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PREFACE

This volume is a collection of papers from a workshop held by the Object-Oriented Databases

Task Group (OODBTG) of the Database Systems Study Group (DBSSG). The DBSSG is one

of the advisory groups to the Accredited Standards Committee X3 (ASC/X3), Standards

Planning and Requirements Committee (SPARC), operating under the procedures of the

American National Standards Institute (ANSI). The OODBTG was established in January

1989. Consistent with usual practice when confronted with a complex subject, DBSSG
charged the OODBTG to investigate the subject of Object Databases with the objective of

determining which, if any, aspects of such systems are, at present, suitable candidates for the

development of standards.

This workshop is one of several activites sponsored by OODBTG, which will contribute to the

Final Technical Report of OODBTG. The Final Report is scheduled to be delivered to DBSSG
in 1991 and will include recommendations as to which standards X3 should attempt to develop

in the area of OODB. A similar workshop was held in May 1990 in Atlantic City, New Jersey.

These two workshops will provide data points from which recommendations in the Final

Report can be developed.

Other activities currently under way by OODBTG include development of a Reference Model
containing informal definitions and requirements for an Object Database Management System,

and a Survey of OODB Systems

The papers reprinted in this volume represent the opinions of the individual authors.

These papers are neither approved standards nor recommendations of OODBTG.
Neither OODBTG nor the Program Committee have made any judgements as to whether
any topic of any paper complies with the Reference Model currently under development
by OODBTG.

For further information about OODBTG, please contact:

Elizabeth Fong
National Institute of Standards and Technology
Building 225, Room A266
Gaithersburg, MD 20899

Finally, I would like to thank the other members of the Program Committee for their efforts in

reviewing the papers of this Workshop.

Allen Otis

Portland, Oregon
15 October 1990

Workshop Program Committee: Tim Andrews, Ontologic

Haim Kilov, Bellcore

Allen Otis, Servio

Craig Thompson, Texas Instruments
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ABSTRACT

This report constitutes the proceedings of a one-day
workshop on standardization of object database systems
held at the Chateau Laurier Hotel, Ottawa, Canada, on
October 23, 1990. The workshop was sponsored by the
Object-Oriented Database Task Group (OODBTG) of the
ASC/X3/SPARC Database Systems Study Group (DBSSG)

.

This workshop, held on the third day of the Conference
on Object Oriented Programming, Systems, Languages, and
Applications (OOPSLA) , was the second attempt to solicit
public input to identify what aspects of object database
systems may be candidates for consensus that can lead to
standards. The first companion workshop was held on May
22, 1990, in Atlantic City, New Jersey, coincident with
the International Conference on Management of Data
(SIGMOD)

.

The workshop goals focused on concrete proposals for
languages or module interfaces, exchange mechanisms,
abstract specifications , common libraries , or benchmarks

.

The workshop announcement also solicited papers on
relationships of object database systems capabilities to
existing standards, including assertions that question
the wisdom of standardization.

This proceedings consist of 13 position papers covering
various aspects where standardization on object database
systems may be possible.

Key words: Database; database management system; DBMS; data model;
object-oriented; OODB; programming languages; standards.
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DISCLAIMER

The views expressed in this report are those of the authors, and
do not necessarily reflect the views of the National Institute of
Standards and Technology (NIST) or any of its staff. The specific
vendors and commercial products identified in this report do not
imply recommendation or endorsement by the NIST.

The report has not been subject to policy review or direction by
the NIST, nor by Accredited Standards Committee X3 Information
Processing Systems, Standards Planning and Requirements Committee
(SPARC)

.
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Aspects of Object System

Standardization

Roger Osborn, Michael Maddison, Dennis Layton

Concurrent Computer Corporation

Slough, England

1 Introduction

An object system provides a new and uniform single architectural

paradigm, for application systems, that is different from the traditional

distinct paradigms of application programs and database. Application

and database are merged so that there is no clear separation between

them.

Addressing standardization of Object Oriented Databases from a

traditional database perspective could cause incorrect balance and lead

to unrealistic or irrelevant standards. Instead a total system perspective,

that addresses the standardization of object systems as a whole, should

be taken.

In this position paper, the benefits and scope of object systems and their

standardization are discussed. The fundamental properties of objects

and object systems are described. The aspects of object systems that must

be considered for standardization, if interoperability and portability are

to be promoted, are listed.

2 Object System Standardization Benefits

Object orientation provides a means whereby an application system can

be structured so that its organization corresponds closely to the real

world or abstract system that it is supporting and thus capture much of

its semantics. This has potential benefits in reliability, security,

performance, fault tolerance and in the facilitation of the continuous

development of an application to match the evolution of its supported

system.
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Although, in object systems so far produced, all of the above benefits

may not have been achieved, standardization should encourage the

production of object systems where they are realized. Standardization

should also contribute its own benefits of interoperability, portability

and approved common and consistent functionality.

Object System Scope
The scope of an object system is broad. The traditional two separate

models for application programs and database management are replaced

by a single model for both programming and managing data. Thus the

scope covers all aspects of information processing and management.

These include: languages, processing models, distribution, concurrency,

persistence, access, consistency, security, user interface, development
and maintenance. Object orientation is a general purpose and unifying

technology. It is not restricted to a few application areas. With a

complete object system there are few limitations on the types of

application system that can be supported. Data processing, transaction

processing, real-time, fault tolerant, knowledge based, artificial

intelligence, etc., applications should all be implementable in an object

system and be able to partake of the benefits of such a system.

Standardization should address itself to this broad scope, and establish a

base framework for a series of related standards, covering different

aspects of object systems, but based upon a common fundamental object

model or family of models. This standardization process should not be

reluctant to take the lead in mapping out any less understood or

established aspects.

Object and Object System Fundamentals

General Features

An object oriented application system consists of objects. An object

encapsulates information and behaviours. It supports a number of

functions. Processing takes place when objects execute in either direct or

indirect response to the invocation of their functions. An object system

supports an invocation service.

Objects can invoke each other. An object can be concurrently executing

in response to multiple invocations.

An object exists within a context. It exists until either it is deleted or the

context terminates. The context can be quite persistent, such as the life of

the object system, or it can be transient, such as: a session of the object
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system, a user session with the object system, a transaction etc. An
object's persistence or transcience can be independent from its other

properties. For objects that require persistence, the object system

supports an object store.

An object can participate in a transaction such that any changes to it are

subject to the commitment of the transaction. An object system contains

a transaction manager which supports transaction control functions and

co-operates with other systems' transaction managers in the

commitment of distributed transactions. An object's participation in a

transaction is orthogonal to its degree of persistence.

Only authorised invocations are permitted to security controlled objects.

Authorization is either via possession of a capability for the invocation,

or via direct or indirect matching of an authenticated invoker against an

authorized invoker list.

There is a strong separation between the external interface or view of an

object and its internal implementation. The invoker of an object is only

concerned with its external interface and has neither awareness of, nor

access to, its internal implementation. Thus, for instance, standardization

for interoperability is not concerned with the internal implementation of

objects.

4.2 External Object Interface

Externally an object has an identity and a type. The identity is unique

within some scope that can be either the complete object system or a

subset of it.

An object's type defines the functions that it supports. Thus all objects of

the same type support the same set of functions. Types form an

inheritance lattice where an object of a given type is a specialization of

objects of its supertypes. It supports all of the functions that they support

plus any additional ones specified with the type. Thus to an invoker an

object can be treated as though its type was that of one of its supertypes.

A type is an object in its own right. It supports functions that provide

information on its definition, such as descriptions of the functions that

are supported by objects of the type. These descriptions include

definitions of the syntax of function invocations, that is input and output

parameters and their types (integer, real, string, array, etc, or typed

object references). Descriptions could also include formal specifications

of the functions.
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Internal Object Implementation

An object's implementation is independent of its type and there can be

many different implementations for the same type. There are many
different possible implementation models. The one, that is now
described, is a class based system. In such a system an object's class

defines its implementation, that is its instance variables, which represent

its state, and the code bodies (or methods), which are executed when its

functions are invoked. Objects of the same class share the same methods

and have the same instance variable structure. Inheritance between

classes is possible, so that a class inherits the instance variable structure

and methods from its super classes. The inherited structure can be

extended to incorporate locations for new instance variables. New
methods are specified as necessary for the corresponding type. An
inherited method can be replaced by a new method thus giving a new
implementation for a function. Inherited instance variables cannot be

directly accessed by new methods as this could lead to unpredictable

changes to the behaviour of inherited methods.

A class is an object in its own right and it supports a function 'create

instance.' Invocation of this function causes a new object, which is an

instance of the class, to be created.

Standardization Aspects

Interoperability

For standardization to promote interoperability, so that an object in one

object system can be invoked from another object system or a non-object

system, either on the same or a different machine, there are many aspects

to be considered. These mainly concern the external interface to objects

and an object system and are independent of the internal

implementation of an object.

invocation

Extensions to programming languages to support object invocation

statements. Conversions of invocation parameters from one language or

system to another. Use of a standard notation such as ASN.l in such

conversions. Invocation protocols including the communication of

session information such as user or invoker identity, transaction

information. Exception handling.

identity

The format for object identifiers. Name servers for mapping names to

object identifiers.
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transactions

Two or three phase commit protocols to be followed by transaction

managers in order to commit a multi-system transaction. Use of

standard protocols.

security

Invoker authentication. Capability or authorised invoker control list

handling. Invocation lodging.

type

Standardized type objects to enable function syntax to be retrieved and
used either for type checking prior to object invocation or for object

browsing.

subtyping

Facilitates flexibility between invoker and invokee. An invoker need
only know the type of an object to the level of specialization that

interests it.

standard types

Standard types for particular application domains. For objects of these

types invokers can assume type information.

There are degrees of interoperability varying from the ability to invoke a

few static objects to a very dynamic but well controlled interaction

between changing groups of objects. Depending upon the degree or

quality of interoperability required, different levels of support for the

above aspects are necessary.

5.2 Portability

To promote portability so that types and object implementations can be

imported into one object system from another, standardization must
address the internal and external specifications of objects. For a class

based implementation system the ability to import methods, instance

variable structures and object classes is required. Aspects, that have to be

considered, concern both the importation mechanisms and the

assumptions, that method code must make about the environment in

which it is to run.

type

The types of type class and other meta-objects required for type creation.

The type inheritance policy.

5
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class

The types of class class and other meta-objects required for class and
object creation. The class inheritance policy. The means of invoking

superceded superclass methods.

object dependencies

Support for invocation by imported methods of objects of other types

either concurrently imported, newly created or pre-existing. Standard

type assumptions.

languages

Extensions to programming languages to enable methods to access

instance variables and to invoke other objects.

process model

Synchronous invocation assumption. Mechanism for initiating

asynchronous activity. Concurrency control mechanism. Exception

handling mechanism. Process functions.

object reference

Functions for assignment and comparison.

persistence

Mechanism for saving updated state to persistent storage.

transactions

Transaction model including nested and asynchronous transaction

support. Nested transactions enable objects to control their own recovery

and consistency independently from the transaction context of their

invocation. Locking model. Commitment assumptions, either

transparent to objects or object supported commit functions. Transaction

manager functions.

security

Functions for granting, preserving and other manipulations of

capabilities. Alternative functions for granting and revoking rights.

class libraries

Mechanisms for their importation. Importation with corresponding

types. Matching with existing or standard types.

Several standards could result from consideration of the above aspects.

They all need to be considered if portability is to be fully realized.
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6 Conclusions
Object orientation, if fully supported by an object system provides a

simpler, more powerful and complete paradigm for computation than

the traditional application program and database paradigms. It is

applicable to most application domains. Because of this broad

applicability, a framework for standardization is necessary, and many
aspects need to be considered. We have listed those aspects, that we
believe should be considered, if interoperability and portability are to be

promoted.
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A Strawman Reference Model for an Application Program Interface

to an Object-Oriented Database

Edward Perez

Texas Instruments Incorporated *

Abstract

This position paper provides a strawman refer-

ence model which can be used to compare and rea-

son about an application program’s interface to an

Object-Oriented Data Base system (OODBs), with

an emphasis on object manipulation from an object-

oriented programming language bindings. 1 We be-

gin with an introduction of OODBs and describe

the broad domain for an OODB reference model

as well as the specific sub-domain we will discuss.

Next, we describe some goals of the reference model

for the specific sub-domain. A descriptive reference

model is then described as consisting of a collection

of design choices that can be used for comparing

existing and future application program interfaces

to OODBs. Finally, based on the descriptive refer-

ence model, we define a functional reference model

that provides a much more precise description of the

interface provided by one such OODB, Zeitgeist, be-

ing developed at Texas Instruments.

1 Introduction

In the past few years, new applications have been

developed which have data modeling needs that are

much more complex, both in content and interob-

ject relationships. To assist in the development of

these applications, new object-oriented languages

have been developed to provide an application de-

veloper the ability to create and manipulate com-

plex data inherent in these applications. Several re-

search prototypes and commercial object-oriented

databases systems (OODBs) have been developed

in the past few years (including Iris [1, 2, 3], Orion

(4, 5], E [6], Postgres [7, 8, 9], ODE [10], GemStone

[11], Ontos [12], OBJECT-Base [13], ObjectStore

‘Information Technologies Laboratory, Technical Report

90-07-03, Computer Science Center, Texas Instruments In-

corporated, P.0 Box 655474, MS 238, Dallas, Texas 75265.

Email: perez®csc.ti.com Telephone: (214) 995-0698
1 Other aspects of an OODB API are covered in [21, 22,

23).

[14] and Zeitgeist [15]) to provide long term storage

of the data created by these applications.

Several papers [17, 18, 19, 20] have described

the main features and characteristics that a sys-

tem must have in order to qualify as an object-

oriented and/or third generation database. Within

the broad domain of OODBs, we see the following

sub-domains.

1. Language Independent Data Model

OODBs in this sub-domain (e.g., Postgres and

Iris) provide a new database language to define

types and classes as well as to manipulate and

query instances of the predefined classes
(
the

languages have a heritage from the relational

database languages). The language is also to

be considered independent of application pro-

gramming languages. Persistence is implicit for

each class defined.

2. Language Dependent Data Model

OODBs in this sub-domain provide similar fea-

tures but also allow for explicit navigation be-

tween objects.

(a) New language

OODBs in this sub-domain (e.g., Trel-

lis/Owl) develop a new language and add

persistence to classes in the language.

(b) Existing language

OODBs in this sub-domain extend an ex-

isting language and add persistence to

classes in the language.

i. Dual type system
OODBs in this sub-domain (e.g.,

Orion, Gemstone, E) do not separate

the concept of persistence from type,

requiring the application developer to

define two classes/types, one for tran-

sient and one for persistent usage.

ii. Single type system
OODBs in this sub-domain (e.g., Ob-

jectBase, ODE, Ontos, VERSANT

9



Manager, Zeitgeist) separate the con-

cept of persistence from type.

In general, an API to an OODB includes the abil-

ity to 1) allow the application developer to define

types and classes to the system, 2) allow the appli-

cation developer to manipulate objects (also called

instances) of the defined classes, and 3) allow the

application developer and/or end-user to query the

objects within the context of an application program

or a stand-alone query system. In this paper, we

will concentrate on defining an API reference model

for those OODBs in sub-domain 2(b). ii (an OODB
based on an existing object-oriented language and

data model with a single type system) and, more

specifically, concentrate on an API for manipulat-

ing objects. Since we are concentrating on this sub-

domain, issues related to data model definitions are

best left to a discussion of the specific programming

languages and their extensions (although, there is

a short discussion in Appendix A), while issues re-

lated to queries, transactions, and change manage-

ment are best left to other position papers, such as

[21, 22, 23]. Finally, although many of the concepts

presented here are applicable to the other OODB
categories, other position papers are needed to fully

develop the overall OODB API reference model.

Section 2 discusses some of the goals of the chosen

sub-domain and API. Section 3 presents a descrip-

tive reference model that provides a framework that

can be helpful for future standardization efforts in

the area of APIs to OODBs. The reference model

describes a design space of characteristics and de-

fines the criteria and features that serve as a basis

for comparing different existing and future APIs.

Section 4 describes a functional reference model us-

ing the API of one specific OODB, Zeitgeist. Sec-

tion 5 presents a comparison between a represen-

tative sample of OODB APIs using the established

reference model. Finally, we present our conclusions

in Section 6.

2 Goals

The traditional goals of database systems have

been to manage information in a persistent and re-

coverable storage medium that can be shared in a

controlled manner by multiple users and/or applica-

tions. For the most part, the API to these databases

has been accomplished by embedding a data ma-

nipulation language in a conventional programming

language or by using some form of an interactive

query facility.

While the usefulness and productivity improve-

ments gained from the use of query facilities has

been substantial, the embedding of a data manipu-

lation or query language in programming languages

has constrained application developers by forcing

them to conceptualize, design, and implement their

application using two or more data models and lan-

guages.

Thus, we believe that an OODB should help to

improve the productivity of application developers

in at least the following ways. First (Goal 1), the

impedance or mismatch between the data mod-
els of the programming language and the database

can be virtually eliminated by using one data model

(and language) to manipulate the objects instead of

translating between the two models. Second (Goal

2), productivity can also be increased by reducing

the number of explicitly coded interactions

between the application program and the database,

especially for retrieval of objects from the database.

Finally (Goal 3), the introduction of an OODB to

an existing application program (whether or not it

is using a database system) should minimize the

additions to or modifications of the applica-

tion program’s code (whether modified by the

application developer or the OODB system). As we

describe the reference model, we will refer back to

these goals.

3 Descriptive Reference

Model

In this section, we present a descriptive reference

model for an application program interface to an

OODB.

3.1 Common Features

In this section, we describes certain common fea-

tures that we believe must be included in any API to

an OODB. They can be used as a starting point for

developing a consensus that can lead to standards

in the area of an OODB API. We separate these fea-

tures into those that pertain to the database system

and those that pertain to the individual objects ma-

nipulated by the application program and managed

by the database system. Unless otherwise stated, we

will use the term “system” to refer to the database

system.

10



3.1.1 System Interface

Regardless of the database system used, certain

interfaces must be supplied to allow the application

program to define the boundaries of database and

transaction execution.

System Startup and Shutdown
Prior to using any of the interfaces defined in the

API, the application program must indicate its in-

tent to begin interacting with the system to allow

the latter to perform whatever actions are neces-

sary to make itself ready for subsequent requests

from the application program. Once the application

program has completed its interaction with the sys-

tem, it must indicate that no further interactions

with the system will occur to allow the latter to

perform whatever actions are necessary to orderly

shut down or terminate itself. One of the design

choices is whether the startup and shutdown must

be performed explicitly by the application developer

or implicitly by the system. Although these actions

are not performed frequently during the execution

of an application program, if they can be performed

implicitly (perhaps by exploiting the semantics of

programming language variable allocation and deal-

location), this will contribute to satisfying Goal 2.

Beginning and Ending Transactions

Although certain interactions with the system do

not affect the state of the database (e.g., obtaining

the release version, setting any performance con-

trols, etc.), interactions involving class definitions

or objects must take place within the boundaries of

a transaction to insure the integrity of the state of

the database. The application program must indi-

cate the beginning of the transaction. As a result

of this indication, the system may take whatever

actions are necessary to prepare for subsequent cre-

ation and/or retrieval of objects, requests for object

locks, etc. When the application program has com-

pleted an appropriate set of database and program-

ming operations involving newly-allocated and/or

retrieved objects, it must indicate the end of the

transaction and specify the disposition of the per-

sistent objects manipulated during the transaction.

An application program may choose to commit the

work, in which case the persistent objects are saved,

altering the state of the database, or abort the work,

in which case the state of the database will not be al-

tered. In addition to processing the end of the trans-

action, the system may perform whatever actions

are necessary to properly end the transaction. Al-

though the boundaries of a transaction must be ex-

plicitly indicated (How many run-time systems can

automatically infer the intent of an application pro-

grammer?), another design choice is whether the ap-

plication developer uses the OODB API directly or

whether programming language constructs should

be defined which would implicitly use the specific

OODB interfaces.

3.1.2 Individual Object Interface

In this section, we discuss the interfaces to allo-

cate persistent objects, manipulate their database

status via references (also called handles), and re-

trieve them from the database. Manipulation of the

actual objects (via their references) is performed us-

ing the methods defined for the object’s class and

will not be discussed in this paper.

Allocating and Deallocating Objects
The application programmer decides when an ob-

ject comes into existence and when it is no longer

needed. Some of the objects allocated and used

within an application program will exist only dur-

ing all or part of an execution of an application pro-

gram (transient) while others will exist during an

execution of an application program as well after it

has terminated its execution (persistent). How-
ever, some transient objects can never become per-

sistent (they are fully transient ), while others may
become persistent ( they are potentially persistent).

Therefore, in this paper, a class whose objects will

never become persistent will be called a transient

class and its objects transient objects. A class

whose objects might become persistent will be called

a persistent class and its objects persistent ob-

jects. Throughout this paper, we will use the word

“object” and “instance” interchangeably, adding the

adjectives “persistent” and “transient” as needed.

The design choice concerns the programming lan-

guage construct used to allocate an object: should

the allocation be dependent upon the object’s per-

sistence? That is, should the construct used to al-

locate a transient object be the same or different as

the one used to allocate a persistent object? Since,

in sub-domain 2(b). ii, persistence is orthogonal to

the object’s class (type), using the same construct to

allocate both kinds of objects helps to satisfy Goal 1

as well as Goal 3. When coding the actual allocation

of the object, the application programmer does not

need to ask questions such as “Will this object ever

be saved to the database?” (“It should not matter

at this point in time.”) or “Which language con-

11



struct do I use to allocate this object?” (“The con-

struct defined by the language, of course.”). In ad-

dition, this orthogonality of persistence would also

allow a class library to be developed with persistence

comprehended, leaving to the users of the library the

decision of whether or not to make instances of the

library classes persistent. Similarly, the construct

used to deallocate transient and persistent objects

should be the same. The issue of physical deletion

of a persistent object is in another design space and

will not be considered in this paper.

Assigning and Comparing References to

Persistent Objects

After the application programmer has allocated

a persistent object, (s)he must be able to assign

a reference to it as well as compare references to

persistent objects. Analogously to allocating per-

sistent objects and retrieving persistent objects (see

below), the design choice concerns the language con-

struct used to perform these assignments and com-

parisons of references to transient and persistent ob-

jects: should they be the same or different. If the

same construct can be used to manipulate a refer-

ence to a persistent or transient object, we can fur-

ther satisfy Goal 1. In addition, use of the same con-

struct helps to satisfy Goal 3 by eliminating the need

to add additional code to accomplish these tasks. At

the API level, we will only require that the ability to

assign a reference to a persistent object, assign one

reference to another, and to compare the values of

two references (i.e., virtual memory address of the

objects) be supported. Assigning or comparing be-

yond the values of the references is a design choice

in the design space of the data model and should be

made by the data model, language and/or applica-

tion developers and not the OODB system.

Indicating Persistence of Objects

As stated before, we distinguished between classes

whose instances would never be saved to the

database and classes whose instances might be saved

to the database. Clearly, indicating persistence can

only apply to instances of the latter classes and must

be made prior to the end of the current transaction.

The design choice concerns when that indication of

persistent is made: implicitly when the object is al-

located or explicitly after the object has been allo-

cated and before the end of the current transaction.

We believe that indicating persistence of an object

should be orthogonal not only to its type but to

its allocation. This choice provides the application

programmer with more flexibility at the expense of

an additional interaction with the system. The ap-

plication program performs only what is necessary

when it is necessary; a more economical and “only

pay for what you use” philosophy.

Indicating Modification to Persistent Ob-
jects

When an persistent object is allocated or re-

trieved, the system has to determine whether or not

the object should be saved to the database if the

current transaction is committed. This determina-

tion could be made by 1) relying on the object’s

existence in virtual memory, 2) detecting modifica-

tions by having the compiler add code to flag mod-
ifications to the object, 3) detecting any writing to

the object, or 4) having the application program ex-

plicitly inform the system that the object has been

modified. Option 1 is the easy way out but proba-

bly results in saving more objects than are necessary

(not every object created or retrieved is modified).

Option 2 involves additions to every compiler that

can compile code which interfaces with the system

and determining which modifications imply an ac-

tual change to the object. Option 3 requires special

hardware or software on every system where the ap-

plication program will execute. Option 4, however,

leaves the choice to the application developer and

follows the “only pay for what you use” philosophy.

With options 2-4, we now have two conditions a per-

sistent object must satisfy before it can be saved to

the database: it must have been indicated as be-

ing persistent and as having been modified. With

option 4, we have simplicity and flexibility at the

expense of an additional interaction with the sys-

tem.

Retrieving Persistent Objects

After an object has been saved to the database

as the result of committing a transaction, it can be

retrieved at some point in the future by the same or

another application program. Clearly, the API must

provide an interface to allow explicit retrieval of ob-

jects. Here, the design choice concerns whether or

not the application program must explicitly retrieve

every object it needs. If, when an application pro-

gram dereferences a reference to a persistent object

(i.e., evaluates the value of the reference to obtain

the address of the persistent object), the system can

implicitly retrieve the object on behalf of the appli-

cation program, then we can further satisfy Goal

2. We call this implicit retrieval object faulting.

Although this incurs a small run-time overhead (to

test and see if the object is currently in virtual, or
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primary, memory), we believe that it is much more

preferable than requiring the application to contin-

ually perform this test, which, if omitted or forgot-

ten by the application developer, would result in

an unexpected (from the developer’s point of view)

software or hardware exception or interrupt. Deref-

erencing an invalid reference to a transient object

should not be detected nor handled by the system,

other than invoking any necessary recovery actions

caused by exceptions or interrupts.

In the above discussion, the persistent object was

retrieved into the application program’s workspace

and manipulated there. If, however, the system can

dynamically invoke the methods defined for an ob-

ject’s class ( i.e.
,
the system is active), then the

application developer could ask the system to in-

voke the method in the system’s workspace, thereby

reducing the memory requirements of the applica-

tion’s workspace.

3.2 Additional Features

In this section, we describe additional features of

an API. These features are supported by only a few

of the existing systems and require further research

and experimentation before an acceptable general

consensus regarding each feature can be achieved.

3.2.1 System Interface

Extended Transaction Models
Many applications have transactional require-

ments that are not fully satisfied by the standard

single-level transaction provided by many existing

as well as object-oriented database systems. Some
applications require transactions that can be nested

to allow application developers the freedom to define

transaction boundaries without having to consider

previously defined transaction boundaries (which

may be encapsulated or nested), while other ap-

plications require transaction boundaries that are

“nested” but commit their modifications to the

database independent of the higher level transac-

tion (e.g., a real time manufacturing system). Other

applications, such as CAD, CAE, CASE, etc., re-

quire transactions to allow a group of individuals

to cooperatively share the results of their interme-

diate transactions prior to making that final com-

mit. Although much research has been performed

in this area, we believe that more work is needed

to delineate the various categories of transactions

and estimate their expected use and impact before

standards can be formulated. See [23] for more dis-

cussion of these issues.

Grouping Objects

Past work on locality of reference indicates that

the application developer should be able to specify

some sort of grouping, clustering, or co-locating of

objects to improve retrieval performance and, per-

haps, object migration. Some of the design choices

for this feature include whether the grouping is log-

ical and/or physical, whether the grouping can be

defined at object model definition-, compile-, and/or

run-time, whether the grouping can be altered for

existing and/or newly created objects, and what can

be stored in the cluster: objects from just one class

or from multiple classes. As with previous API fea-

tures, these features should be separately available

to provide the application developer the flexibility in

choosing what is needed for the specific application

and to only “pay for what is being used”.

3.2.2 Individual Object Interface

Determining and Forcing Memory Resi-

dency
Since this model of an API provides several in-

terfaces to manipulate a reference to a persistent

object (assign, compare, etc.), we could easily add

the ability to allow the application program to de-

termine if a persistent object is or is not currently in

memory. Although the object faulting mechanism

described earlier performs this function implicitly

for the application program, this interface would

be provided for completeness, flexibility, and per-

formance. Again, if the application program wants

“to pay” for this ability, it can do so separately and

at a minimum cost.

Retrieving Previous Versions of Objects

Many OODBs can store more than one version

of an object in the database (e.g., [4, 9, 10, 15]).

The application program should be able to retrieve

a previous version as easily as retrieving the most

recent version. Assuming that version retrieval is

included in the API 2
,
this can be done by supply-

ing an additional argument when retrieving the ob-

ject. To help satisfy Goal 3, we should not require a

completely different language construct or retrieval

2 Although retrieval of object versions may be a higher

level task [22], eventually some module needs to retrieve a

specific object version.
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interface to accomplish this task. When the appli-

cation program specifies the version to be retrieved,

can it specify the version “most recent relative to

time x” and let the system determine which version

meets that specification, does the specification have

to be exact using a time stamp or version number,

or can the system support both types of specifica-

tion? Another design choice involves determining

whether or not this version specification should be

propagated when object faulting is involved: do we

retrieve the most recent version of the faulted ob-

ject or the most recent version relative to the version

specified in the referencing object? As versions im-

ply change management, see [22] for more discussion

of these issues.

Locking Objects

Since one of the main goals of a database man-

agement system is to provide controlled sharing of

a base of objects, we must provide the application

program the ability to lock an object for read or

write access. This access could be specified as an

option when retrieving the object (with the default

being predefined by the system or, possibly, the ap-

plication program). For additional flexibility, the

system could provide an interface to upgrade the ex-

isting lock on an object after it has be retrieved. For

even further flexibility, the system could allow the

application program to downgrade an existing lock,

at least as far as the application is concerned (due

to problems with various two-phase locking proto-

cols). Finally, certain application programs would

like to have just a snapshot of the current state of an

object regardless of whether it is being updated by

another application program. Thus, a read-only-

don’t-block type of lock could also be provided at

a very minimal cost to the application program, the

system, and other concurrent application programs.

The system must also detail what options the ap-

plication program has when a lock request conflicts.

Possible options are waiting for the lock, receiving

an error indicating a conflict, or asking for a notifi-

cation when the object is no longer locked.

Naming Objects

Retrieval of objects is accomplished by specifying

a unique identifier for the object, often called an

OID or UID. In most OODBs, this identifier is an

integer number (32, 64, or 96 bits), not meant to

be remembered by the person executing the appli-

cation program. Thus, there is a need to alterna-

tively identify objects which the application devel-

oper can use as needed. The naming of the object

should be orthogonal to its allocation and should

not require any special declaration when the type

is made know to the system or the object is allo-

cated or retrieved. Two alternatives include choos-

ing one or more attributes of an object as a key (as is

done in the relational model) or associating a name
with an object. The former is easily accomplished

and probably more intuitive but requires the main-

tenance of the appropriate system table(s) when-

ever an object’s key is modified, which contradicts

one notion of object identity, that of immutability

[24, 25]. Associating a name with an object provides

the application program the flexibility in choosing

whether or not to specify a name and manage the

naming if it chooses to do so. In addition, the name
for the object can be easily changed without affect-

ing the object’s identity (i.e.
,
its OID) or its value.

Another design choice is whether or not the name-

to-object mapping should be unique: can one object

have multiple names? The flexibility afforded by the

file pathname “link” in various files system supports

adding this feature to the API.

4 Functional Reference

Model

Now that we have presented a descriptive refer-

ence model in Section 3 and discussed several fea-

tures of an API to an OODB, we now present a

more detailed description of the common features

of the reference model for the Zeitgeist OODB [16].

Since a consensus on the additional features is far-

ther off, we will omit a detailed description of them

for future position papers.

In keeping with the object-oriented style, we

present the interface in terms of methods and op-

erators associated with two basic classes: the sys-

tem (Zeitgeist) and references to persistent objects

(PTRs). Each method will be briefly described, in-

cluding it arguments, and an example (in C++
)
will

be given. 3 Also, see Appendix B for another ex-

ample in C++.

4.1 System Interface

For the following C++ examples, we will use the

following C++ variables.

int rc; //Return code

int trc; //Transaction return code

3 In our current implementation, the "Persist" method is

actually a function but could be easily converted to a method.
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Startup simply initializes an interface to the

OODB, including its internal state, connection

to the physical storage server, etc. Arguments

could be added to allow the application pro-

gram to configure the interface, include mem-
ory allocations, prefetching hints, lock type de-

faults, physical storage to access, etc. The re-

turn value indicates the success or failure of

completing the initialization. In our implemen-

tation, this method is invoked automatically

whenever an instance of Zeitgeist is allocated

(as a static, automatic (stack), or pointer vari-

able).

Zeitgeist azg; //Static/Stack

Zeitgeist *zg; //Pointer

zg = new Zeitgeist;

Shutdown terminates an interface to the OODB.
No arguments are required. Since this method

may be performed while a transaction is still

pending, it must “clean up” the remains of the

transaction, properly disconnect from the phys-

ical storage server, and free up any memory
it may have acquired since system startup was

performed. The return value indicates the suc-

cess or failure of completing the termination.

rc = zg->shutdown( ) ;
//Manual

delete zg; //Dynamic

System startup can also be performed manually

after a system shutdown has been performed.

rc = zg->shutdown( )

;

rc = zg->startup( )

;

Begin Transaction updates the internal state of

the system to record that a transaction is cur-

rently in progress. No arguments are required

unless multiple-level (nested) transactions are

provided. The return value could indicate the

success or failure of beginning the transaction

or it could be the id for the transaction just

begun, if transactions other than single-level

transactions are provided (to allow for proper

ending of multiple-level transactions).

trc = zg->begin_transaction()

;

Commit Transaction indicates the end of the

current transaction. No arguments are re-

quired. The system determines which objects

must be saved to the database (based on modi-

fication indications), saves them, and performs

whatever is necessary to end the transaction,

including recording that a transaction is cur-

rently not in progress (or that the nested trans-

action has been completed). The return value

could indicate the success or failure of commit-

ting the transaction, the time of the commit,

or the number of objects committed.

trc = zg->coiwnit_transaction( ) ;

Abort Transaction also indicates the end of the

current transaction. No arguments are re-

quired. In contrast with Commit Transaction,

the system performs whatever is necessary to

end the transaction without saving any objects

to the database, including recording that a

transaction is currently not in progress (or that

the nested transaction has been completed).

The return value indicates the success or failure

of aborting the transaction.

trc = zg->abort_transaction( )

;

4.2 Individual Object Interface

Allocation of references to persistent objects

(called PTRs) only requires the declaration of

the references. Deallocation occurs when the

reference leaves the variable’s current language

scope.

PTR p_ref
; // Allocate a reference

Assignment and Comparison operators for ref-

erences to persistent objects should be speci-

fied using the same, if not similar, syntax and

performed in the same, if not similar, manner

as assignment and comparison of references to

transient objects. At the API level, assignment

and comparison of references is limited to their

values, that is, the virtual memory address of

the objects. Definition and implementation of

deeper assignment and comparison is left to the

application developer.
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// Allocate an instance of circuit

// and assign reference to it.

PTR p_ref = new circuit;

// Allocate another circuit and

// assign another reference to it.

PTR another_ref = new circuit;

// Assign one to the other

another_ref = p_ref

;

if (p_ref != another_ref)

// Result is False

Persist, accepts one argument., a reference to a per-

sistent object, and records that the application

program intends that the object should become

persistent ( i . e
. ,
can be saved to the database as

a result of the next transaction commit). The

return value could either be a reference to the

object argument or could indicate success or

failure of this method.

// Make existing object persistent

p_ref = persist (p_ref )

;

// Make new object persistent

another_ref = persist ( *new circuit )

;

Modification does not require any arguments and

records that the application program has mod-

ified the object and intends that the object

should be saved to the database as a result of

the next transaction commit. If the applica-

tion does not currently have a write lock on

the object, the system attempts to obtain one

(assuming pessimistic locking). If the lock is

granted, the system records that the applica-

tion program has modified this object. The re-

turn value indicates the success or failure of this

method.

rc = p_ref . set_modif ied( )

;

Fetch Object, accepts three arguments, a refer-

ence to a persistent object, an optional lock

type (read-only, read, or write), and an op-

tional version specification. The system de-

termines if the object has previously been re-

trieved (there is a cache of objects). If the ob-

ject has not been retrieved, it is retrieved from

the database. If a lock type is supplied, the

system attempts to obtain the lock. If a ver-

sion specification is supplied, the object version

saved at or before the specified version (cur-

rently based on epoch time) is retrieved. The
return value is the address of the persistent ob-

ject in virtual memory and can only be assigned

to a reference to a persistent object. A null

value indicates a failure, either because the ob-

ject version does not exist in the database or

the requested lock could not be obtained.

p_ref = zg->fetch(p_ref .WRITE)

;

p_ref = zg->f etch(p_ref , READ .version)

;

Once a persistent object has been retrieved,

persistent objects referenced from it may be re-

trieved implicitly (using the object fault mech-

anism) by simply dereferencing the reference.

In the following example, assume that the class

of the object referenced by pjref has a func-

tion member ’name’ which returns a reference

to another persistent object whose class has a

function member ’first_name’.

p_ref->name()->f irst_name()

;

When name( )->f irst_name( ) is processed,

the dereferencing of the persistent object refer-

ence returned by ’name()’ will cause that per-

sistent object, to be retrieved automatically into

virtual memory, if it is not already memory res-

ident when the dereferencing occurs.

Queries on objects are orthogonal to explicit

and implicit fetches and are discussed in [21].

5 Comparison with other

OODBs
Table 1 presents a comparison among a small

sample of OODBs in terms of the common and ad-

ditional features of the API reference model they

support. The systems in this comparison (some

of which are in subdomains other than subdomain

// Compare references (i.e., addresses)

if (p_ref == another_ref)

// Result is False
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2(b). ii described in the Introduction) are (in alpha-

betical order): Servio Corporation’s GemStone [26],

Hewlett-Packard’s Iris [3], Object Design’s Object-

Store [14], VERSANT Object Technology’s VER-
SANT Manager/Server (formerly named OBJECT-
Sciences’ OBJEGT-Base) [13], AT&T’s ODE [10],

Ontologic’s Ontos [12], MCC’s ORION [5], UC
Berkeley’s Postgres [9], and Texas Instruments’

Zeitgeist [16]. Although our comparison has been

based on published material publicly available to us

as of this writing, we know the table may still not

be accurate. We invite corrections.

In the table, N stands for No, Y stands for Yes, ?

stands for unknown or unclear, and a number refers

to an additional note concerning the system’s API
(see Section 5.1). The rows in the table describe

OODBs and columns describe API features, which

are numbered in the table as follows.

System Interface

1. Startup

2. Shutdown

3. Begin Transaction

4. Commit Transaction

5 Abort Transaction

Object Interface

6. Allocation/Deallocation

7. Assignment/Comparison

8. Persistent

9. Modification

10. Fetch Object

Additional Features

11. Extended Transactions

12. Grouping Objects

13. Determining and Forcing Residency

14. Fetching Previous Versions

15. Locking Objects

16. Naming Objects

As one would expect, there is a high degree of

agreement among the system interface features 1 -

5.

Although there is a moderate degree of agree-

ment among the object interface features 6 - 10, the

semantics of the various features are different from

system to system (see Notes). And, as would also be

expected, there is a low degree of agreement among
the additional features 11 - 16, where the semantics

widely differ. Thus, standards seem highly proba-

ble for the first set and moderately probable for the

second set.

5.1 Notes on the Comparison

1. In Iris, all objects are persistent.

2. Iris and Postgres provide functions to retrieve

instance values or references. Postgres also al-

lows navigational retrieval.

3. In ObjectStore, an instance can be allocated as

transient or persistent. It cannot be allocated

as transient and then indicated as persistent.

4. ObjectStore allows the application developer to

specify clustering only when an instance is al-

located.

5. VERSANT-Manager provides “long transac-

tions” whereby objects are checked out from

a public database and copied to a private

database.

6. VERSANT-Manager only allows the applica-

tion developer to specify clustering prior to

adding objects to the database. Physical clus-

tering of aggregates is not guaranteed. The de-

fault clustering is of instances of the same class.

7. ODE defines two new operators (pnew and

pdelete) to allocate/deallocate a persistent ob-

ject. A transient object can be copied to a

newly created persistent object but it cannot

be designated as persistent.

8. ODE allows the user to fetch objects using a

query specifying an instance’s value. It is not

clear whether they allows fetches using a refer-

ence to a persistent object.

9. ODE allows the application to dynamically de-

fine object clusters. However, the clusters can

only contain instances of one specific type.

10. ODE allows object versions, but a new con-

struct is defined to reference versions of an ob-

ject and create/delete a version.

11. Ontos has two kinds for references to persis-

tent objects. The mechanism used to fetch and

store persistent objects depends on the kind of

reference used.

12. In Orion, instances of classes derived from

Orion’s base class cannot be transient.

13. Orion only allows the application developer to

specify clustering prior to adding objects to

the database. The cluster can contain instances
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System

System Interface Object Interface Additional Features

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

GemStone Y Y Y Y Y Y Y N Y Y N Y Y N Y Y
Iris Y Y Y Y Y ? ?

1 1 2 ? Y 7 7 7 7

ObjectStore Y Y Y Y Y N Y 3 N ? N 4 7 Y 7 N
VERSANT-Mgr Y Y Y Y Y Y Y Y ? Y 5 6 7 Y Y 7

ODE Y Y Y Y Y 7 Y 7 ? 8 ? 9 7 10 7 N
Ontos Y Y Y Y Y Y Y Y N 11 Y Y Y Y Y Y
ORION Y Y Y Y Y Y Y 12 ? Y Y 13 7 14 Y 7

Postgres Y Y Y Y Y ? ? ? Y 1 ? 7 7 Y Y N
Zeitgeist Y Y Y Y Y Y Y Y Y Y N 15 Y Y Y Y

Table 1: Comparison among a representative sample of OODBs.

of one specific class or instances of a user-

specified collection of classes.

14. In Orion, only instances of classes which have

been declared to be versionable can be ver-

sioned.

15. Zeitgeist allows the application developer to

specify static clustering when classes are de-

fined and dynamic clustering when indicating

persistence.

6 Conclusions

This paper has proposed a reference model

for comparing application program interfaces to

Object-Oriented Databases, identified areas where

consensus is possible and standards can emerge, and

areas where further research is needed before a con-

sensus can be reached.

We have proposed an API which provides a better

integration of database and programming languages

by adhering as closely as possible to the structure

and intent of the host programming language (C++
or C'LOS) without unduly changing or extending the

language. In addition, the API promotes a philos-

ophy of “only paying for what you want when you

want it” to provide the various features presented,

especially with respect to allocation of objects, in-

dication of persistence, indication of modification,

and actual saving of objects.

We believe that work on standards for APIs

to OODBs needs to be actively pursued by stan-

dards committees in parallel with the current efforts

in other aspects of object-orientation. Such com-

mittees include the X3/SPARC/DBSSG/OODBTG
on a reference model for object databases, Object

Management Group (OMG) on an object software

framework, X3J16 on C++, and X3J13.1 on CLOS.

Appendix

A Data Definition Language

In order to define types and classes to the Zeitgeist

OODB, we have developed a Data Definition Lan-

guage (DDL), which is the C++ language plus a few

extensions and a few restrictions, and a translator

to process the language. The translator generates

C++ .h files as well as information for the Zeitgeist

runtime system.

The extensions allow the class developer to 1)

identify the kind of persistence an object will have,

2) provide information on the boundary of a per-

sistent object graph, and 3) define demons (func-

tions invoked at specific time during an application

program execution). We will discuss the first two

extensions in the next two subsections.

A.l Persistent Objects

In order for a object of a class to be saved to the

database, its class definition must be processed by

our DDL translator; objects of these classes are

called potentially persistent, or persistent, for short.

Any class not processed by our translator cannot

have its objects saved to the database; objects of

these classes are called fully transient, or transient,

for short.

Persistent objects can be stored either indepen-

dently or dependently. The designation is made

in the DDL and is one of our extensions to C++ .

Independent persistent objects become the root of

a graph of objects. They can reference any other
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object (persistent or transient) and can be refer-

enced by one or more other objects (persistent or

transient). Dependent persistent objects can also

reference any other object (persistent or transient)

but can only be referenced from ONE persistent ob-

ject and/or one or more transient objects. In other

words, a object that is shared (referenced from two

or more other persistent object) must be desig-

nated as independent.

Figures 1 and 2 show examples of dependent and

independent class definitions.

A. 2 References to Objects and Data

As stated above, transient and persistent objects

can reference other transient and persistent objects.

References to transient objects are accomplished by

using C++ pointers. References to persistent ob-

jects can be accomplished by using C++ pointers

or Zeitgeist PTRs. In either case, if a C++ pointer

is used and the referenced object is not to be saved,

the keyword “boundary” (another of our extensions)

must precede the declaration. If a C++ pointer is

used and the reference object(s) is(are) to be saved,

a sentinel (another of our extensions) must be spec-

ified to allow Zeitgeist to determine the number

of objects actually referenced (since C++ pointers

may be used to point to an array of objects). No
language extensions are necessary when a Zeitgeist

PTR is used since, at this time, only one object can

be referenced via the PTR.
Figure 3 shows an example of a class which has

references to objects of other classes (it could refer-

ence another object of its own class). Assume that

the class Class-Object. is a transient class, the class

Instance-Object is a dependent persistent class, and

the class Schema is an independent persistent class.

The Class-Object referenced via ’has-dass’ will

NOT be saved due to the keyword “boundary”.

The Instance-Object and Schema referenced via

’dummy-instance’ and ’dummy-schema’, respec-

tively, will also NOT be saved due to the key-

word “boundary” (even though objects of those two

classes can be saved to the database). Only one

Instance-Object referenced via ’first-instance’ will

be saved (there are other extensions to dynami-

cally determine the number of referenced objects

to be saved). The OID of the Schema referenced

via ’in-schema’ will be saved. That Schema will be

saved separately from this object.

C++ fundamental types and structs can also be

referenced using C++ pointers. As with references

to objects, if the data is to be saved, a sentinel must

be supplied to allow Zeitgeist to determine the num-
ber of elements referenced. If the data is not to be

saved, the keyword “boundary” must be used as de-

scribed earlier.

A. 3 Other Issues

We have only covered two issues in this section due

to reasons of space and scope. Other issues which

should be explored in the context of data definition

include demons or triggers (functions which are in-

voked at specific times during application program

execution), implementation of relationships (includ-

ing sets, hash tables, collections, etc.), and process-

ing of class libraries to allow them to be persistent.

B Examples

Figure 4 (4 pages) shows an example program writ-

ten in C++ interfacing to Zeitgeist.

C Glossary

Below is a short list of terms from the fields of

programming, object-oriented programming, and

databases. We refer readers to the glossary of terms

being compiled by the OODB Task Group for a

more complete list along with definitions.

application programming language

database language

database programming language

persistent language

data model

type system

object database

object base

inheritance

generalization

specialization

abstract data type

encapsulation

data abstraction
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metaclass function

class (type)

subclass (derived class)

superclass

object

object identity

object identifier

unique object identifier

object name

object reference

object retrieval

object fault

instance

transience

persistence

transient class

persistent class

transient object

persistent object

shallow equality

deep equality

composition

aggregation

complex object

relationship

link

attribute

property

data member

instance variable

slot

behavior

member function

method

message

message passing

read-only operation

read/ write operation

concurrency

integrity

transaction

commit transaction

abort transaction

cluster

object cluster

version

object version

time stamp

lock

object lock

lock conflict

lock conflict resolution
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class Pin

// no "persistent" indicates Dependence

{

private

:

long instanceLevel

;

long currency;

String pinNumber;

String secondaryPinNumber

;

PinType pinType;

double inverselnductance

;

double resistance;

public

:

// NOTE: NO PUBLIC DATA MEMBERS

Pin()
;

*Pin()
;

// other functions would go here

>;

Figure 1: DDL for Dependent Persistent Class

class Schema_Collection : persistent

{

private

:

boundary

Class_Object * has_class;

boundary

Instance_Obj ect * dununy_instance
;

class Cell
:
persistent

// "persistent" indicates Independence

{

private

:

String cellName

;

String cellAliasName

;

CellType cellType

;

long numberTransistors

String propagationDelay

;

long dcCurrent

;

double cPd

;

double xDim, yDim;

boundary

Schema * dummy_schema

;

Instance_Obj ect *[l] f irst_instance

;

SchemaPTR in_schema;

public

:

// NOTE: NO PUBLIC DATA MEMBERS

Schema_Ob j ect ( )

;

"Schema_Obj ect ( )

;

// other functions would go here

>;

public

:

// NOTE: NO PUBLIC DATA MEMBERS

Cell ( )

;

'Cell ( )

;

// other functions would go here

};

Figure 3: DDL for References

Figure 2: DDL for Independent Persistent Class



This is an example C++ program which interfaces with the Zeitgeist OODB.

#include <stdio.h>

#include <zeitgeist .h>

finclude "example. h"

# include "example_i .
h"

#define DEFAULT_L1ST "OODBTG"

// Globals

Zeitgeist zg;

f" \ g
o r t-

PS - -l-

//«« ZG code

void main (int argc, char* argv [ ]

)

{

int i, nobjs=0, count=0, firsttime=0;

examplePTR headptr, *nextp, prevptr; // for adding
examplePTR fetchptr; // for traversing

// Create new name context

zg . begin_transaction () ; //«« ZG code
zg . default_name_context ("test prog")/ //«« ZG code
zg . commit_transaction (); //«<< ZG code

// Get number of links for new list

nobjs = atoi (argv[l]);
print f ("Append %d links to link list \"%s\"\n\n" , nobjs, DEFAULT_LIST) ;

// Build the list

zg.begin_transaction () ; //«« ZG code

nextp = &headptr;
for (i=0; i<nobjs; i++)

{

*nextp = persist (*new example)

;

prevptr . set_modified () ; //«« ZG code

(*nextp) ->prev () = prevptr;
prevptr = *nextp;
nextp = & ( (*nextp) ->next () )

;

// Save the list

if (headptr .name (DEFAULT_LIST) < 0) //«« ZG code

print f ( " % s : error naming list root object\n", argv[0])/

zg. shutdown () ; //«<< ZG code
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exit (-1)

;

}

if ( (nobjs = zg . commit_transaction ()) < 0) //«« ZG code
{

printf ("%s: error committing transaction\n", argv[0]);

zg. shutdown () ; //<«< ZG code
exit (-1)

;

}

// Fetch head of list then display all links in the list

printf ("Fetch head of list \"%s\" for display\n\n" , DEFAULT_LIST)

;

zg.begin_transaction (); //«« ZG code

if ( (fetchptr = zg. fetch (DEFAULT_LIST) )
== NULL) //«« ZG code

{

printf ("could not fetch object \"%s\"\n", DEFAULT_LIST)

;

zg. shutdown (); //«« ZG code
exit (-1)

;

}

nobjs = 0/
while (fetchptr != NULL)

{

nob js++

;

prevptr = fetchptr;
fetchptr = fetchptr->next () ; //«« Object faulted

}

// Display the list backwards via the back pointers in the list

printf ("\nNow, in reverse . \n\n" )

;

while (prevptr != NULL)
{

prevptr = prevptr->prev ()

;

}

zg . abort_transaction () ; //«« ZG code

// Shut down Zeitgeist and exit test

zg. shutdown () ; //«« ZG code
printf ("\nTest complete . \n" )

;

exit (0) ;

figoftH

fa-*-
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This is the DDL description for class "example"

class example : public x

{

public

:

// constructor & destructor

example ( )

;

-example ( )

;

// methods

examplePTRS prev ();
examplePTR& next ();

private

:

// state

char line [48]

;

examplePTR prev_link; // Use ZG PTR' s instead of C++ pointers (

examplePTR next_link; // to reference persistent instances

};

Here is the code for the methods.

example :: example ()

{

prev_link = NULL;
next_link = NULL;

}

example :: -example ()

{ // null body }

examplePTR& example :: prev ()

{

return (prev_link)

;

}

examplePTRS example :: next ()

{

return (next_link)

;

}
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This is the DDL description for class "x "

.

class x : public persiste....c

public

:

// constructors & destructors

x () ;

~x ( ) ;

protected:

/ / state

P3-H

char *[48] xpl

;

char *[48] xp2

/

char *[48] xp3;

// Specify length of character string
// referenced from an instance of x
// using "[48]" extension

.

Here is the code for the methods.
x::x ()

{

int size = 48;

/ / Initialize the x object

xpl = new char [size]

;

xp2 = new char [size]

;

xp3 = new char [size];

sprint f (xpl, "class x member xpl")

;

sprint f (xp2
, "class x member xp2")

;

sprint f (xp3, "class x member xp3");

: : ~x ()

delete xpl;
delete xp2;
delete xp3;
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ABSTRACT

In this paper, we focus on standards for an OODBMS Data Definition Language
(DDL), a facility to specify object classes. Key requirements include support of

multiple languages, multiple and large databases, portability and heterogeneity,

avoiding definition of yet another language, and support of both dynamic and pre-

compiled interfaces. We propose an approach based on C++, and address

semantics necessary to provide the following capabilities: well-defined primitives

for portability and heterogeneity, varying-sized arrays, associations (links),

versions, and propagation of methods among objects. We conclude it is possible to

converge on this DDL standard, allowing object models to be defined once for

multiple DBMSs.

CONTENTS

1 . Introduction and Motivation

2. Environmental Requirements of DDL

3. Leverage C++

4. Additional Capabilities

5. Future Areas

6. Conclusion

1. Introduction and Motivation

In Objectivity's presentation to the last OODBTG workshop 1
, we discussed the motivation

for standards in OODBMSs, stressing the importance of recognizing and agreeing on such

a motivation. We proposed the motivation is interoperability, the ability to mix and match

a variety of applications and DBMSs.
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To achieve interoperability, we listed several areas that could be standardized, focusing on
the interfaces, and leaving as much freedom as possible to the implementors to further the

state of the art. These areas include: Object Model, Data Definition Language (DDL), Data
Manipulation Language (DML), Query, Class Libraries, Interchange, and others. By
addressing the first three, and specifically capabilities in the DDL and DML areas, we can

begin to address the needs of applications and provide some measure of interoperability.

In this paper we present some of the issues and some suggested directions for

standardizing DDL.

2. Environmental Requirements of DDL

We can make several assumptions about the environment in which the DDL architecture

must live. Eventually, the actual DDL standard must include specific syntax. However, in

this paper, we focus on semantics. Our use of syntax should be considered for the

purposes of illustration only.

The DDL standard should address both dynamic (runtime type definition/modification) as

well as a pre-compiled language interface. The standard may even eventually include

graphical notation. All of these should simply be different means to the same end, whose
semantics we address here. For simplicity and concreteness, we illustrate concepts with a

language presentation.

Architecturally, we assume:
• the DBMS will support the concept of a class or type (used interchangeably here)

• instances of these types may be instantiated

• the DBMS understands these type definitions, presumably as type-defining objects,

or the equivalent

• the standard will support multiple databases, large databases, and multiple

languages

This last assumption leads to a conceptual model as shown in Figure 1.
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Note that the conceptual model can be applied to any implementation: dynamic, batch,

graphical, etc. The model illustrates the concept of a standard DDL specification that is

processed somehow to produce:

• the type-defining objects with the DBMS
• header files for various languages

• libraries of methods for various languages

The DDL standard should support these environmental and architectural requirements, and

should support a variety of vendor implementations of the conceptual structure shown in

Figure 1.

3. Leverage C++

One of our requirements is to avoid creating a new language for DDL. Instead, we propose

using C++ as a starting point. [Another choice worth considering is STEP/Express2
.]

C++ provides the capabilities to specify a large variety of data structures, encapsulated

methods, and inheritance. The class definition facility of C++ allows classes to be added to

extend the C++ standard. This facility allows us to specify:

• any C or C++ data structure

• any arbitrary method than can be expressed in C or C++
• the inheritance hierarchy

The resulting DDL will be familiar to C++ users and largely familiar and understandable to

C users. So, not only do we save the effort of defining a new language, but we can hope

to achieve wider and faster adoption by users.

4. Additional Requirements

In this section, we discuss DDL requirements not provided by C++.

4.1 Well-Defined Primitives

The structural pan of the object definition in DDL should be well-defined to allow suppon
for portability and heterogeneity. Terms such as short and long can lead to confusion

when different system environments interpret them differently: are they 16 bits or 32 or

64, signed or unsigned?

To avoid this problem we suggest the standard DDL define specific primitives. Here are

some possible examples.

Pr iirit- i ve Range

uint 8

int 1

6

uint 32

0 . .255
-32768. .32767
0. .4,292, 967,295

etc

.

Well-Defined Primitives
Figure 2

Standard DDL 8/15/90
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In addition the standard can specify what the default interpretation is for generic types, as

shown in Figure 3.

Generic C++ Type DDL specific type

short inti 6

long int32
float float32

etc

.

Correspondence of Generic C++ Types
Figure 3

4.2 Varying-Sized Arrays

Data structures that dynamically vary in size are commonly used by applications.

However, these structures are not provided in C++. Because of their importance, we
suggest that these structures be incorporated into the DDL standard as a class extension to

C++. We suggest adding the concept of a VArray
;

a varying-sized array of arbitrarily

elements, providing a generic and powerful mechanism to specify arbitrarily varying-sized

structures. The DBMS should provide memory management facilities and DML access

facilities to support VArrays.

Figure 4 shows the DDL specification for VArrays. When C++ parameterized classes

become available, we can replace the VArray(Class) macro with the proposed syntax

VArray <Class>.

struct Point {

int32 x, y;
In-

struct Path : Geometry {

int32 width;
VArray (Point) points;

}

DDL Specification of Varying-Sized Array
Figure 4

4.3 Associations or Links

In programming languages, the ability to use a pointer construct as a structure primitive

provides users with a broad range of capabilities. The same capabilities are required in the

OODBMS; i.e., there is a need for direct, inter-object links, with the ease and efficiency of

pointers. However, pointers themselves are limited to the context of a particular process, a

particular virtual memory address space, and particular hardware architectures. Using

plain OIDs instead of pointers ties the user model too closely to the physical model,

entailing the problems encountered in Codasyl Network model.
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In order to support portability across multiple architectures, to support heterogeneity or

simultaneous use of multiple architectures, and to support large databases without the limit

of virtual memory address spaces, we propose a specific association construct in the

DDL. Similar concepts exist in several systems: e.g., the PCTE link3 '4
; many

engineering database systems, such as Mentor's inter-object References 5
; and in the

Storage Manager standard being produced by the CFI6
.

Associations go beyond the traditional language construct of pointers to include some
often-used database functionality. In particular, the association can be uni- or bi-

directional. In the latter case, the semantics include maintaining referential integrity.

Associations can be one-to-one, one-to-many, or many-to-many to support common
application needs. Like pointers, associations should also support strong type checking to

a level specified by the user.

Access to associations is the domain of DML, but we suggest it resemble the use of

pointers. The concept of iterators can be introduced into the DML to allow traversal of

many-to-many associations.

To illustrate the concept of associations in the DDL notationally, we represent the

association as a member field in a class, with a type represented by the macro
Handle(Class). Handle is simply a way to indicate an association, while Class provides the

binding necessary for type checking. As with VArray, when C++ parameterized classes

become available, we can replace the Handle(Class) macro with Handle <Class>.

class Layer : ParentClass

Handle (Cell)
Handle (Shape)

}

cell <->
shapes [ ]

<->
layers [ ]

;

layer;

class Shape : ParentClass

Handle (Layer) layer <-> shapes [];

}

DDL Association Example
Figure 5

{

{

Notice that associations appear much like normal pointers, for compatibility with typical

programming style and readability. The bi-directional arrows <-> indicate bi-directional

associations. (A single arrow -> would indicate a uni-directional association.) Finally, the

brackets [] indicate a many-side of the association; e.g., the layer-to-shapes relationship has

many shapes per layer.

4.4 Versioning

The need for versioning of objects is often discussed within DML, outside the domain of

DDL. However, specifying versioning-related behavior is appropriate at the DDL level.

To do so, we first introduce a general extension to associations as shown in Figure 6.
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Handle (Class ) linkName :bspec, bspec;

Association Behavior Specification
Figure 6

Here, bspec is a generic behavior specification . One or more behavior specifications can
be used.

Now, consider the effect of versioning associated objects. What does the DBMS do to the

association when the linked objects are versioned? With a behavior specification, we can

allow the standard DDL the flexibility to control this. For example, the versioning behavior

of associations can be specified as shown in Figure 7.

Handle (Class) linkName :version (copy);

Versioning Behavior Specification

Figure 7

Here, copy indicates that the association link should be copied to the new version, so both

old and new remain linked. Other possible versioning behaviors include move, move the

link to the new version, and drop, drop the association link altogether. Similarly, we could

specify versioning behavior as none, linear, or branching.

4.5 Propagation of Methods

What about methods? They can be specified within classes, but how does their behavior

interact with associations? We can allow the DDL to specify this by introducing the

concept of propagation ofmethods along associations. A simple example would be to

propagate the delete method across associated objects. Then, the user could conceptually

treat the entire collection of associated objects as one composite object and apply methods
to it as a whole. The behavior specification can serve this need (see Figure 8).

Handle (Class) linkName :propagate (op, op, op);

Propagation of Methods
Figure 8

Here, the propagate behavior specification indicates that specified operations, when
applied to object instances of this class, will also apply to associated objects.

5. Future Areas

Many other areas of capability could be discussed; e.g., specification of indexes,

modification of type definitions, hints for storage management (e.g., clustering, typical or

expected sizes), constraints (e.g., minimum and maximum cardinality of associations),

security, etc. We suggest that the behavior specification (introduced above for versioning

and propagation) could be applied to accommodate many such capabilities. Similarly, the

fundamental ability to extend C++ by adding classes (used above for well-defined

primitives and VArrays) could be applied to accommodate many capabilities. So, while we
make no claim that we have exhaustively covered the areas of need in DDL, we suggest this

approach can be applied and extended.

34
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6. Conclusion

To achieve standardization of OODBMSs, and in particular to allow applications to be

written against this standard and to be run against multiple vendors (interoperability), both

the DDL and DML need to be established standards. We have presented a proposal for

DDL standardization.

Our proposal is based on these environmental requirements:

• multiple languages
• agreed semantics

• support for large databases, multiple databases

• support for portability and heterogeneity

• support for dynamic, pre-compiled, and graphical interfaces

The content of our proposal can be summarized as follows:

• Based on C++ class definitions for data structure, methods, and inheritance, with

specifications added for:

• Well-defined primitives.

• Dynamically varying-sized arrays

• Associations of links, for inter-object relationships

• Versioning
• Propagation of methods

We invite comments, reactions, criticism, and additions to these suggestions.
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INTRODUCTION

Object data management (ODM) systems represent a rapidly emerging technology which combines

object-oriented programming concepts with database management technologies. The object paradigm is

attractive for databases because it supports complex data structures, inheritance, and the behavioral

characterization of data. The result is a semantically rich data environment for representing structure

and data in real-world applications. ODM technology has now reached the point where formal

standardization has become an option. The Object-Oriented Database Task Group (OODBTG), a task

group of the ANSI/SPARC Database System Study Group (DBSSG), has issued a draft Reference

Modelfor Object Data Management (OODBTG, 1990) and begun to hold workshops to determine

what aspects of these systems should be included in the standardization process. This paper is in re-

sponse to a request by the OODBTG for recommendations for ODM system standardization activities.

The authors of this paper take the position that security features should be part of the emerging

standards for the ODM model. Security features are important components ofODM systems since the

protection of data from unauthorized or unintended disclosure, modification, or destruction is an

important concern in both the commercial and government sectors. Moreover, early consideration of

security features is important because experience in the relational database management systesms

(RDBMS) and operating system areas has shown the difficulty of attempting to retrofit security to an

established technology. Although RDBMSs have dominated most of the work on database security

(Hinke, 1988; Lunt, 1988; Stachour, 1990), security issues in ODM systems have also begun to be

investigated (Fernandez et al, 1989; Keefe et al, 1989; Jajodia and Kogan, 1990; Lunt and Millen,

1989; Thuraisingham, 1989a, 1989b, Thuraisingham and Chase, 1989). Indeed, initial work with the

ODM model indicates that it has many features, such as encapsulation, object identity, and class

hierarchies, that naturally support security concepts.

This paper examines the incorporation of security features within an ODM system, and addresses

the importance of incorporating certain of these features in the current standardization process. In the

next section we provide an overview of concepts important to information security, including access

control, security models, secrecy constraints, roles, and assurance. Following this, we identify ODM
model features that have important implications for the support of these security concepts. We con-

clude by discussing security features appropriate for inclusion in the ODM system standardiza-

tion process.
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OVERVIEW OF INFORMATION SECURITY CONCEPTS

This section gives a brief overview of information security concepts fundamental to this paper. We
begin with a definition of information security. This is followed by a discussion of the use of access

controls as a way to protect data from unauthorized disclosure and also from unauthorized modifica-

tion. Next, the concept of a security model, which identifies permitted access modes in accordance

with the specific system security policy, is described. Secrecy constraints are introduced as a way to

extend security policies for database systems. The notion of a user role as a control mechanism for

access privileges is then explained. The section concludes with a discussion of assurance, a way of

confirming that technical protections within a computer system provide security.

Information Security

Information security consists of three components: secrecy, integrity, and availability. Secrecy

addresses the need to protect information from unauthorized disclosure. Even in the least secure sys-

tem, users may wish to ensure the confidentiality of their data against disclosure to other users.

Integrity , as traditionally discussed in the information security literature, addresses the need to protect

information from unauthorized modification. In a broader context, integrity refers to protecting infor-

mation against inappropriate modification; that is, modification that does not correspond to the real

world, whether the modification is authorized or not. Availability addresses protection against denial

of service. Denial of service can occur when a malicious user, legitimate or not, ties up resources,

making them unavailable to other legitimate users. In the past, secrecy has been emphasized in security

work, while integrity has been important in database management system (DBMS) work. Availability,

an extremely complex problem, is only beginning to be addressed (Gasser, 1988).

Access Control

Because controlling access to data provides a way to protect against both unauthorized disclosure

and unauthorized modification of information, access control and types of access privileges have been

the focus of much work by the security community.* There are two types of access control in a secure

system. The first, discretionary access control, allows access to data to be specified and controlled at

the user or user group level. Discretionary access control commonly includes the idea of control of

access by the data owner. The usual approach to controlling discretionary access in a database involves

access matrices, which specify which operations a user (or group) is authorized to perform on some set

of data. The second type of access control is called mandatory access control. Mandatory access

control restricts access to information based on the sensitivity of the information (e.g., classification)

and the extent to which a user is trusted to access that information (e.g., clearance). In this context,

data is labeled with classification levels or sensitivity levels, while users have clearance levels that

reflect the degree to which they are authorized to access data. The clearance and classification levels

together comprise an access class. Mandatory access control is a necessary component of multilevel

4 * Being authorized to modify data does not guarantee that the modifications maintain integrity.
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secure (MLS) DBMSs, which store data labeled with different sensitivity levels in one logical database.

The database is accessed by users in sessions at different classification levels. The MLS DBMS is

trusted to separate user sessions so that each user sees data appropriate to his or her session level, and

nothing else.

Security Models

A computer system is considered secure when it meets the security requirements defined for that

system. Those security requirements dealing with access control are expressed in a security model,

which is an informal, natural language statement or a formal, mathematical model. The most widely

referenced security model is the Bell and LaPadula model (Bell and LaPadula, 1973). This model

states which subjects in a system can access which objects, and consists, informally, of the following

two properties: a subject can read an object if the subject’s clearance level dominates the sensitivity

level of the object (simple security property), and a subject can write to an object if the subject’s

clearance level is dominated by the objects sensitivity level (*-property). A system state is “secure” if

the only permitted access modes of subjects to objects are in accordance with these two properties. The

system, itself, is secure if each transition between states results in the return to a secure state. If there

are ways to access data that are outside of the security model, these are called covert channels.

Secrecy Constraints

Secrecy constraints address additional authorization and classification issues that the discretionary'

and mandatory access controls described above do not address. These issues include content-based

and context-based access control, association constraints, and aggregation constraints. Content-based

access control refers to the granting or denying of access based on attribute values (i.e., content of the

data element). A familiar mechanism for controlling content-based access is views in RDBMSs.
Context-based access control needs arise when two or more attributes may be accessed together. For

example, it may be desirable to restrict access to employee names when they are retrieved with their

salaries although values of either attribute may be viewed separately. Association constraints classify

the relationships between entities in the database. An example of such a constraint would restrict the

association of employees and certain sensitive projects on which they work Finally, aggregation con-

straints deal with the problem that some aggregates of data have a higher sensitivity level than the

individual components.

User Roles

The least privilege principle requires that each subject (e.g., user or application process) in a

system is granted only the most restrictive set of privileges needed for the performance of its authorized

task, thus limiting the damage that can result from accident, error, or unauthorized use. This principle

corresponds to the idea of allowing a database administrator or a database designer to have a different

set of privileges than an end user. A role allows an individual user account to take on privileges

associated with specific aspects of system administration or application processing. This supports not

only individual accountability, but also the least privilege principle by separating the functions

performed by a security administrator and a database administrator.
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Assurance

Assurance means that a system has the qualities of correctness and tamperproofness. Assurance is

important for any secure system, but it is particularly important for MLS systems. The MLS approach

combines technical protection within a computer system with physical and procedural protections

outside of a computer system. The functionality of an MLS system is fairly easy to provide; however,

the functions must be built securely to provide technical protection to the system. It is the need for

strong assurance that makes MLS capabilities difficult to achieve. As discussed in the next section, the

ODM model provides both the possibility of adding security features and the possibility of increased

assurance to support multilevel database security.

ODM SYSTEM FEATURES THAT SUPPORT SECURITY CONCEPTS

The draft Reference Modelfor Object Data Management (OODBTG, 1990) contains a section on

security which states that "the security facilities should be integrated with the concepts of

encapsulation, objects, inheritance, and identity." Many researchers in database security believe that

the ODM model offers real advantages for the support of security. In this section, we identify those

features of the model that we feel naturally support security concepts: behavior, classes hierarchies,

encapsulation, and object identity.

Behavior

In an ODM system, all conceptual entities are objects, each object consisting of a set of named

attributes and a set of operations that can access those attributes. This set of operations, or methods,

describe the object’s behavior. This ability to model behavior with methods provides new semantic

facilities for imposing constraints on the relationships between data. A number of researchers have

looked at methods as a way of augmenting ODM systems for secrecy constraints. Lunt and Millen

(Lunt and Millen, 1989) and Thuraisingham (Thuraisingham, 1990) have identified approaches for

content- and context-based constraints for both discretionary and mandatory access controls.

Thuraisingham also identified aggregate constraints as a mechanism for addressing classification

aggregation problems. In addition, Lunt and Millen looked at constraints as a way of handling the

three “dimensions” of classification identified by Smith (Smith, 1988). Lastly, encoding inference

rules in methods has been suggested by Lunt and Millen as a partial solution to inference problems.

Class Hierarchies

Classes are groupings of objects which share similar characteristics: attributes or methods. The

concept of a class hierarchy extends the class concept further by allowing the attributes and methods

specified for one class to be inherited by its subclasses, thereby leading to less redundancy in data and

method implementation. Inheritance also simplifies data classification by allowing security constraints

to be attached to classes and inherited by their subclasses. Likewise, it allows the existing structure of

the system to be used as the basis for multilevel object classification. Jajodia and Kogan (Jajodia and

Kogan, 1990) use the term security inheritance to describe the representation of multilevel entities in an

ODM system using class hierarchies.
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Encapsulation

Another important feature ofODM systems is the notion of encapsulation. Object encapsulation

means that an object can only be acted on by executing the methods defined for that object. This fea-

ture supports the concept of a reference monitor. A reference monitor is defined by the National

Computer Security Center’s (NCSC) Trusted Computer System Evaluation Criteria (TCSEC)

(NCSC, 1985) as "an access control concept that refers to an abstract machine that mediates all

accesses to (security) objects by subjects." An example of how object encapsulation can be applied to

the reference monitor concept is provided by Jajodia and Kogan (Jajodia and Kogan, 1990). Since all

constructs are objects and all objects must communicate by messages, they say that "messages can be

considered the only instrument of information flow" in an ODM system. They go on to propose that

every message can be “intercepted by the message filter, a system element charged with implementing

security policies." This design enforces the reference monitor concept because everything is an object,

all objects communicate through messages, and all messages go through the security filter.

Object Identity

Object identity addresses polyinstantiation, which is a phenomenon that occurs in secure RDBMSs
to correct a covert channel problem. Polyinstantiation refers to the simultaneous existence in a relation

of multiple tuples with the same key values, where the multiple instantiations are distinguished by their

security levels. The existence of polyinstantiated tuples leads to a referential integrity problem during

updates. However, there are no duplicate keys in the ODM model because the concept of object

identity states that every object has a unique identifier which is permanently associated with that object.

In some models for secure ODM systems, polyinstantiation does not occur because of these globally

unique object identifiers (Lunt and Millen, 1989). From a technical view point, this has advantages for

preserving referential integrity; however, a problem still exists from the user’s view point since the

same real-world object is still represented by two objects. (Thuraisingham, 1989b)

SECURITY IN THE ODM STANDARDIZATION PROCESS

Integrating security into the standardization process for the ODM model has two aspects. One is

the formulation of standards for a secure ODM model; the second is the addition of security features to

the ODM model itself. Secure data models are the subject of much research. Several researchers have

proposed secure relational data models, and several secure RDBMSs are available as products.

However, open issues have been recognized and much research remains to be done. Standards for the

relational data model itself have been available for several years (International Standards Organization,

1989): the standardization effort for the ODM model is not completed. Furthermore, the research

reviewed in the previous section on secure ODM systems has only just begun. Clearly, it is not yet

time for ;andardization of a secure ODM model: it is not too early, however, to add security features to

the regular ODM model.

The authors of this paper take the position that security features should be part of the emerging

standards for the ODM model. Experience with security for the relational data model has shown the
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importance of considering security as an integral part of a reference model. Because this has not been

done in the past, researchers working on MLS RDBMSs now find that their products cannot adhere to

the proposed SQL2 standard for referential integrity. Even in standard RDBMSs, integrity constraints

and secrecy constraints conflict, while such fundamental issues as the order of processing for integrity

and secrecy constraints must still be considered (DBSSG, 1990).

The draft Reference Modelfor Object Data Management already includes a number of important

security features, such as identification and authentication, audit, and a generalized notion of access

control (authorization). The following are additional features suggested for inclusion in ODM model

standards. These features support many of the concepts for information security identified in the

second section of this paper, and are felt by the authors to be important to ordinary as well as secure

ODM systems.

Access Controls. Support should be provided to the owners of data to permit selective access

to other users based on semantically meaningful access controls. Such controls would include content-

dependent access rules, which restrict access to an object based on its content , and context-dependent

access rules, which restrict access to an object based on whether other objects are accessed in

conjunction with the requested object.

Security Constraints. Security constraints include both secrecy constraints and integrity con-

straints. Secrecy constraints are predicates on the system that protect data from operations that are

actually illegal. Integrity constraints, on the other hand, protect the system from operations that are in-

valid. Integrity constraints are already part of the draft ODM reference model. In a similar fashion,

support should also be provided for system administrators to define secrecy constraints within the

ODM system data language. Legal operations should be defined in terms of content, context,

association, and aggregation constraints.

User Roles. The current list of roles of users of ODM systems should be expanded to include

the notion of a System Security Officer for the administration of user accounts and audit data.

Furthermore, support should be provided for basing system administration privileges on special roles

that may be assigned to individual user accounts, instead of through the sharing of a single “super

user” account as is frequently done in systems today. Examples of different system administration

roles are operator, database administrator, and security officer. In addition, a role definition capability

is needed for application-specific roles.

Object Boundaries. Although object boundaries are not security features, the determination of

an object’s boundary has important implication for the application of authorization controls and security

constraints (Fernandez and Gudes, 1989), as well as for performance, access methods, and

concurrency control (Dabrowski et al, 1990). Class hierarchies lead to a recursive definition of an

object, and inter-object relationships potentially extend an object’s scope even more. Therefore, the

ODM model should provide a way of unambiguously determining the extent or scope of an object.

Finally, we would like to see a flexible ODM standard in order to avoid precluding assurance or

other features necessary for a secure ODM model. For example, it may seem reasonable that

discretionary access control for the the ODM model be done at the object level. However, a standard
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requiring this type of access control would preclude using a message filter to mediate mandatory (and

perhaps discretionary) access control in a secure ODM system. Similarly, some researchers

(Thuraisingham, 1989a and b) feel that augmentation of an ODM system with logic programming is a

better approach to constraints than methods. Examples of other ODM features for which rigid

standardization has a potential security impact are concurrency control and clustering. Traditional

locking techniques for concurrency control have covert channel problems associated with their use,

while clustering can present problems in MLS systems because of issues concerning the storage of data

at different classification levels in a single level file.

SUMMARY

We have looked at information security from the perspective of secrecy and integrity, and have

defined a variety of security concepts that address those issues. Next, we have looked at the ODM
model and identified how its features can support these concepts. Although acknowledging it is not yet

time for a secure ODM model, we have taken the position that security features are important to any

ODM system, and that many of these features are appropriate for inclusion in the emerging ODM
model. These features address the areas of access controls, security constraints, user roles, and object

boundaries. Decisions about the standardization of features affecting the ability of an ODM system to

provide security should be flexible enough to allow security to be implemented where needed.
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Abstract

This position paper provides a strawman reference

model which can be used to compare and reason

about transaction management in an Object Ori-

ented Data Base system (OODB). The model is de-

scribed as consisting of a collection of characteristics

that can be used for comparing existing and future

features in transaction management of an OODB.
Some of the features in this collection are really al-

ternatives to one another. The purpose of inclusion

of these alternatives is to help the evaluation process

when developing standards.

1

Introduction

This position paper provides a strawman 1 reference

model which can be used to compare and reason

about transaction management in an Object Ori-

ented Data Base system (OODBs). The transac-

tion reference model that is orthogonal to an ob-

ject data model deals with issues of concurrency

control, database consistency, distributed process-

ing, and transaction needs which are unique for an

OODB application. The model is described as con-

sisting of a collection of characteristics that can be

used for comparing existing and future features in

transaction management. Some of the features in

this collection are really alternatives to one another.

The purpose of inclusion of these alternatives is to

help the evaluation process when developing stan-

dards.

The model is an English description of the design

space of features of a domain and provides individ-

uals with a way to discuss and compare the issues

‘Information Technologies Laboratory, Technical Report

90-08-xx, Computer Science Center, Texas Instruments In-

corporated, P.O Box 655474, MS 238, Dallas, Texas 75265.

Email: ccw@csc.ti.com Telephone: (214) 995-0337
1 This paper is intended as a good start towards a trans-

action reference model; its treatment of transaction manage-

ment is not intended to be complete. It is written in such

a way that is consistent with OODBTG’s OODB reference

model. The transaction reference model is an orthogonal ab-

straction to the object data model.

in the domain. Before describing the features of the

model, we described some of the goals for the design

of a reference model.

2 Goals

Two different goals of a transaction module are to

provide concurrency (high throughput volume, fast

response time) and to maintain (at the same time)

database consistency. Many application domains

have different requirements on concurrency and re-

quire sometimes special mechanism and user inter-

faces for implementing transactions. The goal of

standards is to achieve inter-operability of appli-

cations across softwares and hardwares of different

vendors and to accommodate the needs of as many
different applications as possible. This paper ex-

plores the issues when considering a reference model

for the process of standardization in the transaction

area of an OODB.
For the sake of discussion, we divide the features

into basic and advanced features.

3 Basic Features

The basic features address the database consistency

and concurrency control issues for “simple” trans-

actions.

3.1 Database consistency

A transaction maps a consistent database state to

a new consistent state atomically. It is a unit of re-

covery. The effect of a transaction on a database is

either total or nothing at all. When using a persis-

tent programming language, a programmer who is

accustomed to a memory centered view must now

use transactions to maintain database consistency.

A challenging “seamless” problem in persistent pro-

gramming language is to accommodate both the

database centered view required by database con-

sistency and the memory cehtered view accustomed

to by a conventional programmer.
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One solution is to treat cached (persistent) data

in a user’s memory space as a replicated partial copy

of the data in a database. This cached data survives

between transactions. The consistency problem of

this cached data is basically the same as the primary

copy in the database, but cached data plays a differ-

ent role in how it is accessed and updated. A pro-

gram should be able to read the cached persistent

data outside a transaction and to take appropriate

actions whenever it is modified by other transac-

tions; it can be modified only inside a transaction

using proper concurrency control tools. As an ex-

ample, an object browser can manage its objects in

a cache outside a transaction without blocking any

other transactions from updating these objects.

3.2 Concurrency control

A correct and concurrent execution of transactions

(with read and write conflict) is either serializable

or non-senalizahle.

3.2.1 Serializable executions

This kind implements interleaving of transactions

such that the execution is equivalent to some serial

execution of the transactions in the classical read

and write conflict. The basic modes are pessimistic
,

optimistic, and semi- optimistic.

In pessimistic mode, a transaction waits when

there is a data conflict until the other transaction

terminates. In optimistic mode, a transaction pro-

ceeds as if conflicts can never occur; the transaction

aborts at commit time if database consistency is vi-

olated; otherwise the transaction commits. A trans-

action in optimistic mode relies on validation pro-

cess to achieve serializability — not wait. In semi-

optimistic mode, a transaction waits when there is

a data conflict, but it never waits as long as in pes-

simistic mode. A transaction, in semi-optimistic

mode, may receive information from another active

transaction; it becomes therefore dependent on the

other transaction and risks the probability of being

aborted if the other one does.

Both the pessimistic mode and the semi-

optimistic mode use locks for concurrency control

and the optimistic mode, on the other hand, uses

timestamps. The transaction executions in all three

modes are serializable; the serialization orders for

the pessimistic and semi-optimistic mode are deter-

mined at run time whereas the order for the opti-

mistic is determined statically in transaction times-

tamp order.

All three modes will be discussed further in detail

below. Since pessimistic concurrency control is the

most widely used mode in commercial RDBMS, this

mode is covered in more detail than the other two.

• Pessimistic mode

Pessimistic mode is most suitable among trans-

actions with high probability of data conflict.

Pessimistic concurrency control places a trans-

action in a wait state when there is a conflict;

the transaction proceeds when the conflict is re-

solved. A transaction, therefore, cannot intro-

duce any inconsistency at the time of commit.

Locking is a common way for implementing pes-

simistic concurrency control. Two phase lock-

ing protocol [1] is sufficient for ensuring serializ-

ability of an execution of transactions. A strict

two-phase locking protocol, in which locks are

not released until after the transaction com-

mits/aborts, prevents cascade abort — a rip-

ple effect on committed transactions that read

the result produced prior to the time of com-

mit/abort of a transaction. The following is a

list of other locking related features:

- Lock types

The most commonly understood locks are

read and write locks. A transaction waits

when a lock request cannot be granted be-

cause of a conflict. In a persistent pro-

gramming language, objects managed in

a cache outside a transaction should not

affect the serializability of transaction ex-

ecutions; these objects are not modifiable

outside a transaction but must be synchro-

nized whenever a newer version becomes

available. An object in a cache outside a

transaction can either have a null lock or

notify lock
2

.

* Read lock is used when a transac-

tion reads an object and wishes to

be guaranteed such that no transac-

tion can commit a newer version to

the database while the lock is held.

Read lock can be shared among trans-

actions.

2 An update transaction must not use null lock or notify

lock in place of read lock for objects in its read set that can be

modified by other transactions to cause non-serializable exe-

cutions. Careful use of both null lock and notify lock should

not affect the serializability of transaction executions. An
alternative is to support null lock and notify lock inside a

transaction and risks the probability of non-serializable exe-

cution of transactions
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* Write lock is used when a transaction

wishes to write a new version of an

object. Write lock is exclusive.

* Null lock is used for object managed
in a cache outside a transaction. The
locks on objects accessed inside a

transaction can be turned into null

locks after the transaction terminates.

* Notify lock is used for object man-

aged in a cache outside a transac-

tion. A program is interrupted when-

ever a new value is committed in the

database copy of a notify-locked ob-

ject. The locks on objects accessed in-

side a transaction can be turned into

notify locks after the transaction ter-

minates.

Implicit and explicit locking

Implicit locking hides lock requests from a

user and is therefore more seamless from

a programming language user’s point of

view. But explicit locking offers more flex-

ibility in concurrency control. For exam-

ple, an application that wishes to prevent

deadlock can explicitly lock all needed

database objects at the beginning of a

transaction.

Granularity

Some possible choices of unit of locking

in an implementation are a page, an ob-

ject, a cluster of objects, an object graph,

a partition of a database, a database, and

a collection of databases. Using implicit

locking, the source code can remain the

same when running on systems assuming

different lock granules, but the achievable

degrees of concurrency are most likely sys-

tem dependent. An application using ex-

plicit locking and accessing two objects at

the same time in two processes will not

run in a system that uses only page level

locking and the two objects are from the

same page.

Hierarchical locking

When granules of locks are hierarchically

structured, one needs to support hierar-

chical locking [2] to improve the level of

concurrency. For example, a tree struc-

tured object graph may be write-intent

locked and two leaf objects of the tree

graph write-locked by different transac-

tions. If hierarchical locking is supported,

there should be first a standard way for

specifying the hierarchical way of grouping

of the objects and then a locking prece-

dence between the different levels of a hi-

erarchy.

- Upgrading locks

A read lock can be changed to a write

lock (but not vice versa) without affect-

ing the serializability of transaction exe-

cutions. Null lock and Notify lock are for

cached objects outside a transaction; these

types of locks can be exchanged with each

other without impacting the serializability

of the transaction executions. The lock

on an object that is null locked or notify

locked outside a transaction must be “re-

fetched” either with a read or a write lock

when the object is needed inside a trans-

action.

- Propagating locks

An application either fetches an object,

with an explicit lock type or faults in an

object with a default lock type. Should

the lock type of a faulted object be the

same as the object from which the faulted

object is derived? An object graph, in

general, contains several paths to an ob-

ject; should an object with a read lock be

upgraded to a write lock if it is reachable

from an object on another path with a

write lock?

- Synchronous and asynchronous re-

quests

A lock request function is synchronous if

the function returns only when the re-

quested lock is granted and asynchronous

if the function returns immediately with a

status of the lock request. A fully general

asynchronous feature has the possibilities

of multiple outstanding lock requests from

a single transaction and increases there-

fore the complexity of the deadlock detec-

tion algorithm. A reasonable compromise

in the asynchronous feature is to return

the function call immediately indicating

that the lock request is ignored if the lock

is unavailable; a transaction must re-issue

the request at a later time if the needs

remain. This compromised asynchronous
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approach has no negative impact on two

phase locking protocol.

- Deadlock handling policies

Deadlock (and also livelock [3]) occurs in

a DBMS. Techniques for solving them in-

clude prevention
,
avoidance, and detection

and resolution schemes. Applications have

different requirements. Some applications

may tolerate deadlock detections and res-

olutions and others may not. For exam-

ple, a computer integrated manufacture

(CIM) application that controls a physi-

cal robot on the factory floor cannot have

a transaction being aborted due to dead-

lock. Standards for OODB should offer a

choice of policies in handling deadlock on

a per transaction basis to an application.

— Restart

From database consistency point of view,

there is little problem in restarting a trans-

action. In persistent C++, a program us-

ing transaction to perform a task must

be coded carefully if the transaction may
be aborted by the system; there are tran-

sient data which have been altered by the

aborted transaction. Restart of a trans-

action can be made invisible to an appli-

cation program if transient data are also

restored to their state at the beginning of

the aborted transaction.

Optimistic mode

Optimistic mode is best suitable in application

domains that have little data conflict. Opti-

mistic concurrency control lets a transaction

proceed as if there is no conflict and performs

a validation check at the time of commit of

a transaction. The system assigns a unique

timestamp to a transaction when it first be-

gins to run. The transaction, during its life

time, has a consistent view of the database.

At commit time, the system checks, based on

the timestamp, whether this consistent view of

the transaction has been changed during the in-

terval between the transaction starts and ends;

if this consistent view still holds, the transac-

tion is committed; otherwise the transaction is

aborted and restarted.

Semi-optimistic mode

The reason that two phase locking works in

pessimistic concurrency control is that cycles

are prevented from occurring in a transaction

serialization graph [4, 5], If a DBMS main-

tains a transaction serialization graph among
transactions, it replaces the two-phase locking

protocol with cycle detection algorithm, and it

aborts transactions that are parts of or depend
on a cycle of a transaction serialization graph
3

. Serializable transaction executions can again

be achieved by letting transaction commit ac-

cording to their dependency order kept in the

transaction serialization graph. This serializa-

tion order is determined at run time. The mode
of concurrency control is called semi- optimistic.

Semi-optimistic concurrency control places a

transaction in a wait state when there is a con-

flict, but the waiting period is not as long as

required in a two phase locking protocol. A
transaction in semi-optimistic mode does not

have to hold on to a lock until it terminates as

required by strict two phase locking protocol,

and a lock on an object can be released as soon

as the object is used or the modified object is

saved in a database. A transaction may acquire

a lock that is released by another currently ac-

tive transaction and becomes a dependent of

the other transaction. Being optimistic about

the fact that the other transaction will eventu-

ally commit, the transaction risks the probabil-

ity of being aborted.

Conversely, a transaction has the option to pre-

vent itself from being aborted due to depen-

dency on other transactions by restricting itself

to acquire only locks that have never been held

by any currently active transactions; this trans-

action then behaves exactly as transactions in

pessimistic mode.

Problem of database inconsistency is detected

much sooner in semi-optimistic mode than

in optimistic mode. A transaction in semi-

optimistic mode is aborted as soon as it be-

comes part of or depends on a detected cycle in

an associated transaction serialization graph,

whereas a transaction in optimistic mode is

aborted no sooner than it is ready to commit.

A system that supports more than one mode (i.e.

mixed [6] mode) at the same time has some trans-

actions running in one mode and others in a dif-

3 Serialization graphs and wait-for graphs are similar, but

they serve different purposes: one for maintaining correctness

and the other for detecting deadlock.



ferent mode. A transaction running in one mode
should be able to run in a different mode at another

time without recoding the body of the transaction.

The inter-operability goal of standards is to allow a

transaction that runs on one system supporting op-

timistic mode to run on another system supporting

only pessimistic mode preferably with no recoding

of the source.

Locks create a problem in a mixed mode system:

they are used in pessimistic and semi-optimistic

modes, but not in optimistic mode. Semi-optimistic

mode is actually a superset of pessimistic mode.

This difference on locking can be solved by either

requiring that only implicit locking be used in pes-

simistic and semi-optimistic mode or ignoring all ex-

plicit lock requests when a transaction is running in

optimistic mode.

3.2.2 Non-serializable executions

Concurrency control in most commercial DBMS is

based on read and write conflict. Recent research,

however, has been directed away from serializabil-

itv with respect to read and write conflict. Spec-

tor’s [7] semantic based concurrency control defines

dependency relations among the operations of an

abstract data type (ADT). The admissible execu-

tions are serializable with respect to the operations

of an ADT, but non-serializable with respect to read

and write. Korth [8] assumes that the database can

be partitioned based on user supplied consistency

predicates such that serializable execution of trans-

actions are required only at the individual partition

level; serializability of transactions at the database

level is therefore not necessary in Korth’s model.

Garcia-Molina and Lynch [9, 10] let a transaction

be broken into breakpoints of different granule sizes

and allow transactions to be interleaved at differ-

ent breakpoints according to their semantic classes.

Avalon C-f+ [11] supports an atomic data type that

guarantees not only persistence and recoverable, but

also atomic update of an object. The subatomic

data type of Avalon C++ supports conditional crit-

ical section handling and state information based

concurrency control.

4 Advanced Features

An application often stretches the limitation of the

basic features. The tools for supporting cooperative

designs, long duration transactions, nested transac-

tions, distributed transactions, transient data, mul-

tiple databases, logging and recovery are covered in

the section as advanced features of an OODB.

4.1 Multi-threaded transaction and
cooperative design

Multi-threaded transaction extends the capability

of grouping operations into one atomic step from

a single thread to multiple threads running on dif-

ferent workstations. A multi-threaded transaction

supports cooperative design work by modeling each

team member’s work as a thread (either light or

heavy weight process) and the entire team’s work

as a transaction. Members of a team, being threads

of a transaction, have shared access to each other’s

persistent data — a necessity for cooperative design

work. The entire team’s work, as a transaction, pre-

serves the consistency of the database.

The sharing of objects among threads of a trans-

action requires a different kind of concurrency con-

trol; execution of threads, in general, is non-

serializable. Locking without two-phase protocol

at the thread level suffices to solve concurrent ac-

cess to the shared objects. If two-phase locking

is the means to ensure serializability of executions

at transaction level, it also applies to each multi-

threaded transaction. An OODB should hide the

difference between the thread level locking and the

transaction level locking at user level as much as

possible.

4.2 Nested transactions

A nested transaction [12, 13] is a way of grouping

operations as an atomic step within a transaction.

In particular, a sequence of code of a method in

an object-oriented application can be grouped as a

transaction and methods are often called in a nested

manner. Consequently, transactions are nested nat-

urally in an object oriented application.

Nested transactions also support

intra-transaction concurrency. In a single threaded

implementation of nested transactions, transactions

are nested as stack operations; sibling transactions

at the same level must be executed one at a time.

On the other hand, in a multi-threaded implemen-

tation, sibling transactions at the same level can

be run as separate processes. Clearly, an applica-

tion that is coded for a system supporting mutli-

threaded, nested transactions has to be recoded to

be able to run on a system supporting only single-

threaded, nested transactions.
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4.3 Long duration transactions

Applications of an OODB often include long dura-

tion transactions. The problems that are amplified

when the duration of a transaction is stretched into

hours, days, or weeks are the following.

• A short transaction may be blocked by a long

duration transaction for unacceptable length of

time.

• The amount of work lost due to aborting a long

duration transaction or system failure may be

unacceptable.

• The lock table kept in a volatile memory has

a greater probability of being destroyed due to

a system failure during the life time of a long

duration transaction.

The following are features related to handling

long duration transactions.

4.3.1 Checkpoint

To avoid losing work due to an unwanted abort, a

transaction can issue a checkpointing to save its par-

tial results at appropriate intervals; a transaction

restarts after an abort at the last checkpointed state

of the transaction.

4.3.2 Piggy-backed transactions

An alternative way of supporting checkpointing is

to introduce piggy-backed transactions. A long du-

ration transaction is mapped to a sequence of piggy-

backed transactions such that when one of the trans-

actions commits, its successor transaction inherits

all its locks and object cache.

4.3.3 Check-in-and-check-out model

Conceptually, a long duration transaction [14] can

be implemented by checking out the data from a

public database into a private database and merg-

ing the results back into the public database when

the work is done. A long duration transaction holds

the locks in a public database on the objects that are

checked out to prevent their access by other trans-

actions.

4.3.4 Persistent locks

Lock tables are usually kept in a main memory for

minimizing the overhead in using locks, but locks for

objects checked out for a long duration transaction

must survive system crashes and therefore need to

be stored in a database as persistent objects. Per-

sistent lock tables are removed from the database

when the objects are checked in. The active locks in

the lock table are the union of those locks normally

kept in a main memory and all persistent locks.

The features covered so far have solved the prob-

lem of work loss due to a system crash in running a

long transaction, but they do not address fully the

problem of concurrent access to shared data by a

long transaction and other short transactions. The
branching versions [15] model discussed next allows

concurrent updates of different branching versions

of the same objects by two or more (long or short)

transactions.

4.3.5

Branching versions model

A branching version model for long transactions

does not require maintaining two databases — pub-

lic and private. A long duration transaction is

modeled by a sequence of regular short transactions

that operate on a private branch of versions of the

database. Transactions accessing data of different

branches of versions do not interfere with each other.

Transactions that model parts of a long duration

transaction save their results through regular com-

mits; risks of of losing work in a long transaction

are minimized.

The multiple branching versions for long duration

transaction are orthogonal to both multi-threaded

transactions and nested transactions; for example,

an application contains a multi-threaded transac-

tion that has nested subtransactions and operates

on a private branch of versions.

4.4 Distributed transactions

A distributed database has disjoint data of the

database stored at multiple sites in a network. A
distributed transaction is a way of grouping a set of

operations that accesses these data at multiple sites

of a network in one atomic step. The standardiza-

tion issues exist in ( 1) user interface for grouping the

operations of a transaction at a site, (2) two phase

commit protocol, (3) distributed deadlock handling,

and (4) node and network failure handling.

A client-server model partitions a database appli-

cation into two generic classes of processes: typically

the server processes contain the database service re-

lated code, and the client processes contain applica-

tion specific code. The most general configuration

consists of multiple server machines and multiple
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Parameter type Possible Values

Concurrency control mode PESSIMISTIC/OPTIMISTIC/SEMI-OPTIMISTIC
Read-only transaction YES/NO
Lock request type SYNCHRONOUS/ASYNCHRONOUS
Lock to be converted to at end of transaction NULL LOCK / NOTIFY LOCK
Check-in/check-out CHECK-IN/CHECK-OUT/NULL
Persistent locks YES/NO
Locks and cache held for next transaction YES/NO
Deadlock handling policy PREVENTION/DETECTION
Branching version <version-name>

Multi-threaded transaction transaction identifier>/NULL

Nested transaction <parent transaction identifier>/NULL

Table 1: Transaction parameters.

client machines of a network supporting distributed,

multi-threaded and nested transactions. Most ven-

dors do not support this general configuration in

their early releases. Intermediate configurations in-

clude ( 1 )
multiple user single machine, (2) one client

machine and one server machine, (3) multiple client

machines and one server machine, (4) one client ma-

chine and multiple server machines, and (5) multiple

client machines and multiple server machines. One
of the standardization issues is the visibility of the

server sites to an application program.

4.5 Transaction on transient data

Transaction enables concurrent access of persistent

data and supports rollback of changes on persistent

data through transaction abort. In a persistent pro-

gramming language, transaction can be an orthogo-

nal property to cover both persistent and transient

data. The rollback feature on transient data sim-

plifies the implementation of what-if analysis. The
concurrent access of shared transient data in a seri-

alizable way guarantees the consistency of the data.

In an environment such as MACH that supports

large virtual address space and light weight pro-

cesses, transactions on transient data offer most of

the benefits of a main memory database.

4.6 Multi-base transactions

In a client server model, a client application could

access data from several servers running different

vendors’ OODBs. In addition to the consistency

at individual database level, there is also the inter-

database consistency problem when these databases

are considered as a whole, as in distributed trans-

actions. The standardization of the interface pro-

tocol between client and server should include a

standard two-phase commit protocol to achieve

inter-database consistency when multiple vendors’

databases are accessed in one transaction.

4.7

Logging and recovery

The logging needs for recovery differ for transac-

tion abort, machine and medium failures. Transac-

tion abort is already covered briefly. Medium fail-

ures require that backup of the database be taken

periodically. The logging requirement for machine

failures depends very much on the scope of data

saved in the database. For example, a database

that contains versions of an object needs to log only

the timestamps of committed transactions. On the

other hand, an OODB that supports in-place up-

dates needs write-ahead logging for failure recovery.

If the recovery process requires re-do of some of the

transactions, a write-after log must also be used.

5 Application program inter-

face

The set of application program interfaces (API [16])

for a persistent programming language should ide-

ally be as small as possible. A minimal set of API

for transactions includes transaction.begin
,
transac-

tion.commit, and transaction.abort. The parame-

ters for transaction.begin should include the options

available for running a transaction. Table 1 sum-

marizes briefly the options described in the paper.

The default values and the return values that are

not described in Table 1 should also be specified

in the standardization process. These parameters

may also be specifiable in environment variables so

51



that the same source code can be run with different

options or on different vendors’ systems with mini-

mum modification. The parameters of both transac-

tion.commit and transaction.abort are empty. The
return values of transaction.commit should cover

the possible results of a commit operation.

6 Comparison with other

OODBs
Table 2 and Table 3 present a comparison among

a representative (but not complete) sample of

OODBs in terms of the basic and advanced fea-

tures of transaction they support. The systems in-

cluded in this comparison are (in alphabetical or-

der): Carnegie Mellon University’s Avalon C++
[11], Servio Corporation’s GemStone [17], Obectiv-

ity’s Objectivity/DB [18], Object Design’s Object-

Store [19], Ontologic’s Ontos [20], Altair’s O 2 [21],

MCC’s ORION [22], UC Berkeley’s Postgres [23],

Versant’s VERSANT [24], and Texas Instruments’

Zeitgeist [25]. Although our comparison has been

based on published material publicly available to us

and through private communications with some of

the vendors as of this writing, we know the table

may still not be accurate. We invite corrections.

In the table, N stands for No, Y stands for Yes,

and ? stands for unknown or unclear to a system’s

transaction features. The rows in the table describe

OODBs and columns describe concurrency control

and transaction features. Table 2 describes the ba-

sic features and Table 3 describes the advanced fea-

tures. These features are numbered in the table as

follows.

1. Pessimistic mode
2. Optimistic mode
3. Semi-optimistic, mixed, and other modes

4. Read and write locks

5. Null lock

6. Notify lock

7. Other lock types

8. Page level lock

9. Object level lock

10. Cluster lock and others

11. Hierarchical locking

12. Explicit locking

13. Implicit locking

14. Synchronous lock request

15. Asynchronous lock request

16. Deadlock detection - timeout

17. Deadlock detection - wait for graph

18. Multi-threaded transaction

19. Nested transaction

20. Check-in/check-out model

21. Public and private database

22. Long transaction through versioning

23. Persistent locks

24. Multiple clients/servers

25. Transaction on transient data

26. Write-ahead/write-after logging

27. Backup and recovery

6.1 Notes on the Comparison

The following lists some additional comments on the

features in Table 2 and Table 3.

1. A nested transaction in Avalon C++ can also

be made a top level nested transaction.

2. GemStone’s concurrency control is based on an

optimistic foundation with pessimistic exten-

sions.

3. Objectivity/DB supports locking at container

object, database object, and federated database

levels.

4. Ontos supports both pessimistic and optimistic

mode of concurrency control. The optimistic

mode in Ontos is not timestamp based. A
transaction in optimistic mode does not wait

for other transactions running in optimistic

mode when there is a conflict, but it waits when

there is a conflict with a transaction running in

pessimistic mode.

5. Avalon C++, VERSANT, and Ontos, and Zeit-

geist support multi-threaded transactions for

cooperative design work.

6. Objectivity/DB, ObjectStore, and VERSANT
support persistent locks for check-in and check-

out model. (For different purposes, Postgres

requires that locks on procedure type data to be

persistent.)

7. Most vendors implement a long duration trans-

action as a set of short transactions that ei-

ther operate on a private database or a private

branch of versions of the database.

8. Postgres and Zeitgeist supports linear versions

at the storage level.
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System

CC Mode Lock Types Lock Granules Lock Req. Types

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Avalon C++ Y N Y Y N N Y ? Y Y N Y Y Y N
GemStone Y Y Y Y N N Y N Y N N Y N N Y
Objectivity/DB Y N N Y ? ? ? N N Y N Y Y Y ?

OjectStore Y N N Y N ? Y Y N ? N N Y Y Y
Ontos Y N Y Y Y Y Y N Y Y ? Y Y Y Y
ORION Y N N Y ? ? Y ? Y Y Y ? ? Y ?

o 2 Y N N Y ? ? Y Y N N N Y ? Y Y
Postgres Y N N Y N N Y Y Y Y ? ? Y Y ?

VERSANT Y N N Y ? Y Y N Y Y Y Y Y Y Y
Zeitgeist Y N Y Y Y Y Y N Y Y N Y Y Y Y

Table 2: Comparison among a representative sample of OODBs.

System

Transaction Related Features

16 17 18 19 20 21 22 23 24 25 26 27

Avalon C++ Y Y Y Y N N N N Y N Y Y
GemStone N N N ? N N N N Y N Y Y
Objectivity/DB Y ? ? ? Y Y Y Y Y N Y Y
ObjectStore ? Y N Y Y Y Y Y Y N Y Y
Ontos ? Y Y Y Y ? Y N Y N Y Y
ORION ? ? N Y Y Y Y ? Y N Y Y
o 2

? ? N ? ? ? ? ? Y N Y Y
Postgres ? Y N ? N N N Y ? N Y Y
VERSANT Y Y Y ? Y Y Y Y Y N Y Y
Zeitgeist Y Y Y Y ? ? Y N Y N Y Y

Table 3: Comparison among a representative sample of OODBs — continued.

9. Zeitgeist also supports branching versions at

storage level. Different versions of an object

have the same object identifier. Consequently,

an object graph is stored independent of ver-

sions. Versions of different branches of an ob-

ject are locked separately so that a long trans-

action accessing one branch of versions of an ob-

ject does not interfere with transactions access-

ing a different branch of versions of the same

object.

10. Some features marked Y in Table 2 and Table 3

may not be available in current releases.

7 Conclusion

The key issue in transaction processing is database

consistency and performance. The differences in ap-

plications and their performance needs often require

different kinds of concurrent control policies to be

implemented in transaction modules. The paper has

discussed some of the alternatives from which a ref-

erence model for standardization in the transaction

area must choose and the issues from both the user’s

and implementor’s view point.

References

[1] Eswaran, L., Gray, J., Lorie, R., and traiger,

I., “The Notion of Consistency and Predicate

Locks in a Database System,” Communication

of ACM 19(11), Nov., 1976.

[2] Gray, J., “Notes on Data Base Operating Sys-

tems,” IBM, San Jose, Calif., RJ2188, 1978.

[3] Ullman, J., Principles of Database Systems.

Computer Science Press, Rockville, MD, 1980.

[4] Papadimitriou, C., The Theory of Database

Concurrency Control. Computer Science Press,

Rockville, MD, 1986.

53



[5] Bernstein, P., Hadzilacos, V., and Good-

man, N., Concurrency Control and Recovery

m Database Systems. Addison-Wesley, Read-

ing, MA., 1987.

[6] Maier, J. and Stein, J., “Development and Im-

plementation of an Object-Oriented DBMS,”
in B. Sriver and P. Wagner, eds Research Di-

rections m Object-Oriented Programming. MIT
Press, Cambridge, MA, 1987.

[7] Schwarz, P. and Spector, A., “Synchronizing

Shared Abstract Types,” ACM Transactions

on Computer Systems 2(3), Aug., 1984.

[8] Kortli, H. and Kim, W., “A Concurrency Con-

trol Scheme for CAD Transactions,” University

of Texas Computer Science Department Report

TR-85-34, Dec., 1985.

[9] Garcia-Molina, H., “Using Semantic Knowl-

edge for Transaction Processing in a Dis-

tributed Database,” ACM Transactions on

Database Systems, 8(2), June 1983.

[10] Lynch, N., “Multilevel Atomicity—A new Cor-

rectness Criterion for Database Concurrency

Control,” ACM Transactions on Database Sys-

tems, 8(4), Dec., 1983.

[11] Eppinger, J. L., Mummert, L. B., and Spec-

tor, A. Z., “Guide to the Camelot Distributed

Transaction Facility including the Avalon Lan-

guage,” Carnegie Mellon University, Pitts-

burgh, PA, 1989.

[12] Moss, J.E.B., “Nested Transactions: an

Approach to Reliable Distributed Comput-

ing,” MIT Technical Report MIT/LCS/TR-
260, 1981.

[13] Lynch, N., Merritt, M., Weihl, W., and Fekete,

A., “A Theory of Atomic Transactions,” MIT
Technical Report MIT/LCS/TM-362, 1988.

[14] Bancilhon, F., Kim, W., and Korth, H.F.,

“A Model for CAD Transactions,” Proceedings

of 11th International Conference on VLDB,
Stockholm, Aug., 1985.

[15] Joseph, J., Shadowens, M., Chen, J.,

and Thompson, C., “Strawman Reference

Model for Change Management of Objects,”

X3/SPARC/DBSSG OODBTG Task Group

Workshop, June, 1990.

[16] Perez, E., “A Strawman Reference Model for an

Application Program Interface to an Object-

Oriented Database,” X3/SPARC/DBSSG
OODBTG Task Group Workshop, Oct., 1990.

[17] Servio Logic Corp., “GemStone Product Ref-

erences,” Servio Logic Corp., Beaverton, OR,
97006, Sept., 1989.

[18] Objectivity, Inc., Objectivity/DB System

Overview. Objectivity, Inc., Menlo Park, CA,

94025, Mar. 1990.

[19] Object Design., “An Introduction to Object-

Store, Release 1.0.” Object Design, Burlington,

MA, 01803, Mar. 1990.

[20] Andrews, T., Harris, C., and Duhl, J.,

“The Ontos Object Database,” Ontologic Inc.,

Burlington, MA, 01803.

[21] Fernando V., Bernard, G., and darnis V.,

“The O 2 Object Manager: an Overview,” Pro-

ceedings of 15th International Conference on

VLDB, Amsterdam, Aug., 1989.

[22] Garza, J. F. and Kim, W., “Transaction man-

agement in an Object-Oriented Database Sys-

tem,” Procedddings of the ACM SIGMOD
1988 Conference.

[23] Stonebraker, M., “The Design of the POST-
GRES,” in Proc. of the ACM SIGMOD 1986

Conference.

[24] Versant Object Technology Corp., “ObjectTo-

day! Versant Object Technolgy’s Quarterly

Newsletter,” Versant Object Technology Corp.,

Menlo Park, CA, 94025, June. 1990.

[25] Ford, S. et al, “ZEITGEIST: Database Sup-

port for Object-Oriented Programming,” in

Advances m Object-Oriented Database Sys-

tems, 2nd International Workshop on Object-

Oriented Database Systems, 1988.

54



Transactions and Versioning in an ODBMS

Katie Rotzell

Versant Object Technology

October 23, 1990

1. Introduction

Versant Object Technology builds and sells a distributed Object Database Management System

(ODBMS), called VERSANT. From its founding (as OBJECT-Sciences Corporation), the company has

believed in and addressed the importance of a complete object model, fully distributed data manage-

ment, and flexible transaction management as fundamental components of any ODBMS. Several papers

at the previous OODB Task Group Workshop addressed the need for a common transaction model and

version support for interoperability of data managers and portability of applications. Versant supports

the OODB Task Group’s resolve to promote standards in these areas. This position paper proposes tran-

saction model and versioning model requirements in support of the kinds of distributed data processing

that ODBMS applications require.

2. Transaction Model

2.1. Goal

Many applications which are driving the demand for ODBMS, such as CAD and CASE tools,

computer-aided publishing tools, and what-if analysis tools, were never able to realize productivity

gains from earlier database technology for several reasons, one of them being the inappropriateness of

the transaction model.

Conventional transaction models assume that a typical transaction is very short and accesses a small

amount of data; if an application tries to lock an entity which is already locked by another application’s

transaction, it may wait for a certain amount of time (usually a few seconds) and then its transaction

will be automatically rolled back by the system. Since the lifetime of a transaction is shorter than that

of the application which begins it, in conventional transaction models there is no need to store locks

persistently. We call these transactions "short transactions."

In contrast, a typical transaction found in CASE and the other areas mentioned above can last for days

or longer and can span several applications. Such a transaction must have persistent locks and must

present the application with multiple options as to how to proceed if a requested object cannot be

locked. We call these transactions "long transactions."

Many applications whose data modeling and access needs suit ODBMS require long transactions. How-

ever, many of the commercial, data- processing applications, which previously seemed well-suited to

earlier DBMS technology, will also benefit from the modeling and storage capabilities of ODBMS
while still relying on a more conventional transaction model. The goal, then, is to combine the two

models into a single unifying framework which meets the needs of both types of application. The

VERSANT transaction model is architected as a single unifying model. The model consists of three

main components: 1) a short transaction, which is the smallest unit of atomic update; 2) a session,

which is the length of time an application is connected to the ODBMS; and 3) a long transaction, which

is a unit of update of arbitrary length. In the VERSANT model, long transactions consist of sessions

and sessions consist of short transactions, as Figure 1 illustrates.

2.2. Short Transactions

A short transaction is a conventional transaction such as those found in relational and other commercial

DBMS’s. A short transaction is an atomic unit of update; the ODBMS guarantees that either all of it is

made permanent in the database, or none of it is, regardless of system crashes, network crashes, media

failures, etc. A short transaction will very likely be distributed; that is, it may involve updates to data-

bases that reside on different machines. Therefore, a distributed update protocol such as two phase
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commit is a requirement. Within a short transaction, it is desirable to have the capability to set a

savepoint and later be able to rollback to that savepoint. Short transactions provide locking ("short

locks") and deadlock detection like conventional transaction models. Incomplete short transactions do

not survive system crashes; if such a crash occurs, all the effects of any uncommitted transactions will

be undone, including all short locks.

The following operations are required in a short transaction:

• Begin short transaction. Start a short transaction. Often this is done automatically, as the result

of starting a session or ending the previous short transaction.

• Commit short transaction. Make all the changes visible in the database(s) and release all short

locks acquired during the short transaction.

• Checkpoint-commit short transaction. Make all changes visible in the database(s) but do not

release any locks, so the application can continue without having to re-acquire locks.

• Rollback short transaction. Undo all changes made during the short transaction and release any

short locks that have been set.

• Savepoint short transaction. Mark all changes made to objects up to this point in the short tran-

saction, for possible undoing back to this point.

• Undo savepoint. Undo all changes made during the short transaction since the savepoint was exe-

cuted.

• Short-lock object for read. Place a short read lock on an object. Other transactions may read the

object but not update it or delete it.

• Short-lock object for write. Place a short write lock on the object. Other transactions may not

access the object.

23 . Sessions

A session is the duration of an application’s interaction with the ODBMS. When a session is begun,

the ODBMS does initialization of system structures; when the session is ended, the ODBMS does sum-

mary clean-up. When a session is begun, a short transaction is automatically begun. A session takes

place within a long transaction. Therefore, when a session begins, it can also begin a new long transac-

tion or it can connect to an existing one. When a session ends, it can optionally end the long transac-

tion it belongs to.

The following operations are required for a session:

• Begin session with new long transaction <name>. A new long transaction is begun. The long

transaction is given a user- defined name so it can be identified when connecting subsequent ses-

sions to it. If no transaction name is specified, the system assigns a default name.

• Begin session with connection to long transaction <name>. The session is attached to the long

transaction identified, automatically participating in any long locks that were already set by the

long transaction.

• End session. The long transaction (including all its long locks) remains in effect after the session

ends.

• End session and commit long transaction. All changes made to all objects during the long tran-

saction are made visible to users outside the long transaction. All long locks are released.

• End session and rollback long transaction. All outstanding changes made during the long transac-

tion are backed out. All long locks are released.

2.4. Long Transactions

A long transaction is a transaction which spans multiple short transactions, multiple sessions, and multi-

ple application processes, and whose lifetime does not have any system-imposed upper bound (unlike

short transactions). A long transaction can be committed in its entirety, or rolled back.
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The following operations are required for long transactions:

• <Begin long transactions See Sessions.

• cCommit long transactions See Sessions.

• <Rollback long transactions See Sessions.

• Long-lock object for read. A persistent lock is placed on the object. Since this lock is stored in

the database, it survives system crashes. Any short transaction which belongs to this long tran-

saction inherits this long lock. Other transactions may read this object, but may not update or

delete it. In the case that the object is already locked with a conflicting lock (in this case, a write

lock), proceed options allow the application to: wait for the lock; queue the lock request and con-

tinue; abandon the lock request and continue. The granularity of locking is at the object level

rather than, for example, the page level. It is possible that more than one object is locked per

request, depending on the type of object; for example, if the object to be locked is a container, all

the objects it contains can be locked as part of the same request.

• Long-lock object for write. A persistent lock is placed on the object. Any short transaction

which belongs to this long transaction may update the object. Other transactions may not read or

write this object. As with long read locks, proceed options apply.

• Long-unlock object. Release the long lock on the object.

• Monitor object for request pending, object updated, object deleted, object available. Notification

is sent about this object when any of the specified events happens. Notification can go to the user

or to the long transaction. Events include another transaction trying to lock the object; a transac-

tion commits, changing the object; a transaction commits, deleting the object; the object is no

longer locked. Users should be able to specify their own events as well.

2.5. Checkout/Checkin Between Group Databases and Personal Database

In any groupwork environment where multiple users are accessing shared databases, security and

integrity concerns will make it necessary for concurrency control and recovery features to be running.

However, if a user places a long lock on an object, it is most likely for his or her personal use. In this

case, it is often desirable to move objects with long locks to a personal database where system features

such as concurrency control and recovery features can be optionally turned off. The personal database

can reside anywhere on the network, including on the local workstation, thus providing site autonomy.

An extension of the long lock mechanism in a long transaction provides this capability. The extension

is called checkout/checkin, and it is analogous to checking a book out of and back into a library. When
an object is checked out of a group database, a long lock is placed on it in the group database and a

system copy (with the same object identifier) is placed in the personal database. Thereafter during the

long transaction, any reading or writing of that object takes place in the personal database. When the

object is checked in, it is written back to the group database from which it was checked out; its long

lock is removed in the group database; and it is deleted from the personal database.

The operations required for checkout/checkin are:

• Begin session with new long transaction <trans_name> and personal database <db_name>. Asso-

ciate this personal database with this long transaction, so that all checked-out objects have system

copies placed in this database.

• Begin session with connection to long transaction <trans_name> and personal database

<db_name>. Again, associate this personal database with this long transaction for all check-out

objects.

• Checkout object for read. Long-lock the object for read, and place a system copy in the personal

database for this long transaction.

• Checkout object for write. Long-lock the object for write, and place a system copy in the per-

sonal database for this long transaction.

• Checkin object. Long-unlock the object in the group database it belongs to, and remove the sys-

tem copy from the personal database.
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Snapshot object. Create a new user copy of the object in the personal database for this long tran-

saction. This is not a system copy; it is a replica of the original object but with a new object

identifier. This command is used when it is necessary to have a copy of an object which is inac-

cessible due to a lock conflict, or for performing a dirty read of an object.

<Commit long transactions Originally defined under Session. Appended here so that, during the

commit, all objects checked out are automatically checked back in.

<Rollback long transactions Originally defined under Session. Appended here so that, during the

rollback, all objects checked out are automatically checked back in, with no changes.
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2.6. Nested Transactions

The desirability of nested transactions as a general solution is still an open issue. However, this model

can easily be extended to allow nesting of long transactions within other long transactions, with

checkout of objects from a database associated with a "parent" long transaction to a database associated

with a "child" long transaction.

3. A Version Model for Change Management

3.1. Goal

Versioning of objects and configurations is something that practically every ODBMS customer asks for.

However, the specific requirements can vary remarkably from one customer to the next. Versant’s posi-

tion is to provide the minimum amount of versioning necessary for customers to tailor to their specific

needs. Over time, organizations such as PDES (Product Data Exchange using STEP) and CFI (CAD
Framework Initiative) will publish standard version models, which should be implementable in any

ODBMS as a class library on top of the ODBMS primitives.

3.2. Requirements

The primitives provided by the ODBMS should be a minimal set. The ODBMS should support a ver-

sion graph, where each version may have several successor versions (also known as alternatives), and

may also have several predecessor versions (in which case it represents a merging of the predecessors).

The ODBMS ’s responsibility is to manage the version graph; the ODBMS is not responsible for provid-

ing the merge or derivation process itself, since this is dependent on the class of object whose versions

are being merged (e.g., you would not merge two versions of text and two versions of an image the

same way).

In the proposed version model, each version is itself an object. Each version has a relationship to one or

more other versions; possible relationships are "parent," "child," and "sibling."

Resolution of an object reference to a specific version must be done either statically or dynamically.

This is because, in some cases, it will be desirable for a reference to an object to always return a

specific version (as in a released design), while in other cases a reference should always return some

default version (such as the latest). Of course, it should always be possible to get the default version

from a specific version, and vice versa.

In the proposed version model, illustrated in Figure 3, there is a generic instance to which all dynami-

cally bound references point. The generic instance acts as a forwarding mechanism, to forward the

reference to whichever version is the default version at that time. Static references are created by point-

ing directly to the desired version.

The default version is the latest version "by default." However, it should be possible to set the default

version to a specific version, or to the latest version that achieves a particular status. Versions can be

designated a status such as: "transient" (in progress, highly unstable); "working" (unchanging, but may
not be the released version); and "released” (final, frozen version). The default version should be sett-

able to the latest of a given status. It must be possible to maintain versions across a distributed data-

base, especially if versioned objects are to be checked out for update into personal databases.

33 . Operations

The operations required for versioning are:

• Create versioned object of <object>. Creates a generic instance which points to <object> as its

first and default version.

• Is-versioned <object>. Returns a boolean, indicating whether the object is a versioned object.

• Create new version of <version>. Creates a new object and adds it to the derivation graph for

<version> as the latest version; links it to <version> as a child in the derivation graph.

• Get generic instance of <version>. Returns a handle to the generic instance for the derivation

graph that <version> belongs to.
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Set status of <version> to {transient, working, released). Sets the status of <version>.

Set default version <generic instance> to {<version>, latest, latest released, latest working, latest

transient). Sets the version that dynamic references to the generic instance will return. The
default version can be a specific version, or it can be the latest at any given time, or it can be the

latest of a particular status at any given time.

Get parents of <version>. Returns the versions that are parents of <version> in the derivation

graph.

Get children of <version>. Returns the versions that are children of <version> in the derivation

graph.

Add <version_l> to parents of <version_2>. Designates <version_2> a child of <version_l>,

implying a merging of <version_l> with the other parents of <version_2>.

Figure 3.

Sample Version Graph

4. Implementation

A standard for transactions and versioning in ODBMS’s needs to address not only the model but the

interface as well, otherwise the goal of application portability cannot be reached. Various alternative

implementations have been proposed for providing database functionality from an object programming

language, including extending the programming language itself. However, making additional require-

ments on programming languages delays both the programming language standardization effort and the

database standardization effort and risks adding unnecessary baggage to programming languages. Also,

once you extend one language you have to extend every language, which adds even more confusion and

delay to the process.

The Versant approach is to provide database functionality through class libraries. This does not get in

the way of the language standards efforts, can be done across programming languages more easily, and

is consistent with the object-oriented software development paradigm.
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Abstract

Updating the schema is an important facility for object-oriented databases. However, up-

dates should not result in inconsistencies either in the schema or in the database. We propose

a classification of basic schema updates and define a set of parametrized primitives to perform

schema updates which the designer will use to define his/her own update semantics.

1 Introduction

Schema evolution is a concern in object-oriented systems because the dynamic nature of typical

OODB applications calls for frequent changes in the schema [Pan88]. We present a framework

for schema updates for an object-oriented database system, and propose a set of parametrized

primitives to perform schema updates which the designer can use to define his/her own update

semantics. We will use in the rest of the paper the O 2 object-oriented database system [Bann88]

[LRV88] as a representative example. However,the proposed language primitives can be easily

modified to work for other object-oriented database management systems.

1.1 Preliminary 0 2 concepts

In this Section we briefly recall the fundamental concepts of 0 2 which are relevant for our discussion.

The reader is referred to [LeRi88], [LeRi89a],and [LeRi89b
]
for a formal definition of the 0 2 data

model and to [Vel89] for the description of the system architecture. 0 2 is an object-oriented

database system and programming environment developed at Altair. Classically, in object-oriented

data models, every piece of information is an object. In the 0 2 data model, both objects and values

are allowed. This means that, in the definition of an object, the component values of this object do

not necessarily contain only objects, but also values. In 0 2 we have two distinct notions: classes

whose instances are objects and which encapsulate data and behavior, and types whose instances

are values. To every class is associated a type, describing the structure of its instances. Classes are

created using schema definition commands. Types are constructed recursively using atomic types

63



(such as integer, string, etc.), class names, and the set, list, and tuple constructors. Therefore types

can be complex. Objects have a unique internal identifier and a value which is an instance of the

type associated with the class. Objects are encapsulated, their values are not directly accessible and

they are manipulated by methods. Method definition is done in two steps: First the user declares

the method by giving its signature, that is, its name
,
the type of its arguments and the type of

the result (if any). Then the code of the method is given. In O2, the schema is a set of classes

related by inheritance links and/or composition links. The inheritance mechanism of O2 is based

on the subtyping relationship, which is defined by a set inclusion semantics. Multiple inheritance is

supported. O2 offers a compile-time type-checker in an attempt to statically detect as many illegal

manipulations as possible of objects and values. Objects are created using the "new” command.

If a class is created ’’with extension” then a named set value is created which will contain every

object of the class and will persist.

1.2 Updates: What do we want to achieve?

Updates can be performed both at schema and object level. An update is a dynamic modification.

Changing the schema may logically imply changing all objects which are related to the portion of

the schema which has been updated. Changing a specific (named) object does not imply a schema

update, the update is limited to the object(s) specified and possibly to some other object(s) related

to the object which has been modified. The main goal of this paper is to define a "reasonable”

minimal set of primitives for updating an O2 schema, and show the problems which need to be

solved in order to obtain a usable schema update mechanism.

Informally, the problem with updates can be stated as follows: We want to change the struc-

tural and behavioral part of a set of classes (schema updates) and/or of a set of named objects

(object updates) without resulting in run-time errors, "anomalous” behavior and any other kinds

of uncontrollable situation. In particular, we want to assure that the semantics of updates are

such that when a schema (or a named object) is modified, it is still a consistent schema (object).

Consistency can be classified as follows:

a. Structural consistency. This refers to the static part of the database. Informally a schema is

structurally consistent if the class structure is a direct acyclic graph (DAG), and if attribute

and method name definitions, attribute and method scope rules, attribute types and method

signatures are all compatible. An object is structurally consistent if its value is consistent

with the type of the class it belongs to.

b. Behavioral consistency. This refers to the dynamic part of the database. Informally an

object-oriented database is behaviorally consistent if each method respects its signature and

its code does not result in run-time errors or unexpected results (cf.Sect.2 ).

A more precise definition of consistency will be given in Section 2 .

We will consider "acceptable” only those updates that do not introduce structural inconsistency,

while we will allow behavioral inconsistencies that do not result in run-time errors. Any kind of

behavioral inconsistency that has been caused by an update will be reported to the user (designer).

1.3 Paper Organization

In the rest of the paper, we will concentrate our attention on the problem of schema updates. The

problem of object updates will be addressed in a forthcoming paper.

The paper is organized as follows: Section 2 describes in some detail the distinction between

structural and behavioral consistency for the O2 object-oriented database system. The semantics
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of schema update primitives will be that of transforming the schema from one state which is struc-

turally and behaviorally consistent, to another state which is structurally and possibly behaviorally

consistent. We will see that behavioral consistency is much harder to obtain than structural consis-

tency. Therefore, we will accept some kinds of behavioral inconsistencies, i.e.those inconsistencies

that do not produce run-time errors, and we will signal to the user (designer) all behavioral anoma-

lies that may be induced by an update. The same Section also briefly describes how updates could

be performed by invoking an interactive tool. Section 3 defines the set of primitives for updating

the schema. We first present a full list of update primitives, and then show how this list can be

reduced to a minimal set of basic updates, sufficient to implement all other updates. Moreover, we

will classify updates in three categories. Each category is explained in detail in Sections 4,5,and

6. Section 4 describes schema updates which only modify methods. Section 5 describes schema

updates which only modify the type associated to a class. Section 6 describes schema updates

which modify a class as a whole entity. Problems arising from all such updates will be illustrated

in the respective Sections. Section 7 compares our approach with related work. Finally in Section

8 we present the conclusions and state some open problems.

2 Ensuring Structural and Behavioral Consistency: A Schema
Update Tool

In this Section, we discuss two basic types of consistency relevant to the O 2 system (but in general

to every object-oriented database system)
,
namely structural and behavioral consistency.

Structural consistency refers to the static characteristics of the database.

We recall here some of the notions of O 2 [LRV88], which will help us to define the notion of a

consistent schema.

We denote T(C) the set of all types defined over a class C. T(C) includes atomic types, class

names, tuple, set and list types.

Inheritance between classes defines a class hierarchy: A class hierarchy is composed of class

names with types associated to them, and a subclass relationship. The subclass relationship de-

scribes the inheritance properties between classes.

Definition 1 A class hierarchy is a triple (C, a
,
-<) where C is a finite set of class names, a

is a mapping from C to T(C), i.e. a (C) is the structure of the class of name C, and -< is a strict

partial ordering among C.

The semantics of inheritance is based on the notion of subtyping. The subtyping relationship

< is derived from the subclass relationship as follows:

Definition 2 Let (C, a, -<) be a class hierarchy, the subtyping relationship < on T(C) is the

smallest partial ordering which satisfies the following axioms:

1. h c < c’, for all c, c’ in C such that c -< c’. That is, a subclass is a subtype.

2. h
: [

a x : t x ,...,an : tn ,...,an+p : tn+p
} < [a x : si,...,a„: sn ], for all types U and si} i=l,...,n such

that t
,
< s,-. This is subtyping between tuple types. We can refine tuples by refining some

attributes or by adding new ones.

3. h { 5 } < {t}, for all types s and t such that s < t. This is subtyping between set types.

4. b < s > < < t >, for all types s and t such that s < t. This is subtyping between list types.

5. t < any, for all types t. The symbol any is a type by definition.



As inheritance is user given, some class hierarchies can be meaningless.

In a class hierarchy an instance of a class is also an instance of its superclasses (if any ) . Therefore,

if class c’ is a superclass of class c, then we must have that the type of c is a subtype of the type

of c’. More formally:

Definition 3 A class hierarchy (C, a, -<) is consistent iff for all classes c and c’, if c ^ c’ then

a (c) <cr (c’)-

Example: This is a consistent class hierarchy. Class Employee is a subclass of Person, (i.e.

Employee -< Person):

class Person

type tuple [name : string ,

age: integer,

address: tuple [location: City,

street: string] ]

class Employee

type tuple [name : string

,

age: integer,

address: tuple [location: City

,

street: string],

profession: string,

company: string ]

A schema is also constituted of methods attached to classes. Methods have signatures.

Definition 4 A method signature in class C is an expression m: c x h x ...x tn — t, where m
is the name of the method, and c, 1 1 ... tn are types. The first type c must be a class name and is

called the receiver class of the method.

We are ready to define a schema.

Definition 5 An O 2 database schema is a 5-tuple S=(C, <7
,

-< ,M,N), where:

- (C, cr, -<) is a consistent class hierarchy (see def.3)

- M is a set of method signatures in C

- N is a set of names with a type associated to each name

A schema is therefore composed of classes related by inheritance which follow the type com-

patibility rules of subtyping and a set of methods. Attributes and methods are identified by name.

Within the schema, type attributes and method names have a scope rule (see def. 7). When we

do not want to distinguish between a type attribute and a method name, we simply use the term

property.

Now we are ready to define what we mean with structural consistency for a database schema.

Definition 6 A database schema S is structurally consistent iff it satisfies the following prop-

erties:

- if c -< c’ and the method m is defined in c with signature m:c x t2 -..tn — t, and method m’ is

defined in c’
,
and m and m’ have the same name, with signature m’: c’ x t^.-.t^ —» t’

,
then

f, < t[ and t < t’ (covariant condition)

- the class hierarchy is a DAG
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- if there are classes cl and c2 having a common subclass c4, with a property name p defined

in both cl and c2, but not in C4, then there is another subclass c3 of cl and c2 in which the

property p is also defined and c4 is a subclass of c3.

The first property assures that method overloading is done with compatible signatures, the second

property constrains the structure of the class hierarchy, and finally the last property eliminates

multiple inheritance conflicts (also denoted as name conflicts). Definition 6 is important, because

we will always consider schemes which are structurally consistent. An update to a schema is a

mapping which transforms a schema S into a (possibly) different schema S’. Schemas S and S’ have

to be structurally consistent. The semantics of the schema update primitives will have to ensure at

least that structurally consistent schemas are produced as a result of an update. In our approach

name or type conflicts occurring as a consequence of an update will not be solved automatically by

the system.

Behavioral consistency refers to the dynamic part of the database. It ensures that methods do

indeed perform the ” desired” task. As we have seen, the signature of a method is used to type-

check the compatibility of the method in the class structure. This kind of check is therefore part

of the process to ensure structural compatibility. However, checking the signature of a method is

not sufficient to ensure behavioral consistency of the method. Updating a schema could result in

anomalous behavior of some methods due to the method dependency (i.e. methods in their body

may refer to other methods or public types), and in some subtle cases to the change of signature

of methods as resulting from a change of the class hierarchy. Behavioral inconsistencies do not

always result in run-time errors. There may be methods that do not fail as a consequence of

an update, but may behave in a ” modified” way after an update. The two notions of method

failure (i.e. run-time errors) and method’s change of behavior (i.e. the expected method’s result

is different) are conceptually different. In the rest of the paper, we will not make this distinction

and we will only use the general term behavioral inconsistency . We have taken the approach of

allowing transformations of schema which may lead to behavioral inconsistencies that do not result

in run-time errors (updates that cause run-time errors are refused), and signaling to the designer

all methods which may potentially be affected by an update, leaving to the user the responsibility

for actions to be taken in consequence of these warnings. The list of available O 2 schema updates

is given in Section 3. For such updates, detailed examples of consistency problems can be found in

Sections [Zic89] . A detailed analysis of the issue of structural consistency is reported in [DeZi89],

This paper concentrates mainly on the definition of a set of basic schema update primitives.

2.1 The ICC: A Basic Schema Update Tool

The way the designer updates the schema should be a dialogue with an interactive tool called the

Interactive Consistency Checker (ICC). The ICC is a basic update tool which, given a schema and

a proposed update, detects whether inconsistencies may occur. It then refuses those updates which

produce structural inconsistencies or behavioral inconsistencies which may imply a failure of some

methods(i.e. run-time errors). The consistency check is performed in two steps: first the structural

check, and then the behavioral check. If structural inconsistencies arise then the behavioral check

is not performed and the update is refused. The reason for the refusal of the update is always given

to the user.

3 Schema Updates

We present in this Section a complete list of basic updates one may want to perform on an O 2

schema. Updates are classified in three categories: Updates to the type structure of a class, to
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methods of a class, and to the class as a whole. This classification is fairly similar to the one of

[Ba87a,Ba87b], However, the semantics of some updates is different. The main differences between

the schema update characteristics of O 2 and other relevant systems will be discussed in Section 8.

SCHEMA UPDATES:

1. Changes to the type structure of a class

Because in O 2 types can be arbitrarily complex, we have different ways to modify a class

type. We can think of an update u which modifies the type structure T of a class C, as a

mapping between types, u : T —
> T'

.

Updates of this kind can be broadly classified in two

categories: those for which T' < T (we call them type-preserving), and those for which T'

^

T

(we call them non type-preserving). Of all possible type updates we list here only the

most elementary ones:

1.1 Add an attribute to a class type

1.2 Drop an existing attribute from a class type

1.3 Change the name of an attribute of a class type

1.4 Change the type of an attribute of a class type

Updates 1.1 and 1.3 are type-preserving, while updates 1.2, and 1.4 are non type-preserving.

2. Changes to the methods of a class

2.1 Add a new method

2.2 Drop an existing method

2.3 Change the name of a method

2.4 Change the signature of a method (this update may be also implied by a change to the

class structure graph as defined below)

2.5 Change the code of a method.

3. Changes to the class structure graph

3.1 Add a new class

3.2 Drop an existing class

3.3 Change the name of a class

3.4 Make a class S a superclass (subclass) of a class C

3.5 Remove a class S from the superclass (subclass) list of C

A set of more involved changes to a schema (defined as a tree) can be found in [AbHu88].

The list of updates defined above can be reduced: There exists a basic set of updates which can

be used to execute all other updates.

The basic set of updates is the following:

BASIC SCHEMA UPDATES:

1.1 Add an attribute to a class type

1.2 Drop an attribute from a class type

2.1 Add a method
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2.2

Drop a method

3.1 Add a class

3.2 Drop a class

3.3 Change the name of a class

3.4 Make a class a superclass (subclass) of C

3.5 Remove a class from the superclass (subclass) list of C

The other updates in the previous list can be executed using sequences of basic updates.

1.3 = <1.2 . 1.1>, this equivalence

instance level

does not hold at

1.4 = <1.2 , 1.1>, this equivalence

instance level

does not hold at

2.3 = <2.2 , 2 . 1>

2.4 = <2.2 . 2. 1>

2.5 = <2.2 . 2.1)

3.3 = <3.2, 3 . 1>

,

this equivalence does not hold at

instance level)

The sequence of basic updates corresponding to a non elementary update has to be atomic, to

avoid inconsistency.

It is worth noticing how the notion of completeness of a set of basic updates at schema level

[Ba87a], that is whether the set of basic updates subsumes every possible type of schema change,

is not necessarily the same one at the database instance level [Mai89],

4 Method Updates

In the rest of this section we will only consider the two basic method updates as defined in Section

2, that is:

- Add a method m in class C

- Drop a method m in class C.

The other updates to methods can be executed by using the two basic ones. We consider the two

updates separately.

4.1 Adding a method in a class

We have a schema, and we want to add a method to a class of this schema. The syntax of the

update is as follows:

add_method <m> in <C> (<signature> , <body>) II (from <C’>)

Square brackets indicates an optional parameter. The notation (pl)|| (p2) is used to denote two

alternative parameters, pi or p2.

Where:

< m >: is the method name to be added.
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< C >: is the class where the method is added.

< signature >»< body >: this parameter (if specified) defines the method signature and the

body of method m.

from < C' >: this parameter (if specified) indicates that the signature and body of the new

method are those of a method with same name m defined in a class C’, with C' ^ C

.

Structural consistency of the schema implies that, when adding a method, we must ensure that

no problems arise in (Def.6):

a) class structure

b) methods’ name resolution

c) methods’ signature compatibility

Addition of a new method m in class C modifies the scope of all methods with the same name

defined in the superclasses of C. The system must automatically ensure such modifications. The

scope of the newly added method is the standard one (cf.Section 2).

Introduction of a new method may result in a name conflict in the same class C (i.e. a method

with same name was already defined in C) or in a subclass C’ of C in case of multiple inheritance

with other classes. In either case, the update is refused.

Insertion of a new method implies a static check of its signature. The signature of the new

method should be type compatible with the signature of existing methods with the same name and

related to it by class inheritance. An incompatible signature will imply the refusal of the update.

The detailed specifications of the algorithms for preserving structural schema consistency are given

in [DelC89],

Addition of a method to a class does not require to logically update the class extension.

The addition of a method to a class may lead to behavioral inconsistencies. Checking be-

havioral inconsistencies must be done by looking at the code of methods. In particular, we have

inconsistencies if:

- the code of the new method M contains references to methods or classes that do not exist

in the schema. In this case the update is refused, and the designer has to first define those

methods and classes which are not already created.

- other methods may be affected by the introduction of the new method because in their code

they use a method with the same name but different signature.

Because of the method calling dependency, other methods may be affected as well by the

update. For this purpose a method dependency graph can be extracted by looking at the code of

each method. The vertices of the method dependency graph are the method names and there is an

edge from m to n iff m occurs in the code of n. In order to ease the task of building the method

dependency graph, and also to reduce the search for dependent methods (see also updates to the

class type, cf. Section 5), the system associates:

- to each class an import list which tells whether the class is using methods of other classes,

and also some information which tells what other classes (their public types to be precise)

are accessed without using encapsulation by methods of the class;

- to each method, the list of methods which are called outside the class where the method is

defined, and which types methods access without encapsulation.
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We will call this information dependency information.

Obviously, before inserting a method, besides checking its signature, its body has also to be

analyzed and type-checked in order to avoid run-time errors. Now, the body of a method can

be rather complex; it is therefore important to be able to extract the relevant information when

type-checking the method code. When an update is performed this information can be used to

decide whether the method still works properly or whether the method needs to be re-compiled, or

whether in any case the method will not work any more (cf. 4.2).

4.2 Dropping a method from a class

The syntax of the update to delete a method in a class is as follows:

delete_method <m> in <C>

where: < m > is the name of the method to be deleted. < C > is the class where m is defined.

Constraints: It is not possible to delete a method which is inherited from another class. Method

m must be locally defined in C.

Deletion of a method m also implies the deletion of all references to m using the m from C’

clause.

When removing a method from a class (as for all updates) we should assure the structural

consistency of the schema and detect possible behavioral inconsistencies.

We discuss here only briefly the issue of structural consistency. The reader is referred to

[DeZi89],[DelC89] for a detailed analysis of the issue of structural consistency.

Deleting a method m from a class C can cause name conflicts and signature incompatibility

if C inherits from more than one class. This is due to the change of method scopes after the

update. Detection of structural inconsistencies results in the refusal of the update. We are currently

designing a tool to help the designer finding method dependency, in this case method references

using the from clause. If we consider an intelligent advisor to aid schema updates then we could

have a different solution as will be reported in Section 9.

Deleting a method does not imply a logical update to the class’s objects.

Behavioral problems can be detected by checking the signature of a method, looking at the

method dependency graph, and most importantly looking at the code of the method. Some kinds

of behavioral problems are obvious, such as a reference to a method which has been deleted (and

not replaced through the inheritance mechanism by another method), and are solved analyzing

the method dependency graph. There however are other cases of inconsistencies that are not so

immediate. The reader interested in this problem is referred to [Zic89]

.

5 Type Updates

This section describes updates which modify the type associated to a class. We restrict our attention

to the basic updates:

- delete an attribute from the type associated to a class,

- add an attribute to the type associated to a class.

In fact, the results we present for these two updates also characterize the larger set of other possible

O 2 class type updates.

In the rest of this section we discuss the two issues of structural and behavioral consistency

separately.
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5.1 Structural Consistency.

The type changes proposed do not affect the class DAG. A structural check must be performed to

detect whether the new class type definition does not result in [DeZi89] :

- Name conflicts. E.g. the same attribute name is defined in two or more superclasses. This

problem is similar to the one of updating a method (cf. Section 4).

- Type incompatibility in the inheritence hierarchy.

For such cases the update is refused.

When performing an addition(deletion) of an attribute (and in general for any change in the

class type) it is also necessary to logically update the class extensions. The objects belonging to

the class extension need to conform to the new class type definition. Default values can be assigned

to the new attributes; while the values which correspond to the attributes removed in the schema

must be deleted. As it is shown in [Zic89], a logical update to a class extension does not necessarily

corresponds to a physical update in the database.

5.2 Behavioral Consistency.

In [Zic89] two methods to ensure behavioral consistency when updating a class type are presented.

Informally
,
when updatinga class type, it is desirable to know which methods use the updated

type and what is the method dependency graph.

6 Class Updates

Updates to a class as a whole entity are equivalent to the operations of manipulation of a graph

(i.e. the class DAG). In fact, we have:

- add a node is equivalent to add a class;

- delete a node is equivalent to drop a class

- add an edge is equivalent to make a class a superclass (subclass) of another class;

- remove an edge is equivalent to remove a class from the list of superclasses (subclasses) of

another class.

There are different ways to give the semantics to these updates. We provide a set of parameter-

ized. primitives to perform class updates which the designer will use to define his/her own update

semantics. In particular, the updates which may have different semantic interpretations are the

following:

- deletion of an edge

- addition of a node

- deletion of a class.

For such updates, the problems are:

- where to connect a class if it becomes disconnected from the DAG after the update?

- do the types and methods of the subclasses change after deletion of a superclass or removal

of a class from their superclass list?

- where to place a newly created class in the DAG?
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6.1 Addition of an edge

Adding an edge in the class structure corresponds to making a class C a superclass (or a subclass)

of another class S. A structural check has to be done in order to ensure that no name conflicts or

type-incompatibilty arise. Adding an edge modifies the scope of attribute and method names in

the inheritance hierarchy. The update must not introduce cycles in the DAG.
The update has logically an impact on the class extensions because the attributes of C have to

be added to all instances of subclasses of C (if any).

The syntax of the update is as follows:

add.edge <S-C>,

where S and C are classes already existing in the DAG. Class C
S.

The addition of an edge may create behavioral problems in

method or an attribute to a class.

6.2 Removal of an edge

Removing an edge may be obtained in different ways. Suppose we have an inheritance hierarchy

composed of three classes Person, PhD, and Employee (with associated types Ta,Tc, and Tb
)
as

follows:

Person tjrpe Ta

I

PhD type Tc

I

Employee type Tb

We want to perform the update: remove class PhD from the superclass list of Employee. This

update is equivalent to saying: remove edge < PhD - Employee >. For this particular schema,

the effect of this update is in disconnecting the class Employee from the DAG
;
in fact PhD is the

only superclass of Employee. To preserve class consistency ,the class Employee has to be connected

to some other class(es) in the DAG. There are two possibilities:

- Class Employee is made a direct subclass of all direct superclasses of PhD; class Person in

the example, or

- Class Employee is made a direct subclass of the system class OBJECT.

Both the interpretations are "reasonable” depending on what the user wants to do with the

class Employee.

Moreover, when deleting the edge PhD-Employee we also must define what happens to the

attributes of the type Tb (associated to Employee) which are inherited from the class PhD and not

redefined in Employee. There there are two possibilities:

- class Employee loses all attributes inherited from PhD;

- class Employee does not lose attributes inherited from PhD; attributes which were inherited

become locally defined in Employee.

Again, the two interpretations are both reasonable. The same considerations hold for methods as

well. The use of a parameterized update operator allows the definition of different update strategies.

The syntax of the delete edge primitive is as follows:

is made a direct subclass of class

the same way as when adding a
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drop_edge <S-C> [ [connect <C> to <class_list>]

,

[type and methods_of <C> are not preserved]

where S is a superclass of class C. Square brackets indicate an optional parameter.

The semantics of the update is as follows:

< S — C >: is the edge to be removed. Edge < S — C > is removed from the class DAG.
connect < C > to < class — list >: this parameter (if specified), indicates that in case class C

becomes disconnected from the class DAG after deletion of the edge (i.e. S is the only superclass of

C) then class C is made a direct subclass of the classes listed in < class — list >. Note that classes

in the < class — list > do not necessarily have to be superclasses of S. The update is refused if

name conflicts or type-incompatibility arise when trying to connect class C. If the parameter is not

specified then class C is made a direct subclass of the system class OBJECT. In this case, neither

type-incompatibilty nor name conflicts occur.

type and methods-of < C > are not preserved: this parameter (if specified), indicates that both

the attributes of the type of class C and the methods inherited from class S and not redefined in

C are deleted
,
this also implies the deletion in the subclass of C (if any) of all methods and type

attributes that were inherited from the disconnected superclass and not locally redefined in the

subclass. If the parameter is not specified then the type of C is unchanged (i.e. attributes which

were inherited now become locally defined in C) and also methods of C are unchanged. Deletion

of attributes in C may lead to name conflicts and type-incompatibility; in this case the update is

refused.

We consider a simple example to show how this parameterized update models several ’’useful”

situations.

Example : Consider the schema S composed of the inheritance hierarchy of classes Person, PhD,

and Employee, as shown below :

OBJECT

I

Person type Tp tuple (name : string)

I
methods (ml, m2)

I

PhD type Td tuple (degree : string)

I
methods (m3)

I

Employee type Te tuple (department : string)

methods (m4)

schema S

where class Person is of type Tp and has methods ml, m2. Class PhD inherits in its type Td the

attribute "name” from Tp and has the attribute ’’degree” locally defined. PhD has a local method

m3. Class Employee inherits the attributes "name” and "degree” respectively from Person and

PhD, and has a local method m4.

Consider the following update:

a) drop_edge <PhD-Employee> connect <Employee> to <Person> (S)

this update results in the following schema:
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OBJECT

Person Tp=(name), ml, m2

/ I

Employee PhD Td= (degree), m3

Te= (name .degree

,

department)

ml , m2 , m3 , m4

Class Employee is now a subclass of Person. Its type and methods have not been changed. Methods

ml,m2 and m3 are now locally defined in Employee. Method m4 which was locally defined in

Employee before the update is also unchanged. Note that after the update, all attributes of the

type Te are locally defined.

It is also possible to specify that the attribute "name” of Te be the one inherited from Person.

This can be done with either one of the following two updates:

< (delete_attribute name in Employee) , (add_attribute name in Employee

from Person)>

or in this case with the equivalent:

delete_attribute name in Employee

In fact, in the example it is not necessary to add the attribute because class Employee does not

inherits from multiple superclasses, and therefore no name conflicts occur in Employee.

Consider this other update on the previous schema S:

b) drop.edge <PhD-Employee> connect <Employee> to <Person>

,

type and methods_of <Employee> are not preserved (S)

.

This update results in the same schema as the previous update
,
but with the difference that the

type Te does not have the attribute degree any more
,
that is Te=(department) and attribute

"name” is inherited from class Person. Class Employee has method m4 locally defined, does not

have method m3 any more and inherits ml and m2 from Person.

Consider this update:

c) drop_edge <PhD-Employee> (S)

It results in the schema:

/

/

Employee

Te= (name , degree

,

department)

ml, m2. m3, m4

OBJECT

I

I

Person

Tp= (name) , ml , m2

I

PhD

Td=(degree) , m3

where class Employee is a direct subclass of class OBJECT. Its type

If we consider the update:

and methods are unchanged.
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d) drop_edge <PhD-Employee>

type and methods_of <Employee> are not preserved (S)

We have as a result the same schema as the previous update, with the difference that class Employee

does not inherit the attributes "name” and "degree” any more, that is Te= (department)
,
and has

lost methods ml,m2 and m3.

As these examples show
,
the use of a parameterized operator allows the expression of several

useful and consistent updates. The update has logically an impact on the class extensions if the

class type C has to be changed, i.e. deletion of attributes in the class type of C.

6.3 Addition of a node

Adding a node corresponds to adding a new class in the class DAG. We allow addition of a class

in any position in the class DAG. To preserve DAG consistency, when no position in the DAG is

specified the new class is by default made a direct subclass of the class OBJECT. Adding a class in

a different position in the class hierarchy implies adding an edge to a superclass S and/or an edge

to a subclass C. The semantics of the update is the following:

a. The new class must not have a name which is already used for another class in the schema;

b. The new class becomes by default a direct subclass of the class OBJECT unless a different

position is specified;

c. When adding a class C in an inheritance hierarchy no automatic attribute propagation is

performed. The type of C must be completely redefined in order to be type-compatible with

the types of the superclasses and subclasses of class C. If redefinition of attributes is not

desired the update has an option which allows it to refer to attributes defined in superclasses

of C.

The syntax of the update is the following:

add_class <C> [connect to Superclass Su> [ before Subclass Sb>] ]

type is Sttribute definition> [from Slass name>]

Brackets indicate an optional parameter.

We have:

- < C > is the new class;

- connect to < superclass > [before < subclass >] : indicates the position in the hierarchy

where the new class has to be placed. Sb is a direct subclass of Su. If the subclass Sb is

not indicated then the new class is a leaf of the DAG. Note that only one superclass and one

subclass can be specified in the update. If class C has to be connected to more than one

superclass or subclass, the explicit add-edge update has to be used. If the connect parameter

is not specified, then class C is connected directly to the class OBJECT.

- type is < definition > (
from < class >): defines the type associated to the class. If

the parameter (from) is used to define an attribute of the type then it refers to an existing

attribute defined in the class S or in a superclass of S (if any).

Example : Consider the following schema:
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OBJECT

I

Person Tl=(name)

I

Employee T3=(name .degree .department)

The following update:

add_class <PhD> connect to <Person> before <Employee>

type is tuple (name : string , degree : string)

results in the schema:

OBJECT

I

Person Tl=(name)

I

PhD T2= (name .degree)

I

Employee T3= (name , degree , department)

Note that T2 redefines the attribute "name”.

6.4 Deletion of a node

Deleting a node corresponds to dropping a class in the class DAG. We allow the deletion of a class

in any position in the class DAG. Deleting a class with this assumption is an involved operation.

The semantics of the update is the following:

Deletion of a class C corresponds to the deletion of all edges to the subclasses of C (if any),

the deletion of all edges to the superclasses of C and the deletion of the class C from the DAG.
Because of the possible different semantics of the delete-edge update we have different alternatives

when deleting a class. The alternative semantics of deleting a class are obtained by composition of

the different semantics resulting from deleting edges. The update will have parameters to specify

such alternatives. We do not indicate them here, but instead define some constraints when deleting

a class:

a) Deleting a class can only take place if its class extension is empty.

b) No system-defined classes can be deleted;

c) Deletion of a class can only take place if the class is not referred to in method signatures or

in types of other classes.

d) A class cannot be deleted when its only superclass is the system class OBJECT and the class

is not a leaf in the DAG.

Condition a) restricts the deletion of a class C to the case where there are no objects associated

to the class. It also implies no automatic coercion to other class types in the schema (e.g. a

superclass of C) of objects belonging to the extension of C. We assume the existence of explicit

updates to delete objects or to change the object class types (cf. Section 9). Condition b) is obvious.

Condition c) avoids type inconsistency for method signatures and attribute types. Condition d)

preserves the DAG consistency.
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Deletion of a class C may create behavioral inconsistency. In particular all other methods in

the schema which depend on class C, i.e. either by calling methods of C or using directly the type

T of C (if T is defined "public”) must be marked unsafe. The dependency information introduced

in Section 4.1 helps in detecting unsafe methods.

Example : Consider the schema below:

Person Tp

I

PhD Td

I

Employee Te

Deletion of the class PhD can be expressed in different ways, depending on the resulting schema
we want to obtain (we consider the extension of the class PhD empty). We list as an example one

of them:

delete_class <PhD> =

T1 : <(drop_edge <PhD-Employee>) , (drop_edge<Person-PhD)

,

(remove <PhD>)>.

/* the class Employee is made a subclass of OBJECT, its type is unchanged */

The deletion of the class PhD can also be specifed so that the type of Employee is changed (i.e. it

loses the attributes defined in PhD).

7 Related Work

Structural consistency is assured by all systems supporting a mechanism for changing the schema.

To compare the different solutions is not always easy because there is no underlyng common model

for such systems. The pioneering work in the field of schema manipulation in the context of object-

oriented database systems is the one proposed for the Orion database system. In [Ba87a,Ba87b] a

complete taxonomy of schema update operations is presented and for each update the semantics is

given with a set of rules to preserve some "invariants” of the schema. Our definition of structural

consistency implies the invariants of Orion[Ba87a,Ba87b]: 1) Class lattice invariant, 2) Distinct

name invariant, 3) Distinct identity (origin) invariant, 4) Full inheritance invariant, 5) Domain

compatibility invariant.

The O 2 and Orion data models differ in a number of characteristics; we briefly list them here.

The existence in O 2 of types as well as classes is not present in Orion. The O 2 typing system

can be viewed in the schema update context as a set of additional constraints which modify the

Orion invariants 4. and 5. In fact in O 2 ,
methods and attributes in an inheritance hierarchy have

to be type-compatible. This is taken into account in the definition of a consistent schema. Both

systems allow multiple inheritance. O 2 has a set inclusion semantics for subtyping. Orion has no set

inclusion semantics. In O 2 multiple inheritance conflicts are solved by the designer; when there is

an ambiguity in the inheritance of a method (attribute),the designer must specify which one he/she

wants to inherit or redefine it. As opposed to O 2 ,
Orion automatically solves ambiguities. The

system maintains an ordering among the superclasses which overrides ambiguites in the inheritance

of methods. This difference modifies the Orion invariant 3. The O 2 distinction between objects

and values is also present in Orion. In this system, however, the notion of a complex value is

implemented as a dependent object (composite object). That is, non shared values are still objects
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with a constraint enforcing their privacy. Because of these differences in the two data models

the update semantics are also different. In particular class updates in O 2 provide parameters to

allow the designer to specify the semantics he/she wants to have. Orion adopts a default-approach

semantics for update operations; for example, when removing an edge < S — C > in the DAG if

the class C becomes disconnected, then it is automatically re-connected to all superclasses of S.

The attributes of the type of class C which are inherited from S and not locally redefined in C are

lost. No other possibilities are allowed.

GemStone [PeSt87] follows an approach similar to Orion to ensure structural consistency when

updating the schema. Invariants are also used there; the major differences with the O 2 system

are that Gemstone does not support types, has only objects and no values, and supports simple

inheritance. Therefore structural problems are simpler with respect to systems which allow types

such as O 2 and Vbase [AR87], and multiple inheritance, such as Orion and O 2 . Vbase has types
,

but only supports single inheritance.

The issue of behavioral consistency is not considered in many object-oriented database systems.

To our knowledge Orion [Ba87a,Ba87b,Kim88], GemStone[PeSt87], Vbase do not support any

mechanism for dealing with behavioral inconsistency in the database. In particular, in Orion it

is the user’s responsibility to avoid (or cope with) the possible occurrence of dangling references

when updating composite objects. In fact, in Orion it is possible to delete a class when the class

extension is not empty. All objects of the deleted class are logically deleted. If the deleted object

is part of another object (composite objects) then all dependent objects are recursively deleted.

The Encore [SkZd86,Zd87,SKZd87] data model is similar to that of O 2 as it provides types and

multiple inheritance. Encore ensures structural consistency and provides an interesting mechanism

for behavioral consistency based on versions of types and exception handlers. A change to a type

creates a new version of the type. Exception handlers are associated to versions of types in order

to allow different instances of different types to be used uniformly. Errors resulting from methods

using a method or an attribute which are undefined or unknown are processed by the appropriate

handlers.

Versions of schema are instead proposed in Orion [KiCh88]. This solution has the advantage of

allowing different programs to use different versions of the schema.

In our current solution when updating an schema we did not consider creating versions, either

at schema or at object level.

Other OODBM systems, such as Iris, Zeitgeist, and Trellis/Owl although not a true OODBS,
do support schema changes [Pan88], but we are not aware of the type of updates they provide and

the way they implement them.

A different approach is taken in the LOGRES project [CCCTZ90], an integration of the object-

oriented data modelling paradigm and of the rule-based approach, where updates are expressed in

modules by appropriate logical rules.

8 Conclusions and Future Work

We have outlined in this paper the definition of a set of primitives for schema manipulation for an

object-oriented database system. In the paper we have defined a set of basic schema updates, and

two kinds of consistency (structural and behavioral) which are desirable when performing a schema

update. In particular, this proposal has influenced the schema update mechanism offered by the O 2

object-oriented database system.

More work is needed to improve our current approach. In particular it would be desirable to:

- Define a set of high-level restructuring operations on the schema. We can view the schema

79



tool manager as providing the basic mechanisms that can be used to build on top of it a more

sophisticated object-oriented design tool, such as a tool which will enable compositions of

classes, creation of superclasses given a set of classes, and so on. This design tool would only

be used to modify the schema with no actual database (i.e. pure design phase). Interesting

restructuring operations based on re-writing rules for schemas defined as a tree have been

proposed in [AbHu88]. The same techniques could perhaps also be applied to schemas defined

as a graph.

- Design an intelligent advisor tool for schema manipulation and in general a set of tools for

helping the designer in performing schema updates. The advisor would participate in schema-

update manipulations, including testing and validation, and also would suggest to the user

a set of possible update alternatives (which may imply an interactive reply from the user)

whenever some inconsistency may arise. At update time, if a test shows that an update is

illegal, then the advisor augments the update with secondary updates to obtain a transaction

that is legal. This process is recursive because the secondary updates might require tertiary

updates, etc. The consistency advisor tool transforms an illegal update into an and/or tree

of updates from which the user can construct a legal transaction [Zic89] that includes the

original illegal update. The advisor produces a set of hints which the user does not have

necessarily to follow. However, the advisor does not produce an exhaustive list of update

alternatives. The criteria for generating alternative update strategies are in transforming an

illegal update into a new one which does not produce undesired inconsistencies. The notion

of transaction update has also been introduced in [GPZ88] in the context of the view update

problem.

- Allowing type transformation with incomplete types and object values [Zic89], [GZ88].
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Introduction

An OO DBMS is an ideal platform for the development of complex

applications that store and manipulate shared, persistent data. There are two

alternatives to an OO DBMS, 1) a user-developed, ad hoc file system, and 2)

a relational DBMS. The cost of developing and maintaining an ad hoc file

system is becoming increasingly difficult to justify now that off-the-shelf OO
DBMSs provide superior functionality and performance. Many application

developers who use ad hoc file systems considered and rejected RDBMSs
because of performance problems and because of the difficulty of working

with the database through a host language interface.

An application developer can work with an OO DBMS through a variety

of interfaces. In this paper we consider programmatic interfaces only. All

currently available OO DBMSs offer library interfaces. There are clear

benefits to a library interface. It is portable across languages and requires no

special compiler support, e.g. a pre-processor. Application development

tools, (e.g. for browsing, schema management, database reorganization,

report generation), are well-supported by such an interface.

However, there is one aspect of database management that is not

amenable to a library interface. This has to do with associative access. The

great success of relational DBMSs (for "traditional" applications) is due, in

large part, to the facilities for associative access. These facilities include:

• A non-procedural language for specifying queries, (SQL, for

relational DBMSs).

• The ability to dynamically add and remove indexes which speed

up certain queries.

• Maintenance of indexes, in response to updates to the database.
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• Query optimization - the automatic selection of an execution

plan for each query.

This approach permits correctness of the application to be separated

from performance concerns. Correctness has to do with the formulation of

SQL statements. Performance is controlled by adding indexes that speed up

certain kinds of retrieval. The query optimizer selects from the available

indexes and generates an execution plan that coordinates the use of index

lookups and index scans to compute the answer to the query. The SQL query

does not have to be modified as indexes are added or dropped in response to

performance requirements.

We believe that associative retrieval is not well-supported by a library

interface. This capability is best supported by a data manipulation language

(DML), with an embedding defined for each host language. In the rest of this

paper, we show why associative retrieval is difficult to support through a

library interface, and demonstrate the advantages of an embedded DML
approach. This leads us to conclude that embedded DML standards are

required in addition to library interface standards. We also discuss the

relationship of an OO DML to SQL.

Data Manipulation

Some current OO DBMS library interfaces offer set or collection classes.

These are very minimal implementations, as they do not support associative

retrieval with query optimization. A rudimentary form of associative access is

currently available through hash table and b-tree object classes (to be referred

to generically as indexes). The interface to these object classes might be

found as part of an OO DBMS library interface. These object classes support

iteration, update, and rapid lookup of (key, value) pairs given a key. Simple

queries can be handled easily using these object classes.

There is no connection between sets and indexes, so the use of indexes

to optimize retrievals from sets is in the hands of the programmer. This is

especially unpleasant for complex queries which may involve the use of

multiple indexes. In these cases, the results of one index lookup feed into

lookups on other indexes. It may be necessary to record intermediate results

and to performs unions and intersections on these intermediates,

corresponding to conjunctions and disjunctions in queries. For example,

consider an MCAD application dealing with parts. Each part has a name, a
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weight, and a set of subparts, and there is a set of all parts. Consider the

following query:

Find parts whose weight is less than 100 that

contain a "frammis".

There are two indexes that could be of use here, an index permitting rapid

lookup of parts given weight, and an index from part name to containing part.

(E.g. if a widget contains a frammis, then the second index maps from the

name "widget" to the part whose name is "frammis".) To process the query,

each index would be searched, yielding two sets of part ids. The ids common
to both sets would then be returned as the answer to the query.

It is clearly preferable to be able to specify this query at a higher level,

without having to deal with indexes explicitly. This simplifies the formulation

of queries, and, as in an RDBMS, insulates the query from changes in

indexing decisions. This raises the question of how to specify queries through

a library interface. There could be a function in the interface that takes a

string containing a DML form of the query and returns the result, e.g.

query ( "part s [ weight < 100 and

subparts [ name = 'frammis'] ]")

This approach has a number of problems. First, in practice, the constants

100 and "frammis" are likely to be stored in program variables, and it is a

nuisance to have to create a string that incorporates the variables' values. If

the query involves a more complex selection, e.g., involving function

invocations, then this approach breaks down, limiting the power of the DML.

Second, the type of the query result depends on the query, so this approach is

problematical for strongly-typed languages, which require type information at

compile-time. Third, this approach is not conducive to compile-time analysis

of the query.

Another approach to a library interface DML is to offer a collection of

functions for constructing a "parse tree" representing the query, e.g.

query (parts,

and ( It (weight , 100),

query (subparts, eq(name, "frammis"))))

This expression would yield an object that can then be passed to an

evaluation function. This approach has the advantage of separating

optimization from evaluation, but otherwise has many of the drawbacks of

the previous approach.
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The simplest interface, from the programmers point of view, is a DML
embedded in the host language. In an earlier paper [ATWO90] we described

this approach in more detail and gave examples of a C++ DML. There are

strong resemblances to other C++ DMLs [AGRA89, BLAK90] and to a

Smalltalk-based DML [MAIE86]. The similarities among these four

independently developed DMLs points to the viability of this approach.

Example (C++):

set<part> s;

int w = 100;

string n = "frammis"

;

s = parts [weight < w and

subparts [ name = "frammis" ]]

;

This approach offers the greatest flexibility in integrating DML and the host

language. Queries may be used in any context, and may themselves contain

embedded expressions of the host language. DML capabilities overlap host

language capabilities (e.g., both languages have variables and logical

expressions), so host language syntax can be used to provide much of the

DML syntax. This simplifies use of the DML and further contributes to close

integration. There is no need to establish a binding between DML variables

and host language variables; again, the host language variables can be used

in the DML.

One of the most serious drawbacks of host language interfaces to

RDBMSs is the "impedance mismatch" - queries to the database return sets,

but the host language is not equipped to deal with sets except by iteration. In

OO host languages, such as C++ and Smalltalk, this problem disappears

thanks to set or collection object classes, which are already present in OO
DBMS products.

Indexes

As discussed above, OO DBMS library interfaces provide set and index

classes for associative retrieval. This is not a satisfactory interface because the

programmer has to perform all index manipulations explicitly. If a DML is to

be supported, through a library interface or a language binding, then the

indexes are still present, but are much less obtrusive. The application

programmer can ask for indexes to be added to and removed from sets, and

can then forget about them. Index maintenance - modifying indexes in
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response to database updates, and the use of indexes in the evaluation of

queries are all hidden, carried out by the DBMS.

Adding and dropping indexes are simple to do, with either a library

interface or through a language binding. Index maintenance, however, is

much more complicated. It is not a simple matter to identify actions that

require index updates, and then figure out what indexes need to be updated.

In the previous example, a set of parts had two indexes, 1) from weight to

part id, and 2) from part name to id of a containing part. If a part's weight is

updated, then the index on part weight needs to be modified. Suppose that

part p has weight w, and the weight is changed to w'. The index on part

weight has a (w, p) entry, keyed by w. This needs to be replaced by (w', p). It

is not sufficient to simply update w in place. Since the index is keyed by w,

the (w, p) entry has to be removed, and the (w', p) has to be inserted.

The other index is more complicated because it goes through a subpart

relationship. Suppose that part p has a subpart s named n. Then the index has

an (n, p) entry. Changing a part's name must trigger an index update. If the

name of s is changed to n', then (n, p) must be replaced by (n', p), (again, by

removal and insertion, not update in place). An index update must also occur

if s is removed as a subpart of p. In this case, the correct update is to remove

(n, p), and not insert anything.

These "database updates" are simply assignment statements in an OO
DBMS host language, e.g.

part* p;

p->weight = 120;

The index update needs to be triggered somehow. For a library interface, a

function call is required, e.g.

index_update (parts, p->weight, 120);

p->weight = 120;

The index_update function has arguments indicating the set which has

the index, the index key (p->weight), and the new value of the key. Following

the index update, the actual assignment is done. Actually, this is a

simplification, since there needs to be some way to identify which index of

parts needs to be updated, because there may be other sets with indexes on

part weight, and because there may be sets with indexes on part weight

which do not need to be updated, (e.g. if the set does not contain p). The
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rules describing what updates are needed are complex, and this is an

extremely simple case! In general, index maintenance requires a graph

reachability computation. Example:

This diagram shows a set containing objects {a, b, c}. These objects

contain sets of other objects, a contains {d, e}, b contains {e, f, g), and c

contains {h}. Each of the objects d - h are connected to one of object i, j, and

k. Suppose that the set has an index on these paths. The index contains

key value

i a

i b

j b

k b

k c

Updates, which seem similar to one another, can have different

consequences for the reachability of other objects, and therefore, different

index update actions. For example, if the b-f link is broken, then
j
becomes

unreachable, so the (j, b) entry should be removed. But if the a-e link is
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broken, i is still reachable (via d), so the index does not have to be modified.

Keeping track of these dependencies, and computing reachability is not the

sort of thing that users should have to do - the system can do this efficiently

and correctly [MAIE86].

This is not a satisfactory situation. The library interface to index

maintenance is too difficult to use. This is compounded by the fact that errors

in index maintenance are subtle and may easily go undetected. Finally,

maintenance is a nightmare. As indexes are added and removed, all the index

maintenance code has to modified.

The index maintenance interface could be automated somewhat, but

only if the schema is modified to accomodate fields within objects to keep

track of indexes that need to be updated. The complexity of the interface

does not go away completely, as these fields would have to be explicitly

declared by the user.

There is a clear need for some support to deal with the index

maintenance problem. This support can come from the DML pre-processor.

For each updates to an object property that serves as index key, index

maintenance code is generated. It is safer and simpler to rely on the pre-

processor to generate the required code than to do it by hand. With such

support, the user can write an update such as

p->weight = 120;

and all required index maintenance will take place.

Query Optimization

Three different approaches to DML have been proposed:

1 . Pass DML as a string to a query function.

2. Construct a tree representing a query and pass it to an evaluation

function.

3. Embedded DML.

#1 and #2 are library-based approaches. Query optimization is possible with

any of these approaches, but only #3 permits compile-time query analysis.
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Compile-time query analysis has significant advantages. It provides

immediate feedback about the correctness of the query - syntax errors can be

detected at compile-time. (Type safety is also guaranteed in languages where

that is important, e.g. C++). Of course, additional information for

optimization is available at run-time, but performance is improved by moving

as much work to compile-time as possible. For example, at compile-time,

multiple strategies could be generated and compiled. At run-time,

examination of the database (e.g. for presence of indexes) indicates which

strategy should be selected. Most of the expensive state-space search was

carried out at compile-time, leaving a much smaller space to explore at run-

time.

What about SQL?

A DML integrated with the host language has many advantages over a

library interface DML:

• The DML itself is simpler, because it can take advantage of host

language constructs (e.g. variables, logical expressions). The
DML is also more expressive since any host language expression

can appear inside a query, e.g. in a selection predicate.

• Compile-time query analysis is possible. This leads to type safety

for the DML. Also, the optimizer can do much of its work at

compile time instead of at runtime.

• Index maintenance can be hidden completely. Index

maintenance through a library interface is extremely difficult to

do correctly.

This integration can be accomplished by a DML pre-processor.

So far we have focussed on the issue of DML interfaces. We now discuss

the form of the DML. The DML should be standardized, so it is natural to

question whether another standard query language is necessary, given the

dominance of SQL in the RDBMS world. Could SQL be used for OO DBMSs

too?

Some existing OO DMLs bear superficial resemblances to SQL

(especially [BLAK90]), but there are major semantic differences. A relational

database consists of a set of relations storing tuples of values. A typical query
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joins relations based on matching values in different relations, selecting

tuples that satisfy a predicate, and then discarding unneeded fields. Example:

PERSON (id#, name, age)

JOB (person, salary, title)

/* Find the names of people whose age is

less than 30 and whose salary is greater

than 100000 */

SELECT name

FROM PERSON, JOB

WHERE person = id# AND age < 30 AND salary > 100000

The connection between PERSON tuples and JOB tuples is based on

matching values in the id# field of PERSON and the person field of JOB.

Tuple values are permitted to be simple types only, e.g. numbers and strings.

By comparison, an OO DBMS schema contains fewer "top-level"

constructs, and the objects stored may be structured. For example, an OO
version of the above relational schema would typically contain a single set of

person objects, and each person would store the id of a job object - a pointer.

The explicit pointer can be thought of as a "pre-computed" relational join.

I.e., the result of the join is stored, so the join (indicated by the person = id#

term in the query) does not have to be spelled out.

Set-valued properties of objects are modeled very differently in the two

models. In an OO DBMS, an object may have a set-valued property or

attribute, e.g. part objects have subpart attributes. The type of subparts is set

of parts. In a relational DBMS, these sets can't be represented directly, as set-

valued tuple values. Instead, a new relation has to be introduced to store all

the part-subpart relationships. The relation would have one tuple for each

such relationship. I.e., the cardinality of the relation is the sum of the

cardinalities of all the subparts sets. Viewed another way, the "embedded"

subpart sets would, in a relational schema, be combined into a single (top-

level, non-embedded) relation.



Because relational and OO DBMSs differ in the way they model

applications, the DMLs should be different. For this reason, the primary DML
of an OO DBMS should not be SQL.

However, it will be important for OO DBMSs to co-exist with RDBMSs,

so SQL support is important. There are two forms of support that will be

required, front-end and back-end.

Front-end

Library

interface
OO
DML

SQL interface

SQL
^1 1 ,,n

-- - ---- w
Back-end

SQL interfaceOO
DBMS

Relational

DBMS

"Front-end" SQL support is the ability to sdbmit SQL queries toft an OO
DBMS. This is important in order to make use of existing software and

expertise to access an OO DBMS. Such a situation might occur in an

engineering company where the design data has been moved into an OO
DBMS. Meanwhile, the accounting and management software, which used to

access an SQL database needs to access the same information, but now in an

OO DBMS. "Back-end" support for SQL is the ability to use an OO DBMS,

including the OO DML, to access data in an SQL database.

In both cases, there is a view mapping problem, comprising schema

translation and DML translation. Many of the ideas that were developed to

deal with heterogeneous relational and pre-relational databases can be

applied. Since DML statements assume a specific schema, schema translation

must take place before DML translation.

Summary and conclusions

One of the major reasons for the success of relational DBMSs is that they

provide a high-level, non-procedural query language and the facilities to

support it: indexes, automatic index maintenance, and query optimization.

These features are not present in OO DBMS library interfaces. Rectifying this

situation will be difficult because it is difficult to describe queries (except for

some simple, special cases) through a library interface. The resulting interface

has some of the drawbacks of programmatic SQL interfaces - they are ugly

and difficult to use.
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A library interface that supports index maintenance is easy to define, but

extraordinarily difficult to use correctly. The problem is in knowing when

index maintenance is required, and in knowing what maintenance actions

are appropriate.

A better solution is to define DML capabilities which can be embedded

in host languages in a way most appropriate to that host. The constructs of

the host language are used where possible. Additional syntax may be

required. Programs that use the DML would then go through a pre-processor,

expanding the DML into procedural code, and inserting index maintenance

actions where appropriate. This approach retains the best of both worlds: the

generality of the host language and the convenience of a query language. We
therefore recommend the development of standards for the DML semantics,

and for each host-language embedding.
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1 Introduction

The most significant obstacle to object-oriented query processing research is the lack of agreement

on a data model, and thus on a formal foundation for query language, query optimization, and

view definition and processing research. To overcome the data model problem, we adopt a high-

level, conceptual model of complex objects along with a formally-defined, algebraic query language.

The core of the query language is the ability to form subtypes/subclasses of existing types/classes

by restricting inherited properties. A strength of this approach is that all attributes and values

of a query result are derived from existing database objects (both schema and data); retaining

connections to the schema provides logical access paths to data. The formalism supports provably

correct logical query optimization in two forms: algebraic transformations and classification-related

optimizations.

The object-oriented, algebraic query language introduced here provides relational algebra func-

tionality in an object-oriented setting. The algebra provides operators which preserve object iden-

tity and allow complex objects to be manipulated as a whole, as well as operators which allow

objects to be manipulated based on the values of their attributes. The ability to specify unstruc-

tured joins is provided via the cross product operator. The algebra also supports the ability to

create new objects representing only the values derived from existing objects. Just as relational

algebra is closed over relations, the algebra is closed over classes.

The denotational semantic specification of the algebra precisely defines the operators; it makes

the types of the data model and the behavior of the operators over them explicit. The formal

definition provides the basis for implementation as well as the basis for provably correct logical query

optimization. The definition of the algebra contributes a formal description of both intensional

and extensional query answers. Each query describes a class, which has intension (e.g., inherited

properties and a membership definition) and extension (data values).

Any data model which supports complex objects can use the algebra presented here for query

specification. It is especially well-suited for data models which support the isa relationship, proper-

ties between classes, and inheritance of properties. It is not necessary that the data model support

definitional membership in classes (i.e., that the data model intension includes property restriction

and set-theoretic specification of membership), since all classes in a data model of this nature can

be treated as base classes.

The research sets the stage for integration of query optimization into a full-featured object-

oriented database. The conceptual model utilized in this research for developing a high-level query

algebra is not a full-featured object-oriented data model since it does not have facilities for specifying

user-defined behavioral abstraction. However, since the algebra can be used to express information
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such as access paths, the structural abstraction provided by the conceptual model is sufficient for

exploring query language issues in object-oriented data models. The algebra proposed here can

bridge the gap between implementations and query interfaces, since it provides object-oriented

and value-oriented query power, support for views, and the basis for logical query optimization;

this research represents a step toward developing theoretically-founded query languages for object-

oriented database management systems.

To summarize our point of view, a minimal framework for a query language standard should

address the following issues:

1. formal definition of a high-level data model, including the formal definition of a database and

the syntax and semantics of associated query languages,

2. proofs of correctness of transformations, so that syntactic rewriting of query expressions are

meaning-preserving according to the formal definition, and

3. functionality of relational query languages, enabling both value-based and object-based queries

as well as closure over class types.

2 A Conceptual Model for Object-Oriented Databases

A minimal set of criteria for an object-oriented database system has been identified by Zdonik and

Maier [ZM90] as follows:

1. database functionality: storage for persistent data, efficient access to data, concurrency con-

trol, recovery, etc.,

2. object identity: a unique identifier regardless of values of objects,

3. encapsulation of structure and behavior: access to objects is only allowed via an interface

defined for the object, and

4. complex state: the ability to reference other objects.

Providing database functionality and enforcing encapsulation (items 1 and 3 above) are essentially

database system features (details of implementation), although a conceptual data model should in

no way preclude them. Support for object identity and complex state (items 2 and 4) must be

addressed at the conceptual level.

Query processing, from a query writer’s point of view, is concerned with the conceptual level.

Physical details, such as whether data is stored or derived, are invisible to the user. Encapsulation

can be preserved, since a user need only retrieve data visible through the interface defined for

a class. Queries use methods that do not change the states of objects
(
inspectors

,
not mutators

[ZM90]) to view the values of objects. In other words, the query language for an OODB can be a

high-level query language based on the abstractions provided by a conceptual data model.

Our proposed conceptual data model, essentially a semantic data model (e.g. [HM81]), provides

the following:
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1. object identity,

2. complex state,

3. the isa relationship (set inclusion semantics), and

4. inheritance of properties (i.e., inspector methods).

The semantics associated with these features represent the rich intension associated with complex

objects and they influenced the development of the query language presented here. The notion

of a class hierarchy encompasses both the type and collection hierarchies of Zdonik and Maier

[ZM90]. Since queries process collections, and all collections have types, they are related in the

conceptual data model through a generalization/specialization hierarchy (the isa relationship), with

set inclusion semantics.

The conceptual model provides automatic membership [CADF90] in classes. Automatic (or

definitional) membership refers to membership in a class that is described by an intensional rather

than extensional specification (e.g., enumeration or user-controllable membership). Automatic

membership insulates the user from details, especially physical storage details.

For the purposes of the query language, definitional membership is supported via the modifi-

cation of inherited properties. A property has a range class which serves as the domain for the

values of objects under the property. A numeric constraint on the cardinality of the image set (how

many values an object may have for a particular property) is used to express single- valued and

multi-valued properties. Subclasses can be defined by restricting both the range class and/or the

cardinality constraints of properties.

3 A Formal Query Language

The database state is composed of intensional information and extensional information. The inten-

sional portion of the database state contains structural information about classes such as details of

their properties and membership definitions. The formal definitions of the query operators include

semantics for determining the inherited properties and membership definitions of query answers.

The extensional portion of the database state includes the extension of classes (sets of object iden-

tifiers) and mappings of objects to their values (also called images) under properties.

Denotational semantics provides an elegant means for expressing the essential features of lan-

guage semantics: the syntax of the language, the domains (environment) where the syntactic

constructs have meaning, and the mapping from expressions in the language to meaningful results

in the environment. For the query language, the environment is a database state, both intensional

and extensional. Each each query operator creates a class with intension and extension derived

from existing classes and query specifications. A query result can be viewed as a system-generated

class, the details of which are contained in a modified database state.

The operators of the algebra are listed in Figures 1 and 2, along with an informal summary of

their formal meaning. A query expression is denoted by e. The intensional effects of the operators

(Figure 1) are described in terms of the inherited or derived properties of the query result and its
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Operator Properties Membership Definition

ei U e2 most general version of common prop-

erties

“or” membership definitions

ei 0 e2 all properties with most specific com-

mon properties

“and” membership definitions

ei - e2 properties of e\ “difference” of membership definitions

Pre 6 properties of e “and” membership definition and re-

strict expression (re)

^se 6 properties of e “and” membership definition and se-

lect expression (se)

^pnl ® properties in property list
(
pnl

)
generated membership definition

ei X e2 two generated properties with e\ and

e 2 as range classes

generated membership definition

Figure 1: Intensional Query Results

membership definition. The extensional effects (Figure 2) describe which objects are in the query

answer.

The first group of operators (U, Pi, —
, p ,

a) are the identity-preserving, subclass-forming oper-

ators. (The union operator actually produces a superclass of its argument classes, but the query

result will be a subclass of the arguments’ common superclass.) The restrict operator, />, is based on

universal quantification; objects in a class defined by p will have entire images within the cardinality

and range restrictions of the properties specified in the restrict expression. The select operator, cr,

allows objects to be selected based on part of their images for properties. The remaining operators,

project ( 7r
)
and cross product (x), form classes that are derived from existing classes; the members

of these classes are new objects whose images are existing objects.

Operator Extensional Effect

ei U e -2 union of object identifiers

ej n e2 intersection of object identifiers

ei — e2 difference of object identifiers

pre e subset of object identifiers based on entire image of objects for restricted properties

ase e subset of object identifiers based on partial image of objects for selected properties

7rpn] e new object identifiers assigned to distinct values

ei x e2 new object identifiers assigned to each pair of object identifiers in cross product

Figure 2: Extensional Query Results
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4 Logical Query Optimization

The formal definition of the algebraic query language and database state allows for reasoning about

what queries in the language denote (i.e., the meaning of the queries), so that syntactic transfor-

mations for logical query optimization can be proven to be meaning-preserving. If query results

are identical (same intension and extension), then the equality holds. Denotations of expressions

can be used to show that their intension and extension are the same. For defined classes, identical

intension implies that extension is the same, since a non-trivial membership definition completely

describes the objects that have membership in the class.

A classifier is a tool for computing subsumption relationships between classes; given a class and

a class taxonomy, it determines the proper position for the class in the taxonomy [Lipk8‘2, BFL83,

SI83, FS84, Davis87, BBMR89, BGN89, DD89a, DD89b]. The formal framework for a classifier is

provided by rules of inference for structural properties of the model [Davis87, DD89a, DD89b]. A
classifier can be used to find logical access paths by pretending to classify classes that are described

by queries [BGN89]. Through classification, the most specific subclasses satisfying the constraints

of the query are used to construct the query results. Our research explores the simplification of

query expressions within a query by identifying subsumption relationships, disjoint relationships,

and redundant and inconsistent classes using a classifier [Davis90]. Examples are given in Figure

3.

The algebraic transformations developed and proven correct using the formal definition of the

query language [Davis90] can be incorporated into a framework of guidelines for rewriting queries

into more efficient forms; however, criteria for determining efficiency have yet to be developed. One

possible optimization heuristic is that classifiable operators should be applied as soon as possible,

similar to the concept of select migration in relational query optimization. Detailed investigation

is a task for future study.

5 Analysis

OODBSs such as GemStone [MOP85, MSOP86], Iris [Fish87, Fish88], O 2 [BBBD88, LRV88],

and ORION [BCGK87, BKK88] present no obstacles to using this conceptual model for query

processing. Each supports a class hierarchy that allows structure and behavior to be inherited.

Query Inferred by the Classifier Simplified Query

ei 0 e2 D e3 isa(e2, ei) e2 D e3

ei O e2 disjoint(ei, e2 ) 0

ei U e2 redundant(ei, e2 ) ei (or e2 )

ei 0 e2 inconsistent^
) 0

ei U e2 inconsistent^
)

e2

Figure 3: Query Simplification Using the Classifier
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None of them support automatic membership, but since queries are definitional in nature, query

processing against these OODBSs are supported because queries induce an isa relationship with

inheritance and definitional membership.

With regard to query languages, although there are a number of object-oriented database man-

agement systems currently under development, there is no consensus on a single data model; imple-

mentation work has generally preceded any formal treatment of the model [Banc88j. Research on

object-oriented query languages is just emerging. Systems such as GemStone [MOP85, MSOP86]
and O 2 [BBBD88, LRV88] have been implemented without a query processing component. ORION
has a query language with some cumbersome features, for example, the project operator which

projects only one or all properties [BCGK87, BKK88]. Iris has a query language, OSQL, which re-

lies on relational algebra as a computational model [DKL85, LK86, Fish87, Fish88]. The operators

of the Encore Query Algebra [SZ89] and the Object Algebra [Osbo88] are similar to those of the

algebra presented here, and in some cases have richer syntax and semantics (e.g., a more flexible

select operator). In the Encore Query Algebra, all query results are tuple types, and in the Object

Algebra, queries may result in sets, aggregates, or strongly-typed sets. In contrast, the operators

presented here produce abstract classes as a result, so the algebra is closed over abstract classes.

That is, queries can involve arbitrarily nested operators, with each intermediate result yielding an

abstract class.

The subclass-forming operators (U, 0, — , p, cr) described here allow complex objects to remain

intact and retain their identity. These operators create new subclasses whose membership is derived

from that of existing objects in abstract classes. This is in contrast to Encore’s Query Algebra

[SZ89], where new object identifiers are always assigned to objects, even for set-theoretic queries

where the original identifiers could be used. The disadvantage of generating new object identifiers

for every query result is that answers to queries are disconnected from the classes in the schema.

In our approach, queries and subexpressions of queries which produce true subclasses are retained

at the appropriate location in the isa hierarchy of the database schema. This approach retains the

strengths of the schema, one of which is exploiting the isa relationship for providing logical access

paths to data.
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As computers become more and more powerful and interconnected, the computer

software industry is being pulled more and more towards integration of products,

across both different platforms and different application domains. Users often need

to access data on several different machines, each with their own operating system.

Applications like word processors are linked to spreadsheets which are linked to

databases.

The connection between these different platforms and different applications is shared

data. This data must be persistent and must be concurrently shared by these

applications. Persistency and concurrency are among the basic functions of

database management systems (DBMSs); thus, DBMSs are an extremely important

part of product integration. Users need DBMSs that can both easily model complex

real-world relationships AND easily share data across different systems. The

'elational database of the 1980’s do not provide these features. Intelligent databases

achieve both of these objectives.

ntelligent databases generally include an object-oriented database model that allows

iirect representation of real-world models, support for declarative rules to express

semantic relationships among objects, and strong support for text, image, voice,

mimation, and video. Intelligent SQL is part of a DBMS that has all of these

ittributes, and also includes ways to access databases from other machines and

om other vendors. Several aspects of the Intelligent SQL language have been

reviously presented to the Object Oriented Database Task Group (OODBTG) in

lay 1990. This paper will present a detailed description of the object-oriented

oncept of inheritance and generalization. In particular, it will show how these

Dncepts can be used to construct global distributed database schema in Intelligent

QL.



inheritance

Inheritance allows a natural model of the real world to be represented in the

database. It allows new objects to be built on top of existing objects. People are

used to abstracting and classifying information in inheritance hierarchies. For

example, people think of mammals as a subclass of vertebrates, dogs as a subclass

of mammals, and terriers as a subclass of dogs (Cox, 1984). Inheritance allows

developers to easily extend an application by specializing existing pieces of their

application. This is known as top-down development.

Inheritance in Intelligent SQL is composed of two complementary aspects:

specialization and generalization. Specialization can be used to form table

hierarchies in a top-down fashion. Subtables can be defined in terms of existing

tables. Generalization, on the other hand, is a bottom-up approach. Supertables are

constructed from the common attributes of several existing tables.

Specialization

Intelligent SQL allows specialization in two ways: through adding new columns to the

supertable (horizontal modification) and through restricting existing columns of the

supertable (vertical modification). A subtable can also inherit columns from several

supertables (multiple inheritance). As an example of horizontal modification, consider

the tables Persons, Staff, and Students:

CREATE TABLE Persons
(

Name CHAR(20),
Age INTEGER,
City CHAR(20),
State CHAR(2))

CREATE TABLE Staff

SPECIALIZES Persons (

Salary FLOAT,
OfficeNo CHAR(30))

CREATE TABLE Students
SPECIALIZES Persons (

Major CHAR(20),
Advisor CHAR(20),
GPA FLOAT)
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re Staff inherits Name, Age, City, and State from Persons, and adds two new

umns Salary and OfficeNo. The table Students inherits all of the columns in

rsons and adds the column extensions Major, Advisor, and GPA (Grade Point

erage). These are examples of single inheritance in its simplest form (see Figure

i. The full syntax for specialization of tables is:

CREATE TABLE <table name>

SPECIALIZES crestricted table name list>

[CORRESPOND <table attributes list>]

[AS <column name list>]

[(ctable elements>)]

sre:

crestricted table name list> ::= crestricted table name> [, ...]

crestricted table name> ::= ctable name> [WHERE crestriction clause>]

ctable attributes list> ::= ctable attributes> [, ...]

ctable attributes> ::= ctable name>(ccolumn name list>)

restricted table name list in the context of specialization is also known as a

ertable list. The following rules give the semantics for specialization:

)
Each table name in the supertable list is the name of a table, not a view or

domain. Every column of every supertable is inherited by the subtable.

') The graph of the table inheritance hierarchy is a directed acyclic graph (DAG),

i.e. there are no cycles; thus a table cannot be a direct or indirect subtable of

itself.

)
If tables in the supertable list have a common predecessor (i.e. they

transitively inherit from a common root table), then there will be one copy of

the shared columns. If these shared columns have different names and there

is no AS clause, then the inherited column retains the name used in the

leftmost table of the supertable list.

)
If an AS clause is specified, then the columns inherited from the supertables

are renamed to the names in the AS clause. The number of names in the AS

clause must be the same as the number of columns being inherited by the

subtable.



(5) If the AS clause is not specified, then the name of each inherited column name

must be unique among all columns inherited by the subtable being defined and

among all column extensions, if any. Note that if conflicting columns come

from the same predecessor, rule 3 will still be valid since there will be only one

copy of the shared columns in the subtable.

(6) If CORRESPOND is specified, the arity of each set of table attributes in the

table attributes list must be the same. The nth column (or attribute) of each

set of table attributes are known as corresponding columns. The

corresponding columns must be of compatible types, and will become one

column in the subtable.

(7) The order of the columns in the subtable being created is:

(a) the corresponding columns (rule 6), if any

(b) the rest of the inherited columns in the order they appear in each

supertable, starting with the leftmost table in the supertable list (subject

to rule 3)

(c) the additional column extensions, if any

(8) The inheritance hierarchy has set inclusion semantics. Formally, this means if

a table T1 is a subtable of table T2, then the set of all rows in T2 will contain

all rows of T2 AND all the rows of T1 . This implies:

(a) on any insertion, deletion, or modification of a set of tuples in a

subtable, the subtuples formed by projecting on inherited attributes are

(logically) inserted, deleted, or modified in the supertable(s).

(b) On any deletion or modification of a set of tuples in a supertable, the

corresponding tuples are deleted or modified in all subtables.

(9) For any supertable with a WHERE clause specified, the elements of the

supertable which satisfy the WHERE clause are also elements of the subtable.

This is another consequence of set inclusion semantics, and implies that when

inserting a tuple into a supertable, that tuple is inserted into any subtables

having a WHERE clause which that tuple satisfies.

This syntax follows an ANSI SQL3 proposal in its basic structure. Both SQL3 and

Intelligent SQL include the supertable list and the AS clause. The SQL3 proposal

does not, however, include the WHERE clause (vertical modification) or the

CORRESPOND clause. The SQL3 proposal also allows a "LIKE <tablename>"

clause as part of the table elements, which seems redundant and clumsy; a user

might combine use of a supertable list and a LIKE clause:
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CREATE TABLE StudentStaff

SPECIALIZES Student
(GrantNo INTEGER,
OfficeMate CHAR(20),
LIKE Staff)

instead of using

CREATE TABLE StudentStaff
SPECIALIZES Student, Staff

(GrantNo INTEGER,
OfficeMate CHAR(20))

The LIKE clause will also be confusing to many users who are familiar with one of the

many packages that uses LIKE as a search condition for character strings.

As in SQL3, the AS clause is used to rename the inherited columns in the subtable.

It is most useful in cases of multiple inheritance where two of the supertables have

different names for a corresponding column. The CORRESPOND clause is needed

when a subtable inherits from two supertables whose common columns are in

different orders, especially if those two supertables do not have a common ancestor.

Consider, for example,

CREATE TABLE Employees
(

EmpName CHAR(20),
Salary INTEGER,
Department INTEGER,
EmpAge INTEGER)

CREATE TABLE Students
(

StudentName CHAR(20),
StudentAge INTEGER,
GPA FLOAT)

CREATE TABLE ResearchAssistants
(

SPECIALIZES Employees, Students

CORRESPOND Employees(EmpName, EmpAge)
Students (StudentName, StudentAge)

AS Name, Age, Salary, Dept, GPA
(ResearchArea CHAR(20)

In this example, EmpAge and StudentAge are common columns, bui EmpAge is the

fourth column of Employees, while StudentAge is the second column of Students.

Without the CORRESPOND clause, Salary might correspond to StudentAge and the

semantics for the subtable would not be correct. Or Salary, StudentAge, and



EmpAge would all become distinct columns, and the semantics for the subtable

semantics would not be correct. The CORRESPOND clause ensures that the age

columns will be related correctly and made into one column in ResearchAssistants.

As stated in rule 8, table inheritance in Intelligent SQL has set inclusion semantics.

In the first example above, the table Persons includes all tuples from Staff and

Student, i.e. the query "SELECT * FROM Persons" will return all tuples from Persons,

Staff, AND Students (see Figure 2). Thus, inserting a tuple into either Staff or

Students also affects Persons. Similarly, deleting or updating tuples in Persons

affects tuples in Staff and Students. Inserting tuples into Persons, however, affects

only the Persons table, since neither Staff nor Students was specialized with a

WHERE clause restriction on Person. But, if Students had been created as:

CREATE TABLE Students
SPECIALIZES Persons WHERE Age <= 18

then inserting a tuple into Persons with a value of 17 for Age would also (logically)

insert a tuple into Students.

Set inclusion semantics has interesting implications for subtables created with

WHERE clause restrictions. Two subtables created from the same supertable could

have non-empty intersections. Look at two subtables of Employees (Figure 3):

CREATE TABLE HighlyPaidEmployees
SPECIALIZES Employees WHERE Salary > 50,000

CREATE TABLE AveragePaidEmployees
SPECIALIZES Employees WHERE Salary > 25,000

and Salary < 75,000

If we insert the tuple ("John Smith", 60000, "Toys", 40) into Employees, that tuple

automatically becomes part of BOTH HighlyPaidEmployees and AveragePaid-

Employees. A SELECT * query from either of those subtables would return the tuple

for John Smith.

Generalization

Specialization uses a top-down approach to database construction or definition.

Generalization is the complement to specialization; it uses a bottom-up approach. In
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generalization, supertables are constructed from existing tables. These supertables

can then be used for creating new specialized tables.

Generalization allows the creation of supertables through the projection and union of

existing tables, using the following syntax:

CREATE TABLE ctable name>

GENERALIZES <restricted table name list>

[CORRESPOND <table attributes list>]

[AS ccolumn name list>]

where (the following specifications are the identical to the ones above for

specialization):

crestricted table name list> ::= restricted table name> [, ...]

restricted table name> ::= ctable name> [WHERE restriction clause>]

ctable attributes list> ::= ctable attributes> [, ...]

ctable attributes> ::= ctable name>(ccolumn name list>)

The restricted table name list in the context of generalization is also known as a

subtable list. The following rules give the semantics for generalization:

(1 )
Each table name in the subtable list is the name of a table, not a view or

domain.

(2) The graph of the table inheritance hierarchy is a directed acyclic graph (DAG),

i.e. there are no cycles.

(3) If CORRESPOND is specified, then the arity of the supertable being created is

equal to the arity indicated in this clause (i.e. the number of columns in the

supertable is the number of columns in the subtables that correspond). The

arity of each set of table attributes in the table attributes list must be the same.

The nth column (or attribute) of each set of table attributes are known as

corresponding columns. The corresponding columns must be of compatible

types, and will become one column in the supertable.

(4) Without a CORRESPOND clause, the tables in the subtable list must all have

the same arity. in this case, the nth column of each table correspond to each

other and are known as corresponding columns. Again, the corresponding

columns must be of compatible types, and will become one column in the

supertable.



(5) The AS clause is used to rename the columns of the supertable that is being

defined; the number of names in the AS clause must be the same as the

number of corresponding columns. Without the AS clause the names of

corresponding columns in each subtable must be the same.

(6) The new supertable will be instantiated with the values from the subtables

projected on the corresponding columns.

This is a consequence of the set inclusion semantics for table hierarchies (see

rule 8 of specialization).

(7) For any subtable with a WHERE clause specified, the elements of the

supertable which satisfy the WHERE clause are also elements of the subtable.

This is a consequence of the set inclusion semantics for table hierarchies (see

rule 8 for specialization). This implies that when inserting a tuple into a

supertable, the tuple is inserted into any subtables having a WHERE clause

which that tuple satisfies.

Note that rules 1 , 2, 5, 7, and 8 are the same as rules for specialization. This makes

sense, as generalization and specialization are two sides of the same coin. The

semantics for a supertable-subtable pair created through generalization are no

different than the semantics for a supertable-subtable pair created through

specialization. Also note that the SQL3 proposal has no notion of generalization.

Intelligent SQL is more complete than SQL3 in allowing both top-down and bottom-up

definition of the database schema. Generalization adds flexibility, which is important

in the commercial arena where a database administrator may have to deal with

existing tables and may not have the luxury of defining a table hierarchy from scratch.

For example, if there are existing Employee and Student tables, and there is a need

for a Persons table that contains the common parts of both of these tables, the

Persons table can be created by;

CREATE TABLE Persons

GENERALIZES Employees, Students

CORRESPOND Employees(EmpName, EmpAge)
Students (StudentName, StudentAge)

AS Name, Age

where Employees and Students are again defined as:

no



CREATE TABLE Employees (

EmpName CHAR(20),
Salary INTEGER,
Department INTEGER,
EmpAge INTEGER)

CREATE TABLE Students
(

StudentName CHAR(20),
StudentAge INTEGER,
GPA FLOAT)

Note that generalization, like specialization, has set inclusion semantics, and these

affect the WHERE clause option.

When no CORRESPOND clause is used (rule 4), the supertable is in effect a union

of the subtables, with no projection of a subset of the subtables' columns. This is

very useful in distributed databases for creating a global schema from several

existing local database schemas, as shall be described below.

Assign

When there are related tables with related tuples, tuples may need to move from one

table to another. For example, a Person may be hired and become a member of

Staff. Intelligent SQL includes an ASSIGN operator to move tuples back and forth

between supertables and subtables. When moving from a subtable to a supertable,

any additional columns that are not in the supertable are dropped. When moving

from a supertable to a subtable, values for additional columns are specified similar to

an insert statement. The syntax for the ASSIGN statement is:

ASSIGN INTO <table 1> [(<column list>)]

FROM <table 2>

WHERE <search condition>

[VALUES(<value list>)]

Thus, to make John Smith from the Persons table a member of Staff:

ASSIGN INTO Staff(Salary, OfficeNo)
FROM Persons
WHERE Name = "John Smith"
VALUES(40000, "AX700")

To fire everyone with a salary over 100,000:



ASSIGN INTO Persons
FROM Staff

WHERE Salary > 100,000

Other Data Definition Constructs

Specialization and generalization interact with many other data definition constructs

in SQL. Some of these interactions can be quite complex. This section will discuss

the following constructs and actions:

(1) Primary keys

(2) Foreign keys

(3) Unique columns

(4) DROP/CREATE INDEX

(5) DROP TABLE

Each table can have at most one primary key. In an inheritance hierarchy, a primary

key is either

(a) defined with the table definition. If the table being defined is a generalization,

then defining a primary key invalidates the primary key definitions of all its

subtables. If a primary key is defined in a supertable, it is an error to define a

primary key for a subtable.

(b) inherited from a supertable.

Note that two sibling tables in an inheritance hierarchy can each have their own

primary key, as long as their parent table does not have a primary key defined. If the

definition of a supertable is altered to add a primary key, the primary keys of all of its

subtables will be invalidated. A primary key can be dropped only by the most general

table containing the key.

Foreign keys behave in a similar manner. When a foreign key constraint is defined

for a supertable, it is automatically inherited by all of its subtables. But it is an error

for a subtable to define or add a foreign key constraint involving inherited attributes

(columns). Like primary keys, a foreign key can only be dropped by the most general

table containing the foreign key.

Any table in an inheritance hierarchy can define a unique constraint on a column or

set of columns. It is an error, however, for a subtable to define or add a unique

constraint involving inherited attributes. Again, a unique constraint can only be

dropped by the most general table containing the unique constraint.
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When an index is created on supertable, it applies to all tables below it in the

inheritance hierarchy. If an index of the same name already exists on one of the

subtables, the create will fail. The index can be dropped only by the most general

table containing it.

In general, dropping a supertable does not remove its subtables. The DROP TABLE

statement has an option to drop the entire subtree,

DROP TABLE [INCLUDING SUBTABLES] <table name>

but the default behavior is to only remove the table specified. This behavior follows

the principle of defaulting to the least destructive action possible, and requiring the

user to explicitly specify any further action desired. Otherwise, a user, not aware that

a table has subtable, could accidentally delete a subtree of dozens of tables with a

single command. When just the supertable is dropped, its subtables will continue to

exist, and all constraints will be propagated to the subtables. The subtables will also

become direct subtables the dropped table's supertable (see Figure 5).

Distributed Databases

Specialization and generalization are important object oriented concepts. They allow

users to build new tables on top of other tables. An important application of these

concepts is in the integration of distributed databases. In these cases, the tables

being specialized or generalized are actually stored on different nodes of a distributed

database environment. For instance, assume that a company has two plants, one in

Los Angeles and one in San Diego, and has their corporate headquarters in Las

Vegas. They have separate databases at each site, each with their own employees

table: LAEmployees, LVEmployees, and SDEmployees (see Figure 4a). They now

want to be able to query against a combined employee table and have acquired the

technology to link all three databases together in one combined database (another

feature of Intelligent SQL). They can create the table AIIEmployees as follows:

CREATE TABLE AIIEmployees
GENERALIZES

LAEmployees WHERE Location = "Los Angeles",

SDEmployees WHERE Location = "San Diego",

LVEmployees WHERE Location = "Las Vegas"

where Location is the site location for rich employee, and is defined in the database

for each site (see Figure 4b). This tabie (and any generalized table) can be later
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used as a supertable for specialization. If the company were to open an office in San

Francisco with its own database, they could create a table SFEmployees from

AIIEmployees (see Figure 4c):

CREATE TABLE SFEmployees
SPECIALIZES AIIEmployees WHERE Location = "San Francisco"

Conclusion

Intelligent SQL has a consistent definition of specialization and generalization as two

complementary pieces of inheritance. Intelligent SQL would make a good basis for a

standardization of inheritance, especially since generalization is not addressed at all

in the ANSI SQL3 proposal. Intelligent SQL also has several useful additions to the

functionality described in SQL3, including a CORRESPOND clause and a WHERE
clause. The CORRESPOND clause allows users to specify which columns are to be

inherited. The WHERE clause aids in administration and transparency for distributed

databases, and also allows tupies to be common to more than one subtable. Thus,

Intelligent SQL provides the flexibility in inheritance that commercial applications

need.
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ABSTRACT: One attractive approach to object databases is to see them as

potentially an evolutionary development from relational databases. This paper
concentrates on substantiating the technical basis for this claim, and illustrates it in

some detail with an upwards-compatible extension of ANSI SQL2 for conventional

objects. This could serve as a foundation for the development of higher-level

facilities for more complex objects.

1. Introduction

Object technology offers a great opportunity to bring together developments in programming
languages, open systems, and database systems. We foresee the need for object database (ODB)
systems which can support a variety of language interfaces (e.g. C++, Smalltalk, Eiffel, COBOL
with objects!), and participate in open systems data interchange (e.g. via the abstract syntax

notation standard, ASN.l). Users (and builders) of today's relational systems would also be

grateful if such systems could grow in a non-disruptive way by extension of the relational model.

We shall show here that such a generalization is indeed possible. An analogy exists with th- way
in which C++ has been developed as a compatible extension of C. Although, as we shall describe

later, the details of the generalization differ, the principle remains the same, that there is much to be

gained by exploiting similarities between object models and their predecessors. In fact, SQL
provides in many ways an easier starting point than C, because of the essential simplicity of the

relational model. Of course, an exercise of this kind must be judged by the quality of its results.

We shall try to show that although all languages are imperfect (and SQL is no exception), a

suitably extended SQL can stand comparison with other object languages. It also benefits from
carrying along with it facilities for set-oriented operations and queries, constraints, authorization,

and so forth, which are not usually found in programming languages. On this foundation, one can

build the functionality of complex and distributed objects and object views, version control,

management of long transactions, etc. Within the confines of this paper, we shall not attempt to

describe these superstructures, since such design work can in any case be quite similar across

different languages. We limit our goal to establishing that an extended SQL can provide an

effective language foundation for such developments, in addition to offering a smooth migration

for today's users (direct or indirect) of SQL.

An object database management system (ODBMS) could then contain within it all the functionality

of a relational database management system (RDBMS). A database could contain general classes

and object instances, as well as the relational special case of classes represented by tables, where
the object instances are simple tuples. Such an ODBMS could be built from the ground up, but it

also appears to be quite feasible to extend the implementation of an existing RDBMS to give high

performance for long transactions with complex objects. There is naturally more involved than

cosmetic changes at the SQL interface to the system, and deeper optimizations must be made, but a

great deal of the existing functionality can be utilized, and its equivalent must in any case be

provided to support the relational subset and the operational characteristics of a production system.

Further discussion of these and other aspects of the future development of relational systems may
be found in the "Third-Generation Database System Manifesto" [STON90],
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2. Main Concepts

Assuming that the reader is somewhat familiar with object technology, we give here a brief
summary of the conceptual model and terminology to be used in what follows.

Object Databases

An object database is designed to contain a collection of objects — not, of course, physical objects,

but information objects. We will first try to give an intuitive idea of what these objects are, and
then give a more technical description of their realization as an extension of the relational model.

Objects

An object in the database is a time-dependent collection of information which may often be used
to model some object outside the database — a physical object such as a person or a manufacturing
plant, an abstract or hypothetical object such as a design or a plan, a scientific entity or concept
such as a gene, or a fictitious object such as Sherlock Holmes — in short, anything which might
be referred to by a noun or a noun phrase.

Identity

By saying that the information in the object is time-dependent, we allow that it can change, and yet

the object can still be considered the same object. This is the property of identity — the property

which distinguishes an object from any other object, regardless of its information content at a

given moment.

Attributes

The information content of an object is given by its attributes. For a person, these attributes might

include name and address, date of birth, father, mother, color of hair, phone numbers, etc. (see

Fig. 1). In general, the value of each attribute such as father or mother is itself an object — or

more strictly, a reference to an object, which can thus exist independently and be shared between

many attributes — multiple person objects can refer to the same father and mother. It is a question

of database design as to whether the values of attributes such as address and date are modeled as

references to address and date objects (which might carry additional information about their

addresses and dates), or are represented as simple character string and date values within the

defining object. Even this last alternative may be thought of as a degenerate case of a reference to

an object, where the referenced object happens to represent an immutable value, and can therefore

be copied into each attribute which would have referenced it.

Behavior

So far, we have been considering the structural aspects of information objects, but this is only half

the story. Before developing these aspects further, we need to examine the other half of the

conceptual model, concerned with the behavior of objects. This behavior may be categorized in

three ways.

First, it should be possible to specify operations to be performed on the database. These may be

either general-purpose data manipulation language (DML) operations, or user-defined routines
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Address

Figure 1

Object Attributes

(functions and procedures). The DML operations allow objects to be inserted and deleted,

updated, and queried. User-defined routines may be stored and applied to objects in the database

to achieve higher-level behavior definable in terms of the DML primitives.

Second, non-procedural constraints may be specified to inhibit the behavior of objects. For

example, the birthdate of a person object in a database could be constrained to lie within certain

limits.

Third, triggers may be specified which will cause a certain operation to be performed whenever a

given situation arises, such as the violation of a constraint, or the occurrence of a particular kind of

operation.

Classes

The structural and behavioral aspects of the model are brought together in the concept of a class.

Similar objects may be grouped together in a class, and an object is said to be an instance of a class
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to which it belongs. Thus the objects representing individual people might be instances of a

Person class.

In this ODB model, the concept of class incorporates both the meaning or intension of the class,

and the collection of its instances at any given moment — the extension of the class.

The Intension of a Class

The intension of a class describes the common features of the objects which are instances of the

class. Structurally, this includes the specification of what their attributes are. Behaviorally, the

class defines the operations, constraints, and triggers applicable to its instances.

The Extension of a Class

The fact that a class has a known extension in this ODB model allows DML operations analogous
to those of the relational data model to be provided. The extension of a class is a set of objects on
which operations may be performed to retrieve or manipulate sets of objects in a single operation.

Class Inheritance

A class may be defined to be a subclass of one or more other classes. This is intended to model the

intuitive notion of a classification hierarchy, in which a subclass is a specialization of its

superclasses, having all their properties and possibly some additional ones of its own. For
example. Employee and Student classes may each be a subclass of the Person class. The subclass

is said to inherit the properties (attributes and operations) of the superclasses. A person who is

both an employee and a student might be modeled by a class Employees tudent which is a subclass

of both Employee and Student, and inherits the properties of both by multiple inheritance.

Person

EmployeeStudent

Figure 2

Multiple Inheritance
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Dynamic Specialization

An important feature of the inheritance of operations is known as dynamic specialization. The
specialization occurs when an operation with a given name defined in a certain class Cl is

redefined in some direct or indirect subclass C2. For instances of C2 and its subclasses, the

redefined operation is used or inherited in preference to that defined in Cl, allowing more
specialized semantics to be provided for these special kinds of Cl. The specialization is dynamic,
since the decision which operation to invoke depends on the most specialized class of the actual

operand at run-time, not on its declaration which might merely constrain it to be a Cl. Thus the

same code can cause different operations to be performed on different operands, and is robust

against the definition of additional subclasses and specialized operations.

Authorization and Encapsulation

There need to be two ways of controlling access to information in an object database of the kind

described so far.

First, there should be facilities for controlling which users of the system are allowed to see and
manipulate which information. The creator of each object is its owner, and may grant certain

privileges on the object to other users. Privileges may also be revoked later.

Second, pans of objects of a given class may be encapsulated so that they are accessible only

within the bodies of routines associated with that class. This is part of the software engineering

discipline of the use of objects to construct large modular systems, and is orthogonal to the user

authorization just described — the owner of such a routine needs to grant to other users the

privilege of using it.

3. The Basic Principle

The fundamental underlying reason for being able to evolve from a relational database to an object

database of the kind outlined above is that a row in a table can be thought of as representing a

simple object, whose identity is defined by a primary key and whose class is the table to which it

belongs. In fact, declarative referential integrity in relational SQL now encourages the user to think

in this way, with the REFERENCES clause for the foreign key indicating a reference to another

"object".

To illustrate this in more detail, let us consider the ominously familiar relational example:

Create table Department
(deptno integer primary key,

name char(20));

Create table Employee
(empno integer not null unique,

name char(30),

dept integer references Department);

A CREATE TABLE statement defines both a data structure and a collection of instances of that

s icture. The data structure is a normalized tuple, and the collection is a multi-set (or a set, when
duplicate rows have been disallowed by a UNIQUE constraint across all the columns) of such

tuples. The "REFERENCES Department" clause is a referential integrity constraint, which
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requires that any integer in the dept column must be equal to some existing primary key in a row of
the Department table.

Compare this with what we will postulate as comparable class defmitions:

Create class Department
(name char(20));

Create class Employee
(empno integer not null unique,

name char(30),

dept references Department);

The CREATE CLASS statement can similarly define both a data structure, and a collection of

object instances that have that structure. Assuming that deptno was artificially generated to serve

as a primary key in the relational case, we can omit it here, and allow the system to generate an

implicit object identifier (oid) when an object is created. The dept attribute of an Employee object

must match the oid of some Department, and no other datatype is specified for this attribute —
"REFERENCES Department" has become the datatype, as with a constrained pointer type in a

programming language (cf. "REF Department" in Simula, or "Department *" in C++).

The class definitions above, which merely replace the TABLE keyword by CLASS in the SQL
syntax, already resemble simple class declarations in a programming language. (They also carry

along useful features such as various kinds of constraints.) By adding a class hierarchy, methods,

encapsulation, and a richer type system, one can arrive at a complete object model in which the

relational model survives as a special case. If the type system allows not only struct, but array,

sequence, set, and choice constructors to be applied recursively to an adequate range of primitive

types, this will match the ASN.l descriptive capability, and will exceed that of most programming

languages by handling sets.

4. Objects in SQL

We have already seen some simple class definitions, so we can now introduce some richer data

types by using the set constructor, in combination first with a scalar type and then with a reference

type (where we allow references to be abbreviated to ref:

Create class Person

(name char(30),

phones set of integer,

children set of ref Person);

Classes can also be defined in a classification hierarchy:

Create class Employee subclass of Person

(empno integer,

manager ref Employee);

Create class Student subclass of Person

(courses set of ref Course );

Create class EmployeeStudent subclass of Employee, Student

();

124



A subclass inherits attributes from its superclasses, and can define additional attributes of its own,
although it does not need to.

A further generalization can then allow procedures and functions (often known as methods

)

to be

associated with class definitions. A scheme for encapsulation of private parts of an object's data

structure would permit access only by appropriate procedures and functions. We will not pursue

these aspects in this paper, but one speculative syntax could be:

Create class Person
(name char(30),

phones set of integer,

children set of ref Person,

function age(ref Person) return integer

begin /* flattering computation */ end,

private:

birthdate date );

Other new Data Definition Language (DDL) statements can allow the user to Alter Class and Drop
Class. Many existing DDL statements such as Create Index, Rename, and Grant and Revoke
privileges, are applicable to classes also.

Turning to the Data Manipulation Language (DML) statements of SQL, new object instances may
be inserted into a class using the same syntax as for inserting rows into a table:

Insert into Employee (name)
values(’J.Doe');

An Employee object has been created, with its "name" attribute (inherited from the Person class)

initialized with the specified value, and its other attributes null.

Other existing DML statements which can be made applicable to classes and objects are Select,

Update and Delete, Commit, Rollback and Savepoint.

We could perform an update on the Employee object above:

Update Employee
insert into phones values {3581234, 5068497}

where name='J.Doe';

Nested insert, update and delete clauses are provided to operate on set-valued attributes, and set

expressions may be enclosed in braces.

A simple query will show the result of this:

Select name, phones from Employee;

NAME PHONES
J.Doe 3581234

5068497
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The system generated a unique object identifier when it created the Employee object, and this could
be retrieved if desired by specifying "oid" in a query as though it were an attribute name. Rather
than dealing with the internal format of an oid, it is usually preferable to retrieve the oid into a host
variable which can serve as a symbolic way of identifying the object:

Select oid into John
from Employee
where name='J.Doe';

In fact, we could have bound a host variable to the object when we created it:

Insert into Employee (name) alias John
values('J.Doe');

The name of the host variable is chosen by the user, and the preceding : is an SQL convention for a

variable name from a surrounding environment. If these examples were being entered

interactively, the host variables would be part of the session environment, and would be valid only

for the life of the session.

Once bound, a host variable could be used to refer to an object directly, e.g. the Update statement

above could have been expressed:

Update Employee instance John
Insert into phones values {3581234, 5068497};

Relationships between objects in the database are often expressed by attributes whose values are

references to other objects, e.g.:

Insert into Employee (name) alias :Hal

values ('H.Snooks');

Update Employee instance John
set manager = :Hal;

When retrieving the manager of an Employee, we probably wish to see some attributes of the

referenced object rather than merely its oid, and function notation can be provided as a simple way
of achieving this without having to write out an explicit join condition:

Select name, name(manager) as manager
from Employee;

NAME MANAGER
J.Doe H.Snooks
H.Snooks

Queries of this kind are still returning values rather than objects, but it would lead us beyond the

scope of the present paper to discuss a SELECT OBJECT form of query which could return

objects (including aggregates of objects connected by attributes with REF datatypes).
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5. Relationship to Other Object Models

The above examples emphasized the evolutionary possibilities of an ODBMS as an extension of an

RDBMS, and they would have been easiest to follow for the reader already familiar with SQL.
However, an important design goal for an object database should be to recognize the merits of

object concepts as they have arisen in other spheres, and to encourage convergence between the

data models used in programming languages, open systems, CASE tools, and database systems,

with a view to better integration of the information systems of the future. Underlying this technical

level of object modeling, there is of course the hope that such a model comes closer to the intuitive

concepts of objects employed by human users. Even though relatively few end users will actually

deal with systems at the technical level, the task of providing problem-oriented user interfaces and
performance should be greatly simplified.

Therefore we will provide some perspective here for the reader who may be approaching from the

direction of programming languages, or open systems, or entity-relationship design tools.

5.1 Programming Languages

The main outline of declaring classes in a hierarchy, of being able to create objects as instances of

those classes and refer to them symbolically with variable names, and of using an object reference

to relate one object to another, is widespread in programming languages. By comparison with this

generic programming language model, the object database model suggested here offers three main
extensions.

The first extension is that a class is regarded as defining not only a template for its instances, but

also a collection of those instances that will be automatically maintained by the system. This goes

hand in hand with the ability, expected of a DBMS, to perform queries, updates and deletions over

such collections. An important corollary of this is that relationships between objects may be

processed by specifying conditions on collections of them, rather than by stepwise navigation

between individual objects, and many-to-many relationships may be treated symmetrically and
conveniently as collections of pairs of object references.

With a strong treatment of collections of objects in the DBMS, it is natural for the ODB to have a

second extension compared to most programming languages by offering direct support for set-

valued attributes, as illustrated earlier.

Third, the ODB model includes declarative support for integrity constraints on objects. The values

of attributes can be constrained to satisfy specified conditions, and referential integrity can be

enforced - i.e., an object cannot be deleted while there are any references to it from other objects or

tables in the database.

5.2 Open Systems

The Open Systems Interconnection standard for data interchange, the so-called abstract syntax

notation ASN.l (ISO 8824), is based on a partial object model. The structure of a data object may
be composed out of simple scalar data types by the recursive use of record, array, sequence, set,

and choice constructors. An object database should support this richness in its type system.

ASN.l does not support a class hierarchy, nor does it define inter-object references. However,

proposals now being considered by ISO would add both references and functions to the standard,

increasing the sinLiarity of scope with the programming language and ODB models.
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5.3 Entity-Relationship Models

Entity-relationship (ER) models are often used in database design to capture intuitive notions of

object structure. Rather than requiring that entity sets be mapped to relational tables, the ODB
model makes it possible to map them to object classes. (Relationship sets could still be mapped to

tables.)

The object concept is more general than the original ER concept of an entity, allowing for richer

data structure, a class hierarchy, and (especially) functions and procedures to define the semantic

behavior of objects. The general consistency of the ER and object approaches is illustrated by the

existence of extended ER models which add features such as an entity type hierarchy.

Conclusion

Object technology holds great promise for the coming decade, and it is feasible for relational

database systems to be generalized and optimized to support the concepts via graceful evolution.
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Appendix: SQL Syntax

In this appendix, we specify some possible syntactic extensions to SQL for defining and
manipulating classes and objects. Since most of the ANSI SQL syntax applicable to tables is also

applicable to classes, we do not repeat the ANSI SQL rules; instead we give the syntax only for

new statements and for those statements that are expanded to fully utilize object concepts. Notice

that the new statements are also modeled on existing statements, changing the keyword TABLE to

CLASS.

We have used the draft ANSI/ISO SQL2 manual (X3H2-90-264) as the starting point. All

categories shown within double angled brackets (e.g. « column name » ) are defined in that

document. There are a few debatable points about some syntactic details, and the exact expression

of the rules in the partially context-dependent style of the ANSI document would require the

assistance of some X3H2 wizards, but the intent should be clear. Of course, these "format

specifications" would need to be supplemented by "syntax rules" and "general rules" in the style of

the ANSI document to provide a complete specification, but this is more than needed here to

indicate the rather straightforward nature of the extensions.

5.5 Names

Function

Specify names.

Format

<column name> ::= [ ctable name> :: ] «column name»

Notes

1 . For syntactic convenience, we extend the meaning of ccolumn name> to cover attribute names
also, and ctable name> to cover class names. An attribute name may optionally be qualified by

a prefixed class name (and a :: separator, as in C++) to resolve ambiguities. The prefix class is

where the attribute is inherited from (i.e. the attribute is defined in that class, or inherited by it).

5.6 cdata typo

Function

Specify a data type.

Format

cdata typo ::=

ccdata type»
I creference data typo
I cstruct data typo
I carray data typo
I cset data type>

I csequence data type>

I cchoice data typo
I ctype namo
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reference data typo ::=

{ REFERENCES I REF
}
<table namo

<struct data type> ::=

STRUCT ( ccolumn namo <data typo
[ {, ccolumn namo cdata typo }...])

carray data typo ::=

ARRAY [ ( csizo ) ] OF cdata typo

cset data typo ::=

SET [ ( csizo ) ] OF cdata typo

csequence data typo
SEQUENCE [ ( csizo ) ] OF cdata typo

cchoice data typo ::=

CHOICE ( ccolumn namo cdata typo
[ {, ccolumn namo cdata typo }...])

ctype namo ::= ccidentifier»

csizo ::= ccunsigned integer»

Notes

1 . We add the above data type constructors to the SQL2 data types. They cover the composite
types defined by most programming languages and by the ASN. 1 standard.

5.8 ccolumn reference>

Function

Reference a named column or attribute.

Format

ccolumn reference> ::=

[ ccqualifier» . ] cgeneral referenco

cgeneral referenco ::=

coptionally subscripted referenco [ . cgeneral reference> ]

coptionally subscripted referenco ::=

ccolumn name> [ [ ccunsigned integer» ]

[ { [ ccunsigned integer» ]}...]

]
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Notes

1 . Column reference is extended to allow subscripted references to arrays, and dot qualified

references to structs, which may be nested.

5.13 cvalue expression>

Function

Specify a (possibly composite) value.

Format

cvalue expression> ::=

ccvalue expression»
I ccomposite value expression>

I cfunction notation>

ccomposite value expression> ::=

cset value expression>

I carray value expression>

I cstruct value expression>

I csequence value expression>

cset value expression> ::=

{
cvalue expression> [ {, cvalue expression> }...]}

carray value expression> ::=

[ cvalue expression> [ {, cvalue expression> }...]]

cstruct value expression> ::=

( cvalue expression> [ {, cvalue expression> }...])

csequence value expression> ::=

[I cvalue expression> [ {, cvalue expression>
} ... ] I]

cfunction notation> ::=

ccolumn name> ( ccolumn reference> )

I ccolumn name> ( cfunction notation> )

Notes

1 . Value expressions are extended to allow specifying values for the new composite types.

2. Function notation is introduced as in programming language expressions. For present

purposes, its use is limited to using attribute names as functions on references to objects to

return the attribute values. This can be used to avoid writing explicit join conditions. Say class

A has an attribute al which is a reference to class B which has an attribute called bl; in such a
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case, one can say bl(al) to get the bl attribute from the object "pointed to" by al. Such
functions may be arbitrarily nested.

5.40 <subquery>

Function

Specify a value (possibly composite) derived from a <query expressions

Format

<subquery> ::=

«subquery»
I <set valued attribute>

I <set value expression>

Notes

1 . This extension allows that a set valued attribute or expression can occur wherever a subquery

can occur. Similar extensions might be made for other composite values.

5.42 <privileges>

Function

Specify privileges.

Format

<action> ::=

«action»
I SUBCLASS

<grant column list> ::=

«grant column list»

I ccolumn name>

[ {, <column name>
} ... ]

Notes

1 . The SUBCLASS privilege confers the privilege to create a subclass of a given class. In this

way, users have control over who can create subclasses of their classes, and thus can create

objects which are also instances of the superclasses.

6.xx ctype definitions

Function

Define a type.
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Format

ctype definition ::=

CREATE TYPE ctype name> AS cdata typo

ctype name> ::= ccqualified name»

6.xx cclass definition>

Function

Define a class.

Format

cclass definirion> ::=

CREATE CLASS ctable name>
[SUBCLASS OF ctable name> [ {, ctable name> } ... ]]

cctable elements»

7.xx cdrop class statement>

Function

Destroy a class.

Format

cdrop class statement ::=

DROP CLASS ctable name> [ CASCADE ]

7.xx calter class statement>

Function

Change a class and its definition.

Format

calter class statement ::=

ALTER CLASS ctable name> ccalter table action»

9.7 cdelete statement: searched>

Function

Delete rows of a table or objects of a class.
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Format

<delete statement: searched> ::=

«delete statement: searched»
I DELETE FROM ctable name>

[ INSTANCE «value expression» ]

[ WHERE «search condition» ]

9.8 <insert statement

Function

Create new objects in a class.

Format

cinsert statement ::=

INSERT INTO <table name> [ <insert attribute list> ]

[ ALIAS cctarget specification»
]

[ «query specification» ]

<insert attribute list> ::=

<column name> [ {, <column name> } ... ]

9.10 cupdate statement: searched>

Function

Update rows of a table or objects of a class.

Format

<update statement: searched> ::=

«update statement: searched»
I UPDATE <table name> [ INSTANCE ccvalue expression» ]

cupdate attribute specification list >

[ WHERE ccsearch condition» ]

cupdate attribute specification list> ::=

cupdate attribute specification>

[ {, cupdate attribute specification>
} ... ]

cupdate attribute specification> ::=

SET ccset clause: searched» [{,ccset clause: searched»}...]

I INSERT INTO cset valued attribute>

VALUES cset value expression>

I DELETE FROM cset valued attribute>

[cset value expression^

[
WHERE ccsearch condition» ]

I UPDATE cset valued attribute> cupdate attribute specification list >

[ WHERE ccsearch condition» ]
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<set valued attribute> ::= <column name>

<attribute value list> ::=

<attribute value> [ {, <attribute value>
} ... ]

<attribute value> ::=

<value expression> I «null specification»

Syntax Rules

1 . The dangling WHERE clause problem is avoided by attaching a WHERE clause to the nearest

possible preceding construct which could have one.

Notes

1. This update statement is extended to handle set valued attributes. One can nest INSERT,
DELETE, UPDATE statements within a top level UPDATE statement to insert/delete/update

elements into/from/of a set. Since these three operations in SQL are defined to operate on
(multi-)sets, it is only natural that they operate on sets at any level, including sets within sets.

Similar operations might be provided on other composite values.
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A Two Layered Interface Architecture

Dr. Thomas J. Wheeler Judith D. Richardson
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West Long Branch, NJ 07764

Abstract : Theproblems ofinterfacing to external subsystems and usingm Itiplcparadigms in a

single software system center on resolving the impedance mismatch (the differences in the data

models and thought patterns of each paradigm) and how to reflect the differences across the

language boundary. One technique is to build an interface between the two paradigms. The

interface should strive to resolve the mismatches while providing access those language fea-

tures valuable to the problem solution. This means that semantic issues as well as syntactic

issues must be addressed. Features ofthe implementation languages that ontribule to the mis-

match need to be identified and examined in order to develop a solution. Thispaper describes

a two layer interface architecture based upon the idea ofabstract interfaces. This architecture

appears to provide a basis for interfacing programming languages to object databases which

addresses the semantic gap, or impedance mismatch, between the two a^ well as the syntactic

differences.

Introduction

The method of developing software systems is currently experiencing the largest

change since the introduction of general purpose operating systems. Large subsystems

conforming to standards are becoming available to be used as the basis for most major

software system construction. This increased use of subsystems developed to defacto,

national and international standards is forcing the development strategy to become one

of composing (“gluing”) components together rather than total system development

from scratch. The main reason for this standardization trend is the recent leap in the size
• j

of software systems and the resulting economic impracticality of developing each system

from scratch. This component composition strategy forces developers to address soft-
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ware architecture issues early and requires a standard paradigm for interfacing the appli-

cation specific software to the standard software subsystems.

Another factor influencing the development strategy is the use of multiple paradigms

within a single system. Systems are incorporating substantial subsystems based on spe-

cialized paradigms, such as, subsystems utilizing artificial intelligence or database prin-

ciples.

Both of these strategic trends lead to a system structuring pattern of interconnected

subsystems with some components written using a modular or object-oriented paradigm

and other subsystems written in other languages and using completely different para-

digms.

This paper outlines an interfacing architecture designed to enhance these component

composition and multiparadigm styles of development. The interfacing architecture is

based on a layered approach to interfacing components written in different languages

and different styles. The interface bridges the language differences vii a syntactic trans-

form and the style differences via a semantic transform. This architecture appears to pro-

vide a basis for interfacing programming languages to object databases which addresses

the semantic gap, or impedance mismatch, between the two as well as the syntactic differ-

ences.

The paper describes a general two layer architecture approach :o interfacing and

gives some examples of where the approach has been used. This work has grown out of

involvement with specifying the architecture to be used in Army systems written in Ada

and interfacing to external systems, but the approach is independent of language. The

two layer architecture described in this paper has been used as the distributed architec-

ture for the Army Tactical Command and Control System (ATCCS)[CASS 89] as well as

the basis for the Standard SQL-Ada interface[WheeIer 87] [Richardso;;, Wheeler and Ferrer

89] . We are currently investigating the issues in interfacing Ada ar.d OODB.

Considerations

Multiple Paradigms :

A paradigm is a model of a particular thought pattern used to so' 'e a class of prob-

lems. A paradigm supplies a systematic, cohesive approach to looking at a problem and

thereby assists the solver to think more clearly about the possible solutions. The trade-

138



off is that a paradigm which helps solve one problem may not be flexil ;e enough to solve

a wide range of problems [Zave 89]. As a result, large complex systems need to make use

of multiple paradigms. Multiparadigm systems are made up of subsystems, each utiliz-

ing a different paradigm suited to its particular needs. This allows the overall system to

take advantage of the strengths offered by the separate paradigms [Hailpern 86]. The ma-

jor problems associated with this approach are the mechanism for transferring informa-

tion and control between the different paradigms and translating betwc :n meaningful re-

presentations. One approach to solving this problem is to build an interface layer which

provides a mapping at the conceptual level of both syntax and semantics.

Data Models :

A data model is a mental model used to abstract the real world into a form that can be

used to solve some problem. It contains a representation of real world objects and a

mechanism for representing relationships between them as well as a set of operations for

their manipulation. Each data model gives a ’’flavor” to the solutions derived from its

use. It is through the use of a data model representation that approaches to problem solv-

ing are supported.

The data model for modular languages uses non-persistent, strongly typed, named

objects. It can support objects as abstract data types. Access to an object can be direct,

through the object’s name, or navigational, through access pointers. One of the strengths

of this data model is its flexibility; its ability to support a variety of problem solving ap-

proaches. The DB interface should not limit the application program to the DB data mod-

el, therefore the interface needs the ability to form an abstraction of the services pro-

vided by the database.

Mapping Models:

If a one-to-one mapping is not possible between two representatiens then there is a

structure clash [Jackson 75]. To map between the structures, a process for transformation

is developed. First the lowest common denominator between the two structures is deter-

mined, then algorithms are developed to decompose the first structure and then to build

the second structures up from primitives. But, whereas Jackson allows the data structures

to be visible to the users, Parnas hides as much of the details as possiL le [Parnas 72]. Par-

nas decomposes a system into modules based upon the concept of encapsulating design

decisions into modules and then supplies the user with an interface to the module that

only provides the information needed and nothing more. This technique of information
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hiding isolates the details of the mapping process inside of the interfacing module when
there is structure clash.

Abstract Interfaces :

Parnas also describes the use of abstract interfaces [Parnas 77]. By abstract, Parnas is

referring to the representation of several actual objects without specific;, to any particular

object. The essence of the real world is captured in the abstraction which can then be re-

used to other objects that the abstraction represents. The interface is the format of the in-

formation exchange between two software components along with all the assumptions

that each makes about the other. An abstract interface is defined as a ;ct of assumptions

that represent more than one possible interface. An abstract interface models those

properties that the interfaces hold in common and hides the differences.

Layered Interface Architecture

Two Layer Interfaces :

One way to map the mismatch between multiple paradigms is to b ild a two layer ab-

stract interface (fig. 1). The upper level interface provides the actual interface to the

user, it reflects the conceptual model appropriate to the application program, thus the

application sees an appropriate model reflected in its interface. The interface uses the

concepts of data abstraction to generalize the information crossing the interface, ab-

stracting from particular characteristics of the external subsystem. The lower level inter-

face reflects the semantics of the external system to the model transformation in the two

layer interface, hiding the details of the external subsystem.

In addition to the semantic transformation provided by the abstract interface, there is

a syntactic (language) transformation which must occur if the languages, in which the

application and external subsystems are implemented, are different. This syntactic trans-

formation may occur anywhere within the abstract interface. The syntactic transforma-

tion is often called the binding.
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For example, in UNIX™, when a user requests a file be copied, the command cp
along with the path to the file are all that the user has to supply. The operating system de-

termines from the path which device the file resides on and makes the call to the appro-

priate device driver. The device driver is concerned with such things as: seek algorithms,

inodes, motor speed, etc. The supplemental information and work involved in copying

the file are transparent to the user. The upper level provides the file abstraction, the low-

er level the device read/write.

Another example is a two level architecture for communication within multi-Ada

program systems [CASS 89]. The interprogram interface is defined ;n terms of remote

procedure calls (RPC). In other words, to the application program the location of the

called procedure is unknown. Again, the lower level is concerned wi.h the details of the

communications system, such as, sockets and communication protocols. The upper level

provides an abstract interface to the user, taking care of the bundling of the message with

logical source and destination names. The upper layer provides a [
rocedural interface

defining services used by the application, the lower layer a message passing transport

service.

A third example of applying this architecture is the Ada/SQL interface architecture

[Richardson, Wheeler and Ferrer 89]. The upper layer provides the semantic transformations

while the lower layer provides the syntactic transformations. The lower layer contains the

binding of SQL to Ada. In general, it takes care of the implementation details associated

with the chosen binding and hides them from the application program. The Ada proce-

dure calls to the lower layer reflect the syntax and semantics of SQL. The upper layer is

the visible part of the interface to the Ada application programmer. The data abstractions
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reflect the information needs of the Ada application program. The sp'cification of the in-

terface abstract away the SQL functions used in the lower level. The upper level of the in-

terface can be viewed as a retriever and maintainer of a persistent abstract data type.

A forth example is the interface between the real world and a control system. In a

control system certain observable characteristics of the external wo r 1:1 are monitored by

sensor subsystems which understand the meaning of those characteristics. In this exam-

ple the lower layer of the interface receives the sensor data coming i:i from the external

world while the upper layer interprets the information into a meaningful representation.

An example of this interface is a stop light control system [Wheeler sr.] . The information

from the sensors is passed to the lower layer of the interface. It is then sent to the upper

layer which converts the information to a representation of traffic presence or absence in

the various lanes. The upper level is concerned with control of the intersection, the lower

level with the sensors and relays.

As can be seen in each of these examples, the upper layer presei s a model which is

meaningful to the application, while the lower layer uses a model that is meaningful to

the external subsystem.

Conclusion

This paper has presented a description of a two layered interface architecture based

upon Parnas’ idea of abstract interfaces. The architecture allows two paradigms to com-

municate through a clean interface that presents to each side the desirable features of the

other in the syntax and semantics of the user, with the upper layer presenting a model of

the interfaces subsystem which is meaningful to the application, and he lower layer use-

ing the model that is meaningful to the external subsystem. This architecture provides a

basis for constructing language interfaces to object databases which addresses semantic,

as well as syntactic, issuse in a coherent way.
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Abstract

Any emerging standard for object-oriented database systems must include a

rich view support mechanism. A user view is a customized window into an

application domain. It may be thought of as a simplifying abstraction which hides

information that is not accessible to, needed or wanted by a particular user.

Because they limit the information available from a given perspective, most views

allow read-only access to a database. In this paper it is asserted that by

generalizing object identity to include attributes and views - many view updates

are made possible. An extended object structure and several categories of view

transformation are also presented which allow all user views to be modeled
within a single polymorphic database schema.

Introduction

The support of multiple, perhaps conflicting, user views is important in any multi user

environment. Any standard for an object-oriented data model should include a

mechanism view support. In this paper I will suggest an approach (based on

[GILBERT90]) which could be incorporated into any object-based model.

The Basics

1 will make some assumptions about the data model, all of which conform to the

basic philosophy of object-orientation. There are two basic object types: classes and

instances. There are also two basic types of relationship among objects called is-a

and attribute relationship. Class objects represent both a generic object (or type

description) and a set of similar entities. They are arranged in one or more is-a lattice

such that those objects (nodes) near the top of the hierarchy contain a more general

type description than nodes lower in the lattice. Instances are said to belong to a class

if there is a path containing only is-a arcs between the instance and the class; each

instance is owned by exactly one class, meaning that the two objects are directly

connected by a single is-a arc.

fThis is based on work performed while the author was a graduate student at the University of California at

Irvine.
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The Organization of a Database

Some useful definitions:

• A schema is a collection of classes and the attribute associations among them.

• Data is the collection of instance objects which are associated with the schema.

• A view is a schema and its associated data.

• A database is the combination of all of the views.

A database usually includes several views. An important relationship between a

database and its views can be characterized by the following observation: the set of

classes in any view is a subset of the set of classes contained in the database. Within

a given database environment, lists of current views and classes are kept in a global

symbol table.

Extensions to the Basic Paradigm

In the standard object-oriented model, each object has a private memory and a

single protocol (a set of methods) which allow it to respond to requests from other

objects (and users). Classes have exactly one name which must be unique in the

environment. Similarly, attributes and methods must have a single shared name

within a class definition. In order to support user views, several extensions will be

made to the paradigm. Object and system structures must be enhanced in the

following ways: (1) a layer will be added to the internal structure of objects, (2) a two-

tiered global symbol table will be presented and (3) several categories of view

transformation will be suggested. This will permit both classes and attributes to have

one or more names and allow objects to support multiple "semi-public" protocols.

These enhancements allow radically different views to be supported by a single

polymorphic structure.

The Object Structure

This discussion will focus on class objects which have three major components: an

object description (which contains the hidden internal representation of the object), a

view description (which contains the semi-public interfaces) and generic methods (for

retrieving and updating data). Figure 1 shows a pictorial representation of both the

"standard" and extended object structures.
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Ordinary Object Structure Extended Object Structure

a i

Attribute Definitions
(Other Object Interfaces)

Figure 1: Object Structures

The Object Description

Object descriptions are automatically maintained by the system and are hidden from

database users. An object description contains an object's identity and lists of attribute

relationships, is-a relationships and methods. Each property (method, is-a and

attribute relationship) also has its own unique identity. The same identity is associated

with a property in all database objects which have inherited it from a common

ancestor. There are two kinds of attribute: local attributes (which are entirely

encapsulated in the object's local memory) and complex attributes which are either a

calculated value (retrieved by executing a predefined method) or an object-oriented

pointer (to an independent object). Within the object description attributes are also

categorized by the properties associated with them. They may be mandatory (key) or

not mandatory (non-key), single or multi-valued, and changeable or not-changeable.

Finally, attributes have inverses which implies that they are bidirectional arcs between

related objects in the schema.

The View Description

The view description contains one or more view instance descriptions. Each vi«w

instance description is a semi-public protocol for the object. Every view insta .ue

description has a unique system defined identity that is part of all the view's class
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objects. Both the unique identities and the class' (printable) names are also found in

the global symbol table. In addition, a view instance description contains lists of

names and pointers to attribute and is-a arcs and to methods which are contained in

the object description and are visible through the view. It may also contain pointers to

some of the attributes which are not visible from the current point of view but to which

the system must have controlled access. All invisible (and some visible) attributes

have a default object associated with them. Defaults are used to fill a role when a new

object is created or for updating the attribute when the object is changed. For visible

attributes defaults may be explicitly overridden by the user. Notice that this means that

an object is updatable if all key attributes are included in the combined list of visible

and invisible attributes. The view description may also include a natural language

description of the view object, its structures and its role in the database enterprise. For

example if, from a given point of view, an engine's primary function is to fill the

propulsion system role of an automobile's description then this would be noted in a

(written) description.

The Generic Methods

When an object receives a message, its first action must be to determine the

requester's point of view. Once the view has been identified the request is processed

through the appropriate view instance description. Restrictions on local attribute

values are checked directly while restrictions on complex attributes cause subqueries

to be spawned and independently processed. Intermediate results are collected and

the request is either propagated to descendents (in the is-a hierarchy) or the result is

returned to the source of the query. Note, this is a very high level sketch of an

asynchronous message-driven data retrieval and update mechanism. This

mechanism, which requires no centralized control s presented in detail in [Gilbert90].

The Global Symbol Table

A two-tiered global symbol table structure is maintained. There is a single global

symbol table and one or more view model object tables. Although there are usually

several view model object tables, there is exactly one for each view. Because users

may share a view, there may be several entries in the global symbol table associated

with a single view model object table.

Figure 2 shows a global symbol table and its associated view model object tables.

This particular table contains three views. The first column of the global symbol table

contains identifiers, each of which is associated with a particular view of the database.
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The second and third columns contain (internal) system maintained view identities and

pointers to view model object tables respectively.

Global Symbol Table:
View Model
Object Tables:

}

Figure 2: The Global Symbol Table

A Dictionary

Each view model object is associated with a single view. Their first columns

contains view sensitive external names which are associated with the internal name of

classes in the database schema. In figure 2, <View-|> and <View2 > are fully

instantiated user views which share the same classes whose identities are <Ci> and

<C 2 >. Their global symbol table entries point to particular view model objects.

<View3>, on the other hand, is in the process of being created - its symbol table entry

currently refers to a default view model object table (an empty dictionary1
).

View Transformations

View transformations are the mechanisms by which user views are created and

customized. They are used to create global symbol table entries and view instance

descriptions for new user views. In this forum there is only enough space to discuss

the various categories of view transformation. Significantly more detail can be found

in [GILBERT90]. The basic view forming transformations fall into three major categories:

(1) graph tailoring methods, (2) operations on the is-a hierarchy and (3) procedures for

customizing attribute relationships. Graph tailoring transformations treat a view as a

single object; they create, record or delete an entire view schema. Once a (vir+ )

view schema has been created, the other transformations can be applied to custc

1 This concept is borrowed from Smalltalk [GOLDBERG83]. A dictionary is a table which allows associ ative

(key word) lookup.
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the schema so that it meets the particular needs of the user. These transformations

affect individual classes and the is-a of attribute hierarchies within a particular view

schema. Objects may be cloned or renamed and attached, removed or hidden within

the is-a hierarchy. Attributes can be renamed, removed, restricted, inserted or moved.

All the transformations are very simple and the changes caused by applying them are

"localized" - i.e. they change a particular user's view but have absolutely no effect on

any other database user.

Concluding Remarks

A standard for user view support will be a necessary part of any object-oriented

database standard. The mechanisms described in this paper address one aspect of

this problem. Another problem, which is closely related to view support but beyond the

scope of this paper, is the identification of semantic groupings and derived classes.

This topic has been discussed in [Gilbert88, Gilbert90, HEILER90]. Several types of

derived data have already been identified including collections (derived from the

union of base classes - automatically maintained by the system based on a

predefined rule), categories (a user controlled collection - there is no predefined

membership rule), power sets (each instance is a category or a collection) and joins.

The object database standard should include a set of semantic groupings in addition

to the view abstractions presented here.
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