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ABSTRACT
We provide a closed-form solution for obtaining 3-D structure of a scene for a

given six degree of freedom motion of a camera. The solution is massively parallel,

i.e., the range that coiresponds to each pixel is dependent on the spatial and temporal

changes in intensities of that pixel, and on the motion parameters of the camera. The

measurements of the intensities are done in a priori known directions. The solution

is for the general case of camera motion.

The derivation is based upon representing the image in the spherical coordinate

system, although a similar approach could be taken for other image domains, e.g., the

planar coordinate system. We comment on the amount of computations, errors and

singular points of the solutions. We also suggest a practical way to significantly reduce

and implement them.
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1. INTRODUCTION
ITie perception of depth is critical to survival for creatures of nature. Depth per-

ception is necessary for locomotion without collision in a complex natural 3-D world. It

is also advantageous for recognizing objects. In a natural environment, image segmenta-

tion bas^ on brightness boundaries of stationary objects is extremely difficult. It is

confounded by shadows, surface texture, and ma'kings that often produce brighmess

and color boundaries that are much more distinct than true object or surface boundaries.

In the natural world, segmentation based on motion discontinuities is much more reli-

able than segmentation based on brighmess discontinuities.

Many methods have been proposed for computing depth from visual input. Of
these, only the methods of stereo and image flow can compute depth directly without

any Imowledge of, or understanding about, the contents of the image. Only image flow

can compute depth from a single retina without simultaneously viewing the scene from

two separate eyes. Depth from image flow is thus extremely important to prey animals,

such as fish, most birds, and rabbits because their eyes diQ on the opposite sides of

their heads. If they have stereo vision at all, it covers very little of the visual field. Yet

such animals can swim, fly, or run rapidly through complex natural environments (such

as reefs, forests, or thickets) filled with obstacles without collisions. They can also

effectively flee predators and manuever relative to other members in flocks, herds, and

schools.

Image flow is motion of an image on the retina of the eye, or on the photodetector

amay of a camera. Image flow can be caused by two phenomena: 1) motion of objects

in the world, and 2) motion of the eye (camera) through the world. Motion of the eye

can be of two types: translation and rotation. The algorithm described here applies to

image flow produced by translation and rotation of the eye in a stationary world.

It is well known that image flow due to translation is by itself a sufficient visual

cue for safe movement through a natural environment filled with complex 3-D obsta-

cles. Helmholtz [1] observed as early as 1925 that monocular image flow provides

direct and immediate perception of 3-D space. The rate of apparent motion of a sta-

tionary object in the world induced by translation of the eye through the world is

inversely proportional to the distance from the eye to the object. Close objects which

are potential collision hazards produce large image flow. Distant objects or close

objects near the instantaneous axis of motion produce little or no image flow.

The psychophysics of image flow was extensively studied by Gibson [2], who
treated the perception of space as the perception of a collection of surfaces, and con-

sidered motion relative to a surface to be the most fundamental of visual perceptions.

Rogers and Graham [3] have shown that random-dot displays of monocular flow pat-

terns produce the perception of solid oriented surfaces, and that image flow is adequate

for shape and depth perception with no other depth information.

Methods for computing image flow from time-varying images have been proposed

by Horn and Schunck [4], Longuet-Higgins and Prazdny [5], Hildreth [6], Waxman and

Wohn [7], Waxman, Kamgar-Parsi, and Subbarao [8], and others. In most of this
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work, camera motion is assumed to be unknown. Overcoming this assumption requires

complex mathematical analyses that are subject to error from quantization noise, and

are too computationally intensive for practical real-time implementation. Recent work

by Bolles [9], Matthies, Szeliski and Kanade [10], Albus and Hong [13], Rangachar,

Hong, and Herman [16], and Heel [15] has been based on knowing camera motion.

Combined with Kalman filtering techniques this approach has produced dense (iconic

pixel based) range maps with relative RMS error values of less than three percent.

Except for Heel, the approach has been defined only for translation without rotation

with the camera scan lines aligned with an epipolar plane.

The algorithm given here treats the general case of simultaneous camera transla-

tion and rotation. It assumes both to be known. We assert this to be a good assump-

tion, because most creatures of nature (and robot vehicles as well) possess non-visual

vestibular and proprioceptive sensors, and other sensory-motor systems that enable

them to estimate three-axis eye rotation, as well as ground speed, air speed, or water

speed independently of visual input. This estimate can be refined by the addition of

global visual data integrated over the entire visual field. This paper thus assumes that

there exists, either in the brain or the robot system, a mechanism by which both visual

and non-visual information is fused into a single best estimate of eye translation and

rotation.

This paper provides a closed form solution to the computation of range to every

pixel, and suggests a massively-parallel computational structure that could make range

from image flow a practical mechanism for enabling high speed robot mobility. The

paper begins by describing the camera-centered coordinate systems that are used here,

followed by deriving expressions that relate optical flow and distance of a point to six-

degree-of-freedom camera motion. When the optical flow constraint (as described by

Horn and Schunck [4]) is added to these equations, a pixel-based closed-form solution

for the 3D location of a point in the camera coordinate system is obtained.

2. EQUATIONS OF MOTION AND OPTICAL FLOW
This section describes the equations that relate a point in 3-D space to the projec-

tion of that point in the image for general six-degree-of-freedom motion of the camera.

Some of the equations are well known [11].

Assume a moving camera in a stationary environment with the coordinate system

fixed with respect to the camera as shown in Figure 1. Assume a pinhole camera

model, such that the pinhole of the camera is at the origin of the coordinate system.

We derive the optical flow components in the spherical coordinate system (/?9(1)). In

this frame, angular yelocities (9 and (j)) of any point in space, say P, are identical to the

optical flow values 9 and (j) in the image domain. See Figure 2.

The relationship between the image flow rates in the spherical domain of Figure 2

and the velocity of a point in the cartesian coordinates of Figure 1 is given by the fol-

lowing equations:

- 2 -



Let the instantaneous cartesian coordinates of the point P be R = (X,r^)^
(where the superscript T denotes trangjose). Let the instantaneous translational velo-

city of the camera be t = {U ,V,WY and the instantaneous angular velocity be

. Then the velocity vector V of the point P with respect to the XY2
coordinate system is (see [11]):

V = -t--©xR (1)

on

Vx = -U-BZ+CY (2)

Vj ^ -V-CX+AZ (3)

= -W~AY+BX (4)

where Vx, Vy^ die components of the velocity vector V along the X, Y

,

and Z directions respectively. Let Sq- sin9, Cq- cos9, 5^ = sin^, = cos(j),

and R - iRl. To convert from XYZ to R 94> coordinates we use the relations:

X ^R

F =/? C(j, ^9

Z = R

(5)

(6)

(7)

In order to find the optical flow of a 3-D point in ^ 9(j) coordinates, we use the follow-

ing relations and transformations (see [12] and Figure 1). Let V^, Vq, and be the

components of the vector V in spherical coordinates, and

C(J, 0 Cq Sq 0
1

II 0 1 0 -Sq Cq 0

-5<j) 0 0 0 1 1

(8 )

Also from [12]

II
(9)

Vq-RO c^. (10)

(11)

where dot denotes derivative with respect to time.

Using equations (2)-(ll) the following expressions are obtained:

9

1

0CD05
1

R 0

-U-B R s^ + C R ^9

-V~ C R Cq + A R
-W- A R c^Sq + B R Cq

( 12)

There are three unknowns in equation set (12): R

,

9, and (|). For each pixel, 9 and 0 are

known. The motion parameters (A ^ ,C ,Uy ,W) are also known.



3. SOLUTIONS

3.1 GRADIENT-BASED METHOD
3.1.1 THE OPTICAL FLOW CONSTRAINT

If brightness / varies smoothly with 0, 0, and t , then we obtain the optical flow

constraint equation (see [4]):

M.
90

(13)

or

+ + = 0 (14)

where

T — r _
90 ^^"90 "

9r’

I Q, /(j,, and If can be approximated from the image sequence as follows. For a given

pixel (0j- ,0y ) (Figure 3) in the image at time instant

9/ ^ /(0t,0;,r;fc)-/(0t-i,0y.rA:)

90,• Qf-Qi-i

9/ _ f (®t >0y—l>^jk

)

90y 0;-0;-l

9/ ^ /(0i,0y,r;fc) -/(0,-,0y,f^.i)

(16)

(17)

3.1.2

DEPTH COMPUTATIONS

Equation set (12) together with equation (14) form a set of three equations with

three unknowns R , 0, and 0. Solving these equations for R yields:

{USq-VCq)Iq+C^{Us^Cq+VS(^Sq-Wc^)I^
R —

( 18 )

-c^f - C^(5c0-A5e)/<J, + (Cc^-^^(5^0+Ace))/9

The meaning of solution (18) is that if the location of the pixel in the image, the

motion parameters of the camera, and the spatial and temporal intensity changes are

given, then the depth of the corresponding point in 3-D can be obtained.

At first inspection, 21 multiplications and divisions, and 10 summations and sub-

tractions appear to be necessary for each pixel at each instant of time. However, for a

given pixel, 0 and 0 are constants and therefore all functions of 0 and 0 such as CqC^

can be precomputed. Also, the rate of change of the motion parameters

A ,B ,C ,Uy ,W is usually much lower than the rate of change of the image variables

Iq, and /,. Thus the update rate of the motion parameters can be significantly

smaller than the computation of R . For example, for a translation in the XY plane, and

rotation about the Z axis (i.e.. A, B, and W are zero), U,V, and C may be constants
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for some period of time but Iq, /,j, and /, change. Practically, accelerations (either trans-

lational or rotational) diQ limited due to mass (or inertia) consttaints. Thus, any func-

tion of ^ ,C ,U ,VW will typically have an update rate that an order of magni-

tude smaller than the intensity changes rate. Equation (18) can be rewriten as follows:

R = / ^
^

^
^

^
(19)

a^It +a4/^ + ^5/@

where ai “ Us^-Vc^
, a 2 ~ c^(£/j^C 0+V5 (|,S 9-WCe^) , a 3 = -

,

«4 - c^{Asq-Bcq) , and - Cc^^-s^iBsQ+AcQ) . By observing equation (19) it is

clear that for given Iq^ and /,, at the fast sampling rate there are only five multipli-

cations, one division, and three summations per pixel.

For each point in space there is a set of three equations that result in a reconstruc-

tion for R

.

The expression for R that corresponds to a pixel in the image can be com-

puted using a pixel-based processor, and special purpose computers may run in parallel

to reconstruct all visible points in space. Figure 4 shows a possible multi-rate structure.

For each pixel there is a "fast" computer, and a "slow" computer. The first part of the

"fast computer" extracts Iq, /^, and /^, and the second part of this computer computes

the distance R that corresponds to this pixel. The latter part accepts spatial and tem-

poral intensity changes functions as well as motion parameter functions for this particu-

lar pixel (i.e., ... ,£15 in equation (19)), and combines them for instantaneous dis-

tance exttaction. The "slow" computer generates functions of -B ,C ,U ,V ,W at a

low update rate.

It is difficult to analyze the error since there are eight parameters

B ,C ,U ,V ,W) to consider. However, there are singular points, i.e., combinations

of the parameters and variables values that cause the denominator to be zero. There

are also points that cannot be reconstructed, e.g., those that lie exactly on the direction

of the motion vector.

3.1.3 A SPECIAL CASE

In order to inmitively understand expression (18), we show a special case. Sup-

pose that the camera undergoes nanslation U and V in the instantaneous XY plane and

rotation C about the Z axis only, i.e., A - B - W = 0. Assume (|) = 0, i.e., the pixel

which is analyzed lies on the XY plane. Substituting these values in (18) results in the

following expression for R :

(Usq-Vcq)I Q

-/r +C/9
(20 )

or (assuming Iqj^)

Usq - Vcq

-e + C
(21 )

where 0=“
/e

Given that , equation (21) is a solution for any point in the XY plane

- 5 -



when translating in this plane and rotating about the Z axis.

3.2 CORRELATION METHOD
Computation of image flow by cross-correlation is an alternative to using the opti-

cal flow constraint equation (13). Cross correlation also requires that the direction of

the flow vector be known. Assume that for any point in space viewed by a pixel at an

instant of tme, the direction of the image flow vector can be found, i.e., assume that

0
the ratio — is known. A second pixel can then be selected at some angular distance

(|>

A4 from the first along the flow direction. One can then compute a cross-correlation

function between the first and second pixels. This will peak at some delay interval

dA
and the image flow rate — of the point in space is then given by (see [13]):

at

dA AA
-— = lim —

—

dt
(22)

It can be approximated by:

dA _ M
dt

(23)

“max

After computing and the ratio the values of (j) and 9 can be computed from:
dt (|)

1 dA
. -1 9 X

0 = cos (tan ^-r-)

dt

A dA . . -10.
9 = —— sm (tan ^—

)

dt

<1>

(j)

(24)

(25)

The value of R can be computed from equation set (12).

0
For a general motion -r- is unknown. Thus several pixels in the neighborhood of

the first one has. to be selected. The pixel for which the cross correlation function

0
peaks provides — , AA , and x^gx’ same (previously described) procedure can

be used to compute R

.

4. DISCUSSION

Computing range from image flow by the method of Horn and Schunck [4] has

the advantage of simplicity. Unfonunateiy, it tends to produce noisy and inaccurate

results. There are four sources of noise and errors:

First, the sampled data system approximations to and are subject to

digitization noise and Nyquist sampling frequency limitations. If /(9,0,r) contains spa-

tial (or temporal) frequency components that are higher than half the spatial (or tem-

poral) sampling frequency, aliasing may occur. Of course, the natural world is infinitely

6



rich in detml. Thus low-pass filtering must be perfonned on natural images to smooth

them before the Horn and Schunck method can be used. The resultant blurring of the

images removes sharp features that contain the most accurate information about image

flow.

Second, except in the vicinity of brighmess edges, ” is small, and may be zero.

Division by small numbers magnifies errors.

Third, the sensitivity of photodetectors in any array is not unifonn. The difference

in signal from two adjacent photo-detectors thus is not necessarily an accurate measure

of the difference in illumination. In fact, in the biologicai eye, where accomodation

occurs in the retinal photodetectors, if the eye is fixated for an extended period, accom-

modation causes the image to fade away completely. In this case, difference in output

of adjacent photodetectors provides no information at aU about the spatial brighmess

gradient

Fourth, thermal noise in photodetectors is not "white", but heavily biased toward

low frequencies. The difference in signal from two adjacent photodetectors is thus sub-

ject to large amounts of differential low frequency noise. Thus range from image flow

by the Horn and Schunck method tends to be inaccurate for smooth images, and unreli-

able for sharply focused natural images.

Computing range from image flow by the method of cross-correlation can be

much more accurate and noise free. It is, however, more complicated and computation-

ally intensive. The selection of which two pixels to correlate is a function of the trans-

lational and rotational velocities. For each pixel where correlation is performed, a

delay line, a cross correlator, and a correlation peak detector are required [13]. The

accuracy is limited by the ratio of the sampling rate to the delay For one percent

accuracy, the intersample interval must be 100 times less than tjuax-

In order to reduce noise and increase accuracy, temporal integration methods can

be used. Methods for performing temporal integration include Kalman filtering

[9],[10], and computing the mnning average in world coordinates [13]. Temporal

integration by running averaging has been shown to reduce inaccuracies in the compu-

tation of depth from image flow by the Horn and Schunck method by about an. order of

magnitude, from about 30% absolute depth error in the raw data to about 3% absolute

depth error in the averaged data [13]. This is comparable to the results achieved by the

much more computationally intensive cross-correlation and Kalman filtering methods of

Matties et ai [10]. Recent results achieved by a new correlation-integration method

[14] show absolute depth errors of less than 0.6%.

5. CONCLUSIONS
When eye velocity is known, image flow can be a simple, robust, and powerful

method for generating dense range images. For complex natural scenes, dense range

images computed from image flow should prove to be much easier to segment that

brightness images. The combination of image flow techniques with more traditional

methods thus promises to vastly improve the performance of machine vision systems.

- 7 -



The ability to compute dense range images without knowledge of, or information

about, the contents of scenes may explain the ability of creatures of nature, such as

flying insects, birds, fish, and mammals, to manuever in a complex natural world.

Accuracy of range fi"om image flow is proportional to accuracy of velocity. For many
important robotics applications, such as driving unmanned ground vehicles, velocity is

known well enough to compute useful range from image flow. Image flow may thus

become a practical method for obstacle avoidance in unmanned vehicles.

When eye rotation is zero, the computation of image flow, and range from image

flow, is quite simple. This may explain why many creatures of nature have a vestibular

reflex that can mechanically stabilize the eye against rotation. There is also psychophy-

sical evidence for neuronal mechanisms that scroU the retinal image so as to cause the

visual world to be subjectively perceived as stationary despite eye rotation that causes

the retinal image to move about

This paper has shown how depth from image flow can be computed directly from

local image parameters, given knowledge of eye translation and rotaion. The closed

form algorithm that has been presented is amenable to implementation on massively-

parallel single-instruction multiple data (SIMD) computing machines. It could, in fact,

be computed by a single layer of neurons of the type known to exist in the biological

brain.

Future work will focus on measures of performance of the above algorithms in an

environment filled with a variety of natural objects such as trees, bushes, rocks,

streams, dirt, leaves, and grass. Tests will be made that simulate tasks such as driving,

running, or flying at high speeds, like insects and birds routinely do, through complex

natural environments such as woods and fields.
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