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ABSTRACT

A review of Mathematical Function Library for Microsof t-FORTRAN , John

Wiley & Sons, 1989, and associated computer software is presented. The pack-

age consists of xvii + 341 pages, 25 1/2 cm, loose 3-hole punched leaflets in

a ring binder and three 5 1/4" diskettes. Price: $295.

KEYWORDS

book review; mathematical functions; software review; special functions of
mathematical physics and statistics

DISCLAIMER

This paper presents the results of research which produces a
preliminary evaluation of numerical computing software made
available in a commercial product. The research is published to
coordinate and encourage work in the important area of software
quality; the results of the research are not to be interpreted as
an official assessment by the NIST.
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1 . INTRODUCTION AND DESCRIPTION OF THE UL LIBRARY

In 1964 the National Bureau of Standards (now the National Institute of

Standards and Technology) issued a massive handbook of formulas, graphs and

numerical tables of the elementary mathematical functions and the so-called

higher transcendental functions or special functions of mathematical physics

[6]. This NBS Handbook immediately filled, and continues to fill, a tremen-

dous need in scientific work; according to the Science Citation Index (pub-

lished by the Institute for Scientific Information, Inc., Philadelphia, PA),

the current rate at which it is cited in the mathematical and scientific lit-

erature is of the order of 1,300 entries per year.

The need for the numerical tables of the elementary functions in the NBS

Handbook has now largely disappeared: library routines for generating expo-

nentials, logarithms, and trigonometric and hyperbolic functions are available

in all major scientific software libraries as well as being required by the

FORTRAN Standard [1]. Also, these routines are incorporated in hand-held cal-

culators designed for scientific calculations.

The loose-leaf manual and accompanying diskettes under review, which we

shall refer to as the "UL Library", may be regarded as an attempt to replace

the numerical tables of the higher transcendental functions supplied in the

NBS Handbook by a comprehensive software package. The functions treated

include Bessel and related functions, hypergeometric and confluent hypergeo-

metric functions, elliptic functions and integrals, exponential integral and

related functions, error function and related functions. Gamma and incomplete

Gamma functions, orthogonal polynomials, probability functions and random num-

ber generators. This list is not identical to the list of functions tabulated

in the NBS Handbook; among the omissions are parabolic cylinder functions,
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Mathieu functions, spheroidal wave functions and the Riemann Zeta function.

The UL Library is designed to be used on personal computers of IBM type,

equipped with a Microsoft FORTRAN 77 compiler. For efficiency, a numeric co-

processor is recommended.^ The operating precision is IEEE double precision

(53 bits in the floating-point mantissa), but the accuracy of the computed

function values is generally less, sometimes well below single precision.

The UL library is an extremely ambitious project, especially as it ap-

pears that all of the programs have been constructed from scratch. For such a

project to be completed successfully its authors need to have a thorough

knowledge of, and experience in, several areas of classical and numerical

analysis, including analytic properties of the higher transcendental func-

tions, asymptotic analysis, approximation theory, and error and stability

analyses. How well have the present authors (who are nameless) succeeded?

2. NEGATIVE RESULTS OF NUMERICAL TESTS

A comprehensive answer to the question Just posed would necessitate a

tremedous amount of numerical testing. We concentrated our testing on Just a

few functions with which we have had previous software experience, namely

Airy, Bessel, hypergeometric , confluent hypergeometric and Legendre functions.

Usually the UL Library performed in accordance with the specifications for

each routine. However, we studied the documentation in detail, looking for

major ways in which the algorithms used might go astray. Unfortunately, we

were successful.

The library diskettes provide Fortran programs, which could be com-

piled and used on a personal computer without a co-processor, as well as co-

processor assembly code for each subroutine. For the purposes of this review,

attention is restricted to the co-processor assembly code.
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2 . THE FIRST TYPE OF FAILURE

The first, and very serious, type of failure arises when the UL Library

delivers completely wrong answers without any error message. An example oc-

curs with the routine BESJR in §8.8, which is designed to generate the Bessel

function real values of the argument x and order v. With x =

971 and v = 2^, 4^, 6^, 8^, 10^ BESJR yields the following values of J^(x),

to ten decimal places:

-0.00670 05817, 0.03764 71379, -0.05418 00781, 0.31114 25305, -0.06567 89923.

2
These should be compared with the correct values

0.01592 10880, -0.05237 32560, 0.10316 94874, -0.14727 18330, 0.14363 19977.

Not only are the numerical values totally incorrect, all the signs are wrong,

too. Similar gross errors occur for v = 22^(2)50^. On the other hand, BESJR

generates correct values (within the prescribed error tolerance) for the

intermediate values v = 12^(2)20^, and also for ^ ^
^

again being 9n.

The reason for these errors appears to be that J. C. P. Miller’s back-

ward recurrence algorithm has been used, with the trial values normalized on

the value of J (97r). Since J (97i) is zero, this procedure is bound to
1/2 1/2

lead to meaningless answers. Yet this cannot be the entire explanation,

otherwise all values in the range v = 21^(1)50^ would be incorrect and not

merely alternate ones. Thus the documentation must be in error, too. And

there may be further inaccuracies here. For example, according to the docu-

mentation the value for v = 2^ is computed from the power-series expansion

2
Obtained by use of D. E. Amos’ package [2]

.

See also comments made
below on validation.
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of J^(x): either the Miller algorithm was used instead, or, perhaps less

likely, the power series was summed incorrectly.

Similar errors occur for other values of v, both integer and noninte-

ger. For example, with x = 8.65372 79129 ... (the third positive zero of

J^(x}), BESJR generates accurate values for v = 0, 1,2,3 and 7(1)50, but

grossly inaccurate values for i> = 4,5,6. Furthermore, erroneous values of

J^(x) are generated when the value of x is merely moderately close to one

of the critical values, the magnitudes of the errors being inversely propor-

tional to the distances of x from the critical value.

A companion routine to BESJR is BESYR (§8.10), which is designed to

generate the Bessel function Y^(x) for real values of x and v. Since one

of the algorithms used in BESYR draws upon values of J^(x), we expected—and

found—some difficulties. For example, BESYR computed Y^(9n) with wrong11 11
signs and incorrect numerical values for = -502(2)-22^ and -

102 ( 2 )-2^,

while the results were correct at intermediate values of v. (This similarity

of behavior with BESJR reflects the identity Y (x) = (-)'^J (x) when =

^
V -V

n -
2

> being an integer. )

2.2. The Second Type of Failure

A second type of failure is the generation of results which, while not

completely inaccurate, contain errors greatly in excess of the accuracy

claimed in the documentation. The routine BESYR illustrates this point. The

documentation claims at least 12-digit accuracy when the order v is an inte-

ger. This claim is careless because it takes no account of the inevitable

loss of relative precision in the neighborhoods of zeros. But the situation

is actually much worse. With v = 119 and 120, we found that in the range
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X = 848(0.1)852 the accuracy often fell to 8 or 9 digits, even well away from

the zeros of Y (x) and Y (x).
119 120

Another example is provided by the routines AIRYA and AIRYAD (§§8.1 and

8.3) for the Airy function Ai(x) and its first derivative. In both routines

at least 13-digit accuracy is claimed when -10^° ^ x s 100. But we found

many values of x in the (zero-free) range 5.2 to 5.8 for which they

yielded only 8 or 9 correct digits.

2.2. The Third Type of Failure

The third type of failure arises when the UL Library generates an innac-

curate value and the user is warned by an error message such as "unable to

compute the . . . function with acceptable accuracy" or "numeric overflow in

the . . . function". If these failures occur too frequently, then there will

be huge gaps in the effective ranges claimed for the variables. Such is the

case with the routines CHGFU (§9.2) for generating the confluent hypergeome-

tric function U(a,b,x), and HPRGMT (§20.1) for generating the hypergeometric

function F(a,b;c;x).

CHGFU employs two algorithms. The first, evaluation of the asymptotic

expansion of U(a,b,x) for large x, is quite sound. The second is based on

a formula that expresses U(a,b,x) as a difference of two M-type confluent

hypergeometric functions, is unsound because of the potential for massive

numerical cancellation. As a result, although the documentation claims that

the effective ranges of the variables are given by

-50 :£ a :s 50, -50 i b 5 50, -100 :£ x :£ 100,

with the exclusion of integer values of b and nonpositive integer values of

a, extensive regions are inadmissible. These include:
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a = 0.5, b = 0.5, 7.4 :£ X :£ 19.9; a = 2.7, b = 5.4, 10.1 ^ x :s 437.4;

a = 20, b = 2.5, 0.34:£x2 20,000.

For HPRGMT the documentation states that a and b can have any real

value between -10^° and 10^°, c can have any real value between -10^°

and 10 (other than a negative integer) and x can have any real value

between -10^° and 1. Again, these claims are misleading. For example,

when X is in the interval [0,1) HPRGMT sums the hypergeometric series

F{a, b; c; x)

00

= I
a (a+1

)

(a+n-1 )b(b+l ) * » (b+n-1

)

c (c+1 ) • •
• (c+n-1

)

n
X

n!

Since the radius of convergence is 1 the algorithm must fail for values of

X sufficiently close to 1. Sample intervals of failure were found to be:

a = b = 100, c = 1, 0.95 :s X < 1;

a = b = 10000 c = 1, 0.0013 s X < 1;

. . ...8 -If)
a = b = 10 , c = 1, VXVI

1
o

Even when failure does not occur, execution can be extremely slow. For a = b

= c = 1 and z = 0.99999, 20 minutes elapsed on a 25 mhz IBM PS2 Model 80

before the answer was produced.

3. REMARKS ON THE ALGORITHMS USED

The weaknesses in the algorithms used for J^(x), Y^(x) and U(a,b,x)

are avoidable. Robust software for generating these functions is already

available; see, for example, [3], [8]. Instead of normalizing the trial val-

ues of J (x) obtained in the Miller algorithm via a single value of J (x),
V ° ° i;

the identity
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00

I
(i^+2k)r(i^+k)

k!

k=0

[6], eq. (9.1.87), could have been used. This is the appropriate generaliza-

tion of the identity

1 = J (x) + 2J (x) + 2J (x) +
2 40

that the authors use in a routine BESJ (§8.7) for generating functions of

integer order. A stable way of generating U(a,b,x) is backward integration

of the confluent hypergeometric equation, with initial values derived from the

asymptotic expansions of U(a,b,x) and 5U(a,b,x)/5x for large x.

In addition to occasional poor choices of algorithm, instances of poor

choices of the actual functions being generated were observed. Thus,

functions that exhibit exponential growth or decay when the argument x is

large would have been better replaced by their logarithms. This would greatly

increase the threshold at which overflow or underflow occurs. Such

functions include the Gamma function, r(x), the exponential integral,

Ei(x), the complementary error function, erfc x, the Airy functions, Ai(x)

and Bi(x), the incomplete Gamma function r(a,x), the modified Bessel

functions confluent hypergeome trie function

M(a,b,x). In the case of r(x), a separate routine is given for £n|r(x)|

in §13.3, but since this is constructed simply by taking logarithms of the

values obtained by the library routine for r(x), there is no increase in the

overflow threshold. The logarithm should have been generated first!

Troublesome singularities can sometimes be avoided by introduction of

appropriate factors. Each of the functions M(a,c,x) and F(a,b;c;x) has

poles at c = 0,-1, -2 but both M(a, c,x)/r(c) and F(a,b;c;x)/r(c) are
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entire functions of c; this was pointed out many years ago in [7]. The

statement in §9.2 that U(a,b,x) is not well defined when a and b are

negative integers and |b| ^ |a| is incorrect. As noted in [7], p. 258,

U(a,b,x) is entire as a function of a and b. The poorly chosen algorithm

used to compute U(a,b,x) may fail when a or b is an integer or close to an

integer

.

4. REMARKS ON VALIDATION

We could continue in this vein and we could also provide a substantial

list of typographical errors in the manual and operational defects in the

3
software. Instead, let us turn now to the topic of validation. Several

articles have been written on the difficulty of checking software written for

the generation of mathematical functions; see, for example, [3]. How were the

UL Library routines validated by the authors? The only clue supplied in the

manual appears to be the statement on p. 36 that the least accurate results in

the output of an algorithm always occur at the interface with another algo-

rithm. Presumably this means that there has been substantial cross-checking

at these interfaces. This is indeed a powerful type of check, but one that

does not guard against all types of algorithmic and programming errors, as we

have already observed with the routines BESJR and BESYR.

There are two subsections (§§6.2, 6.3) in which the authors encourage

users to check output by using identities satisfied by the higher transcen-

dental functions. For example, the error and Bessel functions are both

special cases of confluent hypergeometric functions. However, these kinds of

3
For example, there is a statement on p. 24 that the computer will halt

when a library routine is called and a co-processor is not present. We found

this is not always true; furthermore, instead of identifying the absence of a

co-processor as the problem, the error messages misleadingly report errors in

the library routine.
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identities are rather specialized, and there is always the danger that they

may have already been used in constructing the library routine. For example,

there are identities that relate the Airy functions Ai(x), Bi(x) and their

derivatives to Bessel functions and modified Bessel functions of orders ±1/3,

±2/3. But if these identities are used as cross-checks then the inaccuracies

we noted above for the routines AIRYA and AIRYAD may not show up because the

same kind of inaccuracy is present in the (parent) routine BESKR (§8.14) for

the modified Bessel function K^(x). In contrast, a powerful form of cross-

check that is not mentioned in the manual, but which is widely applicable, is

to employ identities of Wronskian or Casoratian type. Examples are:

Ai(x)Bi'(x) - Ai'(x)Bi(x) = I/tt,

J (x)Y (x) -J (x)Y (x) = 2/(7rx).
u+i V u v+i

Checks of this type were used to detect errors in the UL Library routines.

They were also used to validate results from other libraries used to compare

against the UL Library.

5. SUMMARY AND RECXIMMENDATIONS

In summary, the UL Library provides PC users with a new set of routines

for generating an extensive collection of higher transcendental functions,

indeed most of the functions tabulated in the NBS Handbook. The library is

relatively easy to install and its price is reasonable. It will provide a

useful tool for mathematical physicists and other scientists, especially those

engaged in calculations of exploratory type.

However, in a comparatively small sample failures of various kinds were

encountered, including some extremely serious ones. It may be that the

authors lacked some experience and expertise, or perhaps just the necessary

9



time, for the mammoth task of constructing and testing a robust library of the

kind intended. Therefore, users will need to exercise great care with any

output from the library, applying independent checks wherever possible.

Furthermore, users must also be prepared for disappointments: the viable

ranges of a routine may turn out to be a good deal less than is claimed in the

documentation, especially in the case of functions that have not been treated

by earlier software workers.

For heavy systematic computations many users will find the more robust

IMSL and NAG libraries [4], [5] to be preferable. The variety of functions

covered in these libraries is not as large, but the viable ranges of the

variables are considerably more extensive and the precision is often higher.

Moreover, both IMSL and NAG provide many desirable features, such as linear

algebra packages, in addition to routines for generating higher transcendental

functions.
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