
NISTIR 4459

THE CONCEPT
OF THE CALCULUS
OF FIRE SAFETY

Richard L. Smith

U.S. DEPARTMENT OF COMMERCE
National Institute of Standards

and Technology

National Engineering Laboratory

Center for Hre Research

Gaithersburg, MD 20899

U.S. DEPARTMENT OF COMMERCE
Robert A. Mosbacher, Secretary

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
John W. Lyons, Director

NIST



1



NISTIR 4459

THE CONCEPT
OF THE CALCULUS
OF FIRE SAFETY

Richard L. Smith

U.S. DEPARTMENT OF COMMERCE
National Institute of Standards

and Technology

National Engineering Laboratory

Center for Rre Research

Gaithersburg, MD 20899

November 1990

U^. DEPARTMENT OF COMMERCE
Robert A. Mosbacher, Secretary

NATIONAL INSrnUTE OF STANDARDS
AND TECHNOLOGY
John W. Lyons, Diroetor





Table of Contents

Introduction 1

Basic Fire Safety Problem 3

The Calculus of Fire Safety 5

Examples from the ASKBUDJr Problem 7

General Examples 8

Levels of abstractions 9

Conclusions and 9

References 11

Appendix A: The Generations of Languages 15

Appendix B: The AskBudJr Problem 16



Abstract

Many people (builders, owners, designers, occupants, etc.) have
an interest in appraising the fire safety of existing or proposed
buildings. Computers are playing an ever increasing role in fire
safety analysis and in the technology transfer of fire science.
In this report the concept of the Calculus of Fire Safety is
developed as a declarative programming language. This calculus
will enable users to specify what fire safety question is to be
answered without specifying how the answer is to be obtained.
Advances in Artificial Intelligence programming techniques will
enable the implementation of the Calculus of Fire Safety on
widely available workstations. This will provide a very powerful
tool to anyone interested in determining the fire safety of
buildings

.

Key Words: Artificial intelligence, expert systems, computer
programs. Fire Safety, Fire Risk

iv



Introduction

The purpose of this report is to describe the concept of the
Calculus of Fire Safety (CFS) and its potential significance.
What is presented is not intended to be the final form of the
CFS, but just an illustration of the concept of this calculus.
Also, no effort will be made to describe how this calculus will
be implemented or realized.

One definition for calculus is "A method of analysis or
calculation using a special symbolic notation." [1]. A Calculus
of Fire Safety is, therefore, a method of reasoning, analyzing,
or calculating fire safety questions using a special symbolic
notation. Possibly the most powerful realization of the CFS will
be its implementation in software for computers. However, it will
also serve as powerful tool for persons to think about fire
safety problems and for communication about such problems.

Computers and computer programs are playing an increasingly
important role in moving modern fire science out of the
laboratory into the main stream of fire protection. The use of
computers promise to greatly improve the process of technology
transfer and utilization [2]. Advances in Artificial Intelligence
should enable the development of expert-system programs that can
enable one to comply more readily with building codes [3] [4]
[5]. Current examples of conventional programs that have the
potential of having a significant impact on fire safety are
FPETOOL [6] and Hazard I [7].

FPETOOL is a program containing a collection of engineering
equations and models that are useful in estimating potential fire
hazard and the response of the space and fire protection systems
to the developing hazard. It is a compiled Basic program. The
principal users of this program are expected to be practicing
fire protection engineers. The author of FPETOOL recommends that
the users understand the basic principles being applied by the
program so that they can decide on the degree of confidence to be
given to the results obtained. The user does not write computer
code to operate this software. The individual procedures are
called from a common menu and menus indicate the required inputs.
The output is numerical and has to be interpreted by the user.
This interpretation requires considerable skill in fire
protection technology.

HAZARD I is a program that can be used for fire hazard assessment
as it relates to human incapacitation. It is written in Basic and
FORTRAN. Menus are used to obtain the input from users. It is

recommended by the authors that the user needs to have extensive
familiarity with fire science and engineering and all types of
related data to successfully use the program. Its output requires
significant skill in fire technology to correctly interpret the

1



results. Also, as with FPETOOL, the user does not write computer
code in a programming language to operate this software.

Computer languages can be described as covering a continuous
spectrum from purely imperative at one extreme to purely
declarative at the other extreme. We will use the terminology of
Petre and Winder [8] to classify programming languages.
Imperative languages express sequences of operations required to
achieve a calculation. On the other hand, declarative languages
focus upon what is to be calculated instead of how the
calculation is to be done. How the calculation is accomplished
depends on the implementation of the declarative language. The
algorithms to do the calculation are contained in its
implementation. One great advantage of a declarative language is
that it can be used to minimize the distance in the user's mind
between the expression of the problem and the input required by
the software. This is accomplished by shifting the emphasis of
programming from prescription of operations to be performed, to
definition of the result to be computed.

Familiar languages can be placed on this spectrum. Going from the
imperative end of the language spectrum to the declarative end
there are the languages FORTRAN, C, LISP, and PROLOG. FORTRAN is
about as close to an imperative language as a high level language
can get. Although PROLOG is a significant distance from the
declarative end of the spectrum, it is closer to the declarative
end of the spectrum than any of the others listed.

Computer languages can also be described as belonging to a
particular generation of languages (See Appendix A) . For example
FORTRAN is a third generation language and PROLOG can be
considered as an embryonic fifth generation language.

One function of a computer language is to make a computer perform
certain operations. However, it can also be a formal medium for
representing ideas about some particular domain [10]. It can
serve as a framework upon which one can organize or represent
ideas. Modern computer science provides facilities for
controlling complexity, such as found in many fire problems, by
building abstractions that hide details when appropriate. Complex
programs can be constructed by building computational objects of
increasing complexity. In decomposing a complex problem it is
critical that each subprocedure performs a specific task that can
be used as a module in defining other procedures. A well designed
program is deigned in a modular manner, so that the modules can
be developed, replaced, and debugged independently.

High level programming languages or third generation languages
are computer languages which are designed to fit particular
problems domains such as FORTRAN for numerical computation. It is

believed that one can improve on high level programming languages
by developing a higher level language that provides a higher

2



degree of expressive power within the subject domain [11] [13].
In any domain there are likely to be a collection of underlying
facilities for many programs in the domain [12]. Specifying and
implementing those underlying facilities is an important,
distinguishable part of the task of program development. This
specifying and implementing can constitute the development of a
language of a newer generation. This newer generation language
may have a great deal of domain specific information built into
it and it may be of limited scope. However, its limited scope can
be more than compensated for by power to efficiently and
effectively solve problems within the particular domain.

CFS can be viewed as a limited scope fifth generation language
designed to address the problem of fire safety. A typical person
interested in fire safety should be able to write programs that
would run interactively using this language without any
significant formal training in CFS and the results should be in a
form which he can readily use. The user would be assured that
the program would always use the most appropriate fire technology
to solve the problem. In addition, CFS should greatly assist one
to: organize one's thinking, discussions, and communications.

The next section will describe the basic fire safety problems. It
is followed by a discussion of the CFS at the highest level of
abstraction. Then in the following section some examples for the
idealized simplistic ASKBUDJr problem domain (See Appendix B)

will be discussed. Next, there is a discussion of various level
of abstractions of CFS. Finally, the conclusions and
recommendations for future work will be presented.

Basic Fire Safety Problem

There are a large number of people who have similar questions
about the fire safety of buildings or items in buildings. One
category of questions relates to safety, another relates to
whether one has complied with the fire safety laws or what
liability one is subjecting oneself to. We will limit ourself to
only questions that relate to safety. That is, whether there is a

reasonable expectation that an unwanted fire will cause losses
due to physical damage.

From one perspective, fire is a simple phenomena. A fire starts.
It grows or burns until it goes out. As a consequence of the
burning there are losses in the form of damages to inanimate or
animate objects. The inanimate objects are normally the parts of
the building or its contents. The animate objects of most
interest are normally humans. The expected losses are highly
dependent upon the attributes of the particular objects involved
in the fire.

3



Let us try to formulate a precise form for a typical fire safety
question that a building owner/occupant might ask. But first let
us look at some imprecise questions. Some imprecise questions
are: What are the

A. expected total losses per year,

B. expected loss of life per year,

C. expected injuries per year,

D. expected structural losses,

E. expected content losses, and

F. expected loss due to inability to use
the building?

A precisely formulated question would need to contain additional
information, for example:

What is the expected loss of life during the next five
years in the apartment building at 77 Wester Vista Ave,
Rockville, MD if the present economic class of occupants
remains the same, the present level of fire department
service remains unchanged, the neighborhood does not
change in any significant manner, . .

.

Let us examine the major components of this question. The first
major part is "What is the expected loss," which characterizes
the general nature of the question. The second major part "life"
actually contains two pieces of information: (1) the degree of
damage, i.e. death; and (2) the object damaged, i.e., any human
associated with the property of interest. The third major part is
the time interval of interest. The final major part is a
specification of the exact property of interest and any other
factors that might have a bearing on the loss of life associated
with this property. Therefore, we have identified the following
parts of a precisely formulated question on fire safety:

1. General nature of the question,
2. Degree of damage,
3. Object (s) damaged,
4. Time interval of interest, and
5. The context of the question.

Another category of questions involves probability. Examples of
these are:

A. What is the probability of a fire causing me injury if I

spend the night in this hotel?

4



B. What is the probability that a particular item will be
damaged by fire in the next six weeks?, next five years?

An example of a precisely formulated question of probability is:

What is the probability of the loss of life as a
function of time during the next five years in the
apartment building at 77 Wester Vista Ave, Rockville, MD
if the present economic class of occupants remains the
same, the present level of fire department service
remains unchanged, the neighborhood does not change in
any significant manner, . . .

We note that v/hile the general nature of the question has
changed, the parts of the question have remained basically the
same

.

In order to combine or compare different losses, we need a common
metric for the measuring of the degree of damage for the
different types of objects. One possible metric is dollars, but
the particular one chosen does not concern us now. The fire
losses could be reportable in various terms such as dollar loss,
lives lost, serious injuries, minor injuries, room loss, work
station loss, floor, etc. If all losses were converted into a
dollar equivalent, then it would be possible to select the most
cost efficient fire protection system to minimize the sum of fire
losses and cost of fire safety.

The Calculus of Fire Safety

We have, from the above discussion, two general questions we wish
to answer. The first one relates to expected values and the other
to the probability of some loss. We want a representation that
will be readily understandable by the typical user, but also
consistent with being able to stimulate a computer to do the
right thing. We will not consider free form English as possible
input. However, we could consider the following form as a viable
candidate

:

CFS>- Expected-loss of-degree for-object in-time-interval with-
context

In this expression "Expected-loss-of " identifies the type of
question being asked. The remaining parts of this expression can

^ Placing the expression CFS> in the left hand margin
indicates that what follows is what is typed into the computer
which has an implementation of the CFS running on it.

5



be considered as variables. Some typical values for each of these
variables are:

of-degree death, 2nd degree burns over 50% of
the body, slight, serious, total
loss

for-obj ect any occupant, joe, building,
room 27, main frame computer

in-time- interval next year, next five years,
life of building

with-context specification of property,
environment, and any thing that
impacts the expected losses

An examples of how this would appear for particular question is:

CFS> What is the expected loss of life in the next 5 years in the
author's office?

=>^ The expected loss of life in the author's office during the
next 5 years is 0.00001 lives.

For questions dealing with probability, we could write the
general form as:

CFS> Probability-of-loss of-degree for-object at-time with-
context.

In this expression "Probability-of-loss” identifies the type of
question being asked. The remaining terms are variable which are
the same as the ones above expected for the one referring to
time. This variable "at-time" has as its value the instantaneous
time.

An examples of how this would appear for particular question is:

CFS> What is the probability of the loss of life at noon of June
25, 1992 in the author's office?

=> The probability of the loss of life in the author's office at
noon of June 25, 1992 in the author's office is 6.34 x 10^-14.

We see that both these questions divide into two major parts and
the object of concern. One major part identifies the question and

^ This indicates the response of the program to a question
or input.

6



its specifications. The other is the context. We note that there
is some duplication in the information in the item "for-object"
and the context because the "for-object" is also in the context.
If it is not, the answers are easy to come by.

In a more compact notation v/e could write^

CFS> Qi Oi Ci

or

CFS> (Qi Oi Ci)

or

CFS> (Question-i Object-i Context-i).

Where Qi and Question-i stands for a particular question with its
variables specified, Oi and Object-i the object the question is
concerned with ("for-object"), and Ci and Context-i stand for the
corresponding context. We will try to make this clearer by using
examples from ASKBUDJr.

Examples from the ASKBUDJr Problem

The problem treated by the expert system ASKBUDJr is described in
Appendix B. We will look at possible questions users of this
program might ask.

First, as we have with all problem domains in fire safety, there
are two primary questions. These are listed in Table 1 with
possible values for the other quantities. Examples of context are
given in Tables 2 and 3 . One can see how potentially complex the
context can become and how a seemingly little change can create a
new context. From these tables we can select combinations of a
question, variables, objects, and context to form precise CFS
statements. Examples are:

CFS> Expected-loss death occupant next-five-years contextl
or
CFS> What is the expected loss of life during the next five years
in contextl.

CFS> Expected-loss total chair next-12 -months context2
or

^ This compact notation was selected by the author primarily
because of the limitations of the software used to write this
report. If another program was used, a more expressive
representation might have been used.

7



CFS> What is the expected loss due to the total loss of the chair
during the next 12 months if the chair is in context2

.

CFS> Probability-of-loss third-degree-burn-over-60%-of-the-body
occupant time contextl

CFS> Probability-of-loss slight bed life-of-building context2

The program responses are not given because they would be similar
in form to the responses give previously.

General Examples

We now turn from the application of the CFS to a particular class
of contexts of ASKBUDJr to how it might be developed in general.
Let us choose a particular guestion with appropriate variables Q1
and let focus on one object 01. Then we can write for contexts Cl
and C2

CFS> Q1 01 Cl

CFS> Q1 01 C2

It is reasonable to suppose that there will be occasions when one
would want to determine which had the greater value or by how
much do they differ. We could express this as

CFS> Greater? (Q1 01 Cl) (Q1 01 C2)

This expression can be read as saying "Is (Q1 01 Cl) greater than
(Q1 01 C2)?" Similarly we can write for the difference

CFS> Difference (Q1 01 Cl) (Q1 01 C2)

or

CFS> (Q1 01 Cl) - (Q1 01 C2)

This leads naturally to the question as to what are the
differences in the contexts. This could be expressed as

CFS> Difference Cl C2

The response would be to identify the differences between the two
contexts (e.g. the door in Cl is open and closed in C2 , The floor
is concrete in Cl and steel in C2 etc.)

.

Sometimes there may be
numerous differences and most of them are not significant for the
question Q1 and object 01. In these cases it would be desirable
to have the ability to ask for only significant differences. This
could be written as

8



CFS> Significant-Difference Q1 01 Cl C2

The response to this would be to list only the differences that
were significant.

There is much more we could say about the general usage of the
CFS

, but that will be left to later reports.

Levels of abstractions

We have been focusing on the highest level of abstraction of the
CFS so far in this report. As mentioned earlier, in the analyses
of a problem in the creation of a program, one starts at a very
high level of abstraction and works systematically to lower and
lower level of abstraction. The CFS would explicitly contain
these levels. They will be accessible by the user as desired. At
the highest level of abstraction, the top level, the CFS would
appear as described above. At lower levels there would be such
questions as:

CFS> What is the criteria for damage that was met resulting in
the death of the occupant in room 26 in contexts?

CFS> What was the value of the failing parameter of the last
question?

CFS> What is the criteria that was not met but is close to being
met?

CFS> Can room 99 flashover?

The reader is cautioned not to take the above examples of lower
level question content or form too seriously. Significant work
will have to be accomplished before these lower level questions
can be properly and precisely formulated.

The development of the appropriate data and procedure abstraction
will provide a flexible structure into which all fire data and
fire process computational models can readily fit. This would
expedite the use of new data and fire models. It also would make
explicit the entire logical structure of the analysis of fire
safety questions.

Conclusions and Expectations

This report demonstrated a method of reasoning or analyzing fire
safety questions using a special symbolic notation, the CFS. It

9



allows a person interested in fire safety to use the most
appropriate fire technology to solve a fire safety problem and
obtain results he can understand. It has also been demonstrated
that the CFS will greatly assist the user to organize his
thinking, discussions, and communications and allow him to write
programs directly so they can run interactively. Productivity
gains should be comparable or greater than those of forth
generation languages compared to third generation languages (See
Appendix A) . It is hard to include in productivity gains the
impact of CFS of allowing people who cannot now program to write
programs that will solve important complex fire safety problems.

The interfaces for such programs as FPETOOL and HAZARD I probably
contain some of the abstraction that would go into the CFS.
However, this abstraction in these programs is implicit.
Furthermore, the interface is inflexible in the sense it is
customized for a particular limited fire problem set. On the
other hand CFS holds the promise of being a flexible language
that can address any fire safety question. Plus it can make
explicit the entire logical structure for the analysis of fire
safety questions.

We have shown how the use of the CFS enables the precise
statement of top level questions relating to fire safety. While
we have shown how to state precisely some possible top level
questions, we have not shown how to obtain answers. In the final
analysis, it is the worth of the answers that will determine the
true value of the CFS.

The next step is to show how CFS can be implemented in a simple
case. One possibility is to develop a CFS for the ASKBUDJr
problem. The development of the CFS will progress from the top
level to lower levels. Knowledge will be collected as we move
from level to level. At first, the unrealistic problem of
ASKBUDJr will be the problem addressed. After that problem has
been completed, the problem definition and solution will be
improved until we are dealing with a significant real world
problem.

The implementation of CFS will show it to be a dynamic mechanism
into which data and fire models can be placed to be used, tested,
or evaluated. CFS will be able to incorporate models regardless
of type, i.e., physical models, correlation models, or empiricpal

models. If we can obtain the knowledge of domain experts to fill
the system with knowledge, the calculus will provide answers
comparable or superior to an expert fire protection engineer.

The development of the CFS would provide a means to allow the
typical building owner/occupant and fire safety professionals to

apply the best fire safety knowledge to fire safety problems.
This would result in the cost of fire losses and fire prevention
being greatly reduced.

10



References

[1] The American Heritage Dictionary of the English Language,
Editor W. Morris, American Heritage Publishing Co. 1969

[2] Wright, Richard N. ; Lyons, John W. Machine Representation of
Standards. ASTM Standardization News pp 44 - 48; August 1986

[3] Rosenman, Michael. A.; Gero, John. S. Design Codes as Expert
Systems. Computer Aided Design, vol 17, no. 9 November 1985 pp
481-494

[4] Smith, Richard L. EXPOSURE: An Expert System Fire Code.
Natl. Inst, of Stand, and Technol . NISTIR-4373; 1990

[5] Buis, M. , Hamer, J., Hosking, J. G., and Mugridge, W. B. An
Expert Advisory System for a Fire Safety Code, in "Applications
of Expert Systems Edited by J. R. Quilan, Turing Institute Press,
1987

[6] H. Nelson "FPETOOL: Fire Protection Tools for Hazard
Estimation" Natl. Inst, of Stand, and Technol. NISTIR-4380 ; 1990

[7] Peacock, R. D. , and Bukowski, R. W. , A Prototype Methodology
for Fire Hazard Analysis. Fire Technology vol 26, No.l pl5;
February 1990

[8] Marian Petre and R. Winder "On Languages, Models and
Programming Styles" The Computer Journal nol 33, no. 2, 1990,
pl73

[9] Smith, Richard L. ASKBUDJr: A Precursor of an Expert System
for the Evaluation of Fire Hazard. Fire Technology Vol. 23, No.

1, p. 5; February 1987

[10] Abelson, H. and Sussman, G.J. with J. Sussman "Structure and
Interpretation of Computer Programs" The MIT Press 1986

[11] Hawely, R. Editor "Artificial Intelligence Programming
Environments" Ellis Horwood Limited 1987

[12] Ramsay, A. Embedding very high level languages, p61 in [11]

[13] Martin, James "Fourth-Generation Languages" Prentice-Hall,
Inc. 1985

11



Questions
Expected-loss
Probability-of-loss

of-deqree
death
third degree burns over
60% of the body
slight, serious, or total

in-time- interval
the next 12 months
next five years
life of building

for-obi ect
occupant
bed, chair, chest, table,
wastebasket, curtains &

drapes

at-time
time

Table 1. Questions, variables, and objects for ASKBUDJr

12



A B C D E
furnishing peak h- of-comb LC50 growth-rate will-ignite

1. Bed 1000 35 20 FAST NIL
2 . Chair 500 20 20 MODERATE (TABLE

CURTAINS -DRAPES)
3 . Table 500 18 60 SLOW (CHAIR)
4 . Chest 1000 25 40 SLOW NIL
5. Wastebasket 50 20 60 VERY-FAST (BED)
6 . Curtains 100 25 15 VERY-FAST (CHAIR)

8 . ROOM - dimensions in feet

A B C D E F
detector length width height door-height door-width

N 15' 12' 8 ' 7 ' 2 . 5 '

G H I J
fraction-open window-width window-height in-big-bldg

1 2.5' 2' Y

7 . Occupant

A
awake

N

B C
mobile drunk

Y N

D
heart-lung

N

E F
external-aid time-to-es

N 8.23s

G
rescue-time
1. 0F+05S

Table 2. First example of context for the ASKBUDJr problem.

13



A B C D E
furnishing peak h- of-comb LC50 growth-rate will-ignite

1. Bed 1000 35 20 FAST (TABLE
CURTAINS-DRAPES)

2 . Chair 500 20 20 MODERATE NIL
3 . Table 500 18 60 SLOW (CHAIR)
4 . Chest 1000 25 40 SLOW NIL
5. Wastebasket 50 20 60 VERY-FAST (BED)
6 . Curtains 100 25 15 VERY-FAST (CHAIR)

8 . ROOM - dimensions in feet

A B C D E F
detector length width height door-height door-width

N 15' 12' 8 ' 7 ' 2 .5'

G H I J
fraction-open window-width window-height in-big-bldg

1 2.5' 2
' Y

7 . Occupant

A B
awake mobile

N Y

C D
drunk heart-lung

N N

E F
external-aid time-to-es

N 8.23s

G
rescue-time
1. 0F+05S

Table 3. Second example of context for the ASKBUDJr problem.

14



Appendix A: The Generations of Languages

Computer languages can be classified into five generations [13].

First generation:

Machine language which is a binary notation such as
011010000111010100111100

is the language first used to program computers.

Second generation:

Symbolic assembly language used symbolic addresses rather
than physical machine addresses. Examples of languages are
SAP, AUTOCODER, and EASYCODER. This generation started in
the mid-1950s.

Third generation:

This generation is also called high-level languages and
started in the 1960s. Examples languages are ALGOL, FORTRAN,
COBOL, BASIC and LISP. The languages were the first ones
that showed significant independence from the hardware. By
using English words and mathematical notation they started
moving towards the language of the user.

Fourth generation:

This generation languages (4GL) are sometimes called high-
productivity languages since they are meant to offer
significant improvements over the third generation
languages. Improvements sought were more rapid application-
building process, reduced maintenance cost, minimize
debugging, and to increase the ability of the end user to
write his own code. Examples are FOCUS, RAMIS, NATURAL, ADS,
and UFO.

Typical productivity gains of using fourth generation
languages over third generation are 10 to 1 gain. Some
studies have reported gains in the range of from 17 to 1 to
45 to 1.

Fifth generation:

This generation is not well defined yet. However, it will
utilize developments from Artificial Intelligence such as
knowledge-based systems, expert systems, inference engines,
and natural language understanding. PROLOG can be considered
as an embryonic language of this generation. Again the
motivation for the creation of a new generation of languages
is to increase the usefulness of computers.

15



Appendix B: The AskBudJr Problem [9]

The program ASKBUDJr estimates the degree of hazard an occupant
is exposed to while occupying a single room, e.g. a bedroom, a
motel room, or a hospital room. It is assumed that:

- a fire starts in the room,
- there is only one occupant,
- the structure of the building does not become involved in

the fire,
- the room has one window and one door,
“ the room has the following furnishings; a bed, a chest, a

chair, a table, a wastebasket, and a set of curtains or
drapes

.

In ASKBUDJr, the degree of hazard the occupant is exposed to
depends upon how fast the hazard from the fire builds up versus
how fast he can evacuate the room. Of all the many things that
could influence these times, only a few are considered. However,
there is enough to identify some interesting problems.

The user of ASKBUDJr will be asked to enter or to accept the
default value for the following for each item of the room's
furnishings

;

“the peak burning rate in kW

“the effective heat of combustion, DHc, in kJ/g

“LC50, the amount of burned material per unit volume
that will kill 50% of a sample of rats in 30 minutes using a
standard test procedure in mg/L or g/m^3

“the growth rate of the burning rate as one of four t-squared
curves, i.e., slow, moderate, fast, or very fast (or zero if
it doesn't burn)

“What other items will be ignited if the one in question
burns

.

The t“squared burning curves mentioned above are defined by how
long it takes the burning curve to reach IMW for the thermal
power being released. The growth rates are defined as follows;

a slow growing curve leads to IMW in 600 sec.
a moderate growing curve leads to IMW in 300 sec.
a fast growing curve leads to IMW in 150 sec.
a very fast growing curve leads to IMW in 75 sec.

The user will also either enter or accept the default values for

the sizes of the room (length, width, and height) , the size of

16



the door and window openings, and whether there is a fire
detector/alam or not.

Finally the user inputs whether the occupant is: awake, asleep,
drunk, mobile, or nonmobile; the time the occupant would take to
move out of the room after becoming aware of the fire; and
whether the occupant has a heart or lung condition. Also the user
will input whether there is a person outside the room who can aid
the occupant and how long it would take this person to come in
and remove the occupant after becoming aware of the fire.

17





NIST-114A U.S. DEPARTMENT OF COMMERCE
(REV. 3-90) NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY

BIBLIOGRAPHIC DATA SHEET

1. PUBUCATION OR REPORT NUMBER

NISTIR 4459
2. PERFORMING ORGANIZATION REPORT NUMBER

3. PUBUCATION DATE

November 1990
4. TITLE AND SUBTITLE

The Concept of the Calculus of Fire Safety

5. AUTHOR(S)

Richard L. Smith

6. PERFORMING ORGANIZATION (IF JOINT OR OTHER THAN NIST, SEE INSTRUCTIONS)

U.S. DEPARTMENT OF COMMERCE
NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY
GAITHERSBURG, MD 20699

7. CONTRACT/GRANT NUMBER

8. TYPE OF REPORT AND PERIOD COVERED

9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (STREET, CITY, STATE, ZIP)

10. SUPPLEMENTARY NOTES

11. ABSTRACT (A 20O-WORD OR LESS FACTUAL SUMMARY OF MOST SIGNIFICANT INFORMATION. IF DOCUMENT INCLUDES A SIGNIFICANT BIBUOGRAPHY OR
UTERATURE SURVEY, MENTION IT HERE.)

Many people (builders, owners, designers, occupants, etc.) have an interest in appraising
the fire safety of existing or proposed buildings. Computers are playing an ever
increasing role in fire safety analysis and in the technology transfer of fire science.
In this report the concept of the Calculus of Fire Safety is developed as a declarative
programming language. This calculus will enable users to specify what fire safety
question is to be answered without specifying how the answer is to be obtained.
Advances in Artificial Intelligence programming techniques will enable the implementation
of the Calculus of Fire Safety on widely available workstations. This will provide a
very powerful tool to anyone interested in determining the fire safety of buildings.

12. KEY WORDS (6 TO 12 ENTRIES; ALPHABETICAL ORDER; CAPITALIZE ONLY PROPER NAMES; AND SEPARATE KEY WORDS BY SEMICOLONS)

Artifical intelligence; expert systems; computer programs; Fire Safety; Fire Risk

13. AVAJLABIUTY

UNUMITED

FOR OFFICUL DISTRIBUTION. DO NOT RELEASE TO NATIONAL TECHNICAL INFORMATION SERVICE (NT1S).
X

ORDER FROM SUPERINTENDENT OF DOCUMENTS, U.S. GOVERNMENT PRINTING OFFICE,

WASHINGTON, DC 20402.

ORDER FROM NATIONAL TECHNICAL INFORMATION SERVICE (NTIS), SPRINGRELD, VA 22161.

- X

14. NUMBER OF PRINTED PAGES

22

15. PRICE

A02

ELECTRONIC FORM



1


