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Abstract

This work applies known results on the propagation of measurement error

statistics to two types of measurement systems, an angle measuring system and a

length measuring system. Such systems can be used to measure the position and
heading of a vehicle (or any rigid object) on a flat surface. For example, one might
need to sense position and heading oi a vehicle in order to control its motion. The
functional relationships to go from angle and length measurements to position and
heading are discussed and derived. Measurement error propagation theory is given

in a way that can apply to any measurement system. The theory thus described is

applied to the two types of measurement systems. Specific examples of these

systems are given. The stated examples are currently being used by the US Bureau
of Mines (BOM) to measure the position and heading of certain underground coal

mining machines in an effort to move equipment operators away from the more
dangerous areas of the mine. Simulation results for these specific examples in the

form of density maps are given which plot the error in position and heading for

various positions (heading constant) of the vehicle.
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1. Introduction

It is often important to determine accurately the position and heading of a

vehicle (or any rigid object) on a flat surface. This paper examines two methods of

gaining this information. The first measurement system is an angle measuring
system, the second, a length measuring system. The vector relations, geometry, and
any constraints on the configuration are discussed for each system. The theory of

the propagation of error (how errors in the measured quantities 'propagate' to errors

in position and heading) is briefly given and applied to these systems. The theory is

not specific and gives measurement error propagation equations that apply to these

and other systems that use "noisy" measurements to calculate desired quantities

that are functionally related to these measurements. The results in this paper
should have impact in the area of autonomous robotic vehicles, but is not at all

limited to that field and should also apply to human operated vehicles or tools.

This work assumes that correctable errors (errors of repeatable bias) in the

measurement systems have been removed by appropriate calibration. Therefore,

the only remaining errors in the measurement devices themselves are, for all

practical purposes, unknown to the user; unknown, that is, except in terms of mean
values and variances.

2. Definitions and Derivation of Closed Form Expressions for Position

and Heading for an Angle Measuring System

A
measuring
device

figure 1

2



Figure 1 represents what might be a typical scenario along with the appropriate

definitions of the coordinate systems and vectors.

We seek the position, pv =(x,y), and the heading, y/, of the vehicle. The
unprimed coordinate frame is located at some known position and orientation. The
primed coordinate frame is attached to the vehicle. Its position and orientation are

known with respect to the vehicle but unknown with respect to the unprime i

frame of reference. It is required that, when the vehicle pivots, it does so around the

origin of the primed frame. 0
t

for i = 1,...,4 are the measured angles, p' = (x',y') are

the vectors corresponding to the known placements of the four targets on the

vehicle and are defined in the primed reference frame. The unknown vectors.

Pi
= are defined in the unprimed reference frame.

Since there are only three unknowns, (x,y, y/), that we seek to obtain, we will

first attempt to obtain these unknowns using only three measured angles.

Px ~ {
xi>y'i) f°r 1 = 1/ 2, 3. It will be shown that one can get closed form solutions

for these unknowns, with the restriction that y/ must be within a predetermined
180° interval.

The effect of occluded targets is now introduced. If a target is completely blocked,

the independent information from the occluded target is lost. This phenomenon
must be examined for each configuration of the angle measurement system and will

or will not be allowed depending on the nature of the angle measurement system.

We will initially assume that the i
A

target is in some way labeled so that the angle

measuring device has some way of determining that it is, in fact, the i
01

target,

independent of the order in which the device encounters it. This may not be the

case depending on the particulars of the measuring device. There might be several

ways to get (or to eliminate the need for) target labeling: 1) Assure that each target

has its own unique 'signature'. 2) Constrain position and heading of the vehicle so

that there is never any occlusion of targets. 3) Write 'intelligent' software that will

keep a real-time ’map' of the position of the targets so that, in effect, there is target

labeling.

2.1 Closed Form Expressions for Position and Heading Using an Angle
Measuring System: Three Targets and One Measurement Device

In this section, we seek to obtain the unknowns using only three measured
angles.

With the definitions in figure 1 we have the following set of three vector

equations for i = 1,2,3,

Pv = Px~
cos y/

sin yr

-sin y/

cos y
Pi

Noting that p,
- (Ipjcos^, |^7,|sin

^, ), we have.

U)
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( 2 )

X
-\n\

COS 0,~ cos yr -sin yr'

y.

~ \Pi\
sin0, sin yr cos yr y'_

which are six equations and six unknowns. It is helpful to eliminate
\p,\

to get the

following three (non-linear, transcendental) equations with three unknowns.

-tan 0

,

1 y\ tan G, + x[ '*;tan 6,-y\~

- tan 0
2

1 y2
tan 0

2
+ x2 y = cos yr x

2
tan 0

2 - y2

- tan 0
3

1 y' tan0
3 +x'_ sin yr x'3 tan #3 -y3 _

If we restrict yr to be from -90° to 90°, we can get unambiguous, closed form
expressions for x, y, and y/ by first solving equation 3 and getting a single scalar

expression for sin yr in terms of cos yr (depending on how we define y/ , we can make
the restriction on y/ within any 180° range). From this we get an expression for

tan y/, which is a one-to-one map on the range -90° to 90°. Having found tan y/, we
have that cos yr = cos(arctan(tan yr)), so we can get x and y. x and y can be anywhere
in the plane as long as the angle measurements, 0,, can be made in the full range

from 0° to 360°. If this full range of measurement is not available, x and y will also

be restricted.

It is important to recognize that during the time any target is occluded, the

equations fail. In this case, one might depend on information from some other

sensor. Another option might be to use two targets and two devices which will be

examined later.

One might reasonably guess that four targets and one device might yield

equations which place no restriction on yr

.

This is not the case since the following

matrix equation is obtained

’ tan 0, -1 x\ tan - y\ —y\ tan 0, - x\ X "O'

tan 02
-1 x2 tan 02 - y2 -y2

tan 02
- x2 y 0

tan03 -1 x3 tan03 -y3 -y3 tan 03 - x3 cos yr 0

tan 0
4

-1 x[ tan

0

4 - y\ -y\t<Ln6
A -x\_ sin yr 0

_

yielding only the trivial solution, (x, y, cosy/, siny/9 = (0, 0, 0, 0). So, adding more
targets than three simply allows three redundant computations of equation 3 with

its 180° restriction on y/. We will now see that with two devices (in separate

locations) we only need two targets and need not require any restrictions on yr

(albeit, there are some constraints on x, y, and yr to avoid occluding targets).
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2.2 Closed Form Expressions for Position and Heading Using an Angle

Measuring System: Two Targets and Two Measurement Devices

figure 2

Figure 2 represents what might be a typical scenario with only two targets and

two measurement devices along with the appropriate definitions of the coordinate

systems and vectors. It can be easily shown that we get and can solve the following

matrix equation if (;t
0 ,y0 ) ^ (0,0),

tan 0, -1 x\ tan 0j - y\ ~y[ tan 0j - x\ X 0

tan 0
2

-1 x'tan 0
2
-y'

-y'i tan 02
- x2 y 0

tan(0 + 03 )
-1 x\ tan(</> -f 0

3)-y 1

'

-y;tan(<t>+$3 )-x; cos ip xo
tan(0 + 03)-yo

tan(0 + 04 )
-1 x

'

2
tan(0 + 0

4 )-y2 -y
2 tan(b + 0

4 )-x2 _
sin y/ 3 tan(0H- 04)-yo _

When a target is occluded from the perspective of one device, one might be

able to assume that the measured angle is the same for the occluded target as for the

occluding target (i.e. 0, = 0
2
or 03 = 04 ). Alternately, one might use a different set of

equations. In this case, one would simply use something like the following three

target matrix equation for two devices.
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X- tan 1

-tan(</> + 03 )
1

-tan (<p + 6
A ) 1

y\ tan ej+x;

yltanf^ + ^J + o:;

y' tan(0 + 0
4 ) + ^

y

sin y

(x^'tan 0, -y')cos y
(x; tan(0 + 03 )

- y,')cos y/ - *
0
tan(0 + 0

3 ) + y0

(x'2 tan (<p + 04 )
- y ' ) cos y - x0 tan(0 + 0

4 ) + y0

( 6 )

This equation assumes that target 2 was occluded from the vantage point of device 1.

Slightly different equations are obtained for other target occlusion situations. We
solve these equations similarly as we did in section 2.1 except that we must use the

following formula to get sin y,

flsin y/ + b cos y = c
asiny bcosy _ c

Vfl
2 +b 2

Vfl
2 +b2

Vfl
2 + b

2

cos«sin y + sinacos y = sin(a+ y) =
(7)

Still on the subject of occlusion, there exists two lines in (x, y, y) space, such

that both devices will simultaneously experience occluded targets. In this case we
would assume that = 02

and 03 = 0
4
during the time of occlusion.

Depending on the specific angle measuring system used, it might be

convenient not to allow any occlusion. If limited to two targets, one would simply

be faced with tighter constraints when choosing the initial configuration of devices

and targets. Another possibility is to add a third target with two devices. Still

another would be two targets and three or more devices. This would assure that in

all of (x, y, y

)

space there is always a solution.

2.3 The LASERNET™ Angle Measuring System

A specific example of an angle measuring system is one used by the Bureau of

Mines (BOM) to locate the position and heading of a mining machine. Special cases

of the equations derived above and a more detailed look at the application of an

angle measurement device to coal mining can be found in [4]. BOM chose a system

called LASERNET™ (manufactured by NAMCO Controls, 7567 Tyler Blvd., Mentor,
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OH 44060) 1 as its angle measuring system. The LASERNET™ device employs a

beam of laser light that scans the scene when reflected off a rotating mirror.

Cylindrical targets with a special retroreflective coating are mounted on the mining

machine. At the start of each scan (based on some reference angle), a digital counter

commences. The device continuously seeks to detect reflected laser light of

sufficient amplitude signifying the presence of a target at that angular location. The
values on the digital counter correspond to the angles from the reference angle to

the 'edges' of each cylindrical target. The angle output of the device is the average

between the angles to the edges. It can measure angles up to about 113° from the

reference angle.

The device cannot distinguish between targets (i.e. targets are not 'labelled').

Occlusion causes two targets to be seen as one, at an angle that is between the two
and, in general, is neither of the two. It seems that the only simple way of handling

this problem is to restrict the movement of the mining machine so that there is

never any occlusion of targets. A more challenging solution might be to employ
'intelligent' software that will keep a real-time 'map' of the position of the targets

and monitor the commands to the mining machine so that, in effect, there is target

labeling and one can correct for the erroneous angle.

1 Reference to specific commercial vendors does not imply endorsement by either NIST or BOM.



3. Definitions and Derivation of Closed Form Expressions for Position

and Heading Using a Length Measuring System

3.1 Seeking a General Solution

Figure 3 represents what might be a typical scenario for a length measuring

system in its most arbitrary configuration. Included are all the appropriate

definitions of the coordinate systems and vectors. Positions 1 , 2 , 3 , and 4 are the

fixed and known locations of the length measuring devices (therefore, vectors r,, r
2 .
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r3 , and r
4
and angles 0 and </>' are known). Positions A, B, C, and D are the fixed

and known locations on the vehicle of the ’target* points of each length measuring

device (therefore, vectors p' = (x',y') are known). Lengths of the vectors pu p2 , p3 ,

and p4
are the outputs of the length measuring devices. The vehicle is at an

unknown position p = (x r y ) and heading i\r

.

We should be able to get position and heading of the vehicle with only three

devices. With three devices and the definitions given above we get the following

six non-linear, transcendental equations with six unknowns (x, y, y/ , 6V d
2 , and 63 )

x = x
} + |/?1

|cos0cos0
1
-^sin^sinG, cosy/' + y' sin y/

x = x2 + |p2 1

cos (p cos 02 -|/?2|sin0sin02 -x2
cos y/ + y2

sin y/

y = y 1
-t-lpjlsin^cos^ -t-lp^cosbsin^ - y[ cos y/

- x\ sin y/ ^
y = y2 + |p2

|sin</>cos0
2 + |p2

|cos0sin0
2 -y2

cos yr ~ xi
sin ys

x = x3 + \p3 \cos<p'cos03 -\p3 \sin <p' sin

0

3 - x3 cos y/ + y3 sin y/

y = y3 + |p3
|sin0'cos03 + |p3|cos0'sin03 -y3 cos i//-^3 sin y/

These equations can be solved iteratively, but for real-time systems a closed form

solution might be preferred. However, if the vehicle is moving slow enough (or

not moving at all), the iterative solution may be the best since one has greater

freedom in choosing geometries than if constrained to a closed form solution, as we
will see. We should note that adding a fourth device still will not easily and simply

allow a closed form solution.

We might first attempt to continue to use only three devices while co-

locating the ’target’ points of positions 1 and 2. This way we form a single triangle

with the lengths of sides known and the laws of cosines and sines can be used.

Unfortunately, this yields an ambiguity in the position and heading (gives exactly

two solutions). The only way to get a non-ambiguous, closed form solution, seems

to be to use all four devices connected to the vehicle in such a way that two triangles

are formed with known lengths of sides. This means that we might attach positions

1 and 2 to point A and positions 3 and 4 to point C.
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3.2 A Special Case Allowing a Closed Form Solution

Figure 4 gives a four device scenario in which two triangles are formed fully

specifying the value of cos#,. Up until now we have stated that this configuration

leads to an unambiguous solution. This is only true if we know the location of

target point C with respect to the line formed by points 3 and 4 (line 34) and the

location of target point A with respect to the line formed by points 1 and 2 (line

12) . This is because the laws of sines and cosines do not give us the sign of sin#,

and we do not have enough independent equations to determine the sign of sin#,

10



(as we will demonstrate). Nonetheless, with certain minimal constraints, we can

easily get around this problem and specify the position and heading of the vehicle

anywhere in the plane.

Using the laws of sines and cosines and assuming we know initially the

location of target point C with respect to the line formed by points 3 and 4 and the

location of target point A with respect to the line formed by points 1 and 2 (which

gives us the sign of sin 0, for all 0, we get the following four independent equations

expressed here in matrix form (there are actually eight equations, with only four

being independent).

1 0 x; -y\- X x
1
+

|/?,
1

cos <p cos 0,
-

\p:
|

sin (p sin d
x

x,+\p,\cos((p + d
: )

1 o X'3 -y3 y x3 + |p3
|cos0'cos0

3 -|/?3|sin0'sin03 *3 + \Pz c°s(0' + 0
3 )

0 1 y\ x\ cos y y, +1/7,1 sin (p cos 0, +|/?1
|cos0sin 0, y] +|p1

|sin(0 + 0
1 )

0 1 y' sin y y3 + |p3
|sin0'cos0

3 + |p3|cosd'sin#3 _y3 + F3
|

sin
(

</
>, + 03 ).

This can be solved easily for x, y, and y
. y is unconstrained here because we can get

both sine and cosine of y. Again, as long as we know which regions points A and
C are in, we can solve for x, y, and y with y unconstrained. The knowledge of

where points A and C are in the plane may be hard to obtain internal to this system,

particularly if there is dithering of movement when points A and C are near lines

1 2 and 34. We promised a solution to this problem (with some minimal
constraints) which is now given.

3.3 Getting the Sign of the Sine at Region Boundaries

It will not be hard to detect when the vehicle is in a position where the sign of

sin0, is uncertain, since the value for cos0, will be close to 1. Therefore, when cost),

is close to 1, we can simply constrain y to be within an appropriate 180° range (one

could redefine y based on its current value and then recompute x\ and y') and
solve equation 9 for the sine of the appropriate angle (0, or 03 ) to resolve the

ambiguity in position. For now assume we know that point C is known to be near

the line defined by positions 3 and 4 (line 34). Then we would use equation 9,

however, this time we solve for x, y, cos y, and sin03 in terms of sin y,

'i o o X x, + y[siny + \p,\cos((p + d,)

1 0 x3 \p3 \sin(p' y *3 + y3
sin y + \p3 \

cos 0' cos 03

0 1 y\ o cos y y 1

-*
1
'sinv' + |p 1

|sin(0+0
1 )

.0 i ys Hp3|cos0'_ sin03 J/3
- *3

sin y + \p3 \

sin <p'cos 03 _

The solution to this matrix equation gives an expression for cos y that is a linear

function of sin y and known quantities (including cos03
but excluding sin0

3 ).

Therefore, if we let a and b represen t the known quantities, we have,

asin y + cos y = b. Letting cos a = aj-\Ja
2 + 1 and sin a = l/Va

2 + 1 ,

11



b
( 11 )y/ = arcsin - a

Now one can proceed to get x, y, and sin #3 .

Once the vehicle is safely outside the boundary region, one can return to

equation 9 which is ' y^ -unconstrained’. A similar scheme to that outlined above is

gotten when point A on the vehicle enters a region such that the sign of sin#, is

uncertain.

Finally, consider the less likely event that points A and C enter a region such

that the signs of both sin#, and sin#
3 are uncertain. One can handle this problem

easily as long as there is access to the type of move that the vehicle was commanded
to perform. For example, if the command was to move straight forward (no

turning), one can assume that y/ is known for the short period while the vehicle is

within the ambiguous region. In this case, we use the following matrix equation.

’l 0 |p,|sin0 0 X Xj - x\ cos y/ + y\ sin y/ + |p, |

cos 0 cos #,

1 0 0 hi sin b' y x3
- x3 cos y/ + y3 sin y/ + |p3 | cos 0'cos #3

0 1 -|p,|cos0 0 sin#, y ,
- y

,' cos y/ - x\ sin yr + |p, |

sin 0 cos #,

0 1 0 —h|cos</>'_ sin #3 _y3 - 3/3 cos y/ - x3 sin y/ + |p3 | sin 0' cos #3 _

If the command was to pivot, one can assume that x and y are known and solve the

following matrix equation.

*i' -y\ h|sin0 0 cos y/~ -X + X, + hi COS 0COS #,

*3 -y3 0 hi sin 0" sin y/ -X + X3
-1- h|cos0'cos #3

y\ A ~hl cos 0 0 sin #, -y+yi+hl sin 0 cos0i

_y3 *3 0 —h|cos0'_ sin #3 _-y+y3 +hl sin 0' cos0
3_

If the command was to turn (i.e. x, y and y/ change at each time step), one must do
some prediction and monitor sin#, and sin#3 based on one or both of equations 12

and 13.

3.4 Handling Gross or Catastrophic Errors

It is shown in [3] that ambiguous solutions using all combinations of only

three devices are useful in a special configuration of the four device scenario (this

configuration is examined in section 7.1.1) to detect when one or more of the length

measurements is grossly in error. To handle this problem nicely, one simply

computes pairs of solutions (since y/ is ambiguous and has exactly two solutions) for

the four three-device equations and makes sure that they are within maximum
bounds of the (random) error values developed in this paper.

This method works also for more general configurations as in figure 4. If we
eliminate device 4, we need to solve the following for x,y,y/, and #3

12



( 14 )

1—

»

0 1 o
i

X x, - x\ cos Y + \p\ cos 0]

O -K o y x3 ~y\ cos y/ + |pi
|

sin

o-

m>>
1r—

i

O sin \\/ x3
_ x3 cos y/ + |p3 |

cos 0
3

.0 1 *3 ~\Ps\_ sin d3 y3 -)/3 cos V'

This gives two simultaneous equations of the form

sin(a + 03 )
=

sin((3 + y/)
=

_ a
2 COS \\f +

cos 03
+• -

-^1 + -\/l + ol
\

(15)

(where a, (3, and a
x

are known constants) which can be solved for y/ and 03 (x and y
are then easily gotten).

3.5 A Specific Linear Transducer Length Measuring System

A specific example of a length measuring system is one used by the Bureau of

Mines (BOM) to locate the position and heading of a mining machine. A somewhat
less general case of the equations derived above and a more detailed look at the

application of a length measurement system to coal mining can be found in [3].

BOM is using a system of linear position transducers which utilize physical wires.

Each transducer device measures the length of the extent of its wire. A difficulty

with this arrangement is that not all positions and headings of the vehicle can be

allowed since certain lines, of physical necessity, will not be allowed to cross others.

4. The Variance of Propagated Error

In this section we simply state the definitions and results of error propagation

theory.

4.1 Definitions

u = (u lr ...,un )= the h

-

dimensional random vector denoting the measured quantities.

fj.
= E[u] = (E[iq],...,E[wn ])

= (^,.,.,/iJ the limiting mean value of the w-dimensional
random vector of measured quantities. This assumes (ideally) that one can take an

infinite number of measurements in the determination of this value (/z will, of

course, be approximated by some sample mean formed from a finite number of

measurements).

v = - g(uu ...,un )
= = the m -dimensional (known) function

(g: 91" —> 9T") that computes the desired result from the measured values. In both

13



measurement systems under consideration, the function g can be known from
elementary trigonometry, g varies depending on what type of measurement system

is employed.

w

du
,

00

= the matrix of partial derivatives evaluated at the

limiting mean.

of = (o£ ,...,<7
^ )

= the vector of variances of each calculated result.

u - /j, = Aw = (Auu...,Au
n )

= the vector of measurement errors (relatively small

compared to fi) in the measurement vector, w, expressed as a random vector of

arbitrary but known distribution. For the purpose of this paper, we assume that the

random variables are, in general, correlated.

o,
;
= e[Aw,Aw

; ]

= the covariance of the random variables. Aw, and Aw
;

.

of = E[Aw,
2

]

= the variance of the random variable. Aw,.

P,, = o^ / o, cj
,

= the correlation coefficient (equals ±1 if the random variables of

measurement error. Aw, and Aw
;

, are completely correlated and equals 0 if completely

independent). [1]

Before leaving the subject of definitions, it must be stated that p, o, and o,
;

are ideal values requiring an infinite number of measurements and, for real

measurement systems, need to be approximated. Below are given standard

formulas for determining the approximations to the ideal. Of course, very large

values for N will give good approximations.

1
N

fi
t
= w, = — = est imated mean of the i

A component of w based on N sample
N k=i

*

values of the random measurement, w,.

I 1 ^ 2

cj, ~ s, - J—— —Pi) = the estimated standard deviation of the i
01 component

of w based on N sample values of the measurement random variable, w,.

14



1
a*~ S

* = N
—X(w

-»
~~^'){u

ik ~^i)
= estimated covariance of the i

th component of
“ 1 k=\

w with the j
01 component of w using N sample values of the measurement random

variables, w, and w
;

.

4.2 Error Propagation Theory

The multi-dimensional Taylor series theorem says

dg
v = g(fi + Aw) = g{p) + “(/*) • Aw

du
(16)

This is usually a very good approximation, if Aw is small (if not, the measurement
system is poor). In this derivation, we are assuming that Aw is a random vector of

known but arbitrary distribution. Our goal is to determine the variance

of = ,...,a^
)
of the random vector, v = g(p + Au). From [1] and [2]

< - Xf%w] + 2X X | for k = 1 ™
.=1 V du,

) ,=i /=i+i du, du
f

17)

If the vector of random variables of measurement error is an independent

sequence of random variables (equivalently, p,
;
= 0)

< -X °? for fc = 1—
,=1

m (18)

On the other hand, if the vector of random variables of measurement error is

a completely dependent (in the same direction) sequence of random variables

(P,;=D

iS du,

k

{p)Oi for k = 1 (19)

Note that £ (c^/cfy^a
2

is unaffected by the sign of the partial derivatives,

but \Zdgk /du,a,\ is. For example, say v = u
]
+u

2
and cr

1
= <7

2 = cr. If pn = 1,

of « of + oj + 2a,a2 = 4a
2

. If pn = 0 (independence), cr^ = <r
2 + <rj - 2a2

. On the

other hand, say v = u
l
-u

2
. In this case pn = 1 implies that = of + cr

2
- 2o,o

2
= 0.

5. The Variance of the Random Variables of Position and Heading:
Length Measuring Systems

Because each length measuring device of the total of each length measuring
system operates independently of all the others, it is reasonable to expect that the
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sequence of measurement errors is independent. So we take equation 18 and apply

it to the length measuring system. With the following definitions (for simplicity of

notation, let p, = \p\), p = p = (pu p2 ,Ps,Pi) and (gj(p),g2 (p),g3 (p)) = (x,y,v), we have
that

of =

°2
y
=

°l
=

f \ f
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\dp, )

+ j~(p)
\VPl ) v *r2 )

f

dx

dp2

dy
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\ 2

3ft J

dip
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2
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o
2
+

f
dx
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(
dy_

dP3

dip

^3

(p) of +
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\ 2

dx

dp
4

(P)

(P )

(P)

of +

of +

J

\ 2

dp,

ff(Pfdp
4

O2
, ( 20 )

6. The Variance of the Random Variables of Position and Heading:
Angle Measuring Systems

We expect that the measurement errors of an angle measuring system, single

device configuration, will be correlated, but not fully correlated. Let's assume that

we have three targets and one angle measurement device and are using the

solutions to equation 3. With the following definitions, p = d = (dlf d2 ,d3 )
and

Ui(0)/g2(0)/&(0)) = (x,y,ip), we have that

, $ dx
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(
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3 (
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( 21 )

For the two device scenario, we expect that that angle measurements within

each device will be correlated, but that the angle measurements across devices will

not be correlated. In this case, with the following definitions, u - d - (GU G
2 > G3 / G,)

and (g1 (0),^2 (0),g3 (0)) = (x,y,\p), we get the following equations
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y

<j? + 2
01// 01// 01// 01//

7. Simulation

The solutions to matrix equations 3, 5, 9, and 11 have been verified

comparing numerical results with graphical measurements. Relevant symbolic

partial derivatives have also been generated and error propagation values computed
for 1) two configurations of a length measuring system and 2) three configurations

of an angle measuring system, each with constraints and distances appropriate to an

underground coal mine. The general correctness of the error propagation values

has also been verified using standard Monte Carlo techniques. Density maps of the

errors in the position and heading of the vehicle are now given. These results

might be used by a sensor fusion module that takes position and/or heading values

from various sensors and determines an optimum position and heading value.

Each configuration is accompanied by three error maps that give the

’maximum’ errors (3<JX , 3cr
y

, and 3<j
¥ ) in x, y, and y/, respectively, for various

positions x and y of the mining machine in a 20' by 60' area of an underground coal

mine (a typical 'entry'). The heading, i//, is at 0° for all positions. The device error is

assumed to be 0.5 inches = 3 cr per device for all length measuring devices and is

0.05° = 3(7, per device for all angle measuring devices (these values were gotten

using emperical data from the systems described in sections 2.3 and 3.5). The error

maps are given as density plots. The dark areas correspond to the highest errors in

the stated range and the light areas to the lowest errors. The error maps give values

for mining machine positions such that the front end of the mining machine
extends 60 feet past the origin of the x-y axes.
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7.1 Error Maps for Length Measuring Systems Assuming a Coal Mining
Scenario

7.1.1 Error Maps for a Certain Configuration of a Length Measuring System: Case 1

figure 5

Figure 5 gives a configuration for a length measuring system currently being

used at the US Bureau of Mines to determine the position and heading of a mining

machine. Lengths one would expect in a coal mine are given (in English units).

The axes of the error plots correspond to the position of the origin of the x'-y' axes

(the center of the mining machine) in the x-y coordinate frame.
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7.1.2 Error Maps for a Certain Configuration of a Length Measuring System: Case 2

figure 9

Figure 9 gives another configuration for a length measuring system that can

be used to determine the position and heading of the mining machine. Lengths one
would expect in a coal mine are given (in English units). The axes of the error plots

correspond to the position of the origin of the x'-y' axes (the center of the mining

machine) in the x-y coordinate frame.

22



error range (in x) = 0.97 in to 1.58 in; mean = 1.23 in

4 0 ft

30 ft

20 ft

figure 10

23



error range (in y) = 1.22 in to 3.99 in; mean = 2.30 in

40 ft-

30 ft-

20 ft-

6.5 ft 12.5

figure 11

ft

24



error range (in heading) = 0.20 deg to 0.28 deg; mean = 0.22 deg

f, -WMM
- |

^ *

\MWWWMm>IWM I I tM * * I MIMIMMInmmii

'

ys/>>>>:

figure 12



7.2 Error Maps for Angle Measuring Systems Assuming a Coal Mining
Scenario

7.2.1 Error Maps for a Certain Configuration of an Angle Measuring System:
One Device, Three Targets

Figure 13 gives a configuration for an angle measuring system that can be

used to determine the position and heading of a mining machine. Lengths one

would expect in a coal mine are given (in English units). The correlation

coefficients, p12 , p13 , and p^ in equation 21 are all given the value 0.75. The axes of

the error plots correspond to the position of the origin of the x'-y’ axes (the center of

the mining machine) in the x-y coordinate frame.
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7.2.2 Error Maps for a Certain Configuration of an Angle Measuring System:
Two Devices, Two Targets; Configuration One

figure 17

Figure 17 gives a two device configuration for an angle measuring system to

determine the position and heading of a mining machine. Lengths are those that

one would expect in a coal mine (in English units). The correlation coefficients, p12

and pM in equation 22 are both given the value 0.75. The axes of the error plots

correspond to the position of the origin of the x'-y' axes (the center of the mining

machine) in the x-y coordinate frame.
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7.2.3 Error Maps for a Certain Configuration of an Angle Measuring System:
Two Devices, Two Targets; Configuration Two

figure 21

Figure 21 gives another two device configuration for an angle measuring
system to determine the position and heading of a mining machine. This

configuration allows a more competitive comparison with the length measuring
system configurations examined in sections 7.1.1 and 7.1.2 as can easily be seen from
figure 21. Lengths one would expect in a coal mine are given (in English units).

The correlation coefficients, p12
and in equation 17 are both given the value 0.75.
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error range (in heading) = 0.11 deg to 1.3 deg; mean = 0.53 deg

figure 24

7.3 Discussion of the Error Maps for Length Measuring Systems

The two configurations are seen to have essentially comparable error

performance in the regions where their error is best. However, case 1 seems to be

somewhat more stable as the y component c position gets large but gets unstable as

y gets close to 12.5'. The choice between the two would be a decision as to which
configuration is easiest to maneuver and cut coal with. For example, with the case 2

configuration the machine is free to move (while using the same equation) ahead of

or behind the lines between points 2 and 3 and between points 1 and 4 . The case 1
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configuration will not easily allow this. However, if we are using physical wires, the

case 2 situation could more easily have a wire bumping into uncut coal, causing a

catastrophic failure.

Another possible configuration with similar error performance to the case 2

configuration is one in which points 1 , 2 , 3 , and 4 are on the machine and points

A and C are off.

7.4 Discussion of the Error Maps for Angle Measuring Systems

The fact that the single device configuration degrades with increasing distance

from the device should not be surprising. However, the extent and nature of the

degradation is remarkable: propagated errors are quite bad if the angle measurement
errors are completely uncorrelated and quite good if the errors are completely

correlated. It is therefore natural to ask what the dependance of error on correlation

is for the single device configuration of an angle measurement system (as in figure

13). Figures 25-27 denote three times the standard deviation in x, y, and y/

,

respectively, as a function of the correlation coefficient value for the single device

scenario when the center of the mining machine is 48 feet from the device. The 3cr

value of angle measurement error is 0.05° as before.

correlation coefficients, (assumed equal for all i and j)

figure 25
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correlation coefficients, (assumed equal for all / and j)

figure 27
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It can be seen in figures 25-27 that, even though the position and heading
error approaches zero when the value of the correlation coefficient approaches one,

the magnitude of the error gets large quickly as the correlation coefficient gets less

than one.

Also unexpected is the surprisingly good performance of both configurations

using two devices and two targets (and that the error performance is comparable and
often better than that of either of the configurations of the length measuring
systems). These two configurations using two devices are seen to have somewhat
comparable error performance. It is again natural to ask what the dependance of

error on correlation is for the two device configuration (figure 21) of an angle

measurement system. Figures 28-30 denote three times the standard deviation in x,

y, and iff

,

respectively, as a function of the correlation coefficient value for the two
device scenario of figure 21 when the center of the mining machine is 48 feet from
the device. The 3cr value of angle measurement error is 0.05° as before.
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correlation coefficients, p tj
(assumed equal for all i and j)

figure 30

It can be seen in figures 28-30 that for the two device scenario of figure 21, the

error values are more stable with respect to the value of the correlation coefficient
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than for the one device scenario (figures 25-27). The magnitude of the error is also

lower for most values of the correlation coefficient.

As with the length measuring configurations, the choice between the two
configurations of the two device scenario would be a decision as to which
configuration is easiest to operate with.

Another possible configuration with almost identical error performance to

the two target, two device configurations is one in which the two angle

measurement devices are on the machine and the two targets are off.

8. Conclusions

Standard tools necessary to analyze the error performance of angle and length

measuring systems for position and heading measurements have been given along

with realistic examples from underground coal mining. In pursuit of these tools,

usable closed form solutions have been developed for all the matrix equations in

their most general form. In addition, the presentation of the theory of

measurement error propagation is completely generic and can be applied to

virtually any measurement system.

For the single device scenario in an angle measuring system it was shown
that the equations constrain the heading to a 180° range and adding a fourth target

simply adds redundancy. The two device scenario has no such restraint if occlusion

can be easily handled (not true with LASERNET™ system). However, if this

analysis is correct, the debate between the one and the two device scenarios is

overshadowed by the following: the error performance of the two device scenario is

so markedly superior to the single device scenario that the use of two devices is to be

preferred unless one can prove that the angle measurement errors are highly

correlated (>98%). If target occlusion in the two device scenario is a problem, adding

a third target might help (depending on the type of system used).

For length measuring systems it was shown that a closed form (non-iterative)

solution to equation 8 requires the formation of triangles in the geometry (compare

figures 3 and 4). Pairs of solutions can be obtained using only three lengths. Adding
the fourth length eliminates one of the pair, but we are still left with the problem of

boundary crossings. It was shown that, if one can constrain the heading to be within

a 180° range, the detection of a boundary crossing can be easily detected. The
occurrence of gross errors can also be dealt with by comparing the four three-device

solutions.

In the specific configurations from underground coal mining specified in

section 7 (Simulation), the two configurations of the length measuring devices have

nearly similar error performance with certain differences. The two device

configurations of angle measuring systems show an error performance roughly

equivalent to that of the length measuring configurations. However, the single

device configuration shows an unacceptably poor error performance for most

positions of the vehicle.
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The reader is reminded that every error result in this paper assumes that the

vector-valued function, g = {g1
{u),g2 {u),...,gn {u)), can be considered linear in the

region of error, u + Aw .

Discussion on the types of probability distributions (Gaussian, uniform, etc.)

has been avoided until now, since knowing the error at the extreme limits (~3a) is

often sufficient for engineering analysis even without knowledge of the type of

distribution at the output. Knowing the mean and variance of the random vector,

(x,y, y/), and that the probability densities of measurement error are Gaussian, is

sufficient to specify that the probability density function of that random vector is

Gaussian with the specified variance. Nonetheless, even if the distribution of error

is not Gaussian, since we assumed that v is a very nearly linear function of the

measurement vector plus error, u + Aw, (the degree of linearity can be proved easily

enough) we should be able to determine what the density function of v is if

necessary. Knowing the density function of v, we can easily find the point where
the amount of error in the random vector v is less than some acceptable minimum.
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