, or to

test constraints on it. For example, one might apply the name function to an employee object to

yield the string object that represents the employee’s name; or one might apply the department

function to the employee object to yield the department object that represents the department

where the employee works. Functions have signatures which specify the name of the function,

type of its input argument, types of output arguments, and pre- and post-conditions that must be

true before and after function execution.

A type is a description of the structure and behavior of some object(s) — instances of object.

The type spiecifies the set of functions that can be applied to any instances to yield that object’s

properties or related objects, or to perform operations on the object, or to test constraints on it.

2.2 Function Application

In the object model, interoperability is achieved through function application. The body of a

function is a procedure written in some programming language which implements the semantics of

the function. A request to apply a function to argument objects involves invoking this procedure

by passing parameters through object references and receiving results through object references.

The function application includes: type checking, resolution of function and references, invoca-

tion of an associated procedure that implements the function, and claiming results. The model

ensures strong typing which provides needed assurance for large complex integrated systems.

An implementation of the typeCheck function can be provided for each type. This allows

specific tests of objects to be made to determine whether they meet the requirements of specific

components for that type. For example, the typeCheck function implementation provided for type

integer might test the representation of the object to see whether it is a valid bit pattern for

integers on the particular machine where the test is made, whereas, the typeCheck function imple-

216 .

mentation for type employee might do a database query to determine whether the referenced

employee is listed in the employee roster. This is important where the components of the federa-

tion are autonomous and objects can be deleted or created and assigned to types outside the

knowledge of the federated system.

Resolution involves selecting an implementation (body) of the function for invocation. It is

provided by a resolution function applied to the function application.request. It includes mapping

from the abstract argument specified in the request to the representation used by the code of the

implementation and passed as a parameter to it. The body can be provided to the type through

inheritcince (or delegation) as well as provided specifically for the type of the argument. Notice

that archetyp>€S participate in isA hierarchies, through which functions and their implementations

are inherited, as well as other types and metatypes.

Invocation of the procedures that provide function implementations is provided by

machine/operating system/programming lajiguage-specific "execution engines," which axe imple-

mented as functions on implementation object types, e.g., the UnixShell Program. An invoked

procedure returns outputs by applying a postOutputs function, which allows objects to be claimed

by the system and returned to the client/user.

The p)osting of outputs and the raising of exceptions are performed exactly like any other

operations, by applying functions. Where the invoked procedure consists of existing code that can-

not be modified, the request to map the argument object to its representation or to post results or

raise an exception are performed in "adapters" or wrappers around the code that handles requests

specific to the federated environment.

217 .

3. Transaction Management

The trans 2w:tion management facilities for the engineering design and development environ-

ment must support transaction primitives whose semantics are implemented by underlying auto-

nomous heterogeneous systems, which can be extended to support cooperation, and which provide

support for long running ax:tivities.

The OMS supports nested transaction as described in [Moss86). Nesting of transactions pro-

vides both greater concurrency (by allowing more tasks to run in parallel) and limits the recovery

overheads to a minimum.

The correctness criteria is facilitated through the concurrency protocols among trcmsactions.

The correctness criteria of strict serializability may be too restrictive for such environments.

Therefore, each set of nested transactions is designed to adopt a concurrency protocol which is

weaker than its parents and thereby offers the potential for increased concurrency and cooperation

among transactions [Skarra89].

Transaction management functions are implemented through mappings to requests to the

underlying data servers. For example, two-phase commit is provided for transactions in the federa-

tion only where all the component systems that store data updated by the transaction provide

two-phase commit facilities.

4. Views and Query Language

The purpose of the view mechzinism is to provide information hiding, access control, and hid-

ing heterogeneity. A view consists of a set of objects and a set of types which are bound (Heiler90].

That is,

V = [{o: object}, {t: type}] where type{o) is some t

218 .

The view provides an object base and a schema that determines the context in which a user pro-

gram applies its functions. Tyf>e checking and resolution axe provided in the context of a view in

the OMS system.

The query language consist of the functions that operate on collection types. They take

instances of specific set types as input arguments and produce set types as output. The functions

are provided on the metatyj>e set and specialized for the specific types through parameterization.

The specific set of functions include:

• union, intersection, and difference operators,

• select, project, and join, and

• functions for flattening and grouping sets with embedded structures.

The query language provides a uniform set of op>erations across heterogeneous data stores.

With this uniform set of operations, optimization can be performed to reduce data transformations

and transfers across a distributed heterogeneous system. It is envisioned that standard methods

would be provided to map the query operators onto OODBMS, relations DBMS, and various stan-

dard file systems.The query operators are also used by the OMS to derive views and types within

the system data.

5. Standards and the Interoperability Frameworks

Many individual standards such as IGES/PDES, EDIF, VHDL have attempted to standardize

on portions of an application domain’s collection of problems. Recently, standard activities such as

EIS and CFI (CAD Framework Initiative) have begun to address issues that relate to the full life-

cycle of a particular application domain such as electronic design automation.

219 .

Many contemporary engineering activities include some degree of electrical, mechanical, and

software engineering. A single framework could be introduced to allow the integration of all activi-

ties. It is possible that the framework could be extended to other application domains such as

banking, insurance, etc. A general framework which could accommodate the integration of all tools

used during the life-cycle would:

• open up new markets,

• allow tool builders to have specialized products with a wider audience,

• simplify tool development, and

• give customers control over the storage and access of their data.

Once the general framework is defined, domain specific (electronic, mechctnical, software, etc.)

standards can be introduced for representation of information.

6. The Project Background and Status

The OMS is a general framework designed to work in any application domain. The

specification of the OMS began in mid- 1987 as part of the EIS contract. In late 1989, the

specifications were completed. In 1990, a prototype OMS is being developed to demonstrate the

feasibility of such a framework.

7. References

[Bershad87j B. Bershad, et. al. "A Remote Procedure Call Facility for Interconnecting Hetero-

geneous Computer Systems." IEEE Transactions on Software Engineering, Vol. SE-13, No.

8, pp. 880-894, August 1987.

220 .

[Bisiani88| R. Bisiani. "Multilingual Parallel Programming of Heterogeneous Machines," IEEE

Transactions on Computers, Vol. 37, No. 8, pp. 930-945, August 1988.

|Hayes87] R. Hayes and R. Schlichting. "Facilitating Mixed Language Programming in Distri-

buted Systems," IEEE Transactions on Software Engineering, Vol. SEi-13, No. 12, pp. 1254-

1264, December 1987.

[Heiler90) S, Heiler and S. Zdonik. "Object Views: Extending the vision," Proceedings of Interna-

tional Conference on Data Engineering, IEEE, 1990.

|Linn86] J. Linn and R. Winner. "Department of Defense Requirements for Engineering Informa-

tion Systems," Institute of Defense Analyses, 1986.

[Moss86j J. E. Moss, "An Introduction to Nested Transactions," COINS Technical Report 86-41,

Department of Computer and Information Science, University of Massachusetts at Amherst,

1986.

[Notkin87] D. Notkin, et. al. "Heterogeneous Computing Environments: Report on the ACM

SIGOPS Workshop on Accommodating Heterogeneity," Communications ACM, Vol. 30,

No.2, PP. 132-140, February 1987.

[Skarra89j A. Skarra, "Concurrency Control for Cooperating Transactions in am Object-Oriented

Database," SIGPLAN Notices, 1989.

Goals and Requirements
Storage Manager (SM) Working Group

Design Data Management TSC
CFI

edited by Drew Wade, drew@objy.com

V0.4
Drj/r Proposal

ABSTRACT

The Storage Manager Working Group is to specify the standard interface

(SMI) to the CFI framework component Storage Manager (SM). The SM is

a general-purpose mechanism to provide access to data entities and their

relationships, to support the Design Representation component, the Design
Data Management component, the remainder of the CFI's framework
components, and its applications. This will allow interchangeability of

•compliant SM's, with minimal effect on the application.

CONTENTS

1. What is SM?

2. Goal of SM

3. Relation to CFI Goals

4. SM Design Considerations

5. SMI Guiding Principles

6. Functionality Areas

7. SM Documents

8. References

9. History of This Document

222 .

1. What is an SM?

SM is the Storage Manager component of the CAD Framework. It helps store, manipulate,

and manage data for the framework and its applications. The SM Working Group, which
is specifying the SM interface, is part of the CAD Framework Initiative (CFI), whose
structure we now briefly describe.

The CAD Framework Initiative (CFI) is a broad-based industry organization, whose
members include users and vendors of CAD applications, as well as vendors of products

used in CAD systems. Its purpose is to develop, for design automation frameworks,

industry-acceptable guidelines that will enable the coexistence and cooperation of a variety

of tools. The CFI has formed several Technical Subcommittees (TSCs), including the

Design Data Management (DDM) TSC, whose task is to specify interface standards to

support management of design data. The DDM has created five working groups to pursue

that task in detail: Data Sharing, Consistency, Versioning and Configuration Management,
Types and Schema, and Storage Management The Storage Management group is

producing this document

The following table lists the Technical Subcommittees of the CFI, along with their subjects:

Architecture

Design Data Management (DDM)

Design Representation (DR)

Design Methodology Management (DMM)

System Environment (SE)

User Interface (UI)

Intertool Communication (TTC)

Identifies the framework components and
their interrelationships, and addresses

global issues.

Design data support.

Addresses the standard data models.

Addresses the services to control the design

process.

Identifies the base operating system

features.

Addresses issues of consistency in behavior

and components to suppon them.

Addresses the ability to allow applications

to exchange information.

These groups are all specifying interfaces that will allow interchangeability and
interoperability of applications, frameworks, and framework components.

Many, if not all, framework components require storage management services. After

discussions withinDDM and with representatives of other TSCs, notably the Architecture

and Design Representation TSCs, we conclude that a single SM framework component
could serve the storage management needs of other framework components, as well as of

applications. Although not all components or applications in any particular implementation

would necessarily use this SM component, they could use it when needed, through the

standard interface. This arrangement would save work by implementors of applications

and framework components, reduce the size of the resulting system, and enable much

SM Goals Draft 3/22/90

greater integration of tools and functionality, thanks to the sharing of design data in a single

storage system.

Therefore, the SM Working Group has undertaken to specify the CFI standard Storage

Manager Interface (SMI). It is imponant to understand that the SM Working Group is not

attempting to design an SM! Instead, we are specifying an interface that will be standard,

so that different SM's can be used by frameworks and applications.

2. Goal of SM

We first state our goal, and then discuss its concepts at length. In later sections we expand

on its relationship to the CFI goals, and on the requirements that must be followed in

proceeding to meet the goal.

The SM Goal:

To specify the interface to the CFI framework component Storage Manager,

a general-purpose mechanism to provide access to data entities and

relationships, to support DR, DDM, the remainder of the CFI's framework
components, and its applications.

The primary CFI goal from which we take our charter specifies "interoperability and
interchangeability of tools and databases." We interpret this to mean interchangeability of

databases along with their managers (software management systems) (see Fig. 1). The
alternative would be to specify the format of the database (bits on disk) itself, so that any

SM software could access that database. Although this would provide a greater level of

flexibility, allowing interchange of SM code on the same database image, it would greatly

restrict the freedom of the SM implementors, stifling progress in that area. Further, it

seems sufficient for the needs of CAD systems and users to be able to interchange the SM
along with the data, as long as there is also some mechanism for communicating between
SM's and moving data from one to another.

In any layered architecture whenever a lower layer is accessible from a higher layer, the

middle layer must define the restrictions on the higher layer's use of the lower layer. For
example, if the SM is implemented on top of a UNIX filesystem, the application certainly

can still directly access the UNIX interfaces, including fwrite. However, the application

may not invoke fwrite directly on the files used by SM since that would conflict with the

functioning of SM. Similarly, if the DDM is implemented on top of the SM, the application

may still use the SM interfaces, including SM versioning and SM checkout. However, the

application may not invoke SM versioning or SM checkout on design objects whose
versioning and configuration management is controlled by the DDM.

SM Goals Draft 3/22/90

APPLICATIONS

DR DDM ITC

STORAGE MANAGER

INTERFACE
SMI

"INTEROPERABILITY OF DATABASES”
= "INTEROPERABILITY OF SM +DB”
= STANDARD SM INTERFACE = SMI

Figure 1

Further requirements must also be met for the SM to be successful, and these must be
supported through the SMI. They include support for large designs, large groups of

designers, high performance, etc., and are discussed in more detail in the following

sections.

The SM Goal also states that the SM is a general-purpose mechanism. It should support

storage management needs without being speciSc to a particular application or application

domain. In this way it can serve the ne^ of many such applications and domains, as well

as the framework components. The SM users can freely employ the SM’s capabilities to

accomplish the appropriate functionality, to model the appropriate constructs, etc.

Examples of such uses for specific application domains might include: signals or schematic

pages or simulator structures or mechanical assemblies (as in DR); process status, tracking,

and dependency structures (as in DMM); menus and graphics and buttons (as in UI); inter-

application communication structures and protocols (as in ITC); etc.

In order to achieve this generality and yet supply the necessary capabilities, we have chosen
a model of data entities and relationships. A data entity represents a unit of data

addressable and accessible by the SM user. It might look like a record (as in traditional

DBMS's), a structure (as in C), an object (with associated methods in an object-oriented or

OODBMS), or some other formaL It might be fine grained (as a net or component or gate),

or it might be large grained. Although we use the term object for these data entities, and
object identifier (OK)) for a means to uniquely reference them, we do not mean to require

object-oriented implementations; rather, we focus on the needs of the framework and the

SM Goals 3/22/90

225 .

applications and leave the choice of technology and implementation to the implementor of

the SM. Relationships between such data entities are provided by the SM as a modelling

tool. They might be used to represent dependencies, references, connections, and

composed parts of a larger logical application entity. Note that we specify an interface in

teims of these (and related) concepts, rather than in terms of specific physical structures

such as files.

We specifically exclude the application-level interpretation of such objects and their

relationships from the domain of the SM. It has no understanding of the application itself,

but rather provides general-purpose mechanisms that the application can use. An example
of this is illustrated in Fig. 2. The mention of OLD (or object ID) is meant to specify a

unique means of identifying the data entity.

SM Client

e.g. DR Net

dr create_net()
DR
has application

intelligence

SM
data

entities

and
relationships

SM doesn't

know what
these are

Example of SM's Use within CFI

Figure 2

It is presumed that the full issue of resolution of names within and across frameworks is

the province of the DDM. Its name resolver will supply fully, or appropriately, qualified

names to the SM. By treating different SMs as different namespaces or scopes, the DDM
could support multiple SMs simultaneously.

It is specifically not the province of the SM group to define the architecture, internals, or

implementation of the SM itself. It is hoped that multiple implementations will appear that

provide CH compatibility by meeting the SMI interface. As illustrated in Fig. 3, this might
be achieved by adding an adaptor which might be as simple as a macro to a pre-existing

storage manager or DBMS in order to match it to the SMI, or by directly implementing a

SM Goals Draft 3/22/90

226 .

new storage manager to meet the SMI interface. It is not our intent to constrain SM’s to

any particular technology. The storage managers in Fig. 3 might use any of various

technologies, including Codasyl or Network, Hierarchical, Relational, Object-Oriented, or

custom. As viewed through the SMI, these all appear the same. Our primary focus in

defining the SMI is to meet the needs of the framework components and the applications.

We wish to encourage wide use of the SMI, so we endeavor to keep existing data managers
in mind. However, we do not want to constrain ourselves to such existing systems at the

cost of failing to meet the needs of the framework and applications.

Applications, Framework Components

STORAGE MANAGEMENT INTERFACE (SMI)

t

\N\N\N\N
ADAPTOR 1

\ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^

\ STORAGE N

: MANAGER 1 :

• • •

ADAPTOR N

STORAGE
MANAGER N

CFI COMPLIANT
STORAGE MANAGER

SMI Support via Different Storage Managers

Figure 3

3. Relation to the CFI Goals

The primary CFI goal from the outset has been to provide standards that would support

"interoperability of tools and databases." As stated before, we interpret this to mean
interchangeability of data along with its manager, as in Fig. 1.

SM Goals Draft 3/22/90

227o

The most recent version of the CFI goals document^ specifies seven goals, each containing

several objectives. Two of these goals directly lead to our chaner (among others), and two
others impose requirements on us.

The two with direct impact and their relevant objectives are:

G 1 : Facilitate design in the large

01.1 Suppon multiple users and design teams

01.2 Suppon a distributed computing environment

01.3 Suppon a heterogeneous computing environment

G3: Management, sharing, reuse, and exchange of engineering information

03.2 Data interchangeability with other frameworks and systems

03.3 Controlled, distributed data access, security, archiving, and storage

03.5 Data integrity and redundancy control

03.6 Data manipulation and query

03.7 Managing relationships between design objects

03.8 Data Encapsulation (meaning of encapsulation here seems to be

different from some; specifically, it implies import/expon)

The two other related goals are:

G4: Tool and framework portability across multiple platforms

(all)

G7. Extensible to future design complexities and techniques

07.4 Scales up with design complexity

Other components of the framework may choose to use the SM’s facilities to meet their

objectives, but we do not discuss all those possibilities explicitly here.

We will support some of the high-level capabilities mentioned above only at a primitive

level, expecting others to contribute at a higher level. These include query, security, data

encapsulation (cross-system reference and transfer), archiving, and configuration and

design management We provide leveraged primitives to make higher level implementa-

tions possible and easier. The mechanisms we supply enable these higher levels but do not

specify policy. For example, the DDM design manager presumably will offer much higher

-level checkout capabilities, perhaps using the SM-checkout primitive. Similarly, we will

not define a complete high-level associative query language or access mechanism. This is

outside the scope of our charter. However, we will supply the low-level primitives

required to support standard query mechanisms. In the future we might support adopting

some industry-standard query language (e.g., ANSI SQL or its extensions).

For security, the SM should provide primitive services, but the full definition of security

capabilities, mechanisms, policy specification, etc., is outside our scope. Similarly outside

our domain are: the high-level parts of intersystem transfers, which may cx:cur at the

application domain level; archiving, which should involve facilities to specify the scope of

the archive, (perhaps application-specific formats and mechanisms); and the full

configuration management system, although we will supply the primitives to support

versioning at our object level.

The following table lists the detailed requirements for the DDM from reference 1. We
indicate which requirements apply to us and which apply to other firamework components
or groups. (Note that this document was written in terms of files, while our interface is in

terms of objects.)VC indicates the Version/Configuration working groups ofDDM; Sec
indicates the Security working group ofDDM; Sys Env indicates the System Environment

TSC. [Although this table references Vl.2^ Vl.5^ has not substantially changed these,

SM Goals Drq/r 3/22/90

223 .

except for, unfortunately, dropping the numbering. These will substantially change when
DDM provides new input At that point, this table will be updated appropriately.]

SM Partly SM VC Security Sys Env Other

8.3.1 9-12 7,8 1-3, 6
Unrealistic

8.3.2 4-5 1-3

Unclear

8.3.3 7 1-6

8.3.4 1-8, 10 9

Inapplicable

8.3.5 7, 15,

22-24
1-5, 8-14,

16-19, 21,
25-26

6, 20, 27-28

Unclear

8.3.6 3 1-2

Although the mapping from applicadon-visible requirements to specific requirements and
capabilities of the SM can be a confusing, many-to-many connection, we offer the

following two sections to define the detailed requirements, in the sense of reference^ to be

considered in the definition of the SMI.

4. SM Design Considerations

Certain SM characteristics and capabilities are critically important to its success, and might
be adversely affected or even precluded by an ill-designed interface. We therefore have
discussed, among ourselves and with the DDM and DR TSCs, requirements on the SM to

ensure that we are not precluding critical capabilities in specifying the SMI.

For example, high performance (speed of access, throughput, etc.) is a critical requirement

for the success of the SM. The SMI itself may not specifically accomplish this; however, it

must be designed in a way that does not prevent an implementor from achieving such

performance goals.

This is a list of some key SM design considerations, which the SMI should not preclude

(not ordered):

C 1 . High performance (read and write)

C2. Large data size (object size, and number of objects)

C3 . Checkin/out capability (sometimes called long transactions)

C4. Support for multiple processes sharing data

C5. Sharing of data between versions or perhaps views
C6. High-security implementations

SM Goals Draft 3/22/90

Cl. High reliability and robust implementations

C8. Performance optimizations (e.g., to take advantage of locality)

C9 . Data integrity maintenance

CIO. Recovery

C 1 1 . Transaction model

C 1 2 . Internationalization support

5. SMI Guiding Principles

We will use the following guiding principles during the development of the SMI. We
should judge the degree of our success by these principles. (Not ordered.)

G 1 . Simplicity. The less complex the design, the better.

G2. Minimal restriction on SM implementations: The SMI should accomplish its goals

with the least possible restriction on the implementor of the SM, and so encourage

advancement of the state of the an, specialization for different needs, etc., while

still achieving interchangeability. In particular, the architecture of the SM should

not be specified.

G3. Incremental development of SMI specification: Produce and publish the

specification of the non-controversial pans first, in order to achieve progress, even

for a subset of the desired goal; then extend the specification to achieve more of the

goals.

G4. Compliance levels: publish the specification according to levels of compliance as

defined by CFI. We expect at least two such levels.

G5. Interchangeability: Allow SM users to switch to a different SM with the least

impacL Switching to a new SM might require, at most, a recompile.

G6. Functionality: Allow suppon of functionality required by frameworks and

applications.

G7. Flexibility: Don't constrain the application's use of the system; e.g., allow it to

map objects into its logical entities as it wishes.

The following are highly desirable and could differentiate the levels of compliance (see

G4).

G8. Extensibility: Allow extensions to data model and use of the SM; e.g., adding new
object types, and dynamic (runtime) type creation/modification.

G9. Multi-process support

G 1 0. Distribution: Allow support for distributed computing environments.

G 1 1 . Heterogeneity: Allow support for heterogeneous computing environments.

G12. Upgradability: Allow support for upgrading designs; e.g., evolution of schemas.

We note that the SM must have access to the type definitions in order to support

heterogeneity, upgradability, and the ability to transfer data to different frameworks and

archive iL A mechanism for specifying type definitions must be provided within the SMI,
in coordination with the DDM Types and Schema group. We hope this mechanism will

leverage off existing languages and standards, rather than inventing new ones.

We also note that support of inter-firamework transfer mechanisms requires that the SMI
support access to all objects. A dump facility, for example, must be able to ask for all

objects, regardless of semantics.

SM Goals Draft 3/22/90

6. Functionality Areas

Here we discuss general concepts related to functionality and summarize the areas to be
supponed. (For complete specification of the functionality see CFI Storage Management
High-Level Functional Specification. Browning, ed. 1989).

Unique access to objects should be provided and should include two methods. The first

we term OTP , or object identifier, and is fully persistent. It references the object uniquely

over time and space within some scoping context. The second we term Handle , and is

required to be valid only in the context of a single process or group of cooperating

processes. This latter is to allow the SM to optimize the performance of dereferencing.

Although some implementations might equate handle to virtual memory pointer, the SMI
(and the SM user) should not assume this, but rather provide a protected interface (e.g., via

macros).

A mechanism to provide scoping of the above OEDs and Handles should be provided.

An efficient relationship mechanism should be provided, to allow one object to reference

another object directly, without searching.

Two styles of access to objects should be supported. One is a copy-out approach, in which
the application requests the object, and it is copied out of the SM's purview into the

application’s private memory for safety, and with no more control over the object by the

SM. This interface is termed read and write . The other provides a direct reference Handle
to the object, to avoid the overhead of the copy, and to allow the SM to retain control for

sharing, recovery, etc. This interface is term^ open and close . The reason for supporting

both is simply that both are needed in different situations. Further, once the latter

(open/close) interface is provided, the former (read/write) can be accomplished by a simple

layer on top. In that way users of the SM can choose their own trade-offs and policies.

A container concept will be supported. It should include the concept of logical grouping

and allow multiple levels of such grouping, but require that an object live in a single

container. The intent is to provide a domain-independent mechanism to support

application-specific concepts such as a cell, or a schematic page.

Versioning and checkin/out are at the primitive level only. These provide the mechanisms
to enable DDM to provide design management functionality. For example, the DDM level

may well have a much higher level checkout that deals with the appropriate issues such as

configurations, releases, workspaces, namespaces, etc. Similarly, al^ough the SMI
supplies the basic capability to create an object (a new ’’version”) given another (and some
SM implementations might optimize this), the DDM is expected to deal with the full model
and geneology of versions, bitches or alternatives, naming, and policy facilities.

Hie and tool-objects are primitives to enable the DDM to support encapsulation of these

entities. For example, the DDM might use this mechanism in support of opening files,

maintaining versions, access controls, etc. There is no intent to define (or encapsulate) all

the interfaces to the file system; this is presumed to be in the province of the Systems
Environment TSC.

The following specific areas of functionality should be addressed:

- Create, destroy, open, close

- read/write
- checkin, checkout (persistent transaction and locking primitives)

- copy, move
SM Goals Draft 3/22/90

- validate

- iterate (traverse a sequence of objects)

- versioning (primitives only)

- transactions

- security (grant, revoke)

- associate, disassociate (relationships, cf. OCT attach)

- type defmition

- containment

- (un-, re-)name
- checkpoint
- file objects

- tool objects

- print (dump/load)
- transfer/archive primitives

- miscellaneous, including directives and hints for clustering, etc.

7.

SM Documents

The SM Working Group will accomplish its work by publishing the following documents:

A. SM Goals and Requirements (this document)

B . SM Functional Specification (see References, below)

C. SM Interface Specification (to be written)

8.

References

1. CAD Framework Users, Goals, Objectives, and Requirements, Version 12, edited by

Paul Painter, Nov. 6, 1989.

2. CFl Storage Management High-Level Functional Specification - Issue 1.0, edited by

Jason Browning, September 29, 1989.

3. CAD Framework Users, Goals, Objectives, and Requirements, Version 15, edited by
Paul Painter, Nov. 6, 1989.

9.

History of this Document

Version 0.1— Original draft. This document is essentially an extraction from notes and
minutes of meetings of the SM Working Group in May, August, and November, 1989,

and some email interchanges in between.

Version 03 •— After review by SM Working Group in Jan., 1990, and approved for

distribution to and review by DDM, DR, Arch TSCs and rest of CFI.

Version 0.4— After initial review by the DDM TSC, 2/28/90. Changes better explain

the use of SM by DDM.

SM Goals Drq/r 3/22/90

233 ,

Object-Oriented Data Modeling

in Rule-Based Software Development Environments

Position Paper

Naser S. Barghoiiti* and Michael H. Sokolsk}^'^

Department of Computer Science, Columbia University

New York, NY 10027

naser@cs.columbia.edu, (212) 854-8182

sokolsky@cs.columbia.edu, (212) 854-8348

March 29, 1990

1 Introduction

The primary thesis of this position paper is that in order to identify the aspects of

object-oriented databases (OODBs) that can lead to standards, more light needs to be

shed on the requirements of the applications that use OODBs. The motivation behind

developing OODBs was to support advanced applications for which traditional databases

are not sufficient. Thus, we have to go back to the needs of these applications and make

sure that any candidate for standards meets these needs.

Software development environments (SDEs) generate and manipulate large amounts of

data in the form of source code, object code, documentation, test suites, etc. Traditionally,

users of such systems managed the data they generate either manually or with the help

of special-purpose tools. For example, developers working on a large-scale software project

use system configuration management (SCM) tools such as Make and RCS to manage the

configurations and versions of the project they are developing. Releases of the finished

project are stored in different directories manually. The only common interface between all

these tools is the file system, which stores project parts in text or binary files regardless of

their internal structures. This significantly limits the ability to manipulate these objects in

desirable ways, causes inefficiencies as far as storage of collections of objects is concerned,

and leaves data, stored as a collection of related files, susceptible to corruption due to

incompatible concurrent access.

'Bargliouti is supported in part by the Center for Telecommunications Research.

^Sokolsky is supported in part by the Center for Advanced Technology'.

234 .

235 .

More recently, researchers have attempted to utilize database technology to uniformly

manage all the objects belonging to a project. SDEs, for example, need to store .the objects

they manipulate (design documents, circuit layouts, programs, etc.) in a database and have

it managed by a DBMS for several reasons: data integration, application orientation, data

integrity, convenient access, and data independence.

We have investigated the use of OODBs in a rule-based software development environ-

ment kernel called MaR\TL [KBS90, KFPSS], and have characterized key requirements that

the OODB must provide in order to support software development as well as some require-

ments that are germane to rule-based systems. In this paper we present the application

domain and the MaRVEL system, and enumerate its data management requirements that

we feel should be provided as a standard in OODBs.

2 The Marvel System

M.arvEL is a rule-based development environment kernel that stores software artifacts in

a project database, and defines each software development activity that manipulates these

artifacts as a rule. Forward and backward chaining on the rules is applied to automate

some of chores that developers would have otherwise done manually, to ensures consistency

in the project databcLse, and to monitor and/or enforce a particular model of development.

The long-term goal of the Marvel project is tcP develop a kernel for generating multi-user

development environments that use knowledge about the software development process of

large-scale projects to support the needs of multiple developers cooperating on these projects.

The kernel is a controlled automation engine that uses a rule-based process model specifi-

cation and an object-oriented data model specification. These specifications are written in a

language called the Marvel Strategy Language (MSL). MSL specifications are divided into

organizational modules called strategies. We envision that libraries of MSL strategies will be

built, maintained and shared by project administrators. The MaRVEL kernel has facilities

to /oarf and merge strategies to produce a target MaRVEL environment that understands the

data model and process model of the project.

The data model is specified in terms of classes, each of which consists of a set of typed

attributes that can be inherited from multiple superclasses. Attribute types include simple

types, files, sets and directed links. Set attributes contain instances of other classes as their

values, thus implementing composite objects, and giving the Marvel object management

system (OMS) a hierarchical traversal capability. Links can be generic, or point to specific

attribute types or classes, thus giving the Marvel OMS arbitrary graph traversal capability.

Existing software systems can be immigrated into Marvel using the Marvelizer tool [Sok89].

The Marvel OMS supports creation and deletion of objects according to the data model.

The process model defines rules that specify the behavior of the tailored Marvel envi-

ronment in terms of what commands are available and what kind of automation is provided.

Marvel supports a model of automation called opportunistic processing, which employs

backward and forward chaining to automatically initiate activities. The set of rules that

are loaded into a MaRVEL environment form a network of possible forward and backward

chains. MaRVEL rules are more complicated then their expert systems ancestors; each rule

contains a precondition that must be true for the rule to fire, an activity, which is a general

236 .

Figure 1: The Multi- Agent problem in MaRVEL

mechanism to execute arbitrary, existing tools, and multiple postconditions that assert the

results of the tool into the MaRVEL objectbase.

When multiple developers cooperate on a project within MaRVEL, they share a common
flatabase that contains all the objects of the project. These developers start concurrent

sessions in order to complete their specific tasks. During their sessions, the developers

conciirrently request operations that access objects in the shared project database. These

concurrent op<*rations might violate the consistency of the objects they access if they con-

currently change either the same attribtite or dependent attributes of the same object in

conflicting ways.

Since most operations correspond to rules and since chaining might lead to firing other

rules that perform more conflicting operations on the database, more inconsistencies might

be introduced in the database. More generally, the overall behavior of cooperating developers

in Marvel can be modeled as multiple sets of rules, where multiple rules from each set are

fired concurrently to perform operations on the shared project database. This situation is

d(*picted in figure 1.

In the rest of this paper, we investigate the data management requirements of MaRVEL-
like software development environments and what facilities are needed to makeOODBs meets

these requirements. We feel that making these facilities standard features of OODB would

would enable OODBs to support the flata management needs of advanced applications such

237 .

as software development environments.

3 Data Modeling Requirements

MaRV'EL, like other SDEs, must understand how a project's data is organized in order to

provide assistance. In the software development domain, diflerent projects might impose

different organization on the data, which in this case consists of the project’s components.

Thus, Marvel needs to acquire knowledge about the structure of data in the project under

development as well as how this data is accessed. Although OODBs typically support an

object-oriented data model, most of them do not fully exploit the features of object-oriented

programming. Specifically, they only utilize the structural aspects of object-oritented mod-

eling since they support only aggregation hierarchies (i.e., objects that have the same at-

tributes are grouped together in one class), generalization and specialization hierarchies (i.e..

inheritance), and the unique identification of objects.

Existing OODBs do not support the modeling of the behaviorial apects of objects such

as the operations that can be perfomed on each object (called methods in object oriented

languages). Instead the behavioral aspects of the system are modeled in the application

that treats objects as passive pieces of data. Thus, rather than providing a uniform and

integrated model of data and the operations that can be performed on it, existing OODBs
separate the two issues, foregoing the expressive power that can be gained by e.xtending

object-oriented features such as multiple inheritance, overriding, and late binding of objects

to the development activities.

The project databcise in MaRVTL is defined by a s^rwc/izr-a/Zy object-oriented data model,

in the sense of an object data model that defines the organization and structure of the object

hierarchy that constitutes the object-oriented database. Our primary innovation in MaRV'EL

is to treat the rules themselves as the “methods" of these objects, and employ behavioral

concepts from object-oriented programming to integrate the rule system with the shared

project database.

In particular, we define the shared project database using an object-oriented data model

and further define the methods of these objects via rules, where the rules specify the objects

manipulated by each development activity, the condition that must be satisfied to initiate

the activity, the tools or other facilities that are em{)loyed in carrying out the activity, and

the effects of completing the activity with respect to the status of the software project. De-

\'elopors are assisted by Marvel's forward and backward chaining on the rules, to automate

certain activities, ensure consistency in the project database, and/or monitor developer ac-

tions to determine conformance to tlie designated process and detect divergence from this

[)rocess.

These behavioral aspects of the data model are typically defined by methods in standard

object oriented languages. Methods prescrilje the operations that can be perfomed on in-

stances of each class. Each method applies only to instances of the class in which it was

defined, and they are invoked by sending a message to an object requesting its invocation.

.Multi-methods are methods that apply to instances of more than one class. Thus, wldle

attributes describe the structure of objects, methods describe how they behave when they

are sent messages from the human developer or other objects. .Methods, like attriluites, can

238 .

be inherited from a class to its subclasses.

Marvel unifies the behavioral aspects of data modeling with the process .model by

defining the methods that operate on objects via rules. Each rule has a set of typed formal

parameters that are instantiated with objects of the same type (i.e., cIclss) when the rule is

invoked. The rule's condition is a logical clause that is essentialy a read-only query on the

values of the attributes of the objects that are passed as parameters, while the effects change

the values of the objects’ attributes. Thus, each rule is equivalent to a multi-method that

applies to the classes that are the types of the formal parameters, and, like methods, rules

can be inherited. Thus, if a rule has a formal paramter of a certain clatss C, the objects that

are passed as actual parameters can be instances of either C of any of its subclasses.

Based on our experience in Marvel, we feel that OODBs must provide for both struc-

tural and behavioral aspects of data modeling in order to realistically meet the data man-

agement needs of applications similar to SDEs.

4 Consistency Maintenance Requirements

The consistency problem has been addressed in traditional database management domains

such cLS banking. In these domains, there is a lack of knowledge about the application-

specific semantics of database operations, and a need to design general mechanisms that

cut across many potential applications. Thus, the best a database management system

(DBMS) can do is to abstract all operations on a database to read and write operations. All

computations are then programmed into transactions that consist of a sequence of read and

write operations. Each transaction, if executed atomically (i.e., either all of its operations

are performed in order or none are), transforms the database from one consistent state to

another. When multiple transactions run concurrently, the DBMS can guarantee that the

database is transformed to a consistent state with respect to reads and writes by allowing

only serializable executions of the concurrent transactions [BHG87].

Several existing OODBs use serializability to synchronize concurrent transactions by

isolating them, preventing the sharin of data and/or knowledge with other concurrent trans-

actions. Isolation guarantees serializability, and thus strict maintenance of consistency, since

it makes each agent’s work appear as an atomic transaction. Unfortunately, isolation be-

tween concurrent transactions in the software development domain unnecessarily obstructs

cooperation [GreSS].

Our conjecture is that an OODB can use knowledge about the structural organization

of the project’s data, the meaning of data consistency for this project, and the semantics of

operations performed by agents on the database in order to provide an extended transaction

model. These pieces of information are different for different projects or different phases

of the project. For example, the consistency specification of a small project with a couple

of developers who are familiar with all the components of the project might permit those

developers to access the same object at the same time. The consistency specification of a

large project with hundreds of developers, however, might require strict isolation between

different groups of developers, and might not allow interaction except through a strictly-

defined interface.

Given the flexil)le consistency maintenance requirements of SDEs, we feel that OODBs

239 .

should provide an extended transaction mechanism that supports the following:

1. Long transactions: Long-lived operations on objects in design environments (such as

compiling and printing) imply that the transactions, in which these operations may
be embedded, are also long-lived. Long transactions need different support than short

transactions. In particular, blocking a transaction until another commits is rarely

acceptable for long transactions. It is worthwhile noting that the problem of long

transactions has also been addressed in traditional data processing applications (bank

audit transactions, for example).

2. Composite objects: The complexity of the structure and the size of objects strongly

suggest the appropriateness of concurrency control mechanisms that combine multiver-

sion and multiple granularity mechanisms. For example, objects in a software project

might be organized in a nested object system (projects consisting of modules that

contain procedures), where individual objects are accessed hierarchically.

3. L’ser control: In order to support database operations that are nondeterministic and

interactive in nature, the concurrency control mechanism should provide the user with

the ability to- start a transaction, interactively execute operations within it, dynami-

cally restructure it, and commit or abort it at any time. The nondeterministic nature

of transactions implies that the concurrency control mechanism will not be able to

determine whether or not the execution of a transaction will violate database consis-

tency, except by actually executing it and validating its results against the changed

database. This might lead to situations in which the user might have invested many
hours running a transaction, only to find out later when he wants to commit' it that

some of liie operations he performed within the transaction have violated some con-

sistency constraints: he would definitely oppose the deletion of all his work (by rolling

back the transaction) in order to prevent the violation of consistency. He might, how-

ever. be able to reverse the effects of some operations in order to regain consistency.

Thus, what is needed is the provision of more user control over transactions.

1. S}'nergistic cooperation: Cooperation among programmers to develop versions of project

comi^onents has significant implications on concurrency control. In CAD/C.AM sys-

tems and SDEs. several users share knowledge collectively and through this knowledge,

they are able to continue their work. Furthermore, the work of two or more users work-

ing on shared objects may not be serializable. They may pass the shared objects back

and forth in a way that is not ec(uivalent to doing it serially. Also, two users might be

modifying two components of the same complex ol)ject concurrently with the intent of

integrating these components to create a new version of the complex object, and thus

they might need to look at each others’ work to make sure that they are not modifying

the two components in ways that would make integration difficult. To insist on serial-

izable concurrency control in desig environments might thus decrease concurrency or

actually disallow desirable forms of cooperation among developers.

240o

5 Conclusions

Object-oriented databases were introduced because of the shortcomings Software develop-

ment environments are an example of advanced applications that benefit from using an

underlying OODB. We presented MaRVEL, a rule-batsed SDE the uses an underlying OODB
to store the software artifacts of projects under development. We presented some of the data

management and data consistency requirements of SDKs that we have characterized based

on our experience with MaRVEL. We believe that these requirements are braod enough to

be applicable to many advanced database applications, and thus they have to be considered

in any effort leading to the formal standardization of OODB.

References

[BHG87] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery in Database

Systems. Addison-Wesley, Readin MA, 1987.

[Gre88] I. Greif, editor. Computer-Supported Cooperative Work: A Book of Readings. Morgan Kaufman,

San Mateo CA, 1988.

[KBS90] G. E. Kaiser, N. S. Baghouti, and M. H. Sokolsky. Preliminary experience with process modeling

in the marvel software development environment kernel. In 23rd Annual Hawaii International

Conference on System Sciences, Kona HI, January 1990.

[KFP88] G. E. Kaiser, P. H. Feiler, and S. S. Popovich. Intelligent assistance for software development and

maintenance. IEEE Software, 5(3):40-49, May 1988.

[Sok89] M. H. Sokolsky. Data migration in an object-oriented software development environment. Master’s

thesis, Columbia University Department of Computer Science, April 1989, Technical Report CUCS-
424-89.

241 ,

An Entity-oriented Data Model - MIX

Tzy-Hey Chang
Applied Intelligent System Group
Digital Equipment Corporation

chang@aisg.enet.dec.com

March 9, 1990

242 .

1 Introduction

The rapid evolution of computer technology has widened the spectrum of end-users, over-

filling the capacity of data processing departments to satisfy their demands [7]. One of the

central issues in database research is how to provide an environment for the end-user to

manipulate a database directly, instead of depending on professionals. The semantic data

model (SDM) [12), the relational data model (RDM) [8,32,9] and the universal relation

model (URM) [32,18] all represent attempts at solving this problem.

The semantic data model extends the power of a standard programming language (such

as PASCAL) to be a database language (such as PASCAL/R [25]) with semantic constructs

[23,14,28,15]. However, because the nondeclarative flavor of the conventional programming

language, the user usually has to write programs to navigate around the database contents

in order to ask a query. By contrast, the set manipulation operators in the RDM relieve the

user from navigating through each relation tuple by tuple, but the user still has to explicitly

connect relations together in order to construct a query. The URM further relieves the user

from this higher-level navigation; a user query only needs to mention the attribute names

of interest, not the relation names. Thus, the URM provides a more user-friendly interface.

However, the URM requires the database designer to enforce some rigid assumptions [21]

which need to check on database scheme and database globally, the characteristic of those

assumptions causes difficulties in the database designs and database maintenance. In this

paper, we propose a new data model, called MIX Semantic Data Model, which keeps the

URM interface, while eliminates the limitations (assumptions) of the URM. The proposed

data model incorporates available semantic concepts from the SDM such as entities, ISA hi-

erarchies, aggregation hierarchies, and characteristic property hierarchies, shared property

hierarchies into the URM to model a database in a top-down modular way. The modular-

ized entity-oriented data model allows us to deal with the ambiguity of query interpretation

locally rather than globally, hierarchically rather than strictly enforcing assumptions. The
model is able to provide a URM-style’s query language for database retrievals and updates

[3j; in contrast, previous URM appro2iches can only deal with database retrievals. In ad-

dition, the graphic representation of these semantic constructs provides a framework for

implementing an integrated graphic user interface for database design, manipulation and

maintenance. Because of the page limitation, the discussion of query language, update

semantics, the modularization of data model are discussed in [3].

The paper is organized as follows. Section 2 describes the semantic constructs
,
module

constructions, and the local unique name restriction, the attribute correlation assumption

in the MIX. Section 3 describes query interpretation. Section 4 provides the summary and

indicates future directions.

243 .

2 The MIX Entity-Oriented Data Model

In this section, we shall explain our semantic data model, the MIX. Although there are

many semantic data models in the literatures [29,4,34,31,17,5,23,14,28,15], ours is based on

RM/T |5], IFO [l] and ERM [4]. What significantly distinguishes our approach to their is

that the main goal of our data model is to provide a URM interface in which user queries

can be interpreted unambiguously.

There are four kinds of semantic constructs in the MIX; ISA hierarchies, characteristic

property hierarchies, aggregation hierarchies, and shared property hierarchies which will be

discussed in Sections 2.1 - 2.4. Through these semantic constructs, the interaction among
entities in the world can be explicitly represented in graphic notations. These semantic

constructs enable us to improve the readability of the datable schema of the previous

approaches [11,20,21,22,27,26,24,33,19,16], for instance, the specifications of associations

and objects in [19] are hard to read as things get complex. The graphic notations also

facilitate us to implement an integrated graphic user interface for the entire database system

life cycle.

2.1 Entities, Roles, ISA Hierarchies

In our model, the notion of entities is the basic building block to model the real world.

An entity is something can be uniquely identified in the world we want to model, such as

employee, secretary or customer-order. Entities are modelled by one or more objects in

the database, where each object belongs to a particular class. For example, a particular

Employee-entity might be modelled by objects in classes Employee, Manager, Stockholder

and so on. Each class defines a set of attributes. Each attribute maps an object in that

class to a value. In addition to the property attributes of the entities, each class has a

surrogate attribute. The name of the surrogate attribute is the class name concatenated

with the special character #. When a new object is inserted into the relation for the class,

a corresponding surrogate value is generated by the system. Thus surrogate attribute can

be used as the primary key of the class.

Although an entity may be modelled by several objects, each entity has one object which

is considered to be its representative. For example, the representative for the above entity

is the object in Employee. The class Employee is an example of a representative class. Each

object in a representative class corresponds to a unique entity, and inserting (or deleting)

objects in this class models the insertion (or deletion) of an entity in the database. Objects

which are not representative can be thought of as roles, and their classes are called role

classes. Each role object is associated with a single object in the representative class, and

denotes additional (non-essentizd) information about the entity. An entity can have several

role objects, and this set of objects can change dynamicEdly without affecting the existence

244 .

of the entity. For example, some employees are stockholders, some are managers, and some
may be both. Furthermore, the deletion of an object from stockholder class is not modelling

the deletion of an entity, but a change in roles of an existing one. However, deleting a

representative object causes all of its associated role objects to be deleted as well. Given a

representative class, each of its objects may play a different set of roles. For example, some

employees are stockholders, some are managers, amd some may be both.

A representative class and all its associated role classes form an ISA hierarchy which is

a directed graph with classes as nodes and existence dependency edges — as directed edges.

The existence dependency edge points from subcleiss to its direct superclass to indicate that

the existence of objects in the subclasses depends on the existence of objects in its direct

superclass, but not vice versa. For clarity, we will use different arrows to denote existence

dependency constraints in different semantic constructs of the MIX: for characteristic

property hierarchies, ^ and => for shared property hierarchies, - for ISA hierarchies, and
— for aggregation hierarchies. A class is represented by a rectangular-shaped box with the

class name attached to the left-corner of the box.

Duplicate attribute names cause ambiguous query interpretation, because they can be

mapped into any classes with those attribute names. Therefore, filtering out common
attributes is a necessary step in the process of generalization/specialization. Common at-

tributes among role classes are moved up the hierarchy, so that there is never any duplication

of attribute names. As long as there is a duplication, we can do more generalization. Be-

cause applying generalization/specialization on the same set of entities for modelling an

ISA hierarchy, we assume that an entity can only appear in one ISA hierarchy.

ISA hierarchies in our model must be single rooted, acyclic and non-redundant. Multiple

rooted ISA hierarchies mean that most-generalized representative class do not form, and

duplicate attribute names may exist among classes of ISA hierarchies. We require that

there be no cycles in an ISA hierarchy, because cyclic existence dependency constructs

among subclasses are meaningless. The requirement of non-redundancy means that there

can be no transitive edges in an ISA hierarchy. Relationships can be formed among classes

of ISA hierarchies (Section 3.1).

2.2 Characteristic Property Hierarchy

A characteristic property hierarchy [5] shows the relationships among multivalued attributes

and the entities described by them. Single-valued attributes on class A are represented

graphically inside its class box directly. For multivalued attributes of class A, we create

another class B (characteristic class) whose existence is dependent on the class A. Obviously,

the relationships between objects in A and B are l:n relationships. We may need to further

decompose B if B itself contains other nested multivalued property attributes to describe

it. The entity decompositions result in a tree structure [5], called characteristic property

245 .

PROF

/ \
PUBLICATION EDUCATION

\
HONOR

PROF(PROF#.ID,PROF J^AME,PROF J^GE).
EDUCATION{EDUCATION#,PROF#,SCHOOL-NAME,DEGREE,GRADUATION -DATE).
HONOR{HONOR#,EDUCATION#,HONORS,HONOR-DATE).
PUBLICATION(PUBLICATION#,PROF#,TITLE,JOURNAL,PUBLICATION-DATE).

Figure 1: The characteristic property hierarchy for professors

hierarchy. The existence dependency constraint for B on A is represented as an existence

dependency edge ^ pointing from B to A, and the class B contains the surrogate attribute

of class A to show the relationship between classes A and B, as shown in Figure 1. The root

node in a characteristic property hierarchy is a representative class if there are no existence

dependency edges pointing out from it. Other classes in a characteristic property hierarchy

are called characteristic classes.

Example 1 Suppose the entities PROF have the single-valued property attributes (ID,

PROF-NAME, PROF-AGE), multivalued property attributes about professors’ education

(SCHOOL-NAME, DEGREE, GRADUATION-DATE, HONORS, HONOR-DATE) and

multivalued property attributes about professors’ publication (TITLE, JOURNAL, PUB-
LICATION-DATE). The entity decompositions result in a characteristic property hierarchy

that is a tree structure as shown in Figure 1, where the scheme for each class is shown in

the lower part of the figure. Note that we decompose multivalued property attributes about

professors’ education into classes EDUCATION and HONOR, because professors might get

more than one honor in each school.

2.3 Aggregation Hierarchies

In [5,29], an aggregation may mean the aggregation over properties to form a class or

the aggregation over classes to form a higher level aggregative class. Our approach is the

same as the latter case. The aggregative classes is represented as a diamond shape inside

246 .

a rectangular shaped box with existence dependency edges — pointing to the underlying

component classes. There is more than one surrogate attribute attached to the aggregative

class; one is the identifier for the aggregative class; others are the identifiers for the direct

underlying component classes.

An aggregation hierarchy is required to be an acyclic graph as illustrated in Figure 2

because cyclic component relationships among different aggregative classes need property

non-applicable null values to terminate these cyclic relationships among entities. As we
know, the answer of a query interpretation [6] which is able to deal with property unknown

and property non-applicable null values may confuse the users. ISA hierarchies discussed in

Section 3.1 can be used to construct acyclic relationship graph. The existence dependency

edges pointing from an aggregative class A to its component classes B’s specify the existence

dependency constraints, where the existence of objects in the aggregative class depends on

the existence of objects in its component classes. The relationships between tuples in A and

B are n:l relationships. Every aggregative class is a representative class.

The abstraction of aggregations results in an acyclic graph that is not necessarily single

rooted. Our data modelling for unambiguous query interpretation needs the notion of

single rooted aggregation hierarchies that are the subgraphs of the acyclic graph. In our

approach, an aggregation hierarchy consists of a root node., called root aggregative class, (an

aggregative class that does not further participate in any relationships), and the direct and

indirect component classes of the root node. The root node will play a special role in the

query interpretation, as discussed in Section 2.6. A multi-rooted acyclic graph is considered

to be several (single-rooted) aggregation hierarchies whose nodes may overlap. For instance,

if we remove the class PURCHASE.PLAN from Figure 2, then there are two aggregation

hierarchies, and PART is the overlapping node between them.

2.4 Shared Property Hierarchies

In Section 2.2, we saw how characteristic property hierarchies model the relationships among
entities and their individual multivalued properties. That semantic construct is used to

avoid update anomalies. Here, we introduce a new semantic construct, called a shared

property hierarchy, for the same purpose. A shared property hierarchy shows the relation-

ships among entities and their common, shared properties. That is, we decompose the

shared properties for the entities in a class A as a separate class C, and create a linking

class B whose tuples are used to connect the tuples between A and C. Class A is the matn

representative class, and C as the shared property class (which is also a representative class,

see below). The classes A, B and C are defined as a shared property hierarchy. The arrow

pointing from the linking class to the main representative class, and the arrow => pointing

from the linking class to the shared property class denote the existence dependency edges.

The example below demonstrates the difference between these two semantic constructs.

247 .

PURCHASE-PLAN

/
SELLS

/ \ / \
SUPPLIER PART PROJECT

SUPPLIER(SUPPLIER#,SUPPLIER-NAME,ADDR,TEL).
PART(PART#,PART-NAME.DESCRIPTION)
PROJECT{PROJECT#,PROJECT NAME,DEADLINE).
SELLS(SELLS#.SUPPLIER#.PART#,PRICE).
NEEDS(NEEDS#,PART#,PROJECT#,USAGE.QTY).
PURCHASE-PLAN(PURCHASE-PLAN#,SELLS#,NEEDS#,ORDER-QTY).

Figure 2: The aggregation hierarchy for classes SUPPLIER, PART and PROJECT

Example 2 Suppose a student enrollment database scheme contains the following classes

for course-related information. The graph representation is show’n in Figure 3 in which the

attributes ROOM-NO and SEATS are the common, or shared properties for the entities

in SECTION, so they are decomposed from SECTION to be a separate class ROOM. The

entity decomposition results in a shared property hierarchy.

If all information about course schedules is represented in a class such as SEC(SEC#,
COURSE#,PROF#,SEC_NAME,DAY-HOUR,ROOM.NO,SEATS), there must exist re-

dundant information about SEATS which will cause update anomalies. The semantic con-

struct of a characteristic property hierarchy cannot solve the above update anomalies. For

instance, suppose we decompose SEC into SEC(SEC#,COURSE#,PROF#, SEC_NAM-
E,DAY-HOUR) and ROOM(ROOM#,SEC#,ROOM-NO,SEATS). Then, the information

about rooms is duplicately recorded for each course section using the same room. The

information about rooms is the shared property for the entities in the representative class

SEC, so an update on a room must reflect on all sections using this room. In contrast,

a characteristic class in a characteristic property hierarchy represents the individual prop-

erties ff^r the entities described by them. Thus, a characteristic property hierarchy is not

suitable for our purpose here. We need to decompose SEC into SECTION, SCHEDULE
and ROOM as shown in Figure 3, in which the tuples in SCHEDULE are used to connect

the tuples between SECTION and ROOM. This example also demonstrates why a linking

class is needed in a shared property hierarchy.

243 ,

ENROLLMENT

SCHEDULE
r:—IZl

^QQ^
,

SECTIONnzn p<==H
kr^ i'

COURSE PROF
L 1

1
1

COURSE{COURSE#,COURSE NAME.DES).
PROF(PROF#.PROFJ^AME,RANK,PROFJVDDR).
STUDENT{STUDENT#,STUDENT NAME.YEAR.STUDENT JVDDR).
SECTION(SECTION#.COURSE#,PROF#,SECJ^AME).
SCHEDULE(SCHEDULE#,SECTION#,ROOM#,DAY -HOUR).
ROOM(ROOM#,ROOMJ<0,SEATS).
ENR0LLMENT(ENR0LLMENT#,SECT10N#,STUDENT#,GRADE).

Figure 3: A student enrollment database scheme

249 .

2.5 The Difference among Characteristic, Shared Property and Aggre-
gation Hierarchies

The shared property class can independently participate in other relationships or other

shared property hierarchies. For example, we may declare DEPARTMENT as the shared

property class for the entities in each class COURSE, PROF and STUDENT. In this caise,

we form three new shared property hierarchies. It implies that the shared property class

can exist independently of the main representative clciss. Therefore, the shared property

class is a representative class as well in the MIX. The characteristic class can not overlap

or participate in other hierarchies. For query interpretation, the classes in shared property

hierarchy are treated as a unit of abstraction for the objects in their main representative

class; this is like the classes in a characteristic property hierarchy are treated as a unit of

abstraction for the objects in their representative class.

Since an object in a shared property class can exist independently of its root represen-

tative object, its update semantics is different from that of an aggregative class [3|. For

instance, suppose PURCHASE.PLAN class is deleted from Figure 2 and suppose PART,
PROJECT and NEEDS define a shared property hierarchy, where NEEDS is the linking

node, PROJECT is shared property node. Then, a deletion request on the new database

scheme << SUPPLIER = si, PART = pi, PROJECT = pjl >> will only delete an object

in SUPPLIER-PART, because we treat the attributes in PROJECT as the shared properties

for the objects in PART. In contrast, the same user request applied on Figure 2 will delete

an object in SUPPLIER-PART-PROJECT. Therefore, the intended update semantics may
cause the database designer to choose different data modellings [3]. This is similar to the

way objects are defined over associations in the [19]. However, an object in the [19] does

not carry information to guide the update behavior.

The relationships between objects in the representative class and the shared property

node of a shared property hierarchy are m:n relationships, whereas the relationships between

objects in the representative node and the characteristic cIms of a characteristic property

hierarchy are l:n relationships. The linking class in a shared property hierarchy is similar

to an aggregative class in an aggregation hierarchy. However, each aggregative class in an

aggregation hierarchy is treated as a unit of abstraction and can further participate in other

relationships, whereas a linking class cannot participate in other relationships.

2.6 Modules

According to the methodology and restriction for data modelling discussed so far, we can

represent a database scheme D = (R, C) with classes R and integrity constraints C as a

250 .

directed acyclic graph G = (V,E), called a database schema graph, which consists of a finite

set of vertices V and a finite set of edges E (E C V x V). If <vi,v 2 > is in E, we say that

the edge is directed from vertex vj to vertex V 2 ,
or V 2 is adjacent to vertex vj. For each

V € V, there is a corresponding class r € R. For each ordered pair <vi,V 2 > in E, where

vj, V 2 correspond to rj, r 2 in R, there is a corresponding existence dependency constraint

for ri on r2 in C. Thus, each ISA hierarchy, aggregation hierarchy, characteristic property

hierarchy or shared property hierarchy is a subgraph of G and the vertices for them may be

overlapped. For instance, in Figure 3, the class SECTION is the overlapping node between

an aggregation hierarchy and a shared property hierarchy.

Our approach to reduce the intricacy of the interaction among classes in different se-

mantic constructs, as described in the above, is to organized related abstractions or concepts

into one module. As far as module constructions, the reader may refer to [3).

Definition 1 Each representative class has an associated set of classes, which is called its

closure. The closure of the representative class A, denoted by A'*’, is the union of {A} and

the closure of the classes in the following set:

1. The set of classes in the same characteristic property hierarchy as that of class A.

2. The set of classes in the same shared property hierarchy as that of class A.

3. The set of classes in the same ISA hierarchy as that of class A.

4. The set of A’s component classes if A is an aggregative class.

The set of attributes for the classes in A"'' is denoted by Att(A‘^).

Definition 2 The closure of the root aggregative class defines a module.

In the MIX, because related concepts are organized into one module, we can assume

that the attributes in the user window are from only one module. Based on the concepts of

modules, we propose a local unique role restriction to replace the global unique role restric-

tion in the URM. Note that the global unique role restriction (global attribute renamings)

can expand the universe of the attributes significantly, making it difficult for a end-user to

remember them. The local unique role restriction only requires that an attribute must play

a unique role within a module, but not within the entire database scheme. Thus, it is able

to solve the problem caused by the global attribute renaming.

•>

251 .

3 Query Interpretation in Our Approach

In the MIX, the interpretation of a query is based on the notion of of a context for the

user window. Roughly, we need to find a representative class whose abstraction contains

the minimum abstraction of attributes in the user window. If a query has more than one

minimum abstraction, then it is considered to be ambiguous.

Suppose X is the set of attributes in the user window. Suppose there are two represen-

tative classes M and N, such that X C Att(M'*'), X C Att(N'^) and Att(M'*’) C Att(N‘^)

are true. X C Att(M‘'') (or X C Att(N''')) implies that X can be derived from Att(M'^)

(or Att(N'*’)). Also, Att(M'^) C Att(N'*') implies that N is a higher level abstraction based

on M in the module for the user window. For query interpretation, we assume that

is closer to the user’s intent than N"^. If there is no representative class E such that X C

Att(E'*') and Att(E'^) C Att(M‘''), then M is called the context for the user window. This

is similar to the case of natural language, where we interpret the utterance of a person

according to what he says, with no extra context is added.

Because of the entity decompositions occurred in characteristic property, shared prop-

erty, and ISA hierarchies, MIX are able to represent a set of entities with heterogeneous

properties without using property non-applicable null values. Thus, diflferent subsets of

classes in these three hierarchies can determine different subsets of entities represented by

them. For instance, in Figure 1, the relations for user query [PROF.NAME,TITLE] and

[PROF-NAME,DEG REE] should represent different subsets of entities. For query evalua-

tion, we map the attributes in the user window to the nodes in the database schema graph,

those nodes are called explicitly bound classes. The explicitly bound classes for the first

query in the above example are PROF and PUBLICATION; the explicitly bound classes

for the second query are PROF and EDUCATION. The join of classes in PROF‘S - that

is, {PROF, PUBLICATION,EDUCATION,HONOR} - will not give a correct query eval-

uation. Therefore, we need to compute the minimum connection among bound classes to

distinguish the subsets of entities in these three hierarchies [3]. For instance, the above

PROF example is evaluated as follows. [PROF.NAME,TITLE] is evaluated as PROF m
PUBLICATION; [PROF_NAME,DEGREE] as PROF >: EDUCATION.

3.1 Recursive Relationships

The algorithm for complex queries such as recursive relationships is explained briefly below;

see [3] for details. A relationship between different objects in the same set of entities is called

a recursive relationship. In our approach, if a relationship is between disjoint subsets A1

and A2 of a set of entities, we can form an ISA hierarchy between A, A1 and A2 to form

a relationship between A1 and A2. Although the approach produces a nice, clear data

model, a user query may reintroduce an attribute playing multiple roles, as illustrated in

252 .

the example below. In this case, our query interpretation needs modification.

With respect to a unique context M for the user window [X], if M"*” contains more than

one node o, overlapping an ISA hierarchy and the aggregation hierarchy, the meaning of o,

is o, and its explicitly bound superclasses, but not other classes in the same ISA hierarchy.

This semantics conform to the purpose of data modelling that distinguish roles in order to

avoid recursive relationships. The approach hcis one advantage. Because it spans each o, to

its superclasses, the user can always get his desired answer. If explicitly bound role cleisses

can not be appropriately classified according to the path between o, and its explicitly bound

superclasses, then the query interpretation is ambiguous. Focal graph described in [Sj is

used for disambiguating query interpretation.

4 Summary and Future Directions

Our goal is to make the data in the database more accessible to end-users. The MIX
entity-oriented data model enables us to provide a consistent URM-style’s query language

to allow the users to express a database updates and database retrievals by mentioning

attribute names and their values only [3]. We use focal graph to interact with the user in

case ambiguity occurred in the query interpretation. Our data model provides a framework

for a more user-friendly interface. An integrated graphic user interface for database design,

data definition and data manipulation is being implemented. Dynamic SQL, DECwindow
widgets and callback routines facilitate the information pztssing among database manager,

window manager, and host language modules. For instance, at the database design phase,

DECwindow callback routines pass user’s inputs to dynamic SQL to generate SQL com-

mands.

We will provide a mechanism to allow the end-users to express transitive closure re-

lationships in a natural and intuitive way. In |30], end-users have to specify a repetitive

command and a temporary relation for the query “to find all of the employees who work

for Joe”. The retrieval will repetitively execute until there are no chsuiges in the tempo-

rary relation. This is not easy for a casual user. We propose to use the notations (t, J.)

appended to attribute nzimes for expressing transitive closure relationships. This approach

is consistent with our data manipulation language in which end-users only have to specify

attribute names. For instance, the query |MANAGER-NAMET(’*)
|

NON-MANAGER-N-
AME = Tom, GROUP.NO = 2), will return all different levels of bosses of Tom in group

2; thp query (MANAGER.NAMEt(2)
|
NON-MANAGER-NAME = Tom, GROUT NO =

2j will return the bosses of the bosses of Tom. For the graphic user interface, the end-users

can enter the notations (t (n), [(n)) to attribute column to express queries on transitive

closure relationship, the system will display the hierarchical transitive closure relationships

in a navigational widget.

253 .

For database access, insertion and deletion are not necessarily reversible [27,13,10]. For

providing facilities for end-users to undo update effects, we propose to include a transaction

number attribute into each object of the database scheme. When an update command is

initiated, a transaction number is generated by the system for those affected tuples. An undo

command issued by end-users can correctly reverse update effects in terms of tuples with

the same transaction numbers. The undo command is different from the undo in [32,9] that

is invoked by the system to roll back a failed transaction. Because transaction numbers are

based on time, how to incorporate this facility to the MIX for historical database inference

or version control is a future research area.

254 ,

References

[1] S. Abiteboul and R. Hull. IFO ; A foraml semantic database model. ACM Trans, on

Database Systems, 525-565, December 1987.

[2] C. Beeri and H. F. Korth. Compatible attributes in a universal relation. In Proc.

ACM. Symp. Principles of Database Syst., pages 55-62, March 1982.

[3] T. H. Chang. A Universal Relation Data Model with Semantic Constructs. PhD thesis,

Boston Univ., 1988.

[4] P. P. Chen, The entity-relationship model - toward a unified view of data. ACM Trans,

on Database Systems, 1(1), 1976.

[5] E. F. Codd. Extending the database relational model to capture more meaning. ACM
Trans, on Database Systems, 4(4):397-434, 1979.

[6] E. F. Codd. More Commentary on Missing Information in Relational Databases (Ap-

plicable and Inapplicable Information). SIGMOD RECORD, (l):42-50, March 1987.

[7] E. F. Codd. Relational Databeise : A Practical Foundation for Productivity. CACM,
25(2), February 1982.

[8] E. F. Codd. A relational model of data for large shared data banks. Communications

of the ACM, 13(6):377-387, 1970.

[9] C. J. Date. An Introduction to Database Systems. Addison- Welsey, 3 edition, 1982.

[10] U. Dayal, P. A Bernstein. On the updatability of relational views, Proc. 4th VLDB
Conf. IEEE Computer Society, March, 1978.

[11] R. Fagin, A. O. Mendelzon, and J. D. Ullman. A simplified universal relation assump-

tion and its properties. ACM Trans. Database Syst., 7:343-360, 1982.

[12] R. Hull jmd R. King. Semantic Database Modeling : Survey, Applications, and Re-

search Issues. Technical Report, University of Southern California, Comput. Sci. Tech.

Rep. TR-86-201, April 1986.

[13] A. M. Keller. Updating relational databases through views. PhD thesis, Stanford Univ.,

1985.

[14] R. King and D. McLeod. An Approach to Database Design and Evolution. In M.
Brodie, J. Myiopoulos, and J. Schmidt, editors, Data Abstraction, Databases, and

Conceptual Modeling, 1984.

255 .

[15] R. King and D. Mcleod. The event databcise specification model. In Peter Scheuer-

mann, editor, Improving database usability and responsiveness, Academic Press, 1982.

[16] H. F. Korth, G. M. Kuper, A. Feigenbaum, V. Gelder, and J. D Ullman. System/U :

a database system based on universal relation assumption. ACM Trans, on Database

Systems, 9(3):331-347, 1984.

[17] Y. E. Lien, J. E. Shopiro, and S. Tsur. DSIS - A Database System with Interrelational

Semantics. In 7th Int. Conf. VLDB, pages 465-477, 1981.

[18] D. Maier. The Theory of Relational Databases. Computer Science Press, 1983.

[19] D. Maier, D. Rozenshtein, S. Salveter, J. Stein, and D. S. Warren. Toward logical data

indenpence : A relational query language without relations. In ACM SIGMOD Inti.

Symp. on Management of Data, pages 51-60, June 1982.

[20] D. Maier and J. D. Ullman. Maximal objects and the semantics of universal relation

databeises. ACM Trans. Database Syst., 8(1);1-14, 1983.

[21] D. Maier, J. D. Ullman, and M. Y. Vardi. On the foundations of the universal relation

model. ACM Trans on Database Systems, 9(2);283-308, 1984.

[22] D. Maier and D. S. Warren. Specifying connections for a universal relation scheme

database. In Proc. ACM SIGMOD Inti. Symp. on Management of Data, pages 1-7,

June 1982.

[23] J. Mylopoulos, P. A. Bernstein, and H. K. T. Wong. A Language Facility for Designing

Database-Intensive Applications. ACM Trans. Database Systems, (2):185-207, June

1980.

[24] Y. Sagiv. Can we use the universal instance assumption without using nulls? In Proc.

ACM SIGMOD Inti. Symp. on Management of Data, pages 108-120, May 1981.

[25] J. W. Schmidt. Some high level language constructs for data of type relation. In ACM
TODS, 2, S, pages 247-261, September 1977.

[26] E. Sciore. Inclusion dependencies and the universal instance. In ACM Symp. on

Principles of Database Systems, pages 48-57, 1983.

[27] E. Sciore. The universal instance and database design. PhD thesis, Princeton Univ.,

1980.

[28] D. Shipman. The functional data model and the data language DAPLEX. ACM Trans,

on Database Systems, 6(1):140-173, 1981.

256 .

[29] J. M. Smith and D. C. P. Smith. Database abstractions : Aggregation and generaliza-

tion. ACM Trans, on Database Systems, 2(2):105-133, 1977.

[30] M Stonebraker, R. Johnson, and S. Rosenberg. A rule system for a relational data

base management system. In Peter Scheuermann, editor. Improving database usability

and responsiveness, Academic Press, 1982.

[31] S. Tsur and C. Zaniolo. An implementation ofGEM - supporting a semantic data model

on a relational back-end. In Proc. ACM SIGMOD Inti Conf. on the Management of

Data, pages 286-295, 1984.

[32] J. D. Ullman. Database Systems. Computer Science Press, 2 edition, 1982.

[33] J. D. Ullman. The U. R. strikes back. In Proc. ACM Symp. on Principles of Database

Systems, pages 10-22, March 1982.

[34] C. Zaniolo. The databsise language GEM. In Proc. ACM SIGMOD Int. Conf. on the

Management of Data, pages 207-217, 1983.

[35] M. M. Zloof. Query-by-example ; A data base language. IBM Syst. J., 16(4):324-343,

1977.

257 .

Object Data Model = Object-Oriented -|- Semantic Models

Qing Li

Department of Computer Science

Australian National University

Canberra, ACT 2601

Abstract

There has been a lot of confusion about the definition of ” object” data model in the database

community. People use the term "object database” to refer to different characteristics and mecha-

nisms which are typically embodied in so-called ’’semantic” databases and ’’object-oriented” ones.

While these two classes of data models stem from different roots and applications, they nevertheless

resemble each other in many aspects, and complement each other in many ways. This paper sum-

marizes from these two paradigms the features common to both, the features infiuenced/adopted

by each other, and and the features which are present in one paradigm but missing from the other.

After a brief analysis of these features, we conclude the paper with some discussions on the desir-

ability of combining these two sorts of models together, and propose the major theme of the paper:

a complete object data model should take the union of the facilities offered by these two classes of

models.

1 Introduction

Over the last decade, we’ve been seeing a dramatic proliferation of systems and models which are

claimed to be (or labeled with) "object-oriented”. As pointed out in [10], the term "object-oriented”

has been serving as an effective yet false advertising for selling ideas, models, and systems in database

community. On one hand, this reflects the common interests and desires in developing more advanced

database technology for non-traditional applications. On the other hand, it also reveals the common

confusion about the concept of object, and the definition of an object data model.

The main reason for such a chaos is, of course, due to the lack of a common data model, and

the lack of formal fundations [2]. This is natural since object paradigm is still a relatively young and

developing technology. Indeed, there are still a lot of experimental work underway. Another reason is

probably due to the historical development of object databases. After people realized the shortcomings

of relational databases for more advanced applications, significant research efforts have been devoted to

258 .

either extending the relational model to capture more meanings [4], or to develop new data models which

are semantically more expressive and powerful [3, 6, 7]. The latter is collectively referred as ’’semantic”

database models, or ”structurally object-oriented” models [5]. Orthogonal to that is the more recent

development of so-called ’’object-oriented” databases, which have been inspired from object-oriented

programming languages [11, 1, 8]. This type of databases are also sometimes referred as ’’behaviorahy

object-oriented” [5], indicating the emphasis of such databases on behavior modeling. But quite often,

people don’t call their models and systems to be ”structurally” or ”behavirally” object-oriented, but

rather they just call them (for simplicity and/or for selling purpose) ’’object-oriented”, which is where

the confusion really stepped in.

Being aware of such confusion, some initial efforts have been attempted on this issue (e.g.,

[5, 2, 10]). Such efforts include those trying to identify/claim what features pertain to object-oriented

databases, and/or to clarify certain differences between these two types of data models (with strong

bias on ”object-oriented” ones). As a consequence, the results seem to either underrate the importance

of semantic models to object-oriented ones, or simply ignore the influences from semantics models.

In this paper, we take a different attitude towards this issue. In our viewpoint, semantic models and

object-oriented ones are not only closely related to each other, but also inseparable from each other

when the concept of object is to be defined. Admittedly, putting them all under the name ’’object-

oriented” can be misleading. However, simply split semantic models from object-oriented models is also

inappropriate, nor desirable. Indeed, object-oriented databases have benefitted from semantic database

modeling in many aspects, with semantic models also being influenced by object-oriented ones in some

others. Putting the political factors aside, the important thing for us to consider is, of course, whether it

is desirable to put them into the same family. Will it be a loss for object-oriented databases if semantic

models are excluded from the family? Can these two types of models be integrated together naturally

and effectively? This paper attempts to address on these questions, by comparing and contrasting

features from both classes of models. First, we list the common /similar features to both classes; next,

we examine the features which are influenced/adopted from each other class; we then consider the

features specific to each class, concentrating on the complementary and/or conflict aspects (if any) to

each other. We conclude the paper with discussions on the desirability of integrating these two sorts

of models together, and propose the major theme of the paper—a complete object data model should

encompass both semantic and object-oriented model facilities.

2 Semantic and Object-Oriented Models: A Comparative View

There have been a large number of semantic data models introduced since the mid-70’s, and object-

oriented models introduced since the mid-80’s (see the survey papers or collection of readings in [7,

12, 9, 13]). Various models and systems emphasize on various aspects and features. For comparison

259 ,

purpose, we shall focus on essential (or mandatory) features [7, 2]) for each type of models, and use

the short-hand SDB as a generic representative for semantic databases, and short-hand’ OODB for

object-oriented databases.

2.1 A Brief History of SDB and OODB

To compare and contrast SDB and OODB, we first consider briefly on their development histories

and motivations. SDB was originally introduced primarily as schema design tools for databases, the

emphasis of which was to accurately model data relationships that arise frequently in typical database

applications. It has been influenced by the work on knowledge representation in AI (e.g., the se-

mantic networks and frames). On the other hand, OODB was inspired by advances in programming

languages—-the object-oriented ones, stemming from research on abstract data types (ADTs). Con-

sequently, SDB has been emphasizing on the representation of data, and OODB is geared towards

the manipulation of data. Despite the fact that they grew out of different ’’roots”, and had different

emphases, they have now become closely related to each other, and are virtually inseparable from each

other, as the subsequent discussion shows.

2.2 Common/Similar Features

What seems to be interesting and important to observe in comparing SDB and OODB is that although

they are fundamentally different, they resemble each other in many ways. This indicates some common

sought-after features and capabilites desired by people from different applications and with different

purposes. The following is a list of features which are believed to be common (or similar) to both SDB

and OODB.

2.2.1 Object Identity

The concept of object identity has long existed in programming IcLnguages, but was not introduced into

databases until the mid-70’s when the RM/T model and other early semantic data models were devel-

oped. Developed from combining programming languages with databases, object-oriented databases

have also inherited this feature into their systems.

2.2.2 Types/Entities/Classes

Modeling on semantic databases have introduced several data abstracions, which include the gener-

alization^ aggregation^ classification, and association. Classification gives us the concepts of ’’class”

(or ’’entity”). On the other hand, type mechasims in programming languages have provided similar

concepts of ”type” (in some languages also called ”class”). While these concepts vary in some aspects,

they all capture the major semantics of ”is-instance-or’ or ”is-member-oP.

260 .

2.2.3 Relationships

Both SDB and OODB have facilities for modeling general inter-object relationships. In SDB this is

captured by the association mechasim, and in OODB, this is via specification of object properties.

2.3 Features Adopted/Influenced by SDB and OODB

Besides all the coincidental common/similar features introduced by SDB and OODB separately, there

are also features which are influenced from each other. Here, we briefly examine such interactions

between these two paradigms.

2.3.1 Aggregation

As we mentioned above, data modeling on SDB has introduced several important and useful data

abstractions. Aggregation is introduced to model the object which has several parts (ie., the ”is-part-

oF relationship). This was later adopted by OODB in modeling complex objects (or alternatively

called composite objects).

2.3.2 Generalization

Another important and powerful data abstration by SDB is generalization—an idea for modeling ”is-

subtype-oP (or alternatively ”is-subclass-oP) relationship. An associated concept here is inheritance:

inheritance of memberships up the hierarchy, and attributes/relationships down the hierarchy. Again,

this feature has been adopted into OODB, and has been extended to include inheritance on methods.

2.3.3 Extensibility

With OODB, one can define new types/classes from predefined ones. Such a system embodies an

extensible one. This feature has had some impact to SDB. Despite early SDBs were as non-extensible

as traditional databases, we are now seeing later SDBs have similar capabilities.

2.3.4 Computational Completeness

Another impact from OODB to SDB is on computation aspect. With OODB, one can express any

computable function supported by the programming language. This has inspired SDBs to built some

language interfaces through which external functions can be encorporated into DML.

2.4 Distinct Features in SDB and OODB

Being developed from different roots and application domains, SDB and OODB also embody substantial

differences in supporting distinct features, which reflects the fact that SDB emphasizes on semantic

261 .

expressiveness, while OODB emphasizes on behaviorai power.

2.4.1 Constraints and Exception Handling

In SDB, a large number of constraints can be represented explicitly, and exceptional information can

be accommodated. This is in contrast with OODB, where only very limited constraints and exceptions

are supported.

2.4.2 Recursiveness

Another powerful feature supported by SDB is on the recursive applications of its constructs (e.g.,

aggregation and grouping [7]). This is again not typical in OODB.

2.4.3 Uniformity

Finally, SDB emphasize uniform treatment of all information. Thus, descriptive information about

objects (referred as meta-data), is conceptually represented and treated in the same way as specific

’’fact” objects. This feature seems to be missing or overlooked in OODB.

2.4.4 Behavior Encapsulation

On the other hand, OODB also offers features which are absent in SDB. The most obvious one is

the encapsulation of operations (called ’’methods”) within types. This complements on the complete

definition of the types, and extends the ways for interacting with other types, deriving new objects,

etc.

2.4.5 Overriding, Overloading and Late Binding

Related to the method embedding is the concepts of method overriding (by subtypes), overloading and

late binding. Again, such concepts are absent from SDB.

2.5 Other Features Assumed/Needed

To be a complete database system, other features which can be ascribed to traditional databases

will have to be added. These include: persistence, query facility, secondairy storage management,

transaction, concurrency, and recovery. We omit the discussions of them since they are not model

specific for SDB and OODB.^

262 .

3 Summary, Discussion and Conclusion

We have examined 3 categories of features supported by SDBs and OODBs. These can be summarized

by a table as follows:

Data Model Features SDB OODB

Common/Similar Ones Object-id Yes Yes

Types/ Classes Yes Yes

Relationships Yes Yes

Adopted/Influenced Aggregation Yes Adopted

Generalization Yes Adopted

Extensibility Influenced Yes

Full Computation Influenced Yes

Distinct Features Constraints and Exceptions Yes No

Recursions Yes No

Uniformity Yes No

Behavior Encapsulation No Yes

Over-riding/-loading No Yes

From the above table, we see that SDB and OODB are closely related to (and indeed, inseparable

from) each other. Not only they have influenced each other, but also they resemble a similar paradigm

in modeling and structuring the objects, which reflects some common expectations from the users of

the next generation databases. By looking at the above three categories of features, we can also infer

that SDB and OODB are by large compatible for integration, and indeed, are desired to be integrated

as they can complement each other. Such an integration shall promote a complete object power and

paradigm, which may be tentatively called as the "objective databases" (or simply, "object databases”)

(ODB). In conclusion, we propose the formula: ODB = SDB + OODB for the definition of an object

database, emphasizing the importance of encorporating both structural and behavioral facilities into

the next-generation databases.

References

[1] T. Andrews and C. Harris. Combining language and database advances in an object-oriented

development environment. In Proceedings of the Conference on Object-Oriented Programming

Systems, Languages, and Applications, pages 430-440. ACM, 1987.

263 .

[2] M. Atkinson, F. Bandlhon, !>. DeWitt, and S. Zdonik. The object-oriented database system

manifesto. In The 1st Int’l Conference on Deductive^ Object- Oriented Databases, pages 40-57,

Kyoto, Japan, 1989.

[3] P.P Chen. The entity-relationship model: Toward a unified view of data. ACM Transactions on

Database Systems, 1:9-36, 1976.

[4] E. F. Codd. Extending the database relational model to capture more meaning. ACM Transactions

on Database Systems, 4(4):397-434, 1979.

[5] K. Dittrich. Object-oriented databases: The notions and the issues. In Proc. of the Int’l Workshop

on Object-Oriented Database Systems. IEEE Computer Science Press, 1986.

[6] M. Hammer and D. McLeod. Database description with sdm: A semantic database model. ACM
Transactions on Database Systems, 6(3):351-386, September 1981.

[7] R. Hull and R. King. Semantic database modeling: Survey, applications, and research issues. ACM
Computing Surveys, 19(3):20 1-260, September 1987.

[8] W. Kim and H. Chou. Versions of schema for object-oriented database systems. In Proceedings of

the International Conference on Very Large Databases, September 1988.

[9] W. Kim and F.H. (Editor) Lochovsky. Object-Oriented Concepts, Databases, and Applications.

ACM Press, 1989.

[10] R. King. My cat is object-oriented. In W. Kim and F.H. Lochovsky, editors, Object-Oriented

Concepts, Databases, and Applications. ACM Press, 1989.

[11] D. Maier, J. Stein, A. Otis, and A. Purdy. Development of an object-oriented dbms. In Proceedings

of the Conference on Object-Oriented Programming Systems, Languages, and Applications, pages

472-482. ACM, 1986.

[12] J. Peckham and F. Maryanski. Semantic database models. ACM Computing Surveys, 20(3):153-

189, September 1988.

[13] S. Zdonik and D. (Editor) Maier. Readings in Object-Oriented Database Systems. Morgan Kauf-

mann, 1989.

264

265

Towards an Optimum Language Data Model

Ed Lowry
Digital Equipment Corporation

200 Forest St, Marlboro MA 01752

Abstract

:

Maximizing the satisfaction of a value in an engineering
design is usually limited by tradeoffs in which other
values become unacceptably sacrificed. In a few cases,
however, the maximization is limited by a boundary between
what is mathematically possible and what is not. Round
wheels, vertical pillars, and binary memory elements are
examples of optimum engineering structures which result
from such mathematical limits. It is proposed that optimum
characteristics of a language data model result similarly
by minimizing the variety of primitive data objects, the
complexity of those objects, and the number of objects
needed to represent data states. Reducing these measures
is needed to combine both rich data structure and powerful
operations in one language. The minimizations lead to a

narrow range of designs for language semantics in which
the potential advantages of specialization is small
compared with the advantages of commonality. Universal
language for support of technical literacy appears to be
an appropriate scope of generality in language design.

Language Data Models

Any formal language references subject matter which has a well
defined class of permissible structures. That class of structures
can be referred to as the data model of the language. The data
model is the most basic part a language in the sense that other
parts of the language may be changed without disturbing the data
model while changes to the data model force changes to most other
parts of the language. The mathematical character of data models
and the need for simplicity in their design limits the variety of
reasonable designs. Reasons are given below why improvements in
the design of data models lead to a narrow cluster of design
choices within which the scope for specialization is small.

Almost contradictory requirements

In designing any representational system (musical scores.
sculpture, etc) there is a need for both:

- accuracy of representation
and

- ease of working with the representations.

This article expresses the author's views, not those of any
organization

.

266 ,

For symbolic systems these requirements tend to conflict.
Representational accuracy is usually achieved by using many
structural primitives, while ease of operation seems to require
restriction to very few. In computer languages this conflict is
illustrated by a dichotomy between:

- structurally expressive languages
(Ada, PL/1, etc using MANY primitive types of data object)

and
- functionally expressive languages

(APL, Relational DB , etc using very FEW primitive types).

When applications are developed, the conceptual structures of the
application must be represented using the available data
structures of the language. For current structurally expressive
languages, the data structures represent the conceptual structures
in a fairly accurate way but the programs are complicated by the
lack of powerful operations. When applications are developed in
current functionally expressive languages, complications are added
as a result of the need to represent the conceptual structures
using data structures which cannot represent them so accurately.
The complications occur any time the problem domain has more than
a small amount of structural richness.

Extending current languages

Efforts to add to the data structure richness of an existing
functionally expressive language has tended to complicate the
language excessively. The initial complexity of the structurally
expressive languages has tended to discourage attempts to add
significantly to their functional expressiveness.

Three hypotheses on boundaries to data model improvement

Reasons are given why optimizing the simplicity of expression in a
formal language (for non-trivial structures) is limited not by a
tradeoff but by a boundary on what is mathematically possible. The
major hypothesis is that the optimum data model design in this
sense results when the primitive data structures are as simple as
possible. This hypothesis is subdivided into three parts in order
to clarify its meaning, provide a process for verification, and to
express reasons for its plausibility.

267 .

1. simplicity of expression is maximized by minimizing the
variety of primitive data types.

Functional expressiveness includes the ability to provide nested
expressions in which the results of executing subexpressions are
data aggregates which can be used as operands of outer
expressions. Keeping the variety of primitive data structures
small increases the likelihood that a data aggregate resulting
from one expression execution can be used as the operand of others
without expanding the variety of expression types. Empirically,
languages which provide this capability effectively are limited to
one basic type of data structure.

To verify the need for a minimum variety of primitive data types
we can exhibit one (or more) languages with a very small variety
of primitives and a high simplicity of expression. Continuing good
faith efforts which fail to produce anything with fewer types of
primitive that works and fail to produce anything with more types
of primitive and greater simplicity of expression, would
increasingly confirm the hypothesis. The KEEP language discussed
below is exhibited in the expectation that such efforts will fail
or provide insight into how to design a language for which the
efforts will fail.

2. Simplicity of expression is maximized by using primitives
composable from the simplest possible structures.

The first hypothesis can be independently confirmed. Its
plausibility contributes to the plausibility of this one.
Representational accuracy includes the ability to represent a wide
variety of structures with little distortion. These include both
very simple and very complex structures. The first hypothesis
restricts the language to represent all structures using only an
extremely small variety of primitive structures. If the chosen
primitives are complex, they can only be composed to give
structures that are more complex and simple structures will not be
accurately represented. This suggests that simpler is better in
choosing a small variety of primitive structures to accurately
represent a wide variety of data strucures. A lower bound on the
structural complexity of acceptable primitives is that they must
provide a way to represent relationships between objects.

Confirming this hypothesis can be done in the same way. We exhibit
a language (KEEP) with extremely simple primitives and look for
ways to design any effective language with simpler pr i mi t

look for ways to provide a language with greater expressi'^
economy but more complex primitives. Continuing failure to ri*'-’

those would provide increasing confirmation.

268 .

3. Expressive economy is optimized by constraining the composition
of the (extremely simple) primitives in a way that minimizes
the number of objects used to represent data states.

Assuming that the first two hypotheses are confirmed, then
confirmation of this hypothesis could further guide data model
design. The minimization will occur in languages for which there
is very little constraint on how simple structures may be composed
to represent complex objects. This flexibility increases the
likelihood that data structures closely matching the conceptual
structures can be formed. It rules out data models which can be
described as composed from extremely simple objects but only in
costrained ways so that the primitives may be more accurately
described as something more complex (such as binary tree elements
in pure Lisp, or sets of tuples in Relational Algebra).

The style of confirmation can be the same. We exhibit a language
(KEEP again) which has a high degree of flexibility, and look for
ways to design a language where data structures can be more
economically represented or less economically represented with
greater expressive economy.

KEEP

The KEEP language provides a number of empirical observations
which suggest and support the above hypotheses and those listed
further on:

- KEEP does provide for both structural and functional
expressiveness as effectively as any language known to
the author which is biased toward one or the other.

- KEEP and other languages tending toward its capability
use only an extremely small number of types of primitive
object which have extremely simple internal structures.
The objects are used economically, in the sense that
the number used to represent data states is about as
low as possible.

- The KEEP language is simple compared with languages like
PL/1, Ada, Common Lisp. The definition is about one
quarter their size. Small subsets can be defined.

- A language with the semantics of KEEP can (but need not) have
a syntax which gives it a very intuitive natural language
style

.

These observations suggest that there is little need to comp » i
'

-

or specialize in the following possible areas of tradeoff:
- structural richness or functional power.
- language simplicity versus comprehensiveness.
- naturalness of expression for any of the above.

269 .

Engineering optima based on mathematical limits

There are only a limited number of engineering solutions where
increasing some value is stopped by the mathematical impossibility
of going further. They include:

- Circular is the optimum crosssection for wheels and rotating
bearings. (Minimizes energy transfer.)

- Binary is the optimum radix for digital memory elements.
- Tubular is the optimum shape for pipes carrying pressurized fluid.
- Cylindrical is the optimum cavity shape for propelling pistons

or bullets.
- Horizontal is optimum for axles and floors.
- Vertical is optimum for loaded walls, pillars, and door hinges.
- Monoplane and bilateral symmetry is optimum for fixed wing aircraft

wings (after the structure is sound).
- Flat is optimum for wall mirrors and broad saw blades.
- Paraboloidal is optimum for telescopic mirrors.
- Helix is optimum for bolt threads and longt i tudinal springs.
- Circular is the optimum orbit for particle accelerators.
- Uniform is the optimum distribution of tensile strength for cables

and chains.

This kind of engineering solution generally:
- Gets near universal acceptance.
- Endures indefinitely. The extremum is easily approached

(in many cases) and impossible to exceed.
- Offers little scope for compromise.
- Arises rarely but forcefully.

The general acceptance of these solutions is often a convenience.
In the area of language design, comparable acceptance could be
much more valuable because the effectiveness of communication
is greatly enhanced when all participants use the same language.

In each of these cases there are many interacting values which
affect the total engineering design. However, the interaction
between the values did not prevent one of the values from being
stopped by a mathematical limit rather than a tradeoff over a wide
range of conditions. A marginal case is the choice of monoplane.
In the early development of aircraft, the tradeoff between
aerodynamic efficiency and achievable structural soundness favored
a biplane design. Another marginal case arises in bridge design.
If the span is so large that shear forces and bending moments
become excessive, then purely tensile cables are preferred for the
main spanning members. The near parabolic shape of the suspension
bridge cable is not so much an optimum choice as the result
choosing flexible cable.

270 .

Secondary hypotheses

A series of secondary hypotheses is presented in the hope that their
confirmation or refutation will clarify appropriate directions' for
improving computer language and perhaps a wide range of technical
communication. The breakdown into many hypotheses is intended to
help focus the evaluation of evidence on specific issues.

The hypotheses are sequenced so the early ones are more plausible.
Refutation of one hypothesis will also tend to refute later ones.
The later hypotheses are more vulnerable to refutation, but have
more significance if confirmed. The earlier hypotheses become more
significant if the later ones are refuted, so it is probably most
productive to evaluate the later ones first.

Evidence supporting or refuting each will usually be derived from
comparisons of complexity of well written system descriptions
which have been translated into languages with different
characteristics. In most cases confirmation will result from the
observation that substantial good faith efforts cannot exhibit
counterexamples. The main problems in providing confirmation will
probably be in encouraging such efforts and identifying them as
such. The meaning of each could be more precisely stated in terms
of the classes of phenomena that never occur.

The hypotheses apply only to language used to describe systems
with non-trivial structure. It is plausible that the value of
language specialization will decrease as the structure of
domains of discourse become richer.

So far the evidence seems to support all of the following:

4. Structural and functional expressiveness can be combined in a single
formal language without interfering with each other.

5. No significant technical advantages can be designed into a language
not combining structural and functional expressiveness which
cannot be made available in one that does.

6. Structural and functional expressiveness can be combined in a single
formal language which is restricted to economical use of
extremely simple primitive data objects.

7. Effectively combining structural and functional expressiveness in a

single formal language REQUIRES a design which is ro-i, i

.

to economical use of. extremely simple primitive 'i-i-'-

8. The above requirement restricts the range of effective
that potential advantages of data model specialization a»'e

substantially less than the advantages of a single standard
data model.

271

9. The main features of high quality data model design, are determined
by mathematical boundaries which abruptly limit simplification
of the primitive data objects.

10. The above abrupt limits restrict the range of effective designs so
that potential advantages of data model specialization are
orders of magnitude less than the advantages of a single
standard data model.

11. The above abrupt limits restrict the range of high quality language
design choices so that potential advantages of language semantics
specialization are substantially less than the advantages
of a single standard language semantics for definition of
structurally non-trivial formal systems. (Within a relatively
simple or unchanging formal system, language may be less formal
and more specialized.)

12. A language which combines structural and functional expressiveness
can have enough clarity and precision to play a major role
in technical communication and technical education.

13. There are no technical obstacles to the development of a universal
language for supporting technical literacy.

272 .

273 .

A NEUTRAL OBJECT-ORIENTED DATA MODEL

Robert Marcus
Boeing Advanced Technology Center
P.O. Box 24346, MS 7L-64
Seattle, Wa 98124
rmarcusSatc . boeing . com

There are an increasing number of object-oriented databases
and programming languages becoming available in industry. Each
product comes with a different model of object-oriented structure
and data. In addition, it is necessary to integrate most of these
products with previously existing applications and databases

.

In order for the object-oriented paradigm to achieve major
breakthroughs in large companies, it is necessary to supply a

mechanism for integrating legacy systems and multiple object-oriented
tools. This mechanism must also provide a methodology for migrating
away from older applications and databases without disrupting the
operation of the organization.

One of the necessary conditions for this type of integration
and migration mechanism is a structured way of insulating applications
from physical databases. A methodology for accomplishing this that
has achieved wide acceptance is the three-schema architecture. The
three schemas are:

a) Top level application views of the data.
b) A neutral data model conceptual view of the data.
c) Bottom level actual database views of the data.

The neutral data model is the key component of the three-schema
architecture. Mappings are built from this level to application
views and actual database schemas. In this way, applications are
insulated from the underlying database structure and location.
Currently commercially available three-schema architectures use
simple entity-relation or relational schema as their neutral data
model. These representations are inadequate for as a communication
medium between object-oriented applications and data.

In order to utilize the three-schema architecture in future
object-oriented environments, it is necessary to have a neutral
object-oriented data model that is rich enough to capture the
semantics of the majority of object-oriented applications and databases.
At the same time, this neutral model must be elegant enough to
facilitate easy mapping from and to other data models . Another
requirement growing out of the need to integrate with legacy systems is
that the neutral data model provide an easy mapping to relational
schema

.

I believe that the most important standard for the future of
object-oriented methods is this neutral object-oriented data model
that can serve as the foundation of three-schema architectures. A
standard in this area will not restrict vendor activities in object-
oriented databases or programming languages while provide end-users
with a method of integrating new tools into existing environments

.

Due to Boeing constraints, I will not be able to submit a paper
in a timely fashion for the OODBTG meeting in Atlantic City. I have
enclosed a paper that appeared recently in the journal, "New
Generation Computing" which is very close to my vision of a neutral
obe jet-oriented data model.

274 .

275

OODB Standardization

Roger Osborn
Concurrent Computer Corporation

Slough, England

1 Introduction
This position paper describes the features of an Object Oriented

DBMS and their appropriateness for standardization. It is based

upon work being undertaken by Concurrent Computer Corporation.

2 i Purpose of a Database Standard

2.1 Database
A database provides facilities for the management of infonnation.

It provides access, update and persistent storage of information.

It maintains the consistency or integrity and the security of

informatioiL A database is supported by a DBMS (Data Base

Management System).

Typically a database consists of one or more schemas, which

define the entities in the database, and the information holding

entities themselves. It is interfaced by, a data definition language

with which a schema is created and maintained, and a data

manipulation language with which infonnation is accessed

and updated.

The following diagram illustrates an environment model of

DBMS use.

Users
Application

Processes

DML
&

DDL
DBMS

Persistent

Storage

276 .

Standardization
It is towards the definition of data definition and manipuladon

languages for specific types of entity that database standardization

has primarily addressed itself.

There are a number of benefits that are obtained if DBMS
products conform to a common standard.

• Mixed systems interworking. Products that conform to the

same standard or rely on a standard interface to other

products can be used together to support an application;

• Exchange and re-usability. Transfer of information between

standard products and replacement of one standard product

by another are both facilitated;

• Confidence. The fact that a produa conforms to a standard

gives a prospective user confidence that the product

provides well understood and accepted functionality

appropriate to its particular problem domain;

• Familiarity. The knowledge and skills acquired by users of

one standard product are easily applied to other products

conforming to the same standard.

3 Object Oriented Database

3.1 Overview
An object encapsulates some state and behaviour. An object

oriented database supports both persistent and non-persistent

objects. It is through objects that the database features of

information storage, access and update are provided, and

information consistency and security arc maintained.

Applications are supported as the behaviours of objects, application

processing consisting of the processing of invocations of objects.

Thus there is a single model for both application and information

management activity. An object oriented DBMS therefore provides

facilities both for information management and application

processing. (OODB and OODBMS are perhaps misnomers as they

suggest a separation, between application processing and

information management, that should not exist in an object

oriented cnvironmcnL)

The following diagram illustrates an environment model of object

oriented DBMS use.

277 .

The object manager provides an object invocation service and

other basic services, including security and consistency, used by

all objects.

An object oriented database can co-exist with and be used by a

traditional application system provided that facilities are supported

that enable its objects to be invoked by application processes.

3.2 Standardization
To achieve the benefits of standardization for an object oriented

DBMS, both topics covered by the data definition and

manipulation languages for non OODBMS’s and topics raised by

the support for application processing within the DBMS, should be

addressed. The scope for standardization is therefore extensive. It

is suggested that the following items are considered:

• the object model itself.

• object specification and any necessary language support.

• the process model with particular concern for the semantics

of object invocation.

• infoimation access and query mechanisms or language.

• information consistency and security mechanisms.

• specific object types.

Standardization should not of course compromise the fundamental

concepts of object orientation, neither should it limit the flexibility

and power of the approach.

4 Object Oriented Database Features
The following sections describe the features of an OODBMS. The

features could be the basis of a reference model for OODBMS
standardization.

4.1 An Object Model

4.1.1 structure

An object has an identity and encapsulates information and

behaviours. There is a strong separation between the external

interface or view of an object and its internal implementation.

Internally it has a state (or instance variables) and code bodies

(methods) which act upon that state, whilst externally it supports a

number of functions and attributes. (An attribute is a function with

a single parameter, the output value of the attribute). A method

corresponds to a funaion (or attribute) so that, when an object is

invoked and a function selected, the corresponding method is

executed. The invoker is ignorant of how the invocation is

278 .

processed^ and has no knowledge of the internals of the object,

the state and methods being completely invisible and inaccessible

to it

4.1.2 Type
An object’s type defines its external view. All objects of the same
type support the same set of functions and attributes. However
because two objects support the same function, does not imply

that they execute an identical method to process an invocation of

that functiorL

Object types form a lattice where an object of a given type

supports all of the functions and attributes that objects of its

supertypes support, plus any additional functions and attributes

specified with the type. A type is said to inherit from its

supertypes.

supertypes jf1,l2
1

(3

type

1

j

M, 12. 13.14

subtypes
1 \

• f1.f2,l3,f4.f5 * I1,f2,l3,f4.f5,f6

A type is an object in its own right. It supports functions (and

attributes) that provide information on the definition of the type.

Information such as descriptions of the functions and attributes,

and their parameters, that are supported by objects of the type, is

provided.

4.1.3 Implementation

As well as a type, an object has an implementation. Whereas the

type defines the external view of an object, the implementation

defines its internal view. Thus the implementation describes the

code bodies of the methods and a template or structure for the

instance variables or state. An object is an instance of an

implementation. An implementation corresponds to only one type.

Thus all objects, that are instances of the same implementation,

have the same type. However a type can correspond to more than

one implementation.

Inheritance between implementations is possible, so that an

implementation inherits the instance variable templates and methods

from its super implementations. The inherited templates can be

extended to incorporate locations for new instance variables. New
methods are specified as necessary for the corresponding type. An
inherited method can be replaced by a new method thus giving a

new implementation for a function. Inherited instance variables

cannot be directly accessed by new methods as this could lead to

unpredictable changes to the behaviour of inherited methods. Like

a type, an implementation is an object in its own right.

279 .

In order that the power of object encapsulation is not

compromised, any standardization of implementation should not

preclude alternate completely different approaches.

Wi'M Object Creation

An implementation supports a function ‘create instance.’ Invocation

of this function causes a new object, that is an instance of the

implementation, to be created.

4.1.4.1 Type and Implementation Creation

As a type is an object in its own right it has a type ‘type-type’

and an implementation ‘type-implementation.’ Invocation of

create- instance on the object ‘type-implementation’ creates a

new type.

Similarly for implementation there is type ‘implementation-type’

and implementation ‘implementation-implementation.’ Invocation of

create-instance on ‘implementation-implementation’ creates a

new implementation.

4.2 Processing Model
Subject to any underlying system restrictions and to any

algorithmic limitations of its methods, an object may support the

concurrent invocation of any number of its functions.

Processing activity in an OODB can be visualized as the execution

of threads of nested invocations, that are generated as the method

of one objea invokes another object and so on. Within a thread,

invocations are processed synchronously, so that the execution of a

method is blocked until its invocation of an object returns.

However this does not preclude asynchronous activity. A method

can use multiple threads of execution in the processing of an

invocation, and it can initiate independent threads of execution.

If a method fails to complete its execution for any reason, an

exception is raised and the nest of invocations is unstacked up to

a point where the exception can be handled.

In a distributed system, multiple object managers and their objects

co-operate and interact to support a distributed database and to

provide location transparency for object invocation.

An objea at one node in a distributed system can invoke an

object at another node. The mechanisms of the

inter-communication are encapsulated by a stub object, that

represents the remote object at the invokers node, and an agent

object, that represents the invoker at the remote node.

Node 1 Node 2

invoker stub (communicalKxi) agent object

280 .

4.3|

4:3;i

4 .3.2

4.4

4 .4.1

4 .4.2

4 .4 .2.1

Object Specification

Invocation Parameters and Instance Variables

Parameters for functions can be input or output and can be typed

object references or primitive types such as integer, real, array,

string, structure, etc., whatever is supported. The type, of the

actual object referenced by a typed object reference, can be either

the specified type or any subtype of iL

Instance variables can be either typed object references or

primitive types.

Languages
In principle, a method can be specified in any programming

language. To fully achieve this, it is necessary to extend some

languages to enable a method to access the instance variables and

the invocation parameters as well as any local variables that it

might declare. It may also be necessary to extend languages so

that they support an object invocation statement

As the methods of an object are invisible to its invokers, mixed

language systems, where the code of the invoker is written in one

language and the executed method is written in another, are very

possible. This can necessitate translation of invocation parameters,

possibly using a notation such as ASNl in the communication of

an invocation from an invoker to an invokee.

Information Management
Persistence

The state of a persistent object is maintained in a persistent object

store. When a persistent object is invoked, the object manager

ensures that the state is loaded or mapped into memory. When a

method updates the state, it is the methods responsibility to ensure

that state changes are copied to the persistent object store. It

might do this explicitly by calling an object manager ‘save’

function, or it might rely on memory management hardware and

software to detect the updates and copy them back.

Access

Primary Access

An object is accessed via the object manager which binds an

invocation to an object based upon an object reference that

uniquely identifies the object The object reference cither refers to

the objects previously fixed up in memory location, or it contains

the object’s unique identifier. An object reference is obtained from

another object as an input or output invocation parameter. It can

be held as an instance variable.

281 .

4.4^.2 Collections

An object could contain a collection, that is a list or other
.

stmcture, of object references, and support functions which return

selections from the coUection. Selection conditions, input with a

function invocation, could contain expressions based upon the

common attributes of the objects in the collection. A collection

could maintain indexes based upon attribute values with which to

speed its processing of seleaions.

If required such a collection could support the abstraction of a

relation, its funaions supporting a relational query language based

on the typ)es of the objects in the collection.

4.4.2.3 Attribute Relationship Based Navigation

An objea has a type relationship with its type object and an

implementation relationship with its implementation object A type

has a supertype relationship with its immediate supertypes and a

subtype relationship with its immediate subtypes. A specific

association or aggregate (sub component) relationship between two

objects is represented by the attribute of one object referring to

the other object

It is possible to navigate this network of inter object relationships

to search for required objects. It might be possible to devise a

language with which to express the criteria for such a search.

4.4.3 Consistency

4.4^. 1 Transactions

Transaaions enable information changes, that require muluple

updates to one or more objects, to be made without any loss of

consistency. TTie object manager supports a transaction manager

that is invoked by methods, when they wish to start, commit or

fail a transaction. All updates within the context of a transaction

are subject to the successful committal of the transaction,

otherwise they are rolled back. Each object is responsible for

ensuring that its updates adhere to the correct procedures for a

iransactiorL Either an object explicitly supports 'prepare to

commit’, ‘commit’ and ‘roU back’ idempotent functions that are

invoked by the transaction manager on traitsaction commit or roll

back, or it relics on default mechanisms provided transparently by

the object manager in the implementation of its ‘save’ function or

update harxliing service.

Updated instance variables arc locked against access by methods

executing other than in the context of the same transaction, until

the transaction completes. Implementation and understanding are

simplified if all of an objea’s instance variables arc locked, thus

making the effective granularity of the update to be an object

rather than part of an object. However for large objects this may
not always be acceptable.

282 .

Nested transactions enable a method to control the consistency of

the updates, that is causes, and to manage failures, independently

from any considerations of the transaction context in which its

object was invoked. A nested transaction can be rolled back

independently of its containing transaction. On committal its locks

and updates are inherited by its containing transaction. Updates are

only irreversibly committed when the outermost transaction commits.

In mixed or distributed systems, when a transaction involves

objects subject to different transaction managers, the transaction

managers use an appropriate protocol to co-operate in the support

of a distributed transaction. Standardization of inter transaction

manager protocol for distributed transaction support should be

consistent with other transaction staixlardization activities

aSO 9805 and 9804).

4.4.3.2 Semantic Integrity

Attributes and instance variables can represent semantic

relationships between objects. Methods can be coded so that, if

their action causes a change that affects a semantic relationship,

then they trigger themselves to invoke the object concerned to

inform it of the change. Thus the effects of semantic changes

can be propagated through objects and semantic integrity can

be maintained.

4.4.4 Security

An object is a unit of appropriate granularity for security control.

An invoker has the rights or not to invoke all or a subset of the

functions and attributes supported by an object The object

manager mediates the rights of the invoker to the object

Capabilities, which are protected unforgeable object references,

provide an efficient and flexible mechanism upon which to base

security. If the invoker does not supply a valid capability with an

invocation, then the invocation is rejected. A capability can be

passed as an object reference parameter between objects, and can

be held as an instance variable.

When an object is created, the invoker is returned an object

reference containing a capability granting all rights to the object.

Copies of this capability, with all or a subset of the rights, can be

made and passed to other objects when required, thus granting

them rights to the object Capabilities can include or not the right

to make further copies. Capabilities can be persistent or transient

4.5 Specific Object Types
There is much scope for the standardization of specific object

types, both for types which extend the basic features of an

OODBMS and for higher level types.

Collection object types arxl an associated query language could

be specified.

283 .

Types of objects specific to particular application domains could

be specified. These would make possible the ability to construct

applications from libraries of standard types.

5 if Conclusion
This paper has presented a position on OODBMS standardization.

The features of an OODBMS which could be a basis for such

standardization were briefly introduced. OODBMS standardization

is an extensive topic which unifies many aspects of database,

language and processing models. There is much to do.

284 .

285

X3/SPARC/DBSSG OODB Task Force

Group Workshop

Standardization of Object-Oriented Database Systems

May 22, 1990

Position Paper

Daniel O. Sanderson

Digital Equipment Corporation

1175 Chapel Hills Drive

Colorado Springs, CO 80920

1 Introduction

An object-oriented development system is made up of many components, among
them:

• An object-oriented language

• A method dispatching mechanism

• A peristent object store

• Browsing tools

• The underlying hardware

With these components in place, applications can be written that take advantage

of the many benefits of “object-orientedness”.

While there is a need to standardize many of these components, we must not

ignore the need for accompanying methodologies, techniques, and tools that

support the design and development of applications within an object-oriented

system.

In traditional application development, a high-quality language and database

system do not necessarily result in high-quality applications. Likewise, it takes

more than a high-quality object-oriented language and database system to develop

good object-oriented applications. Even if a standard object model, OODB

286 .

interface, and language are adopted, they still do not adequately address all the

problems of designing and developing applications, especially large ones. This is

because the process of developing software is a complex one, no matter what

implementation alternative is used, and, as Brooks noted, there is “no silver

bullet,” not even an object-oriented one! [BROOKS]

So, what is needed, in addition to standardizing terms and models, is a formal

methodology that takes advantage of the object model. In this paper, I will look

at traditional development methodologies and propose some requirements for a

new methodology that is based on object-oriented concepts.

In general, a methodology is a prescription to accomplish a task or series of tasks.

It has three components [BUBENKO]:

1. A statement of the problem or requirements

2. A process (usually iterative) that leads to a solution of the problem

3. A theoretical proof or empirical evidence that shows that the process results in

a correct solution

A technique is a specific way in which a methodology, or part of it, is applied,

and a tool provides automatic or semi-automatic support to practice a technique.

While formal methodologies and techniques for traditional application

development have been around for quite some time, along with a number of tools,

only a few such methodologies exist for applications built within purely

object-oriented environments.

2 Traditional Methodologies

Structured analysis and design methodologies, such as those set forth by DeMarco

[DEMARCO] and Yourdon [YOURDON], have been in use for many years.

Using these methodologies has been shown to increase productivity and decrease

errors, yet many software development organizations still do not use them. This

may be due, not to deficiencies in the methodologies, but to confusion over which

one is best, how the methodologies can work together, and the lack of

understanding as to what they can and cannot do. Some also view the techniques

that h’ve risen out of these methodologies as being too narrow and applicable

only to certain classes of applications, such as MIS applications.

287 .

Attempts to apply structured analysis techniques to object-oriented systems have

largely failed, primarily because the world-view models on which they are based

are very different. Structured analysis and design focus on the functional aspects

of a system, such as processes, decision trees, and sequential algorithms, while

object-oriented techniques attempt to model the world in terms of objects and

methods.

Database design methodologies, such as Entity-Relationship (E-R) modeling

[CHEN] and Binaiy-Relationship modeling [MARK], have also been in use for a

number of years; however, these are practiced even less than structured analysis.

A number of extensions to these modeling techniques, especially to E-R
modeling, have been prop>osed, some even adding so-called object-oriented

extensions [TEOREY] [SMITH]. For example, E-R has been extended to include

notions of inheritance and subtyping. Such extensions, though, address only the

structural modeling of objects. Without the ability to model both object behavior

and object structure within the same methodology, extensions to existing database

design methodologies will remain just that: extensions.

The weaknesses of the traditional design methodologies can be summarized as

follows:

• Traditional methodologies do not adequately address separation of

specification and implementation.

• The various traditional methdologies and sub-methodologies are not well

integrated.

• To model all aspects of an application, the designer or analyst must model

structure and behavior separately; this does not correspond closely to the way

that things actually are in the real world.

3 Requirements for an Object-Oriented Methodology

Structured design and data modeling methodologies have attempted to improve

the usefulness and reliability of systems built on third- and fourth-generation

languages and relational DBMSs by providing a formal process for dealing with

parts of a large system in a unified way. These methodologies have been

successful to a certain extent, but they also suffer from a fair amount of

disjoinmess and lack of natural mapping to the problem being solved.

The object model provides us with a unique opportunity to “start from scratch”

288 .

in coming up with a fresh approach to building new applications that are based on
object-oriented languages and databases. In the object-oriented space, we need a

good methodology (accompanied by techniques and tools) that will make
object-oriented systems useful and attractive to implementors of large

applications.

Such a methodology will no doubt be difficult to discover. Most likely, it will

comprise a number of sub-methodologies, each of which addresses a part of the

development life cyle. This is similar to the way that data-flow diagrams and

decision trees are both part of a larger methodology called structured analysis and

design. However, we can learn from the traditional methodologies, and the

disjointedness between them, and develop a consistent methodology that

addresses all aspects of the application life cycle.

My intention is not to propose such a methodology but to set forth a preliminary

list of requirements:

Language Independence

The methodology should be language independent and be based on a standard

object-based model, such as that being developed by the OODB Task Group. For

example, it should be possible to design an application regardless of whether it is

implemented in C-H-, Smalltalk, or some other object-oriented language.

Life Cycle Support

The methodology should address all aspects of the development life cycle,

including requirements definition, architectural and detailed design,

implementation, and testing. For example, system-level requirements should be

expressible in terms of objects.

Tool Automation

The methodology should be formal enough so that automated tools can be built

that assist designers in creating, tracking, and verifying designs. For example, the

methodology should prescribe the rules for consistency between parts of a design

that can be automatically checked by a tool.

Policy-Free

The methodology should allow for individual organizations to customize it with

their own policies and standards. For example, an organization may want to

enforce certain naming conventions by customizing the methodology to include

such rules.

Consistency

The sub-methodologies should be consistent with each other and allow for natural

transition between them. For example, all sub-methodologies should make

consistent use of terms and symbols.

Modeling Features

The methodology should support the modeling of all aspects of an application,

including at least the following:

• Structure and behavior of object types

• Transaction semantics

• Physical and logical distribution of objects

• Security of objects

• Complex objects types, such as object containment hierarchies

• Inheritance

• Active objects and triggers

• Persistent object storage and retrieval

• Requirements definition

4 Conclusion

The advent of a standard, unified object model gives us an opportunity to improve

the quality of object-oriented applications and decrease the time it takes to

produce them. But good languages, reliable object engines, and fast hardware are

not sufficient Although these things give us a great amount of power, we need to

apply formal methodologies in order to harness this power. Traditional

methodologies and techniques are insufficient to take real advantage of

object-oriented databases and languages.

A new methodology, based entirely on object-oriented concepts, must be defmed

290 ,

that will increase productivity of our precious engineering resources and

maximize the benefits of the object model. Out of such a methodology, we can

develop practical techniques and build automated tools that help us to follow the

methodology and avoid costly design and implementation errors.

5 References

[BROOKS] Brooks, F.P. "No Silver Bullet: Essence and Accidents of Software

Engineering," Information Processing '86, ISBN No. 0-444-70077-3, H.J. Kupler,

ed.; Elsevier Science Publishers B.V. (North-Holland) IbiP 1986.

[BUBENKO] Bubenko, J.A., and S. B. Yao, "Data Base Design Tools,"

CH1389-6/78/0000-0002S00.75 (c) 1978 IEEE.

[CHEN] Chen, P.P. "The Entity-Relationship Model — Toward a Unified View

of Data," ACM Transactions on Database Systems, Vol. 1, No. 1, March 1976.

[DEMARCO] DeMarco, T. Structured Analysis and System Specification, New
York: Yourdon Press, 1978.

[MARK] Mark, L. "What is the Binary Relationship Approach?", In Davis (Ed.)

Entity-Relationship Approach to Software Engineering, North-Holland, 1983.

[SMITH] Smith, J.M., and D.C.P. Smith, "Database Abstractions: Aggregation

and Generalization," ACM Transactions on Database Systems, Vol 2, No. 2, June

1977.

[TEOREY] Teorey, T.J., D. Yang, and J.P. Fry, "A Logical Design Methodology

for Relational Databases Using the Extended Entity-Relationship Model,"

Computing Surveys, Vol. 18, No. 2, June 1986.

[YOURDON] Yourdon, E., and L.L. Constantine. Structured Design:

Fundamentals ofa Discipline of Computer Program and Systems Design, 2nd ed.

Englewood Cliffs, N.J.: Prentice-Hall, 1979.

292 .

293

Donald B. Sanderson
Rensselaer Polytechnic Institute

Design Research Center

OODBTG Workshop on Standards Position Paper

March, 30 1990

One of the most commonly observed phrases in the intro-

duction of a paper about object-oriented database systems

(OOODBMS) is a disclaimer that there currently exists no gen-

erally agreed upon definition of an OODBMS, but that the proto-

type proposed in that paper is, in the authors' opinions, an

exanple of one. Even the basic data model issues in an object-

oriented environment are subject to different interpretations.

As an example consider the diversity of data models employed.

The data model used in ROSE [Har] includes a specialized set of

aggregation and generalization abstractions, implemented as

extensions to C++ and Objective-C, and which are made per-

sistent. The Gemstone [Bre] data model is based on Smalltalk,

and makes it possible to save any valid object to disk. The IRIS

[Wil] system extends the SQL language to define objects to be

stored and managed by the system. With no clear consensus in the

DBMS community on the definition of an OODBMS, it seems premature

to attenpt to define a set of standards. The SQL and DBTG stan-

dards were successful due to the fact that they served mainly to

codify and formalize definitions that were already widely

accepted.

This is not to say that we should not be discussing the

issues that will be required for standards . This will in fact be

294o

OODBTG Standardization Position Paper

advantageous when there is enough consensus for a standard to be

created. The main focus of these discussions should be in areas

which do not limit the scope of OODBMS research, but which try to

pi vide a functionality that will make eventual integration of

object-oriented systems possible. The key issue in my opinion is

that of data exchange standards

.

Data Exchange between existing DBMSs is a difficult prob-

lem, even with the current exchange standards . The systems which

are most promising are those that work by translating queries

from one DBMS language to the language of another, and then use

this query to materialize the data to be passed back to the first

system. This works well when there is a similar query language

for both systems, but is not applicable to data sharing between

DBMSs with different underlying models. It also does not allow

for exchange of data between systems that do not integrate a

query language with their data descriptions such as is the case

for EDIF and IGES

.

Early work on the data exchange problem will aid both in

the development of standards, and in the exploration of OODBMS.

If researchers have the ability to share both raw data, and the

semantics of that data, then it will be easier to evaluate the

different proposed OODBMS data models in terms of their suitabil-

ity for different applications. Then as standards are introduced

to the community an exchange format will allow for the sharing of

data in the common format, while still retaining the unique abil-

ities of the various systems developed for specialized applica-

tions .

295 .

OODBTG Standardization Position Paper

At Rensselaer, a tool has been developed [Spo] that can

iirport certain data formats into the ROSE system. Then, using a

data translation tool, the structure of the objects in the

resulting ROSE database is altered to conform to the structure

required for a target applications. Several data formats includ-

ing FORTRAN Namelist and IGES files can be imported into ROSE,

and then altered to work with existing ROSE applications . This

work has demonstrated the need for a flexible means of data

exchange, and has also high-lighted the significant information

loss that can occur in such a translation.

The issue of semantic data loss will be the crucial issue

in the translation of data between OODBMSs. It is the encapsula-

tion of this semantic information, and the abstraction possible

with object-oriented techniques that makes these models attrac-

tive. Any system which permits such information loss during data

transfer will clearly not be acceptable. Thus both of the tradi-

tional methods of data exchange, common file formats and query

translation, will fail to fully solve this problem. A

related issue is exchange of data between object-oriented and

non-object-oriented systems. The experiments we have conducted

seem to show that the traditional file based exchange systems

will work here.

I propose two approaches for data exchange in OODBMSs.

The first approach deals with the exchange of data to and from a

non-object-oriented system. Thus all that we are concerned with

is the exchange of the data. This could be accomplished in a ver-

bose format somewhat similar to the Namelist format from FORTRAN.

296 .

OODBTG Standardization Position Paper

All hierarchical objects will be "flattened” first, and the vari-

ous data items will be stored in the format

:

Attribute : value

This would preserve the information from the naming schemes, and

lead to a non-ambiguous transfer system. The format will be

rather bulky, but with the compression tools available this

should not present too much of an obstacle to data sharing.

The second format of exchange is an active one. The idea

here being that the source and target DBMS are both active, and

the information is exchanged via a Unix-like socket, with the

data accessing routines in the source directly feeding the data

definition methods in the target. The motivation for this

approach is derived from the basic philosophy of object-oriented

systems themselves, principally that of data encapsulation. The

prospect of ‘ one DBMS directly accessing another DBMS's internal

storage format is in direct violation of the principles of data

abstraction and encapsulation. Instead, the source system's data

accessing functions are used to extract primitive data values

which are then passed to the constructor methods in the target

system. This not only works within the framework of data encap-

sulation, but it also allows all of the data integrity con-

straints that are programmed into the constructor functions to be

utilized. This will assure that the data transferred into the

system will conform to that system's standards. To accorrplish

this, it will be necessary to augment the OODBMS with methods to

export and import that can be used by all objects in the DBMS.

They would take other methods as their arguments, and would have

297 .

OODBTG Standardization Position Paper

the ability to transfer primitive data types (integers, text,

etc.) from one active system to another. The basic idea of this

approach is analogous to that of query translation in a federated

database system.

In conclusion I would say that the time has not yet come

for a pervasive set of OODBMS standards. However, it is not too

early for us to be considering the various support mechanisms

that such standards will need when they do come into existence.

One of the areas that seems ready for such consideration is the

form in which data exchange between OODBMSs, and between OODBMSs

and non-OODBMSs will take place.

This work was partially supported by the National Science Founda-

tion, Grant number DMC-8803252, and by the Defense Advanced

Research Projects Agency Defense Sciences Office, DARPA Initia-

tive in Concurrent Engineering, Contract Number MDA972-88-C-0047

.

All Opinions expressed or implied are those of the authors.

298 .

OODBTG Standardization Position Paper

REFERENCES

Hardwick, M., D. Spooner, E. Hvannberg, B. Downie, A. Faulstich,
D. Loffredo, A. Mehta, and D. Sanderson, "ROSE A Database
System for Concurrent Engineering Applications,” Proceedings
of the Second Conference on Concurrent Engineering , CERC,
West Virginia University, February 1990.

Spooner, D., D. Sanderson, and G. Charalambous , "A Data transla-
tion Tool for Engineering Systems," Proceedings 2nd Interna-
tional Conference on Data and Knowledge Systems for Manufac-
turing and Engineering, IEEE Computer Society Press, October
1989.

Wilkinson, K., P. Lyngbaek, and W. Hasan, "The Iris Architecture
and Implemntation, " IEEE Transactions on Knowledge and Data
Engineering , vol . 2, pp . 63-75, IEEE Computer Society Press,
March 1990.

Bretl, R., D. Maier, A. Otis, J. Penney , B. Schuchardt, J.
Stein, E. Williams, and M. Williams, "The GemStone Data
Managment System, " in Ob ject Oriented Concepts , Databases
and Applications , ed. W. Kim & H. Lochovsky, pp. 283-308,
ACM Press, New York, 1989.

299 ,

NIST-114A U.S. DEPARTMENT OF COMMERCE
(REV. 3-90)

NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY

BIBLIOGRAPHIC DATA SHEET

1. PUBUCATION OR REPORT NUMBER

VT.STTR-
2. PERFORMING ORGANIZATION REPORT NUMBER

3. PUBUCATION DATE

FEBRUARY]99]

4. TITLE AND SUBTITLE

Proceedings of the Object-Oriented Database Task Group Workshop

Tuesday, May 22, 1990; Atlantic City, NJ

5. AUTHOR(S)

Elizabeth N. Fong, Editor

Craig W. Thompson, Editor (Texas Instruments Incorporated)
6. PERFORMING ORGANIZATION (IF JOINT OR OTHER THAN NIST, SEE INSTRUCTIONS)

U.S. DEPARTMENT OF COMMERCE
NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY
GAITHERSBURG, MO 20899

7. CONTRACT/GRANT NUMBER

8. TYPE OF REPORT AND PERIOD COVERED

9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (STREET, CITY, STATE, ZIP)

National Institute of Standards and Technology
Gaithersburg, MD 20899

10. SUPPLEMENTARY NOTES

11. ABSTRACT (A 200-WORD OR LESS FACTUAL SUMMARY OF MOST SIGNIFICANT INFORMATION. IF DOCUMENT INCLUDES A SIGNIFICANT BIBUOGRAPHY CR
|

UTERATURE SURVEY. MENTION IT HERE.)
i

This report constitutes the proceedings of a one-day workshop on standardization of
object database systems held in Atlantic City, New Jersey, on May 22, 1990. The workshop
was sponsored by the Object-Oriented Database Task Group (OODBTG) of the ASC/X3/SPARC
Database Systems Study Group (DBSSG).

This workshop, he^d the day before the ACM International Conference on Management of
Data (SIGMOD '90 conference), was the first of two workshops held to solicit public input
to identify what aspects of object database systems may be candidates for consensus that
can lead to standards. The second companion workshop was held on October 23, 1990, in

Ottawa, Canada, coincident with the Conference on Object Orientea Programming, Systems,
Languages, and Applications (OOPSLA).

The workshop attempted to focus on concrete proposals for language or module interfaces,
exchange mechanisms, abstract specifications, common libraries, or benchmarks. The
workshop announcement also solicited papers on the relationship of object database system
capabilities to existing standards, including assertions that question the wisdom of

j

standardization. '

This proceedings consists of 22 position papers covering various aspects where
standardization on object database systems may be possible.

NIST is publishing the proceedings of both of these workshops to disseminate
information on object standardization activities. The proceedings of the second workshop
on standardization of object database systems appeared as NISTIR 4488.

12. KEY WORDS (6 TO 12 ENTRIES; ALPHABETICAL ORDER; CAPITAUZE ONLY PROPER NAMES; AND SEPARATE KEY WORDS BY SEMICOLONS)

database; database management system; DBMS; data model; object-oriented; OODB; programming
languages; standards.

13. AVAILABIUTY 14. NUMBER OF PRINTED PAGES

X UNUMITED

FOR OFFICIAL DISTRIBUTION. DO NOT RELEASE TO NATIONAL TECHNICAL INFORMATION SERVICE (NTIS). 308

ORDER FROM SUPERINTENDENT OF DOCUMENTS, U.S. GOVERNMENT PRINTING OFFICE,
15. PRICE

WASHINGTON, DC 20402.

A] 4 •“T ORDER FROM NATIONAL TECHNICAL INFORMATION SERVICE (NTIS), SPRINGFIELD, VA 22161.

ELECTRONIC FORM

