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SNMPLIB:

A Simple Network Management Protocol Function Library
for IBM PC Compatible Computers

by

Robert Crosson
Advanced Distributed Computing Systems Group
Scientific Computing Environments Division

National Institute of Standards and Technology

Abstract

Many Simple Network Management Protocol applications exist,
but few general purpose packages run on a personal
computer. SNMPLIB is a library of function calls written
in Microsoft C version 5.0 for IBM PCs and compatibles.
Its data structures and functions are described. With
SNMPLIB a user can write a program to dynamically monitor
operational variables of compatible networked devices and
take action when those variables cross threshhold values.

The network input/ output routines work with any Ethernet
interface for a PC or a compatible for which a packet
driver has been installed, making the application somewhat
independent of the Ethernet interface used in the computer.
A sample application program, SNMPMON, is supplied which
monitors user specified variables in user specified devices
and writes their values to the PC's display. SNMPLIB and
SNMPMON have been compiled on a Sun Microsystems
workstation and successfully used there with a similar, but

Sun Ethernet interface specific, set of input/output
functions

.

1.0 Introduction

The Simple Network Management Protocol[l] (SNMP) is becoming widely
supported by vendors of Internet Protocol (IP) network
interconnection devices as a vehicle for managing the operation of

those devices. The management tools provided by the vendors,
however, are usually designed to manage only the vendor's equipment.
Because they are designed to be very visual and elegant, they
frequently run on only specific computers, such as expensive
workstations, and their Ethernet interfaces. A few vendor
independent management packages are available

, but these also
require workstations for execution. This project was undertaken to

generalize and reduce the cost of managing a network using SNMP.

Note: Mention of brand names does not constitute endorsement of

these products in any way.
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Two of the project's goals were to develop a simple means of

accessing operational parameters of network devices, and to have the
application run on a computer which was both inexpensive , when
compared to a workstation, and readily available. The PC/MS-DOS
based IBM type Personal Computer was chosen as the execution engine
because it is so common. And, since Ethernet type networks are the
most popular networks linking personal computers, that type of

network interface was supported.

Another goal was that the resulting product would be flexible enough
to accommodate differing network configurations so users would be

able to develop customized network managem.ent applications. A
sample application would be included both as an example and as a

useful tool, should the user not be able to create his own. Being
as independent as possible of the brand of Ethernet interface in the
computer was an additonal goal.

2.0 SNMPLIB and SNMPMON

SNMPLIB is a library of functions written in Microsoft C (small
model), version 5.0, designed to meet the goals of the project. The
functions allow the user to create a management tool specific to his
network's configuration, while maintaining flexibility about what
parameters are accessed. Values of operational parameters of

specified network devices can be retrieved and evaluated, and, based
on user defined criteria, the retrieved information can be archived
or displayed, or alarms can be sounded.

SNMPLIB isolates the user from the mechanics of communicating with
the devices. The library functions read the user's database and
properly format and transmit the information request messages.
SNMPLIB uses the User Datagram Protocol (UDP) over IP to communicate
with devices being accessed. The functions also provide methods of

accessing the database of returned values so the application can
evaluate the current values to determine whether or not some action
should be taken.

A generalized application, SNMPMON, is supplied as an example which
uses SNMPLIB functions and which can replace a customized program.

SNMPMON commands the functions to generate information request
messages based on a user created database file of devices and

variables. When replies are received, SNMPMON displays on the

comiputer's console the returned values of the variables.

An attempt at Ethernet interface independence was made by writing
the network input/output functions so they could communicate with a

packet driver. A packet driver is a routine which isolates the

interface peculiarities from the application, providing a common set

of function calls for every interface , which are accessed with
commands in a standard format. A set of packet drivers for various

PC Ethernet interfaces is in the public domain (see Appendix C).
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3.0 Types of SNMP Data

Network devices which respond to SNMP information requests are
called SNMP agents and are grouped into SNMP communities. All of

the agents may be in the same community but are not required to be.

When SNMP is using the IP protocol suite as the transport protocol,
agents within a community are identified by their Internet
addresses.

Computers running SNMP applications which generate information
requests are called SNMP management entitles. Programs which run on

management entities and access SNMP agents are management
applications

.

Agents have operational variables associated with them called a

Management Information Base[2] (MIB) (see Appendix B). The variable
values are constantly updated as the agent performs its functions.
The values of the variables are the data acquired by management
applications

.

A MIB variable is identified by a name, as defined in reference [2],

and, if necessary, by an index. Indices differentiate among
variables of the same name in an agent.

' ifOperStatus
'
(Interface Operational Status) is a MIB variable

which requires an index. Most agents have at least two interfaces.
Each interface has a variable 'ifOperStatus' that records whether
the interface is up, down, or being tested so each interface is

given a unique number, or index. The operational status of the

first interface is identified by the notation ifOperStatus. 1 , the

second by ifOperStatus. 2.

4.0 SNMP Database File Format

To know which variables are associated with which agents, SNMPLIB
must be given a database file of agent nam.es and variable names. To

identify which variables are to be accessed in which agent, the
database information is separated into groups of variables
associated with an agent, called an variable list. Groups of

variable lists associated with an SNMP community are called a

community list. To differentiate between community names, agent
names, variable names, and indices, the database file must be

generated in a specific format.

4.1 Community and Variable Lists

A community list begins with a community name, which is followed by
the one or more variable lists. Community lists are terminated by
the end of the database file , or by encountering another community
name. Variable lists within a community list are separated by blank
lines. Lines containing comments (see 4.6) are not considered blank
lines

.
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Each variable list must be part of a community list. Therefore, the
first non-comment and non-blank line must contain a community name.
After a community has been specified, that name is used as the
default community name for following variable lists until a new
community name is encountered. When a new community name is
encountered, it becomes the default community name. Any variable
lists not immediately following a community name are given the
default community name. Community names have unique properties (see

4.2) so that community lists are separated from each other.

A variable list consists of the agent's name followed by the

variables and associated indices to be accessed in that agent. The
index for a variable must be on the same line as the variable and
separated from it only by one or more space or tab characters. No
blank lines may appear in a variable list.

An example SNMPLIB database file is in Appendix A.

4.2 Community names

A community name must start at the beginning of a line ,
and must not

begin -with the character. Should it do so, it will be

considered a comment, not a community name (see "Comments", 4.6).

No other names in the SNMP database file start at the beginning of a

line. A community name is terminated by a space, tab, or end-of-
line character unless the name is enclosed in double quote
characters (e.g., "community name"). When a community name begins
with a double quote character, i.e., the double quote character is

the first character on the line , the community name is terminated by
another double quote and so may include space or tab characters. It

may not, however, include another double quote character besides the

beginning and ending ones. Otherwise, any number of double quote
characters may be in a name as long as the first character of the

name is not a double quote . Then the name is terminated by a space

,

tab, or new-line character. The double quote characters enclosing a

name are not considered part of the name when SNMP messages are

generated

.

4.3 Agent names

Since agent names must not start in the first character position on

a line , they must be preceded by one or more space or tab
characters. If the agent name immediately follows a community name,

the agent name may be on the same line as the community name , but

separated from it by one or more spaces or tabs. If a community
name is not supplied immediately before an agent name, SNMPLIB will

assign the default community name to that agent. An agent name is

terminated by a space, tab, or end-of-line character.
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Because SNMPLIB currently has no agent name resolution capability,
agent names can be only the agent's Internet address in standard
Internet "dot" notation, such as 192.167.34.13. Since no spaces or
tabs are allowed in an agent name , it need not be enclosed in double
quotes.

4.4 Variable names

Like agent names, variable names may not begin with the first
character on a line, and are terminated by a space, tab, or end-of-
line character. Valid variable names are defined in reference [2],
and must be entered exactly in the form presented there, including
spelling and capitalization (see also Appendix B). Variable names
need not be enclosed in double quote characters because no spaces
are allowed in them.

Variable names must not be separated from each other or the agent
name they are associate with by blank lines. Blank lines separate
variable lists from each other.

4.5 Indices

An index must be on the same line as the variable it modifies. It

must be separated from the variable name by one or more spaces or

tabs . If a variable name has no index on the same line , SNMPLIB
assumes no index is to be associated with that variable.

An index is specific to its associated variable. Some variables
don't require indices; others require multiple indices (see examples
of variables with and without indices in Appendix A) . When multiple
indices are required , they may be separated by either a single space
or comma. When they are separated by a space, the entire set of

indices must be enclosed by a pair of double quote characters. When
double quotes are not used, the index name is terminated by the

first space, tab, or end-of-line character encountered.

4.6 Comments

A comment — some text in the database which is disregarded by
SNMPLIB — is initiated by a '

#
' character either at the beginning

of a line in the database, or elsewhere in a line preceded by a

space or tab character. A comment is terminated by the end of the
line on which it was started. A '#' character not at the beginning
of a line and not preceded by a space or tab character will not be

considered as the beginning of a comment, but will be included in
the field currently being scanned.

4.7 Configuration information

The only network interface configuration information currently
required to run SNMPLIB is that for a packet driver. Three
variables must be provided: the local interface's IP address, the IP
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network mask, and the local gateway's IP address. All three values
are assigned by the manager of the network on which the host running
this application resides.

Configuration information is entered in the database file in a

format similar to that of a community list. The community name for
the configuration information must be ' <Configuration>

'

("<>"

brackets included). The agent field must be 'pktdvr' . The
variables are 'locipaddr=x.x.x.x' for the local IP address,
'ipmask=x.x.x.x' for the IP network mask, and 'gw=x.x.x.x' for the
local gateway's IP address. In the examples each 'x' is an integer
between 0 and 255, inclusive. The single quote characters (') are
neither required nor allowed.

5.0 SNMPLIB Data Structures

5 . 1 The SNMP Database in Memory

When SNMPLIB reads the user's database file (as described in 6.1), a

new database is created in memory. The data from the file are
arranged in memory in agent variable lists, which are linked
together in the same order in which they appeared in the file. Each
agent's name has associated with it a block of data containing the
agent's name (i.e. , its Internet address) as a null-terminated
string of ASCII characters, its community in a similar ASCII string,
and a pointer to a string of variable information blocks.

Variable information blocks are allocated, one to each variable, for

an agent. A variable information block contains the following
information: the variable name as a string of ASCII characters
terminated by a null character, the variable's index if any, a

pointer to the variable's current value (the storage for the value
is allocated separately and is the correct size for that variable),
a flag indicating if the variable's value has changed since the

value was last accessed by the user's application, and a time stamp
indicating the last time the value was set.

The flag is incremented every time the value changes, so it may be

different by more than one if the value changed multiple times since

it was last accessed by the user's application. If the value hasn't
changed since it was last read by the user , the value will not have

changed. (Because the flag is a 16-bit signed integer, it would be

very unlikely that it had overflowed and been incremented to its

previously read value . ) Usually the application sets the change
flag to zero rather than remembering the value when it was last

accessed

.

The time stamp is a count of the number of seconds since some

reference time. The reference time may change among machines. In

MS/PC-DOS machines the reference time is January 1, 1970.
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5.2 The Management Information Base

Another important SNMPLIB data structure is the object information
structure. It contains a pointer to a character string, a general
pointer which may point to various objects or be null, a flag
telling what type of object the general pointer is indicating, an
flag for the type of value (integer, counter, string, etc.) the

variable has associated with it, and a pointer to a function which
returns an integer. When SNMPLIB generates its working version of

the MIB , each variable, whether it has a value associated with it

(ifOperStatus) or it is made up of other variables (ifEntry), has an
object information structure.
5.2.1 MIB Structure Elements

In the MIB, the object name pointer points to the null-terminated
ASCII string containing the variable's name. The flag variable
describes the type of object pointed to by the general pointer. If

the flag is zero, the defined variable has a value and the general
pointer may be either null or a pointer to an array of pointers to

null-terminated ASCII strings. The strings are ASCII representions
of the numerical values of the variable . If the value is a one , the

pointer in the array with an index of one points to the proper ASCII
string. This is similarly true for all positive values of the

variable

.

If the flag is a positive one, the variable has no value, but

represents an array of other MIB variables in an array of object
information structures, the first member of which is indicated by

the general pointer. If the flag is negative, the general pointer
points to an object information structure of a different type than
if the flag is a positive one (see 5.2.2).

The type field is used to indicate, when applicable, what types of

values (integer, string, counter, etc.) can be taken by the MIB
variable defined by the structure. The function pointer, initially
null, may be used to point to a routine which performs special
processing of the specific MIB variable's value.

5.2.2 The MIB array of structures

The MIB as implemented in this application is simply a mechanism for
translating from MIB variables to object identifiers in an SNMP
message, and vice versa. It consists of arrays of object
information structures linked together in the form of an inverted
tree

.

At each level in the tree is an array of structures. There is a

structure at the appropriate level in the MIB for each variable.
The general pointer of the first structure in each array indicates
the structure at the next higher level which points to this array.
A structure with null pointers and a zero flag variable is the last
structure in each array. At the higher levels in the tree the

7



general pointers in intervening structures in an array point to
first structures in lower level arrays of structures. At the lowest
level in the tree, the general pointers of intervening structures
are null except when the values of a variable can be represented by
null-terminated ASCII character strings (see 5.2.1).

Since the flag variable indicates whether or not the general pointer
in the structure points to a lower level array of structures, the
MIB tree can be traversed downward until the bottom is reached. At
that point a MIB variable has been defined which must have a value.
Since the first structure in any array of structures points upward
in the tree, the tree can be traversed upward, also. These two
properties are used to encode an object identifier in an SNMP
message — a series of numbers identifying the variable — from the
name of the variable, or to decode an object identifier to determine
the name of the variable represented.

5.2.3 Using the MIB

An SNMP object identifier is a series of integers separated by
periods. Each variable in the MIB has a unique SNMP identifier.
For all MIB variables, the first five integers in an SNMP identifier
are 43, 6, 1, 2, and 1. The MIB variable ' ifOperStatus ' has the

identifier 43.6.1.2.1.2.2.1.8. From the top of the MIB, one must
descend through the MIB variables 'interfaces', 'ifTable', and
'ifEntry' to get to 'ifOperStatus'. 'interfaces' is the second
entry in the MIB's top level, so it produces the 2 after the

sequence 43.6.1.2.1. ' ifTable ' is the second entry in 'interfaces',
and generates the following 2. 'ifEntry' is the first entry in

'ifTable' to account for the next 1. 'ifOperStatus' is the eighth
entry in 'ifEntry', for the final 8. This produces the SNMP object
identifier for 'ifOperStatus' of 43.6.1.2.1.2.2.1.8.

5. 2. 3.1 Decoding identifiers

For use in SNMPLIB, the MIB tree therefore is arranged so that in

each array of structures at any level, the array element index for

the variable of interest at that level corresponds to its equivalent
digit in the SNMP identifier. Given that the MIB is identified by
43.6.1.2.1, the 'interfaces' structure's index is 2 to correspond to

the next integer in the identifier, the 'ifTable' structure's index
is 2 in its array of structures, the 'ifEntry' structure's index is

1, and the 'ifOperStatus' structure's index is 8. Thus,

43.6.1.2.1.2.2.1.8 eventually leads to the 'ifOperStatus' variable.

5.2. 3.2 Encoding identifiers

Because SNMP identifier encoding rules prevent any integer in an

identifier from being zero, the zeroeth element in each structure

array is not used to decode an identifier. As described in 5.2.2,

SNMPLIB uses it for encoding one. In the MIB, the general pointer
in the structure for the variable 'ifEntry' points to the array of



structures containing the one for ' ifOperStatus ' . However, it
really points to the first element — the one with an index of

zero — in the array of structures. Since the general pointer in

that structure will never point to an object because its index is

zero, it can be used to point "backwards" to the structure for
' ifEntry '

.

The same is true for the first structure in the array containing
'ifEntry'; it points to the structure for 'ifTable'. By counting
the number of structures in an array between the one for the

variable of interest and the first structure , the index of the

interesting structure can be determined. For 'ifEntry' no
structures are between it and the first, so its index is one.

' ifOperStatus ' has seven structures between it and the first
structure, so its index is eight. By finding a structure's index at
each level starting from the bottom of the tree, any variable's SNMP
identifier can be constructed in reverse order.

When the general pointer in the first structure in an array of

structures is a null pointer and its flag is a negative sixteen, the

top of the MIB tree has been reached. The MIB prefix of five

integers can then be added to the existing list of indices to

produce a complete SNMP identifier.

To ease finding a specific variable's structure in the MIB, a set of

pointers are provided. One pointer is available for each variable
so its structure can be found without traversing the set of MIB
structures

.

The object information structure pointer 'mibroot' points to the

highest level MIB array of structures. Its member structures are
for the variables 'system', 'interfaces', 'at', 'ip', 'icmp', ' tcp

' ,

'udp', and 'egp'. In the current form, the branches of the MIB tree
for 'icmp', 'tcp', 'udp', and 'egp' are not implemented

5.3 SNMP Trap Message Structures

When SNMP agents generate unsolicited information, or trap,
messages, the type of message is indicated by an integer in the
message. This integer is used as the index in an array of object
information structures. The function pointer in the selected
structure points to the function which will perform a task
appropriate to the type of trap message received.

If the variable specified in the trap message is one being monitored
by the users program, that variable's value will be modified to
match that in the trap message. The change flag and timestamp will
also be updated. If the variable in the trap message is not being
monitored, a message is displayed on the console indicating the
content of the message.
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5.4 The Socket Data Structure

To store information related to the types of active network
connections while the application is running, a socket data
structure is created for each connection. The concept of a socket
is used so that multiple connections from the computer running the
application to other devices may be maintained simultaneously. A
received packet contains a remote socket number which associates it
with a program running on the remote device , and a local socket
number which links it with the application running on the local
computer

.

The elements of the socket data structure are 1) a pointer to

another socket data structure (so structures can be linked
together) , 2) a pointer to an agent information structure as
previously described in the section 5.1, 3) a socket identifier
(also called a network descriptor), 4) a request identifier number
used for linking a reply message to a request message, 5) a network
interface driver option variable, 6) the remote computer's Internet
address, 7) the remote computer application's socket number, 8) the
local socket number, and 9) a network protocol indicator (indicates
UDP for SNMPLIB).

These structures are linked together using the socket data structure
pointers, with the variable 'socketroot' pointing to the beginning
of the chain.

5.5 Packet Driver Data Structures

The part of the program which communicates with the packet driver
for the network interface also uses a number of structures and
queues. An Address Resolution Protocol (ARP) table of Internet
address and Ethernet address equivalences is maintained through a

chain of 'arpentry' structures. Packets received by the packet
driver are stored on a packet queue , from which they may be removed
and added to either the UDP packet queue or the Transmission Control
Protocol queue. Internet Control Message Protocol packets and ARP
packets are processed immediately, so they require no queues,

6 . 0 SNMPMON Operation

SNMPMON is an application program using the SNMPLIB functions to

access a set of specific variables within some SNMP agents. It is

an example of how a user can create a custom network management
tool. Its operation is explained below. Source code for both
SNMPMON and SNMPLIB is available from the author.

SNMPMON requires as a command-line parameter the name of a database

file containing the names of the communities, agents, and variables

to be accessed. When SNMPMON runs using a packet driver as the

software interface to the Ethernet interface ,
the database file must

also contain interface configuration information (see 4.7).
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6 . 1 Beginning Execution

When SNMPMON starts, it checks for the database file name. If one
is supplied, the name is passed to the SNMPLIB initialization
routine 'initsnrap( )

' . This routine initializes the SNMP data
structures and creates the memory-resident copy of the SNMP agent
and variable database. Upon the successful return from
'initsnmpO

' , the routine 'pollagents( )
' is called to interrogate

the specified agents for their values of the indicated variables.
If the call to ' pollagents( )

' completes successfully, the memory-
resident database of agent variables may be accessed and the values
tested for any abnormalities. SNMPMON prints the values of the

variables on the console using 'showallO'.

6.2 Showinfo

The routine 'showallO' is a special invocation of ' showinf o(
)

'

.

'showinfoO' demonstrates how a user can access the memory-resident
SNMP agent and variable database. First, 'showinfoO' asks for a

pointer to the first agent information block by calling
'getnxtroutpO ' with a null argument. It then passes to

'getnxtvarpO ' the pointer from the call to 'getnxtroutpO' and a

null variable information block pointer to get a pointer to the

first variable information block for the specified agent.

The operational flag passed to 'showinfoO' indicates whether all
variable values are to be displayed. If not all variables are being
shown, only those which have changed in value will be displayed. If

the value should not be displayed, the 'getnxtvarpO' is called to

get a pointer to the next variable information block.

If the value should be shown, and if the agent's address hasn't yet

been displayed, the agent's name from the agent information block is

retrieved using ' getroutaddrO ' and is displayed. Then the
variable's name and index are retrieved using 'getvarstrO' and

' getinxstrO
' , and are displayed. Finally the variable's value is

to be accessed. First, though, it should be determined whether the

value can be represented as a character string, such as "up" or

"down", instead of its numerical value. A routine, 'xlatevalueO '

,

is available to determine if a string representation of the value
exists.

'xlatevalueO', when passed a pointer to a variable information
block, will try to return a pointer to a null-terminated ASCII
string representing the variable's value. If the value can't be

translated, a null pointer will be returned. 'showinfoO' calls
'xlatevalueO' to attempt to retrieve an ASCII string for the
variable information block of interest. If it is successful, the

string is shown on the console. If it is not successful, the
variable's actual value must be displayed. Retrieving the value and
determining how to display it requires more work.
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First, the type of variable is determined by calling ' getvart5rpe(
)

' .

This returns a pointer to a null-terminated ASCII string of
characters which indicate the variable type. Four types of
variables are currently supported, unsigned long integers, integers,
hexadecimal strings of characters, and ASCII strings of characters.

’ getvartype ()
' returns pointers to the strings "unsigned long",

"int", "hex string", or "ASCII string", respectively. From the
content of the indicated string, 'showinfoO' determines what type
of memory storage must be allocated to retrieve the variable's
value

.

When appropriate memory storage has been obtained, 'getvarvalO ' is
called to duplicate the value in the storage location. From there
it can be displayed correctly. Finally, the variable's time stamp
is retrieved using 'getvartimeO

' , is interpreted in the local
manner, and is displayed.

After the time stamp has been displayed, the variable's change flag
is set to zero and 'getnxtvarp( )

' is called again to find the next
variable to process. Failing to find another variable causes
' getnxtroutpC )

' to be called to find the next agent information
block. When the last variable in the last agent information block
has been processed, 'showinfoO' terminates and control is returned
to ' main( )

'

.

6 . 3 Back to main

When 'main()' resumes execution, it checks to see if any unsolicited
packets, such as SNMP trap messages, have been received by calling
the 'rcvpktsO' routine. If there were no execution errors and no
packets received, as determined by the value returned by
'rcvpktsO' , the section of the program is entered which counts the
number of times the current loop has been executed. If the count is

not a multiple of sixty, a character is displayed on the console to

show that the program is still executing properly, and control is

passed to the keyboard servicing routine

.

If the count is a multiple of sixty, 'pollagentsO ' is called again
to obtain new values for the database variables. If 'pollagentsO'
has been called ten times without calling 'showallO', 'showallO'
is also executed. Otherwise, 'showchgsO' is called to show on the

console only those variable values that have changed since the last

'pollagentsO' invocation.

Next, keyboard activity is queried. If an 's' (show) has been
entered, 'showallO' is called. If a 't' (time) is returned, the

current time is displayed. When an 'a' (acknowledge) is entered,
any alarms that might be sounding (see next paragraph) are disabled.

If a 'q' (quit) has been hit, the variable 'endflag' is incremented
to notify the program to exit gracefully. If no key had been
pressed, the routine to check for alarm situations is entered.

12



An alarm situation is defined in SNMPMON as when the operational
status of an agent interface has been retrieved and it was not "up".
If such a situation is discovered, an alarm is sounded once a second
for the first five seconds, and once every minute thereafter until
an 'a' is entered on the keyboard or the alarm condition goes away.
Alarm conditions are checked by calling the routine 'ckopstatO'.

6.4 Ckopstat

In a manner similar to that used in ' showinf o(
)

' , 'ckopstatO' uses
the routines 'getnxtroutp( )

' and 'getnxtvarp( )
' to get pointers to

the agent and variable information blocks in the memory-resident
SNMP agent and variable database . The name of each variable is

retrieved by invoking 'getvarstr( )
' and is compared to

' ifOperStatus
' , the MIB variable for an interface's operational

status. If the comparison is exact, the variable's value is

checked. If the value is not "up", 'ckopstatO' returns a minus
one; otherwise, it goes to the next variable. If no variables are

'ifOperStatus', or all 'ifOperStatus' variables are "up", a zero is

returned.

6.5 Main again

If 'ckopstatO' returns a non-zero value, variables are set to sound
the alarm as previously described in 6.3. Then 'raainO' calls
'waitO' to wait for 1000 milliseconds. When this completes the

loop variable 'endflag' is checked. If it is zero, execution
returns to the beginning of the loop. If it is not zero, the loop

is exited and 'endsnrapO' is called. This gracefully terminates
independent SNMPLIB functions, such as the packet driver, so that
the main program can exit without leaving the packet driver in a

state which might interfere with the operating system. Then SNMPMON
exits successfully.

6 . 6 SNMPMON Source Code

Two comments should be made about the source code for SNMPMON.
Commented out debugging statements exist that should not confuse the

reader. Also, conditional compilation statements have been inserted
so that the same code could be compiled on a Sun Microsystems
workstation with the Gnu C compiler. Compiling the code without
defining the 'BSD' variable produces a program configured to execute
on a computer running the MS/PC-DOS operating system.

7.0 Packet Driver Source Code

Writing this program to use a packet driver required a small amount
of assembly language programming. This is because packet drivers do
not generate their own buffers for storing incoming packets, nor do
they maintain a queue of filled packet buffers. Both of these
functions must be performed by the application program. The two

SNMPLIB routines for doing these functions, when written in C,
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produced run-time errors from stack pointer checking. Since stack
checking could not be disabled, the routines were written in
assembly language instead.

The routine supplying empty packet buffers was written to eliminate
any outside subroutine calls, especially to the operating system.
It was feared that the asynchronous nature of packet arrivals and
subsequent packet buffer requests might confuse or corrupt the

operating system. Thus, the number of packet buffers are defined at

the time of assembly and cannot be increased or decreased
dynamically.

8.0 SNMPLIB Subroutine Descriptions

Brief descriptions of the SNMPLIB functions are in Appendix D
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Appendix A

A Sample SNMPLIB Database File

# an snmp database file
<Configuration> # configuration information

pktdvr # packet driver configuration information
gw=223. 14. 1 .254 # local gateway's IP address
locipaddr=223 . 14. 1 . 132 # host's IP address
ipmask=255 . 255 . 255 .0 # local net's IP mask

# snmp database
# The following parameters were tested and worked correctly unless
#

#

#

#

# Note
#

#

noted in a following comment. Note that limits set by the
protocol on the size of SNMP packets permit only about four
variables per agent variable list. However, multiple agent
variable lists for the same agent (with the agent name
reproduced for each list), can be entered in this file.

The agent throws away the request and doesn't answer if it

doesn't understand the question or it doesn't know the

answer

.

TestComra # first agent's community
223.14.,1.126 # first agent's IP address

sysDescr ex. ,

# # value = "Portable Gateway s/n 1234"

sysObjectID # ex., value = "43.6.1.4.1.1.1.1.42"
sysUpTime # ex.

,
value = 52274315

ifType 1 # ex. ,

# # value = "ethernet-csmacd"
# ifType 2 # works
# ifType 3 works
# ifOperStatus 1 ex., value = "up", "down".
# "testing"
# ifOperStatus 2 works

ifOperStatus 3 # works
# if InErrors 1 # ex. , value = 27

# ifOutErrors 1 # ex.

,

value = 19

if InErrors 2 works
ifOutErrors 2 # works

# if InErrors 3 # works
ifOutErrors 3 works

# ifMtu 1 ex.

,

value = 1514
# ifSpeed 1 # ex. , value = 10000000

ifMtu 2 # works
# ifSpeed 2 # works
# ifMtu 3 # works

ifSpeed 3 # works
ifPhysAddress 1 ex. ,

# # value = 00-00-c0-16-39-fe
ifAdminStatus 1 # ex., value = "up", "down".

# # "testing"
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ifPhysAddress 2 if works
# ifAdminStatus 2 if works
if ifPhysAddress 3 if works
if ifAdminStatus 3 if works
if if InOctets 1 if ex. , value = 15485129
if if InUcastPkts 1 if ex.

,

value = 2890
if if InOctets 2 if works
if if InUcastPkts 2 if works
if if InOctets 3 if works
if if InUcastPkts 3 if works
if if InNUcastPkts 1 if ex.

,

value = 1936542
if if InDiscards 1 if ex. , value = 276
if if InNUcastPkts 2 if works
if ifInDiscards 2 if works
if if InNUcastPkts 3 if works
if ifInDiscards 3 if works
if ifInErrors 1 if ex.

,

value = 17

if if InUnknownProtos 1 if ex. , value = 3

if if InErrors 2 if works
if if InUnknownProtos 2 if works
if if InErrors 3 if works
if if InUnknownProtos 3 if works
if ifOutOctets 1 if ex.

,

value = 19277695
if ifOutUcastPkts 1 if ex.

,

value = 10

if ifOutOctets 2 if works
if ifOutUcastPkts 2 if works
if ifOutOctets 3 if works
if ifOutUcastPkts 3 if works
if ifOutNUcastPkts 1 if ex.

,

value = 1643890
if ifOutDiscards 1 if ex.

,

value = 9

if ifOutNUcastPkts 2 if works
if ifOutDiscards 2 if works
if ifOutNUcastPkts 3 if works
if ifOutDiscards 3 if works
if ifOutErrors 1 if ex.

,

value = 65

if ifOutQLen 1 if ex.

,

value = 3

if ifOutErrors 2 if works
if ifOutQLen 2 if works
if ifOutErrors 3 if works
if ifOutQLen 3 if works
if ifLastChange 1 if agent returns wrong type
if if returns INT instead of

if if TimeTicks , doesn’t work
if atifIndex "2 223 .14,.1.33" if ex. , value = 2

if atif Index "3.,223 .14,.4.2" if works
if atNetAddress "2 ’08:(30:20:00;0e:c8" if cannot
if if poll, doesn't work
if atPhysAddress "2 223 .14,,1.33" if on interface 2

if if return the physical address
if if for the given Internet
if if address , ex .

,

if if value = OO-OO-cO-f9-16-02
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atPhysAddress "3,223 .14.2.33" # works, used comma
# instead of space
# ipForwarding # ex. , value = 1 (forwarding), 2 (not)
# ipRouteDest 223.14 .1.0 # ex.

,

# # value = 192.18.3.1
# IpRouteDest 223.14 .2.0 # works
# IpRouteDest 223.14 .3.0 # works
# IpRouteDest 0.0. 0.(0 # agent says
# # the request had bad format

# doesn't work
# IpRouteDest 223.14 .3.1 # cannot poll
# ipRouteAge 223.14 .4.0 # works
# ipDefaultTTL # ex . , value = 255
# IpInReceives # ex. ,

value = 2054
IpInHdrErrors # ex. ,

value = 10

ipInAddrErrors # ex. , value = 0

ipForwDatagrams # ex. , value = 192598
# ipInUnknownProtos # ex. , value = 0

IpInDiscards # ex. ,
value = 25

# IpInDelivers # ex. , value = 95041
# ipOutRequests # ex. , value = 10548
# ipOutDiscards # ex. , value = 3

# ipOutNoRoutes # ex. , value =27
ipReasmTiraeout # agent returns wrong variable

# # type, doesn't work
# ipReasmReqds # ex. , value = 99

# ipReasmOKs # ex. , value = 105

# ipReasniFails # ex. , value = 4

# ipFragOKs # ex. , value = 125

# IpFragFails # ex. , value = 1

# ipFragCreates # ex. ,
value = 15

IpAdEntAddr 223.14 . 1 . 126 # ex.

,

# # value = 225.6.119.54
# ipAdEntIf Index 223.14 . 1 . 126 # ex. , value = 2

ipAdEntNetMask 223.14 . 1 . 126 # ex.

,

# # value = 255.255.255.0
# IpAdEntBcastAddr 223.14.1.126

# ex. ,

# # value = 255.255.255.255
# ipRouteDest 223.14 .1.0 # ex. ,

# # value = 192.3.26.250
# ipRoutelf Index 223.14 .1.0 # ex. , value = 1

# ipRouteMetrial 223.14 .1.0 # ex. , value = 5

# ipRouteMetric2 223.14 .1.0 # works
# ipRouteMetricS 223.14 .1.0 # works
# ipRouteMetric4 223.14 .1.0 # works
# ipRouteNextHop 223.14 .1.0 # ex.

,

# # value = 224.16.193.1
# ipRouteType 223.14 .1.0 # ex. ,

# # value = 1 ("other").
# # 2 (''invalid"), 3 ("direct").
# # 4 ("remote")
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# ipRouteProto

#

//

# ipRouteAge

comm2
223.14.2.1

IfType
ifOperStatus

# ifInErrors
# ifOutErrors

223.14.3.253

ifType
ifOperStatus

# ifInErrors
# ifOutErrors

comm2
#

#

223.14.1.126
if Index
ifDescr
ifType

.14.1.0 # ex.

,

value = 1 ("other"),
"local"), 3 ("netmgmt"), 4 ("icrap"),

"egp"), etc.
.14.1.0 yy ex. , value = 250

yy another community
yy an agent name
yy a variable list

yy commented out

yy commented out

yy a new agent name

,

same community as before
yy a variable list

yy commented out

yy commented out

yy restating the community,
not really necessary, but

permitted

223

2 (

5 (

223

2

2

2

2

3

3

3

3

1

1

1
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Appendix B

Management Information Base Variables
Implemented in SNMPLIB

Top level variables

system
interfaces
at

ip

icmp (not implemented)
tcp (not implemented)
udp (not implemented)
egp (not implemented)

System variables

sysDescr
sysObjectID
sysUpTime

Interface variables

ifNumber
ifTable

ifTable variables

ifEntry

ifEntry variables

if Index
ifDescr
ifType
ifMtu
ifSpeed
ifPhysAddress
ifAdminStatus
ifOperStatus
ifLastChange
ifInOctets
ifInUcastPkts
if InNUcastPkts
ifInDiscards
if InErrors
if InUnknownProtos
ifOutOctets
ifOutUcastPkts
ifOutNUcastPkts
ifOutDiscards
ifOutErrors
ifOutQLen
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at variables

atTable

atTable variables

atEntry

atEntry variables

atif Index
atPhysAddress
atNetAddress

ip variables

ipForwarding
ipDefaultTTL
ipInReceives
ipInHdrErrors
ipInAddrErrors
ipForwDatagraras

ipInUnknownProtos
ipInDiscards
ipInDelivers
ipOutRequests
ipOutDiscards
ipOutNoRoutes
ipReasmTimeout
ipReasmReqds
ipReasraOKs

ipReasmFails
ipFragOKs
ipFragFails
ipFragCreates
ipAddrTable
ipRoutingTable

ipAddrTable variables

ipAdEntry

ipAdEntry variables

ipAdEntAddr
ipAdEntIfIndex
ipAdEntNetMask
ipAdEntBcastAddr
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ipRoutingTable variables

ipRouteEntry

ipRouteEntry variables

ipRouteDest
ipRoutelf Index
ipRouteMe trial
ipRouteMe trial
ipRouteMe triad
ipRouteMetrial
ipRouteNextHop
ipRouteType
ipRouteProto
ipRouteAge
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Appendix C

The Clarkson packet driver collection

Availability

The Clarkson collection of packet drivers is available by FTP, by
archive-server, Fido file request, and by modem. It comes in two
flavors — executables only ( drivers. arc ) , and source+executables
(driverss.arc) . All of the following instructions apply to both
drivers. arc and driverss.arc.

FTP:

sun . soe . clarkson . edu : /pub/ka9q/drivers . arc

grape . ecs .clarkson . edu : /e/ tcpip/drivers . arc

Archive-server:

Send mail to archive-server@sun.soe.clarkson.edu and put the

following command as the body of your message:

help

This will send you a help message. Reading this help message will
tell you how to fetch the packet drivers.

Modem:

Call the Clarkson Heath User's Group's BBS: (315) 268-6667, 8N1

,

1200/2400 Baud, 24 hours. Change to file area 24 and download
drivers. arc

.

Opus

:

260/360 in the Nodelist. Drivers. arc is file requestable.
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Appendix D

Descriptions of SNMPLIB functions.

SNMPLIB user interface routines.

Function: int clrvarchfK struct varinfo
Parameter: a pointer to an SNMP varible information structure

Description

:

Clear the value of the change flag in the indicated variable
information block.

Returned value: zero on success; negative values indicate errors.

Function: int endrcv( void)
Parameters: none

Description:
Clean up before stopping the receipt of SNMP packets by releasing
all UDP network descriptors. 'endsnmpO' is preferred.

Returned value: always zero.

Function: int endsnmp( void)
Parameters: none

Description:
Clean up all loose ends and turn off the UDP packet driver.

Returned value: always zero.

Function:
Parameters: 1.

2 .

3.

int getinxstrC struct varinfo char *, int)

a pointer to an SNMP variable information
structure

.

a pointer to an empty variable index string buffer
the length in bytes of the index buffer.

Description:
Given a pointer to a variable information block, a pointer to a

character buffer, and its length, put the index of the variable
information block into the buffer in the form of a null-terminated
ASCII string.

Returned value: the number of characters put into the buffer, not
including the '\0', on success; a negative number on error.
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Function: struct varinfo *getnxtchange( struct routinfo *,

struct varinfo *)

Parameters: 1. a pointer to an agent information structure.
2. a pointer to a variable information structure.

Description:
Given a pointer to an agent information block and a pointer to a

variable information block associated with that agent, return a

pointer to the next variable block associated with the same agent in
which the change flag is set. If the given pointer to a variable
block is NULL, return the first variable block.

Returned value: a pointer to a variable information structure, or a

null pointer on error or no block left.

Function: struct routinfo *getnxtroutp( struct routinfo *)

Parameter: a pointer to an agent information structure.

Description:
Find the next agent information structure in the chain after the

given agent information structure. If the given agent information
structure pointer is a null pointer, find the first agent
information structure in the chain.

Returned value: a the pointer to the next agent information
structure on success, or a null pointer on error or no structures
left

.

Function: struct varinfo *getnxtvarp( struct routinfo *,

struct varinfo
Parameters: 1. a pointer to an agent information structure.

2. a pointer to a variable information structure.

Description:
Given a pointer to an agent information block and a pointer to one

of its variable information blocks, return a pointer to the next

variable information block for that agent. If the given variable
information block pointer is a null pointer, return the first
variable information block for the given agent.

Returned value: a pointer to a variable information structure on

success, or a null pointer on error or no blocks left.
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Function:
Parameters: 1.

2 .

3.

int getroutaddr( struct routinfo char int)
a pointer to an agent information structure,
a pointer to an empty router address buffer,
the length of the router address buffer in bytes.

Description;
Put the address of the agent in the agent information structure in

the empty buffer as a null-terminated string of ASCII characters in
"dot" notation.

Returned value: the number of characters, not including the '\0'
.

put into the buffer on success, or a negative number on error.

Function: struct routinfo *getrouterp( char *, struct routinfo *)

Parameters: 1. a pointer to an IP address in ASCII string for.m.

2. a pointer to an agent information structure.

Description:
Return a pointer to the agent information block which not only
follows the given agent information block, but which also has an
address which matches the agent address in the null-terminated ASCII
string. If the agent information block pointer is a null pointer,
return a pointer the the first agent information block with an
address that matches the address in the ASCII string.

Returned value: a pointer to an agent information block on success;
a null pointer on errors.

Function: int getvarchfK struct varinfo *)

Parameter: a pointer to a variable information structure.

Description:
Return the value of the change flag of the indicated variable
information block. The value of the flag is not changed. Also see

' clrvarchf 1(
)

'

.

Returned value: the current value of the change flag (a positive
number if the variable has changed since it was last accessed) ; a

zero if no change has occurred; a negative number on errors.
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Function:
Parameters: 1.

2 .

3.

Description:
Given pointers to null-terminated ASCII strings containing an agent
address, a variable name, and an index, return a pointer to a

matching variable information block.

Returned value: a pointer to a variable information structure on

success, or a null pointer on errors.

struct varinfo *getvarp( char *, char char *)

a pointer to an IP address in null-terminated ASCII
string form.

a pointer to an SNMP variable name in null-
terminated ASCII string form,
a pointer to an SNMP variable index in null-
terminated ASCII string form.

Function:
Parameters: 1.

2.

3.

int getvarstr( struct varinfo char *, int)

a pointer to a variable information structure,
a pointer to an empty variable name buffer,
the length of the name buffer in bytes.

Description:
Given a pointer to a variable information block, a pointer to a

character buffer, and its length, put the name of the variable in

the information block into the buffer as a null-terminated ASCII
string

.

Returned value: the number of characters put into the buffer, not
including the '\0', on success, or a negative number on errors.

Function: unsigned long getvartime( struct varinfo *)

Parameter: a pointer to a variable information structure.

Description:
Return the time stamp of the variable associated with the variable
information block.

Returned value : the time stamp of the indicated variable as an
unsigned long integer on success, or a negative number on errors.
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Function: char *getvartype( struct varinfo *)

Parameter: a pointer to a variable information structure.

Description:
Return a pointer to a null-terminated ASCII character string which
indicates the type of the variable in the variable information
block.

Returned value: a pointer to a null-termianted ASCII string
containing the type of variable on success, or a null pointer on

errors

.

Function

:

Parameters: 1.

2 .

3.

int getvarvaK struct varinfo void *, int)

a pointer to a variable information structure,
a pointer to a variable value storage area,

the size of the variable value storage area in

bytes.

Description

:

Copy the value of the variable in the variable information structure
into the indicated storage location.

Returned value: the number of bytes used for the value, or a negative
number on error.

Function: int initrcv( void)
Parameters: none

Description

:

Enable the SNMP monitoring code to receive SNMP trap packets.

Returned value: zero on success; a negative number on errors.

Function: int initsnmp( char *)

Parameter: a pointer to an ASCII string containing the name of

the SNMP data base file.

Description:
Given a pointer to a null-terminated ASCII string containing the
name of the SNMP database file, pass the file name to the routine
which creates the memory-resident SNMP database and initialize the
MIB database and the UDP driver.

Returned value: zero on success; a negative number on errors.
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Function: int pollagents( void)
Parameters: none

Description

:

Interrogate the agents in the SNMP database file by sending SNMP
request packets and receiving the replies, thereby updating the
memory-resident SNMP database of variable values.

Returned value: zero on success; a negative number on errors.

Function:
Parameters: 1.

2 .

3.

4.

int prhexstr( unsigned char int, char int)
a pointer to a string of binary bytes,
the number of binary bytes to convert,
a pointer to an empty ASCII character buffer,
the size of the character buffer in bytes.

Description

:

Given a pointer to a string of bytes, the number of bytes to

convert, the buffer to put them in, and the size of the buffer,
interpret the string as hexadecimal data to be converted to a

null-terminated ASCII string in the given buffer.

Returned value: the number of bytes used in the buffer, or a

negative number on error.

Function: int rcvpkts( void)
Parameters: none

Description

:

Check to see if any packets have been received. If there are

packets in the received queue, process them (i.e., respond to ARP
or ICMP packets immediately, queue UDP and TCP packets). If there
are replies to transmitted packets expected which haven't been
received yet, loop for 5 seconds waiting for the replies. If the

replies aren't received eventually, stop listening for them and go

back to listening for trap packets.

Returned value: a positive number indicates packets were processed
zero indicates there were no packets to process; a negative number
indicates errors.
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Function: char *xlatevalue( struct varinfo *)

Parameter: a pointer to a variable information structure.

Description:
Translate the numeric value of the variable in the variable
information block into a null-terminated ASCII character string
suitable for sending to a console.

Returned value: a pointer to the character string on success; a null
pointer on not being able to translate the value or on an error.

- D-7



Management Information Base functions.

Function

:

Parameters:
int initbkrefs( void)
none

.

Description:
Initialize the forward references in the MIB tree structure that
couldn't be handled by the compiler.

Returned value: zero.

int initmib( char *)

a pointer to a null-terminated ASCII string
containing the file name of the SNMP database.

Function

:

Parameter

:

Description:
Initialize the Management Information Base (MIB) by calling
initbkrefsO and setting the pointer for 'ifindex' to 'iflndex_f'.
Forward the name of the SNMP database file passed to it to the

routine that creates the in-memory SNMP database.

Returned value: zero on success; a negative number on error.
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Network input/output related functions.

Function; long atonetaddr( char *)

Parameter: a pointer to a null-terminated ASCII string of

characters containing an Internet address.

Description:
Convert a null-terminated ASCII string of characters representing an
Internet address in 'dot' notation to a 32-bit binary number in
network order containing the Internet address of the characters
passed.

Returned value: a long integer containing the binary network
address, or a long -1 (which is an illegal Internet address) if the

given ASCII address was too long.

Function: int endudp( void)
Parameters: none.

Description:
Call 'udpreleasealK )

' to release all UDP network descriptors and
associated sockets.

Returned value: always zero.

Function: unsigned char *getcmunp( int)
Parameter: a network descriptor.

Description:
Return the pointer to the null-terminated ASCII character string
containing the SNMP community name associated with the descriptor.

Returned value: a pointer to a null-terminated ASCII string, or

null pointer on error.

Function: int getconninfo( int, struct sockdata *)

Parameters: 1. a network descriptor.
2. a pointer to a socket data structure.

Description;
Fill in the socket data structure with the information about the connection
associated with the descriptor.

Returned value; zero on success, or a negative number if the
network descriptor is not allocated.
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Function: Int getnxtsendnd( int)
Parameter: a network descriptor.

Description

:

Given an integer network descriptor for sending packets, find the
next network descriptor for sending packets in the socket
information table. If the given network descriptor is -1, find the
first such network descriptor in the table.

Returned value: the next send network descriptor, or a negative
number if none can be found.

Function: int getnxttrapnd( int)
Parameter: a network descriptor.

Description

:

Given a network descriptor for receiving trap packets, return the
next trap network descriptor in the socket information table. If

the network descriptor passed to this routine is -1
, return the

first trap network descriptor.

Returned value: the next trap newtork descriptor, or a negative
number if none can be found.

Function: long getconnreqid( int)
Parameter: a network descriptor.

Description:
Return as a long integer the value of the request identifier in the

connection information structure of the outstanding SNMP request
message associated with the network descriptor.

Returned value: the positive long integer request identifier value,
or a negative number on error

.

Function:

Parameters: 1.

2 .

3.

4.

int getudpndC long, unsigned int, unsigned int,

unsigned long)

remote host binary network address,
remote host socket number,
local host socket number,
interface driver option (not used).

Description

:

Given a remote host network address, the socket of the application
on the remote host, and a socket on a local host, return a network
descriptor to send and receive UDP packets on. The option variable
is not used in this implementation.

Returned value : a positive network descriptor , or a negative number
on errors.
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Function:

Parameters: 1.

2 .

3.

4.

int getudppkt( int, unsigned char *, unsigned int

,

unsigned int)
network descriptor,
pointer to the packet buffer,
length of the packet buffer in bytes,
interface driver flags (not used).

Description:
If there is a packet available from the remote host and the remote
socket associated with the given network descriptor and sent to the

appropriate local socket, move the data from the oldest such UDP
packet into the indicated buffer. The flag variable is not used in

this implementation.

Returned value: the number of bytes transferred to the buffer on

success, or a negative number on failure.

Function: int initudp( void)

Parameters: none

Description

:

Initialize the UDP subroutines. If there is configuration
information in the SNMP database, remove it.

Returned value: zero.

Function: int setrinfop( int, struct routinfo *)

Parameters: 1. a network descriptor.
2. a pointer to an agent information structure.

Description;
In the UDP connection information associated with the given network
descriptor, set the value of the pointer to the agent information
structure to be the same as the given agent information pointer's
value

.

Returned value: zero on success; a negative number on failure.

Function: int setconnreqid( int, long)
Parameters: 1. a network descriptor.

2. a request identifier.

Description

:

Find the socket data structure associated with the network
descriptor and set its request identifier to be the same value as
the supplied request identifier.

Returned value: zero on success; a negative number on error.
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Function:

Parameters: 1.

2 .

3.

4.

int sendudppkt( int, unsigned char unsigned int

,

unsigned int)
a network descriptor.
a pointer to a buffer contain UDP data.
the length ot the buffer.
any network interface flags (not used).

Description:
Send the number of bytes in the data buffer in a UDP packet to the
host associated with the network descriptor. The flags variable is
not used in this implementation.

Returned value: the number of bytes sent on success; a negative
number on failure.

Function:

Parameters: 1.

2 .

3.

int udplisten( long, unsigned

a binary Internet address for
a socket on the remote host,
a socket on the local host,
any network interface options

int , unsigned int

,

unsigned long)
a remote host.

(not used).

Description:
Given given a remote host binary Internet address and a socket
number on that host, a socket on the local host, and a network
option, prepare to listen for UDP packets from the remote host to

the local one. The remote host number may be zero, in which case all

UDP packets from any remote host are accepted.

Returned value: a positive network descriptor upon successfully
initiating listening, or a negative number on error.

Function: int udpre lease ( int)

Parameter: a network descriptor.

Description:
Release the given network descriptor.

Returned value: zero.

Function: int udpreleasealK void)
Parameters: none

Description:
Release all network descriptors.

Returned value: zero.
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Packet driver specific functions.

Calls to the packet driver

.

Function:
Parameters: 1.

2 .

3.

int getlocaddr( int , unsigned char int)
a packet driver handle.
a pointer to a buffer to contain the address,
the size of the buffer in bytes.

Description:
Get the local network address associated with the indicated handle
from the packet driver and put it in the given buffer.

Returned value: zero on success; a negative number on error.

Function: int getpdint( void)
Parameters: none

Description:
Find the software interrupt between 0x60 and 0x80, inclusive, used
by the packet driver.

Returned value: the software interrupt number, or a negative
number on errors.

Function: int getdvrinfo( struct dvrinfo *)

Parameter: a pointer to a driver information structure.

Description:
Get all the information about itself that the packet driver can
supply and put it in the structure indicated.

Returned value: zero on success, or a negative number on failure.
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Function:

Parameters: 1.

2 .

3.

4.

int inltdvr( struct dvrinfo unsigned char *, int

,

char far *)

a pointer to a driver information structure,
a pointer to a buffer containing a binary 'type'

value

.

the length of the 'type' buffer in bytes,
a pointer to a function which will supply the
packet driver with data buffers for received
packets

.

Description:
Given a pointer to a driver information structure for the packet
driver to be accessed, send the driver the 'type' (i.e., the value
of the Ethernet packet type field) of packets to receive, the length
of the 'type' field specification, and the address of the routine
which manages memory buffers for the packet driver.

Returned value: zero on success; a negative number on failure.

Function: int initinfo( void)
Parameters: none

Description:
Move the configuration information in the SNMP database to the local
Ethernet interface's configuration information structure.

Returned value: zero on success; a negative number on error.

Function: char *prdvrerr( int)
Parameter: a packet driver error number.

Description:
Return a pointer to the appropriate packet driver error message
given a packet driver error number. The message is in the form
of a null-terminated ASCII character string.

Returned value: a pointer to an ASCII string, or a null pointer on

error.

Function: int relhandle( int)

Parameter: a packet driver handle.

Description:
Release the packet driver from receiving packets associated with the

given handle

.

Returned value: zero on success; a negative number on failure.
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Function:
Parameter:

Description:

int resetintf( int)
a packet driver handle

.

Tell the packet driver to initialize the interface associated with
the handle

.

Returned value

:

zero on success; a negative number on failure.

Function

:

Parameters: 1.

2

.

Description:

int sendpkt( unsigned char *, int)

a pointer to an Ethernet packet,

the length of the packet in bytes.

Tell the packet driver to send the packet in the buffer

Returned value: zero on success; a negative number on failure.

Function:
Parameters

:

void showchain( void)
none

Description

:

Show information about the chain of Ethernet packet buffers that
have not yet been processed. This routine is normally used for
debugging purposes only.

Returned value

:

zero on success; a negative number on errors.

Function: int terminate ( int)
Parameter: a packet driver handle.

Description:
Tell the packet driver to stop receiving the type of packet
associated with the given handle, to cease functioning, and to
release the memory used by the driver if possible.

Returned value: zero on success; a negative number on failure.
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»» The following routines are used for debugging purposes only. ««
:k-k-k-k^-k-k-k:k:k:k-k-k:k-k-k-k-k**-k-k-k-Jz-k:k:k-k-k-J<-k:k:k-k-k-k-k-k:k-k^^-^:k^*-k*i<:k:k-k-k-k-k^*-k-ki<'k'^9;*:k:k-k:k^-k-k

Function: int enchainbuf( int, int , unsigned char far *)

Parameters: 1. a packet driver handle.
2. the length of the packet buffer.
3. a pointer to the packet buffer.

Description:
Note: This routine is useful only with the dummy packet driver and
simulates what a packet driver would do with a full buffer, .^dd the
buffer identified by the handle, the buffer pointer, and the buffer
length to the chain of unprocessed packet buffers.

Returned value; zero on success; a negative number on failure.

Function: unsigned char far >*:getbuf( int, unsigned int)

Parameters: 1. a packet driver handle.
2. the length of the desired packet buffer.

Description:
Note: This routine is useful only with the dummy packet driver.
Get a buffer of a specific size from the buffer management routine
in the same manner a packet driver would request one.

Returned value: a pointer to the buffer on success; a null pointer
on failure.

Function: int installpd( void)

Parameters; none

Description:
Note: This routine is useful only with the dummy packet driver.

Install the packet driver at the first unused software interrupt
between 060h and 080h, inclusive.

Returned value: the number of the interrupt used by the newly
installed packet driver on success; a negative number on failure.

Function: int relbuffer( struct bufferblk far
Parameter: a far pointer to a buffer block

Description:
Note: This routine is obsolete. Release the buffer block and its

associated packet buffer.

Returned value: zero on success; a negative number on failure.
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Function: int rmpd( int)
Parameter: the packet driver interrupt vector number

Description

:

Note: This routine is useful only with the dummy packet driver.
Remove the packet driver installed at the given software interrupt
vector by setting the software interrupt vector to 0:0.

Returned value: zero on success; a negative number on failure.

k^'k'k‘k'k'k'k'k:k'k:k'k'k'k'k'k'k'k'k:k‘k'k'k-:k'k'k-7

»» End of troubleshooting functions ««
:k:k-k^-k-k-k-k-k:k-J<:k:k:k-:k^:k:k-k:k':k:k-k:k:k:ki:-k:k:k:k:k^-k-:k-k:k-k-k-k-;k-k:k'k-k-^-k-k-k-k-^-k:k-J<-k-k-k'k-k':k':k-k-k-k-:k-J<-k-k-:k-k:k

- D-17



Internet Protocol related routines.

Function: int addbuf2q( struct bufferblk far *,

struct bufferblk far
Parameters: 1. a far pointer to a packet buffer block.

2. a pointer to a buffer block queue (a linked list of

buffer block far pointers).

Description:
Add the given packet buffer block to the indicated buffer block
queue

.

Returned value: zero on success; a negative number on failure.

Function: unsigned int calicmpcksm( struct iphdr far *)

Parameter: a far pointer to an IP packet header.

Description:
Calculate the checksum for the ICMP packet in the indicated IP

packet

.

Returned value: the ICMP checksum as an unsigned integer.

Function: unsigned int calipcksm( struct iphdr far *)

Parameter: a far pointer to an IP packet header.

Description:
Calculate the checksum for the indicated IP packet header.

Returned value: the IP checksum as an unsigned integer.

Function: unsigned int caltcpcksm( struct iphdr far *)

Parameter: a far pointer to an IP packet header.

Description:
Calculate the checksum of the TCP packet in the indicated IP packet

Returned value: the TCP checksum as an unsigned integer.

Function: unsigned int caludpcksm( struct iphdr far
Parameter: a far pointer to an IP packet header.

Description:
Calculate the checksum of the UDP packet in the indicated IP packet

Returned value: the UDP checksum as an unsigned integer.
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Function: int cktcpskt( struct bufferblk far *)

Parameter: a far pointer to a packet buffer block.

Description:
Check the packet associated with the given buffer block to see if
it's remote host, remote socket, and local socket are on the open
TCP socket list. For those that are kept, set the handle in the
buffer block to be the network descriptor in the socket structure
and move the packet buffer to the TCP packet queue.

Returned value: zero on success; nonzero on errors.

Function: int ckudpskt( struct bufferblk far *)

Parameter: a far pointer to a packet buffer block.

Description:
Given a pointer to a buffer block which describes a received
Ethernet packet, check the packet to see if it's remote host, remote
socket, and local socket are on the UDP open socket list. For those
that are kept, set the handle in the buffer block to be the network
descriptor in the socket structure and move the packet buffer to the

UDP packet queue.

Returned value: zero on success; nonzero on errors.

Function: int endudp( void)
Parameters: none

Description:
Turn off all UDP functions by releasing all network descriptors, and
disabling packet driver acceptance of IP and ARP packets.

Returned value: zero on success; a negative number on error.

Function:

Parameters: 1.

2

.

3.

4.

int getudpnd( long, unsigned int, unsigned int,

unsigned long)

a remote host's Internet address in network notation,
the remote host's socket number,
the local host's socket number,
an option number (not used).

Description:
Given a remote host, remote socket, and local socket, return a

network descriptor to send UDP packets on.

Returned value: a network descriptor; a negative number on error.
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Function: int getudppkt( int , unsigned char *, unsigned int.

Parameters: 1.

2

.

3.

4.

unsigned int)
a network descriptor,
a pointer to an empty packet buffer,
the size in bytes of the packet buffer,
a flag number (not used).

Description

:

Get a packet from the UDP packet queue given the network descriptor
of the associated connection, the buffer in which to put the data,
the length of the buffer, and any flags.

Returned value: the number of bytes read on success; zero if no
packet are available: a negative number on errors.

Function:
Parameter

:

int icmphdlr( struct bufferblk far *)

a far pointer to a packet buffer block.

Description:
Given a far pointer to a packet buffer containing an ICMP packet,
respond appropriately to the ICMP message. If the packet is an ICMP
destination unreachable, time-to-live exceeded, redirect, or echo
message, respond appropriately. Ignore all other ICMP packets.

Returned value : zero on success; a negative number on failure.

Function:
Parameter

:

int initiphdr( struct iphdr
a pointer to an IP packet header.

Description:
Initialize the indicated IP packet header by setting the IP version
and header length, the type of service, the identification, the

fragmentation flags, the time-to-live, and the IP source address

Returned value : zero.

Function:
Parameter

:

int initudpC char
a pointer to the SNMP configuration file name.

Description

:

Initialize the UDP subroutines by getting the packet driver software
interrupt number and interface class, type, and number, and by

moving this data into the packet driver information structure.

Returned value: zero on success: a negative number on failure.
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Function; int initudppkt( struct iphdr *, int

,

unsigned char int)
Parameters: 1. a pointer to an IP packet header.

2. the length in bytes of the IP packet.
3. a pointer to a filled UDP packet data buffer.
4. the length in bytes of the UDP data buffer.

Description:
Given a pointer to an IP packet buffer, its length, a pointer to a

filled UDP packet data field, and the length of the data field,
create a UDP/IP packet by initializing the UDP and IP headers, and
moving the data into the data field. It is assumed that the IP

header is complete except for the packet lengrh field, the protocol,
and the header checksum. It is also assumed that the source and
destination UDP ports are correct.

Returned value; zero.

Function: int iphdlr( struct bufferblk far *)

Parameter: a far pointer to a packet buffer block.

Description

:

Process the IP packet taken from the Ethernet packet queue. If it

is a TCP, UDP, or ICMP packet, add it to the appropriate packet
queue or send it to the appropriate packet handler.

Returned value: zero on success; a negative number on error.

Function

:

Parameters: 1.

2 .

3.

4.

int sendudppkt( int, unsigned char *, unsigned int,

unsigned int)

a network descriptor.
a pointer to a filled UDP packet data buffer,
the length of the UDP packet data buffer,
a flags variable (not used).

Description;
Encapsulate in a UDP packet the indicated number of bytes in the

filled data buffer and send it to the host associated with network
descriptor. The flags variable is not used in this implementation.

Returned value: the number of bytes sent on success; otherwise
return a negative number.
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Function

:

int udplisten( long, unsigned int , unsigned int

,

unsigned long)
Parameters: 1, a remote host IP address in network form.

2. the remote host's socket number.
3. the local host's socket number.
4. an option variable (not used).

Description:
Given a remote host number and a socket number on that host, and a
local host socket, listen for UDP packets from that host to this
one. If the host number is zero, UDP packets from all hosts will be

accepted

.

Returned value: a network descriptor upon successfully initiating
listening, or a negative number on error.

Function: int udprelease( int)

Parameter: the network descriptor to be released.

Description:
Release any resources associated with the given network descriptor.

Returned value: zero on success; a negative number on error.

Function: int udpreleasealK void)
Parameters: none

Description

:

Release all network descriptors and any associated resources.

Returned value: zero on success; a negative number on error.
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Ethernet packet queue management routines.

Function: int addarpent( struct arppkt far *)

Parameter: a far pointer to an ARP packet.

Description:
Given a far pointer to an ARP reply packet, add the necessary data
to the ARP table to create an appropriate ARP entry.

Returned value: zero on success; a negative number on failure.

Function: int arphdlr( struct bufferblk far *)

Parameter: a far pointer to a packet buffer block.

Description:
Respond to an ARP packet taken from the packet queue. Send a

response to an ARP request, or create an ARP table entry from an ARP
reply.

Returned value: zero on success; a negative number on errors.

Function

:

Parameters : 1

.

2 .

3 .

int cmpstr( unsigned char *, unsigned char *, int)

a pointer to an unsigned character string,

a pointer to an unsigned character string,

the number of characters to be compared.

Description:
Given pointers to two strings of unsigned characters, compare them
for the indicated number of bytes.

Returned value: if they match, return zero; otherwise return a

negative number.

Function

:

Parameters: 1.

2 .

3.

int fcmpstr( unsigned char far *,

unsigned char far *, int)

a far pointer to an unsigned character string,

a far pointer to an unsigned character string,

the number of characters to be compared.

Description:
Compare the indicated number of bytes of two byte strings pointed to

by far pointers.

Returned value: zero if they match; otherwise return a negative
number

.
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Function: int fmovestrC unsigned char far
unsigned char far int)

Parameters: 1. a far pointer to an unsigned character string.
2. a far pointer to an unsigned character string.
3. the number of characters to be moved.

Description:
Move a string of bytes from one far location to another.

Returned value: the number of bytes moved.

Function: unsigned char *getethaddr( unsigned char *)

Parameter: a pointer to an Internet address in network form.

Description

:

Given a pointer to an Internet host address, return a pointer to the

appropriate Ethernet address (a string of hexadecimal bytes).

Returned value: if the host is on the local Internet subnet, return
the pointer to the host's Ethernet address; if it isn't, return the
pointer to the local gateway's Ethernet address.

Function: int getpkts( void)
Parameters: none

Description:
Remove any packets from the packet driver packet queue and dispatch
them to the appropriate processing routines.

Returned value; a positive number if packets were processed
successfully; zero if no packets were available for processing; a

negative number on errors.

Function: int movestr( unsigned char *, unsigned char *, int)

Parameters: 1. a pointer to an unsigned character string.
2. a pointer to an unsigned character string.
3. the number of characters to be moved.

Description:
Given a pointer to a string of bytes, a pointer to the desired
location of those bytes, and the number of bytes in the string, move

the bytes so that the destination string does not overwrite the

source string until the source string has been read.

Returned value: the number of bytes moved on success; a negative
number on errors.
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Function: int sendarprep( struct arppkt far *)

Parameter: a far pointer to an ARP packet.

Description

:

Given a far pointer to an ARP request packet, send an ARP response
packet

.

Returned value: an integer zero on success; a negative number on
failure

.

Function: int showarptbK void)
Parameters: none

Description

:

Print the contents of the ARP table on the console.

Returned value: an integer zero on success; a negative number on
failure.

Function: unsigned char *srcharptbl( unsigned char
Parameter: a pointer to an IP address in network form.

Description

:

Given a pointer to a host's IP address as a string of four
hexadecimal bytes, look for a corresponding Ethernet address in the

ARP tables.

Returned value: a pointer to the correct hexadecimal address (as a

string of bytes); otherwise, a null pointer.

- D-25 -



Socket manager routines.

Function; unsigned char *getcmunp( int)
Parameter: a network descriptor.

Description:
Return the pointer to the SNMP community name associated with the
indicated network descriptor.

Returned value: a pointer to an SNMP community name (as a null-
terminated ASCII string), or a null pointer on error.

Function: int getconninfo( int, struct sockdata *)

Parameters: 1. a network descriptor.
2. a pointer to an empty connection information array.

Description:
Fill in the given array of socket information with the information
about the connection associated with the indicated network
descriptor.

Returned value: zero on success; a negative number on errors.

Function: int getnxtsendnd( int)

Parameter; a network descriptor.

Description

:

Find the next network descriptor for sending packets in the socket
information table given a current network descriptor. If the

current network descriptor is -1, find the first network descriptor
for sending packets in the table.

Returned value: a network descriptor, or a negative number on error

Function: int getnxttrapnd( int)

Parameter: a network descriptor.

Description:
Find the next network descriptor for receiving SNMP trap packets in

the socket information table given a current trap network
descriptor. If the network descriptor passed to this routine is -1

start with the first trap network descriptor.

Returned value: a network descriptor, or a negative number on error
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Function: long getconnreqid( int)
Parameter: a network descriptor.

Description

:

Return the request identifier in the connection information
structure associated with the indicated network descriptor.

Returned value: a request identifier as a long integer, or a negative
number on error

.

Function:

Parameters: 1.

2 .

3.

4.

int gettstpkt( int, unsigned char *, unsigned int,

unsigned int)

a network descriptor,
a pointer to an empty packet buffer,
the length of the packet buffer,
a flags variable (not used).

Description

:

Note: This is a debugging routine. Get a UDP packet from the UDP
queue

.

Returned value: a positive number on success; a negative number on

errors

.

Function: int set_option( int, int, int, char far
,
int)

Parameters

:

1. a network descriptor.
2. a protocol indicator.
3. the number of the option to manipulate

.

4. a far pointer to the option value

.

5

.

the number of bytes in the option value.

Description:
Enable the option specified for the given network descriptor. For
the packet driver no options are accepted. It may be required for
non-packet driver implementations.

Returned value : zero

.

Function:
Parameters: 1.

2.

3.

int net_listen( int, int, struct addr *)

a network descriptor.
the number of the protocol to use in listening,
a pointer to a connection information structure.

Description

:

Enable the packet driver for receiving IP packets from the

indicated remote host and socket which were sent to the local
socket. The current implementation accepts only the IP protocol
number

.

Returned value: zero on success; a negative number on errors.

- D-27



Function

:

Parameters: 1.

2

.

3.

4.

5 .

int net_readfrom( int , char unsigned int

,

struct addr unsigned int)
a network descriptor.
a pointer to an empty packet data buffer,
the length of the empty packet buffer in bytes,
a pointer to a connection information structure,
a flags variable (not used).

Description:
Given a network descriptor, a pointer to a buffer, the length of

that buffer, a pointer to socket data, and a flags value, check the

appropriate packet queue (as identified by the socket protocol) for
packets meant for the specified network descriptor. If any are
found, copy the data from the the first packet into the buffer,
providing the buffer is large enough.

Returned value: zero if no packets are available; the number of

bytes transferred into the data buffer if a packet is available
; or

a negative number on errors.

Function: int net_connect( int, int, struct addr *)

Parameters: 1. a network descriptor.
2. the protocol to use in attempting a connection.
3. a pointer to a connection information structure.

Description:
Given a network descriptor, the protocol to use in sending packets
on the descriptor, and a pointer to a structure containing the

remote host, remote socket, and local socket to use, establish a

connection with the remote host. Only UDP is currently supported
as the connection protocol.

Returned value: a network descriptor on success, otherwise a
negative number.

Function: int net_writeto( int, char *, unsigned int,

struct addr unsigned int)

Parameters

:

1. a network descriptor.
2

.

a pointer to a filled packet data buffer.

3. the length of the empty packet buffer in bytes.
4. a pointer to a connection information structure.
5. a flags variable (not used).

Description:
Given a network descriptor, a pointer to a buffer containing data,

the length of the data in the buffer, a pointer to socket
information, and any flags, send a packet containing the data in the

buffer to the host specified by the network descriptor and the

socket information. Only UDP protocol is supported.

Returned value: zero on success, or a negative number on errors.
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Function:
Parameters:

int net_getdesc( void)
none

Description

:

Get the next available unused network descriptor

Returned value

:

errors

.

a network descriptor, or a negative number on

Function:
Parameters

:

Description:

int net_releaseall( void)

none

Release all network descriptors currently in use

Returned value

:

always zero.

Function:
Parameter

:

int net_release( int)

the network descriptor to be released.

Description

:

Release the specified network descriptor

Returned value: always zero.

Function:
Parameter

:

Description:

void pneterror( char *)

a pointer to a string to be printed before the

network error message is printed.

Print an error message on the console based on the errors in the

'neterrno' and 'netsuberrno ' variables.

Returned value

:

none

.

Function:
Parameters

:

Description:

int sendtstpkt( void)
none

Note: This is a test routine. Send a UDP packet to the agent at

a specific Internet address.

Returned value: the network descriptor of the connection on which
the packet was sent, or a negative number on errors.
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Function

:

Parameters: 1.

2.

int setrinfopC int , struct routinfo *)

a network descriptor.
a pointer to an agent information structure.

Description

:

Find the socket information structure associated with the network
descriptor. In the socket information structure set the value of

the pointer to an agent information structure to be the value of the
given agent information structure pointer.

Returned value: zero on success; a negative number on error.

Function:
Parameters: 1.

2.

int setconnreqid( int, long)

a network descriptor.
an SNMP connection request identifier.

Description:
Set the request identifier in the socket information structure
associated with the indicated network descriptor to the given value

Returned value: zero on success; a negative number on error.
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SNMP request packet related routines.

Function: struct objinfo *getobjidstrc( unsigned char *)

Parameter: a pointer to an SNMP object.

Description

:

Return a pointer to the MIB object information structure associated
with the indicated object.

Returned value: a pointer to an object information structure, or a

null pointer on error.

Function:
Parameters: 1.

2 .

3.

long getreqC struct routinfo unsigned char int *)

a pointer to an agent information structure,
a pointer to an empty SNMP data packet buffer,
the length of the SNMP empty packet buffer in bytes.

Description

:

Given a pointer to a structure which contains information about what
SNMP variable values should be retrieved from which agent (an agent
information structure), and an empty packet buffer of the indicated
length, create a packet containing an SNMP Get Request message in

the buffer to retrieve the value of the variables listed in the

agent information structure.

Returned value: the positive long integer used in the packet as the

request identifier value on successfully formating the packet, or a

negative long integer on error.

Function: unsigned char *getvardesc( struct objinfo *)

Parameter: a pointer to an object information structure.

Description:
Format an SNMP object for the variable defined by the indicated
object information structure.

Returned value: a pointer to the byte string of the object
identifier on success; a null pointer on error.
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Function: struct objinfo *searcharr( struct objinfo char *)

Parameters: 1. a pointer to an object information structure.
2. a pointer to a null-terminated ASCII string

containing the name of an MIB object.

Description:
Search the MIB array of object information structures for the
structure which corresponds to the variable name pointed to by the

name pointer. Start searching the MIB structure at the indicated
object structure.

Returned value: a pointer to the appropriate structure, or a null
pointer on errors.
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SNMP response packet related routines.

Function: int analresp( int , unsigned char
Parameters: 1. a network descriptor.

2. a pointer to a buffer contain an SNMP response
message

.

Description:
Analyze the SNMP response message received on the indicated network
descriptor

.

Returned value: the network descriptor upon successful analysis, or

a negative number on error. Successful analysis depends on the

message. It may be updating the agent/variable database, printing
a trap message on the console, or nothing at all.

Function: int getreqid( unsigned char *, long *)

Parameters: 1. a pointer to an SNMP request identifier object.
2. a pointer to a request identifier storage area.

Description:
Replace the value of the pointed to request identifier with the
value of the request identifier object.

Returned value: zero on success; a negative number on failure.

Function: struct routinfo *getroutinf o( long, struct routinfo *)

Parameters: 1. an IP address in network form.

2. a pointer to an agent information structure.

Description:
Get a pointer to the agent information structure following the

indicated one which contains the indicated network address. If the
given agent information structure is a null pointer, get a pointer
to the first agent information structure associated with the given
network address.

Returned value: a pointer to an agent information structure, or a

null pointer on error.
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Function

:

struct varinfo *getvarinfo( struct routinfo *,

struct objinfo *, unsigned char *, int)
Parameters; 1. a pointer to an agent information structure.

2. a pointer to an object information structure.
3. a pointer to an encoded SNMP variable index value.
4. the length in bytes of the encoded index value.

Description:
Given a pointer to an agent information structure , a pointer to an
object information structure , a pointer to a null-terminated string
which contains a encoded index value, and the length of the encoded
index string, find a pointer to the variable information structure
which is associated with the agent information structure, has the

same variable as that in the object information structure, and has
the same index as that in the index string.

Returned value: a pointer to a variable information structure, or a

null pointer on error.

Function: int iflndex_f( unsigned char *)

Parameter: a pointer to an SNMP message index number.

Description:
Determine the index number of the interface about which "interesting
data" is being reported by an SNMP trap message. (A pointer to this
routine is put into the object information structure in the MIB for
the 'if Index' variable.)

Returned value; the index number of the interface, or a negative
number on error

.

Function: int ifOperStatus_f ( unsigned char *)

Parameter: a pointer to an encoded SNMP interface operational
status message.

Description:
Perform the necessary functions when a response from an SNMP agent
contains information about an interface's operational status.

(Obsolete, but provided for educational purposes. Originally a

pointer to this function was put in the MIB for the variable
' ifOperStatus ' . The "necessary functions" were to print on the

console the value of the agent interface's operational variable.)

Returned value; the index value of the interface indicated in the

SNMP message, or a negative number on errors.
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Function; int resperr( struct sockdata int
, int,

unsigned char *)

Parameters; 1. a pointer to a socket data structure.
2. the SNMP response message error status.
3. the SNMP response message error index.
4. a pointer to the SNMP message encoded variable

bindings field.

Description

;

Analyze an SNMP response error packet given the error status, error
index, and a pointer to the variable bindings. An error message is

printed on the console that attempts to explain why the request
message was in error based on the information in the response
message

.

Returned value; zero on success; a negative number on failure.

Function; int savevaK struct varinfo *, unsigned char *)

Parameters; 1. a pointer to an SNMP varible information structure.
2. a pointer to an SNMP encoded object.

Description;
Given a pointer to a variable information structure and a pointer to

an SNMP object
,
put the value of the SNMP object in the given

information structure.

Returned value; zero on success; a negative number on error.

- D-35 -



SNMP object related routines.

Function: unsigned int atohex( char *)

Parameter: a pointer to null-terminated string of hexadecimal
digits encoded in ASCII.

Description:
Given a pointer to a null-terminated string of ASCII characters
representing a string of hexadecimal digits, convert them to an
unsigned integer of the correct value.

Returned value: the unsigned integer value of the hexadecimal
string

.

Function: unsigned char *checkcmun( unsigned char int)
Parameters: 1. a pointer to an SNMP encoded object.

2. a network descriptor.

Description:
Check the SNMP community object pointed to for a match with the
community of the network descriptor indicated.

Returned value: on a match, a pointer to the SNMP object following
the one pointed to by the object pointer , or a null pointer on a

mismatch.

Function:
Parameters: 1.

2 .

3.

unsigned char *checkpkt( unsigned char *, int, int)

a pointer to a filled SNMP packet buffer,
the length of the packet buffer in bytes,

a network descriptor.

Description:
Check the SNMP format of the packet in the buffer of the indicated
length. The first byte of the buffer is the first data byte of the

UDP packet and does not include the Ethernet, IP, or UDP packet
headers

.

Returned value: a pointer to the first SNMP object in the buffer if

the format is correct; a null pointer on error.

Function: unsigned char *checkver( unsigned char
Parameter: a pointer to an SNMP encoded version object.

Description:
Check the value of the SNMP version object pointed to against the

version of SNMP that this software is comipatible with.

Returned value: a pointer to the community object in the message on

success; a null pointer on error.
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Function: long decdsubid( unsigned char **)

Parameter: a pointer to a pointer to an SNMP encoded
sub-identifier object.

Description:
Given a pointer to a pointer to an encoded object in an SNMP object
identifier, decode the object and adjust the pointer to the object
so it points to the first object past the decoded one.

Returned value: the decoded long integer.

Function: int encdsubid( unsigned long, unsigned char *, int)
Parameters: 1. a integer to be encoded.

2. an empty object buffer.
3. the length of the object buffer in bytes.

Description

:

Encode the given positive integer to produce an SNMP object in an
object identifier. Put the encoded bytes in the designated buffer
while checking to see if the buffer is large enough.

Returned value: the number of bytes in the encoding, or a

negative number on error.

Function: unsigned char *f inddataf ld( unsigned char *)

Parameter: a pointer to an SNMP object length field.

Description:
Given a pointer to a length field of an SNMP object, return a

pointer to the data field of that object.

Returned value: a pointer to the data field of an SNMP object, or a

null pointer on error.

Function: unsigned char *findlenfld( unsigned char *)

Parameter: a pointer to an SNMP object tag field.

Description

:

Given a pointer to the tag field of an SNMP object, return a pointer
to its length field.

Returned value: a pointer to the length field of an SNMP object, or a

null pointer on error.
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Function: int getintval( unsigned char *, void *, int)
Parameters: 1. a pointer to an SNMP encoded integer object.

2. a pointer to an integer/long integer variable.
3. the length of the integer/ long integer storage

area in bytes.

Description:
Get the value of the the encoded SNMP integer object pointed to by
the given pointer. Put the integer value in the indicated location,
making sure the location is large enough.

Returned value: zero on success or a negative number on error.

Function:
Parameter:

Description:
Given a pointer
object.

Returned value:
on error.

unsigned char *getnxtobj( unsigned char *)

a pointer to an SNMP object.

to an SNMP object, return a pointer to the next SNMP

a pointer to the next SNMP object, or a null pointer

Function: int getobjlen( unsigned char *)

Parameter: a pointer to an SNMP object.

Description:
Get the length in bytes of the data field of an SNMP object from the

length field pointed to by the given length field pointer.

Returned value: the length of the indicated data field of an SNMP
object, or a negative number on error.

Function: int getobjptrs( unsigned char *, struct objptrs *)

Parameters: 1. a pointer to an SNMP object.
2. a pointer to an empty object pointers structure.

Description:
Given a pointer to an SNMP object and an empty structure of pointers
concerning that object, fill in the structure with pointers to the

fields of the object.

Returned value: zero on success, or a negative number on error.
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Function: int snmpnettoascC unsigned char *,

Parameters; 1.

2

.

3.

unsigned char *, int)
a pointer to a MIB ipAddress object,
a pointer to an empty ASCII character buffer,
the length in bytes of the ASCII buffer.

Description:
Convert an IP address encoded as an SNMP 'IpAddress' object to a

null-terminated string of ASCII characters in the familiar dot
notation in the buffer indicated. Check for a large enough buffer

Returned value

:

zero on success, or a negative number on failure.

Function:
Parameters: 1.

2.

int setobjlen( int, unsigned char *)

the length of an SNMP encoded object.

a pointer to an SNMP encoded object length field.

Description:
Encode the indicated length of an object into an SNMP object length
field and put the new value in the given location.

Returned value; the number of bytes used in creating the length
field, or a negative number on error.

Function:
Parameter;

int wait( unsigned int)

the number of milliseconds to wait.

Description:
Wait for at least the number of milliseconds given

Returned value: always zero.
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SNMP database related routines.

Function: struct routinfo *analdb( char *)

Parameter: a pointer to a null-terminated ASCII string
containing a file name.

Description:
Given the name of an SNMP database file, read the file and create
memory resident agent and variable information structures for use by
other functions.

Returned value : a pointer to the structure in the agent and
variable information structure linked lists, or a null pointer on
errors.

Function

:

Parameters: 1.

2 .

3.

4.

int encdindex( char *, unsigned char int

,

struct objinfo *)

a pointer to a null-terminated ASCII string
containing an SNMP variable's index value,

an empty encoded index buffer,
the length in bytes of the index buffer,
a pointer to an object information structure.

Description:
Given a pointer to a null-terminated ASCII string of characters
containing an index value and a pointer to an object information
structure, convert the string into an SNMP encoded index for the
type of object in the object information structure. Put it in the

indicated buffer.

Returned value: the number of bytes of the encoded index in the

buffer, or a negative number on error.

Function: struct routinfo 5*:fiiicmunblk( char **)

Parameter: a pointer to a null-terminated ASCII string of

community agent lists.

Description:
Given a pointer to a pointer to a null-terminated ASCII string of

SNMP agent information, get memory for and fill in with the

appropriate data the various structures for one SNMP community.
Modify the pointer to the ASCII data to point past the used data.

Returned value: a pointer to the group of filled-in agent
information structures on success, or a null pointer on errors.
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Function: struct routinfo illroutblk( char , char *)

Parameter: a pointer to a null-termianted ASCII string of

agent information lists.

Description:
Given a pointer to a pointer to a null-terminated ASCII string of

SNMP agent information, get memory for and fill in with the
appropriate data the various structures for one agent. Modify the

pointer to the ASCII data to point past the used data.

Returned value: a pointer to a filled-in agent information
structure on success, or a null pointer on errors.

Function: int freerblk( struct routinfo *)

Parameter: a pointer to the agent information structure to be

freed.

Description:
Free the indicated agent information block, fix the chain of agent
information block pointers, and free any variable information blocks
associated with the freed agent information block.

Returned value: zero on success; a negative number on error.

Function: int freevblk( struct routinfo *, struct varinfo *)

Parameters: 1. a pointer to an agent information structure.
2. a pointer to the variable information structure to

be freed.

Description:
Free the variable information block associated with the indicated
agent information block and fix the chain of variable information
block pointers.

Returned value: zero on success; a negative number on error.
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string utilities.

Function

:

Parameters: 1.

2 .

3.

int crapstr( unsigned char *, unsigned char int)
a pointer to a string of unsigned characters,
a pointer to a string of unsigned characters,
the number of characters to compare.

Description:
Compare two strings a character at a time for the given number of

characters

.

Returned value: zero on success, non-zero on failure.

Function: unsigned char *findstr( unsigned char *,

unsigned char *)

Parameters: 1. a pointer to a null-terminated string of unsigned
characters

.

2. a pointer to a null-terminated string of unsigned
characters

.

Description:
Find the null-terminated first string in the null-terminated second
string. The nulls don't have to match.

Returned value: a pointer to the character in the second string
where the match begins, or a null pointer on failure.

Function: int getreply( char)
Parameter: the desired character to be received from the

console

.

Description:
Test to see if the first character received from the console
keyboard matches the one passed to this routine. Discard the rest
of the input line, including the '\n'.

Returned value: zero on a match, a positive number on a non-match,
and a negative number on an error.

Function: int raovenstr( unsigned char unsigned char *)

Parameters: 1. a pointer to a null-terminated string of unsigned
characters

.

2. a pointer to a memory location.

Description:
Given a pointer to a null-terminated string and a pointer to a

location at which that string is to be replicated, move all of the

bytes including the null terminator.

Returned value: the number of bytes moved, not including the null
terminator, on success; a negative number on failure.
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SNMP trap packet processing routines.

Function: int analtrap( int , unsigned char
Parameters: 1. a network descriptor.

2. a pointer to an encoded SNMP trap message.

Description:
Analyze the SNMP trap message for correct format and process any
information reported by it. If the variables mentioned in the trap
message are contained in the SNMP database of variables being
monitored, put the new values in the database. Otherwise, do what
is appropriate (usually print a message on the console) with the

information contained in the message.

Returned value: zero on success; non-zero on error.

Function: int authenticationFailure_f ( long, unsigned char *)

Parameters: 1. an IP address in network form.

2. a pointer to an encoded SNMP authentication failure
message

.

Description:
Given an agent's IP address in the form of a long integer and a

pointer to an SNMP 'authentication failure' trap message, print on

the console the message that the given agent reported an
authentication failure.

Returned value: zero.

Function: int cktraps( void)
Parameters: none

Description:
Check if trap packet reception is enabled. If it is not, do so.

Returned value: zero on success; a negative number on errors.

Function: int cleartraps( void)
Parameters: none

Description:
Clear any trap network descriptors that have been allocated so that
trap messages will not be accepted.

Returned value: always zero.
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Function: int coldStart_f( long, unsigned char )

Parameters: 1. an IP address in network form.
2. a pointer to an encoded SNMP cold start message.

Description

:

Given an agent's IP address in the form of a long integer and a

pointer to an SNMP 'cold start' trap message, print on the console
the message that the given agent reported undergoing a cold start.

Returned value: always zero.

Function: int egpNeighborLoss_f ( long, unsigned char *)

Parameters: 1. an IP address in network form.
2. a pointer to an encoded SNMP EGP neighbor loss

message

.

Description:
Given an agent's IP address in the form of a long integer and a
pointer to an SNMP ' egpNeighborLoss ' trap message, print on the

console the message that the given agent reported a External Gateway
Protocol neighbor loss condition.

Returned value: always zero.

Function: int enterpriseSpecif ic_f ( long, unsigned char *)

Parameters: 1. an IP address in network form.
2. a pointer to an encoded SNMP enterprise specific

message

.

Description

:

Given an agent's IP address in the form of a long integer and a

pointer to an SNMP ' enterpriseSpecific ' trap message, print on the

console the message that the given agent reported an enterprise
specific condition.

Returned value: always zero.
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Function: int linkDown_f( long, unsigned char
Parameters: 1. an IP address in network form.

2. a pointer to an encoded SNMP link down message.

Description:
Given an agent's IP address in the form of a long integer and a

pointer to an SNMP 'linkDown' trap message, check the SNMP database
for an agent address and an ' ifOperStatus ' variable and index
matching the one given in the trap message. If one is found, set

its value to the equivalent of "down" , set the time stamp to the

current time, and increment the change flag if the variable's value
changed. If no matching variable is found, print a message on the

console that the interface for the given agent has gone down.

Returned value: zero on success; a negative number on error.

Function: int linkUp_f( long, unsigned char *)

Parameters: 1. an IP address in network form.

2. a pointer to an encoded SNMP link up message.

Description:
Given an agent's IP address in the form of a long integer and a

pointer to an SNMP 'linkUp' trap message, check the SNMP database
for an agent address and an 'ifOperStatus' variable and index
matching the one given in the trap message. If one is found, set

its value to the equivalent of "up", set the time stamp to the

current time, and increment the change flag if the variable's value
changed. If no matching variable is found, print a message on the

console that the interface for the given agent has come up.

Returned value: zero on success; a negative number on error.

Function: int settraps( void)
Parameters: none

Description:
Start the UDP server listening for SNMP Trap packets.

Returned value: zero on success; a negative number on error.

Function: int warmStart_f( long, unsigned char *)

Parameters: 1. an IP address in network form.
2. a pointer to an encoded SNMP warm start message.

Description

:

Given an agent's IP address in the form of a long integer and a

pointer to an SNMP 'warmStart' trap message, print on the console
the message that the given agent reported undergoing a warm start.

Returned value: always zero.
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