
U.S. DEPARTMENT OF COMMERCE
National Institute of Standards and Technology

NISTIR 4407

NationalPDES Testbed

NEW NIST PUBLICATION

December 19?0

Report Series

NIST Express
Working Form
Programmer's
Reference

NATIONAL

TESTBED



Iv.

r‘-i

i

(

,1

j
4

•4

I



U.S. DEPARTMENT OF COMMERCE
National Institute of Standards and Technology

NISTIR 4407

NationalPDES Testbed

Report Series

U.S. DEPARTMENT OF

COMMERCE

Robert A. Mosbacher,

Secretary of Commerce

National Institute of

Standards and Technology

John W. Lyons, Director

September 5, 1990

NATIONAL

&
TESTBED

NIST Express
Working Form
Programmer's
Reference
Stephen Nowland Clark



Disclaimer

No approval or endorsement of any commercial product by the National Institute of

Standards and Technology is intended or implied

UNIX is a trademark of AT&T Technologies, Inc.

Smalltalk-80 is a trademark of ParcPlace Systems, Inc.



Table Of Contents

1 Introduction 1

1.1 Context 1

2 Fed-X Control Flow 1

2.1 First Pass: Parsing 2

2.2 Second Pass: Reference Resolution 2

2.3 Third Pass: Output Generation 3

3 Working Form Implementation 3

3.1 Primitive Types 4

3.2 Symbol and Construct 4

3.3 Express Working Form Manager Module 4

3.4 Code Organization and Conventions 4

3.5 Memory Management and Garbage Collection 6

4 Writing An Output Module 6

4. 1 Layout of the C Source 6

4.2 Traversing a Schema 8

4.3 Output Module Linkage Mechanisms 9

5 Working Form Routines 9

5.1 Working Form Manager 10

5.2 Algorithm 11

5.3 Case Item 13

5.4 Constant 14

5.5 Construct 15

5.6 Entity 16

5.7 Expression 20

5.8 Loop Control 26

5.9 Schema 27

5.10 Scope 28

5.1 1 Statement 32

5.12 Symbol 36

5.13 Type 38

5.14 Variable 44

6 Express Working Form Error Codes 46

Appendix A: References 51

ill



I



NIST Express Working Form
Programmer’s Reference

Stephen Nowland Clark

Introduction

The NIST Express Working Form [Clark90b], with its associated Express parser,

Fed-X, is a Public Domain set of software tools for manipulating information models

written in the Express language [Schenck89]. The Express Working Form (WF) is pan
of the NIST PDFS Toolkit [Clark90a]. This reference manual discusses the internals

of the Working Form, including the Fed-X parser. The information presented will be

of use to programmers who wish to write applications based on the Working Form, in-

cluding output modules for Fed-X, as well as those who will maintain or modify the

Working form or Fed-X. The reader is assumed to be familiar with the design of the

Working Form, as presented in [Clark90b].

Context

The PDFS (Product Data Exchange using STEP) activity is the United States’ effon in

support of the Standard for the Exchange of Product Model Data (STEP), an emerging

international standard for the interchange of product data between various vendors’

CAD/CAM systems and other manufacturing-related software [Smith88]. A National

PDFS Testbed has been established at the National Institute of Standards and Technol-

ogy to provide testing and validation facilities for the emerging standard. The Testbed

is funded by the CALS (Computer-aided Acquisition and Logistic Support) program of

the Office of the Secretary of Defense. As part of the testing effort, NIST is charged

with providing a software toolkit for manipulating PDFS data. This NIST PDFS Tool-

kit is an evolving, research-oriented set of software tools. This document is one of a set

of reports which describe various aspects of the Toolkit. An overview of the Toolkit is

provided in [Clark90a], along with references to the other documents in the set.

For further information on the Express Working Form or other components of the Tool-

kit, or to obtain a copy of the software, use the attached order form.

Fed-X Control Flow

A Fed-X translator consists of three separate passes: parsing, reference resolution, and

output generation. The first two passes can be thought of as a single unit which pro-

duces an instantiated Working Form. This Working Form can be traversed by an output



Stephen Nowland Qark

module in the third. It is anticipated that users will need output formats other than those

provided with the NIST Toolkit. The process of writing a report generator for a new
output format is discussed in detail in section 4.

2.1 First Pass: Parsing

The first pass of Fed-X is a fairly straightforward parser, written using the UNIX'^^'^

parser generation languages, Yacc and Lex. As each construct is parsed, it is added to

the Working Form. No attempt is made to resolve symbol references: they are repre-

sented by instances of the type Symbol (see below), which are replaced in the second

pass with the referenced objects.

The grammar used by Fed-X is large enough that UNIX Yacc’s statically allocated ta-

bles cannot represent it. Bison, a Yacc clone available from the Free Software Foun-

dation^ has no such static limits, and so is used to build the parser. The lexical analyzer

is processed by Flex, a fast. Public Domain implementation of Lex . The analyzer

makes use of one feature of Flex which us not present in Lex: it uses an exclusive start

condition to scan comments properly. The scanner can easily be rewritten to use only

standard stan conditions if it is necessary to use Lex. Other differences between Lex

and Flex are handled properly by conditional compilation (#ifdef .. #endif
pairs).

2.2 Second Pass: Reference Resolution

The reference resolution pass of Fed-X walks through the Working Form built by the

parser and attempts to replace each Symbol with the object to which it refers. The

name of each symbol is looked up in the scope which is in effect at the point of refer-

ence. If a definition for the name is found which makes sense in the current context,

the definition replaces the symbol reference. Otherwise, Fed-X prints an error message

and proceeds.

In some cases, the changes which must be made when a symbol is resolved are slightly

more drastic. For example, the syntax of Express does not distinguish between an iden-

tifier and an invocation of a function of no arguments. When a token could be inter-

preted as either, the parser always guesses that it is a simple identifier. When the second

pass determines that one of these objects actually refers to a function, the identifier

Expression is replaced by an appropriate function call Expression.

1. The Free Software Foundation (FSF) of Cambridge, Massachusetts is responsible for the GNU Project,

whose ultimate goal is to provide a free implementation of the UNIX operating system and environment.

These tools are not in the Public Domain: FSF retains ownership and copyright priviledges, but grants free

distribution rights under certain terms. At this writing, further information is available via electronic mail on

the Internet from gnu@prep.ai.miLedu.

2. Vem Paxson’s Flex is usually distributed with GNU software, although, being in the Public Domain, it does

not come under the FSF licensing restrictions.

NIST Express Working Form Programmer’s Reference Page 2



Stephen Nowland Clark

Thus, the result of the second pass (in the absence of any errors) is a tightly hnked set

of structures in which, for example, function call Expressions reference the called

Algorithms directly. At this point, it is possible to traverse the data structures with-

out resoning to any funher symbol table lookups. The scopes in the Working Form are

only needed to resolve external references - e.g., from a STEP physical file.

2.3 Third Pass: Output Generation

The report or output generation pass manages the production of the various output files.

In the dynamically hnked version of Fed-X, this pass loads successive output modules,

calling each one to traverse the Working Form. The dynamic linking mechanism is dis-

cussed briefly in [Clark90c]. It is also possible to build a staticaUy linked translator,

with a particular output module loaded in at build time; this is, at present, the only

mechanism available in an environment which is not derived from BSD 4.2 UNIX.

A repon generator is an object module, most likely written in C, which has been com-

piled as a component module for a larger program (i.e., with the -c option to a UNIX
C compiler). In a dynamically linked translator, this object module is linked into the

running parser, and its entry point (by convention a function called print_file ( )

)

is called. The code of this module consists of calls to Express Working Form access

functions and to standard output routines. A detailed description of the creation of a

new output module appears in section 4.

3 Working Form Implementation

The Express Working Form data abstractions are implemented in ANSI Standard C
[ANSI89]. Each abstraction except Schema is implemented as a SyiTubol or Con-
struct header block (see section 3.2, below) with a pointer to a private struct.
This C structure contains the real definition of the abstraction, but is never manipulated

directly outside of the abstraction’s module. For example:

/* the actual contents of a Foo */

struct Foo {

int i;

double d;

};

/* type Foo is a Construct whose definition */

field will point at a struct Foo */

typedef Construct Foo;

Outside of Foo’ s module, we will never see a struct Foo. We will only see a Foo,

which is actually a Construct which points at a struct Foo. This indirection

makes bookkeeping and symbolic reference resolution easier to do. A Schema, being

a very simple object, has a Symbol header block which points directly at a Scope,
which is itself implemented as a Construct.

NIST Express Working Form Programmer’s Reference Page 3



Stephen Nowland Clark

3.1 Primitive Types

The Express Working Form makes use of several modules from the Toolkit general li-

braries, including the Error, Linked_List, and Dictionary modules. These are described

in [Clark90c].

3.2 Symbol and Construct

The types Symbol and Construct are conceptually, in Object-Oriented terminolo-

gy, abstract supertypes for the various types in the Working Form. The two are quite

similar, both in concept and in implementation: each is implemented as a header block

with a generic pointer to a "definition." When a concrete subtype (Type, State-
ment, etc.) is instantiated, this pointer points at a struct of the appropriate type. In

addition to this definition field, these two abstract types share three other attributes: a

class indicator (which takes on values SYMBOL_REFERENCE, SYMB0L__ENTITY,

CONSTRUCT_EXPRESSION, . . . ), a reference count, and a line number (probably

useful only within Fed-X). A Symbol also includes a name and a flag indicating

whether the symbol has been resolved.

Abstractions which represent namable objects are represented as Symbols. These in-

clude Algorithm, Constant, Entity, Schema, Type, and Variable. Other

abstractions (Case_Item, Expression, Loop_Control, Scope, and State-
ment) are represented as Constructs. Each of these abstractions then defines a

struct <name>, which contains the components of that abstraction. Instances of

these structsare pointed at by the definition fields of the Symbol and Construct
headers.

Although the specifications for the Symbol and Construct modules are included in

this document for completeness, these calls should not normally be needed by applica-

tion programmers. In particular, the structures which are returned by

SYMBOLget_definition () are not public, so that this call is not of use outside of

the various Working Form module definitions.

3.3 Express Working Form Manager Module

In addition to the abstractions discussed in [Clark90b], libexpress . a contains one

more module, the package manager. Defined in express . c and express . h, this

module includes calls to intialize the entire Express Working Form package, and to run

each of the passes of a Fed-X translator.

3.4 Code Organization and Conventions

Each abstraction is implemented as a separate module. Modules share only their inter-

face specifications with other modules. There is one exception to this rule: In order to

avoid logistical problems compiling circular type definitions across modules, an Ex-

press Working Form module includes any other Working Form modules it uses after

defining its own private struct. Thus, the types defined by these other modules are

not yet known at the time an abstraction’s private struct is defined, and references

to these other Working Form types must assume knowledge of their implementations.

NIST Express Working Form Programmer’s Reference Page 4



Stephen Nowland Clark

This is, in fact, not a serious limitation: All of the Working Form types are implemented
as either Symbol or Construct, which are defined when the struct is compiled;
the choice of this supertype can actually be viewed as a pan of the specification of the

abstraction.

A module Foo is composed of two C source files, foo . c and foo . h. The former con-

tains the body of the module, including all non-inlined functions. The latter contains

function prototypes for the module, as well as all type and macro definitions. In addi-

tion, global variables are defined here, using a mechanism which allows the same dec-

larations to be used both for extern declarations in other modules and the actual

storage definition in the declaring module. These globals can also be given constant

initializers. Finally, foo . h contains inline function definitions. In a compiler which

supports inline functions, these are declared static inline in every module which

# includes foo . h, including foo . c itself. In other compilers, they are undefined

except when included in foo . c, when they are compiled as ordinary functions,

foo . c resides in -pdes/src/ express/; foo .h in ~pdes/ include/.

The type defined by module Foo is named Foo, and its private structure is struct
Foo. Access functions are named as FOOfunction ( ) ; this function prefix is abbre-

viated for longer abstraction names, so that access functions for type

Foolhardy_Bartender might be of the form FOO_BARfunct ion ( ) . Some
functions may be implemented as macros; these macros are not distinguished typo-

graphically from other functions, and are guaranteed not to have unpleasant side effects

like evaluating arguments more than once. These macros are thus virtually indistin-

guishable from functions. Functions which are intended for internal use only are named
FOO_function ( ) , and are usually static as well, unless this is not possible. Glo-

bal variables are often named FOO_var iable; most enumeration identifiers and con-

stants are named FOO_CONSTANT (although these latter two rules are by no means

universal).

Every abstraction defines a constant FOO_NULL, which represents an empty or missing

value of the type. In addition, there are several operations which are defined for every

type; these are primarily general management operations. Each abstraction defines at

least one creation function, e.g. FOOcreate { ) . The parameters to this creation func-

tion vary, depending on the abstraction. A permanent copy of an object (as opposed to

a temporary copy which will immediately be read and discarded) can be obtained by

calling FOOcopy ( foo) . This helps the system keep track of references to an object,

ensuring that it is not prematurely garbage-collected. Similarly, when an object or a

copy is no longer needed, it should be released by calling FOO free ( foo) ,
allowing

it to be garbage-collected if appropriate.

For each abstraction, there is a function FOOis_foo (ob j ) which returns true if

and only if its argument is a Foo. This is useful when dealing with a heterogeneous

list, for example. If an instance of Foo might contain unresolved Symbols, then there

is a function FOOresolve (...)

,

called during Fed-X’s second pass, which attempts

to resolve all such references and reports any errors found. This call may or may not

require a Scope as a parameter, depending on the abstraction. For example, an

Algorithm contains its own local Scope, from which the next outer Scope (in

NIST Express Working Form Programmer’s Reference Page 5



Stephen Nowland Clark

which the Algorithm is defined) can be determined; ALGre solve ( ) thus requires

no Scope parameter. A Type, on the other hand, has no way of getting at its Scope,
so TYPEresolve ( ) requires a second parameter indicating the Scope in which the

Type is to be resolved.

3.5 Memory Management and Garbage Collection

In reading various portions of the Express Working Form documentation, one may get

the impression that the Working Form does some reasonably intelligent memory man-

agement. This is not true. The NIST PDES Toolkit is primarily a research tool. This

is especially true of the Express and STEP Working Forms. The Working forms allo-

cate huge chunks of memory without batting an eye, and this memory often is not re-

leased until an application exits. Hooks for doing memory management do exist (e.g.,

XXX free ( ) and reference counts), but currently are largely ignored.

4 Writing An Output Module

It is expected that a common use of the Express WF will be to build Express translators.

The Fed-X control flow was designed with this application in mind. A programmer

who wishes to build such a translator need only write an output module for the target

language. We now turn to the topic of writing this output module. The end result of

the process described will be an object module (under UNIX, a . o file) which can be

loaded into Fed-X. This module contains a single entry point which traverses a given

Schema and writes its output to a particular file.

The stylistic convention taken in the existing output modules, and which meshes most

cleanly with the design of the Working Fom data structures, is to define a procedure

FOOprint (Foo foo, FILE’^ file) corresponding to each Working Form ab-

straction. Thus, SCHEMAprint (Schema schema, FILE* file) is the con-

ceptual entry point to the output module; an Algorithm is written by the call

ALGprint (Algorithm algorithm, FILE* file), etc. With this break-

down, most of the actual output is generated by the routines for Type, Entity, and

other concrete Express constructs. The routines for Schema and Scope, on the other

hand, control the traversal of the data structures, and produce little or no actual output.

For this reason, it is probably useful to base new report generators on existing ones,

copying the traversal logic wholesale and modifying only the routines for the concrete

objects. The Fed-X-QDES output module (which can be found in

-pdes/src/fedex_qdes/output_smalltalk.c) has been annotated for this

purpose, although the traversal logic has become somewhat convoluted, due to pecu-

liarities of Smalltalk-80'^^.

4.1 Layout of the C Source

The layout of the C source file for a report generator which will be dynamically loaded

is of critical importance, due to the primitive level at which the load is carried out. The

very first piece of C source in the file must be the entry_point ( ) function, or the

NIST Express Working Form Programmer’s Reference Page 6



Stephen Nowland Clark

loader may find the wrong entry point to the file, resulting in mayhem. Only comments
may precede this function; even an #include directive may throw off the loader.

An output module is normally layed out as shown:

void
entry_point (void* schema, void* file)

{

extern void print_file ( )

;

print_file (schema, file);

}

#include "express. h"

. .

.

actual output routines . . .

void
print_file (void* schema, void* file)

{

print_file_header ( (Schema) schema,

(FILE*) file)

;

SCHEMAprint ( (Schema) schema, (FILE*) file)

;

print_file_trailer ( (Schema) schema,
(FILE*) file)

;

}

The print_file ( ) function will probably always be quite similar to the one shown,

although in many cases, the file header and/or trailer may well be empty, eliminating

the need for these calls. In this case, SCHEMAprint ( ) and print_file ( ) will

probably become interchangeable.

Having said all of the above about templates, code layout, and so forth, we add the fol-

lowing note: In the final analysis, the output module really is a free-form piece of C
code. There is one and only one rule which must be followed: The entry point (accord-

ing to the a . out format) to the . o file which is produced when the report generator is

compiled must be appropriate to be called with a S chema and a F I LE *
. The simplest

(and safest) way of doing this is to adhere strictly to the layout given, and write an

ent ry_point ( ) routine which jumps to the real (conceptual) entry point. But any

other mechanism which guarantees this property may be used. Similarly, the layout of

the rest of the code is purely conventional. There is no a priori reason to write one out-

put routine per data structure, or to use the print_file ( ) routine suggested. This

approach has simply proved to work nicely for current and past report generators, and

seems to provide the shortest path to a new output module. In other words, if you don’t

like the previous authors’ coding style(s), feel free to muck around!

NIST Express Working Form Programmer’s Reference Page 7



Stephen Nowland Clark

4.2 Traversing a Schema

Following the one-routine-per-abstraction rule, there are two general classes of output

routines. Those corresponding to primitive Express constructs (ENTITYprint ( )

,

TYPEprint (), VARprint ( ) ) will produce most of the actual output, while

SCOPEprint ( )
(and, to a lesser extent SCHEMAprint ( ) ) will be responsible for

traversing the instantiated working form. A typical definition for SCOPEprint (

)

would be:

void
SCOPEprint (Scope scope, FILE* file)

{

Linked_List list;

list = SCOPEget_types (scope)

;

LISTdo(list, type, Type)

TYPEprint (type, file);

LISTod;

LISTfree ( list )

;

list = SCOPEget_entities (scope)

;

LISTdo(list, ent. Entity)

ENTITYprint (ent , file);

LISTod;

LISTfree ( list )

;

list = SCOPEget__algorithms (scope) ;

LISTdodist, alg. Algorithm)
ALGprint (alg, file)

;

LISTod;

LISTfree (list)

;

list = SCOPEget_variables (scope)

;

LISTdo(list, var. Variable)

VARprint (var, file)

;

LISTod;

LISTfree (list)

;

list = SCOPEget_schemata ( scope)

;

LISTdodist, schema. Schema)

SCEMAprint ( schema, file);

LISTod;

LISTfree (list)

;

}

NIST Express Working Form Programmer’s Reference Page 8



Stephen Nowland Clark

This function traverses the model from the outermost schema inward. All types, enti-

ties, algorithms, and variables in a schema are printed (in that order), followed by all

definitions for any sub-schemas. The only traversal logic required in

SCHEMAprint ( ) is simply to call SCOPEprint ( ) .

An approach which is taken in the Fed-X-QDES output module is to divide the logical

functionality of SCOPEprint ( ) into two separate passes, implemented by functions

SCOPEprint_passl ( ) and SC0PEprint_pass2 ( ) . The first pass prints all of

the entity definitions, in superclass order (i.e., subclasses are not printed until after their

superclasses), without attributes. This is necessary because of some difficulties with

forward references in Smalltalk-80. The second pass then looks much like the sample

definition of SCOPEprint ( )
given above. This multi-pass strategy could also be

used to print, for example, all of the type and entity definitions in the entire model, fol-

lowed by all variable and algorithm definitions.

4.3 Output Module Linkage Mechanisms

One of the powers of Fed-X is the flexibility which it gives a user with regard to gen-

erating output. An important component of this flexibility on BSD UNIX systems is

the dynamic loading of output modules. Both static and dynamic binding of output

modules are supported by Fed-X. This is implemented by physically breaking the ob-

ject code from the Working Form manager (express . c) into three separate . o files:

the initialization code and the first two passes of Fed-X are compiled into exp r e s s . o

,

which is stored in libexpress . a. The static linking version of the third pass (with-

out any output module) is compiled into express_stat ic . o; and the dynamic

loading version into express_ciynamic . o. Sources for all of these components re-

side in express . c; the various sections are extracted via conditional compilation:

This file is compiled with the preprocessor symbols reports and

stat ic_reports defined to produce express_static . o. To produce

express_dynamic . o, it is compiled with reports and dynamic_reports
defined; and these symbols are all left undefined to produce express . o.

Since express_static . o and express_dynamic . o both define the function

EXPRESSpass_3 ( ) , only one can be linked into any given executable. This selec-

tion is what determines whether a Fed-X translator links in output modules statically or

dynamically. Note that a suitable output module ( . o file) must appear after

express_static . o in the linker’s argument list when a statically linked translator

is being built. For more information on how to build a report generator into a Fed-X

translator, see [Clark90c].

5 Working Form Routines

The remainder of this manual consists of specifications and brief descriptions of the ac-

cess routines and associated error codes for the Express Working Form. The error

codes are manipulated by the Error module [Clark90d]. Each subsection below corre-

sponds to a module in the Working Form library. The Working Form Manager module

is listed first, followed by the remaining data abstractions in alphabetical order.

NIST Express Working Form Programmer’s Reference Page 9



Stephen Nowland Clark

5.1 Working Form Manager

Procedure: EXPRESSdump^model
Parameters:

Returns:

Description:

Express model - Express model to dump
void

Dump an Express model to stderr. This call is provided for debugging purposes.

Procedure:

Parameters:

Returns:

Description:

EXPRESSfree

Express model - Express model to free

void

Release an Express model. Indicates that the model is no longer used by the caller; if

there are no other references to the model, all storage associated with it may be
released.

Procedure:

Parameters:

Returns:

Description:

EXPRESS initialize

— none --

void

Initialize the Express package. This call in turn initializes all components of the

Working Form package. Normally, it is called instead of calling all of the individual

XXXinitialize ( ) routines. In a typical Express (or STEP) translator, this

function is called by the defaultmain 0 provid^ in the Working Form library. Other
applications should call it at initialization time.

Procedure:

Parameters:

Returns:

Description:

EXPRESSpass.l

FILE* file - Express source file to parse

Express - resulting Working Form model

Parse an Express source file into the Working Form. No symbol resolution is

performed

Procedure:

Parameters:

Returns:

Description:

EXPRESSpass_2

Express model - Working Form model to resolve

void

Perform symbol resolution on a loosely-coupled Working Form model (which was
probably created by EXPRESSpass_l { ) ).

Procedure:

Parameters:

Returns:

Description:

EXPRESSpass_3
Express model - Working Form model to report

FILE* file - output file

void

Invoke one (or more) report generator(s). When this function is compiled with

-Ddynamic_reports, it will repeatedly prompt for report generators and output

files, dynamically loading and executing them. In this case, the file parameter is

ignored. When it is compiled with -Dstatic_reports, areport generator must
also be included at link time, with the entry point print file (Express,
FILE*)

.

Procedure:

Parameters:

Returns:

Description:

PASS2initialize

" none --

void

Initialize the Fed-X second pass.

NIST Express Working Form Programmer’s Reference Page 10



Stephen Nowland Clark

5.2 Algorithm

Type:

Description:

Algorithm_Class

This type is an enumeration of ALG function, alg procedure, and
ALG_RULE.

Procedure:

Parameters:

Returns:

Description:

ALGcreate

Algorithm_Class class - class of algorithm to create

Algorithm - the algorithm created

Create an algorithm of the indicated class. The return type of the algorithm (if

applicable) is given a default value of TY_LOGlCAL; all other attnbutes of the

algonthm are initially undefined (appropriate NULL values).

Procedure:

Parameters:

ALGcreate_from

Symbol algorithm - template symbol to create from

Algorithm_Class class - class of algorithm to create

Returns:

Description:

Algorithm - the algorithm created

Create an algorithm of the indicated class, using an existing symbol as a template. The
return type of the algorithm (if applicable) is given a default value of ty_logical,
and the symbol’s name is retain^. Ail other attributes of the algorithm are initially

undefmed (appropriate NULL values). This call is used in Fed-X’s parser to fill out

generic symbols returned by the lexical analyzer. The template Symbol is modified

by this call.

Procedure:

Parameters:

Returns:

Description:

ALGfree

Algorithm algorithm - algorithm to free

void

Release an algorithm. Indicates that the algorithm is no longer used by the caller, if

there are no other references to the algorithm, all storage associated with it may be

released.

Procedure:

Parameters:

Returns:

ALGget_class

Algorithm algorithm - algorithm to examine

Algorithm_Class - the class of the algorithm

Procedure:

Parameters:

Returns:

Description:

ALGget_code

Algorithm algorithm - algorithm to examine

Linked_List - body of algorithm

Retrieve the code body of an algorithm. The elements of the list returned are

Statements.

Procedure:

Parameters:

Returns:

ALGget_name

Algorithm algorithm - algorithm to examine

String - the name of the algorithm

Procedure:

Parameters:

Returns:

Description:

ALGget_parameters

Algorithm algorithm - algorithm to examine

Linked_List - formal parameter list

Retrieve the formal parameter list for an algorithm. When
ALGget_class (algorithm) == ALG_RULE, the returned list contains the

Ent itys to which the rule applies. Otherwise, it contains Variables specifying the

formal parameters to the function or procedure.

NIST Express Working Form Programmer’s Reference Page 11



Stephen Nowland Clark

Procedure:

Parameters:

Returns:

Description:

ALGget_resolved

Algorithm algorithm - algorithm to examine

Boolean - has algorithm been resolved?

Checks whether symbol references within an algorithm have been resolved (see
ALGresolve ( )

)

Procedure:

Parameters:

Returns:

Requires:

ALGget_retum_type

Algorithm algorithm - algorithm to examine

Type - algorithm’s return type

ALGget_class(algorithm) != ALG_PROCEDURE

Procedure:

Parameters:

Returns:

ALGget_scope

Algorithm algorithm - algorithm to examine

Scope - algorithm’s local scope

Procedure:

Parameters:

Returns:

Description:

ALGinitialize

-- none --

void

Initialize the Algorithm module. This is called by EXPRESS initialize () , and so

normally need not be called individually.

Procedure:

Parameters:

Returns:

Description:

ALGput_code

Algorithm algorithm - algorithm to modify

Linked_List statements - body of algorithm

void

Set the code body of an algorithm. The second parameter should be a list of

Statements.

Procedure:

Parameters:

Returns:

Description:

ALGput_name
Algorithm algorithm - algorithm to modify

String name - new name for algorithm

void

Set the name of an algorithm.

Procedure:

Parameters:

Returns:

Description:

ALGput_parameters

Algorithm algorithm - algorithm to modify

Linked_List list - formal parameters for this algorithm

void

Set the formal parameter list of an algorithm. When
ALGget_class (algorithm) == ALG_RULE, the formal parameters should be

the Entitys to which the rule applies. Otherwise, they should be Variables.

Procedure:

Parameters:

Returns:

Description:

ALGput_resolved

Algorithm algorithm - algorithm to modify

void

Set the ’resolved’ flag for an algorithm. This normally should only be called by
ALGresolve ( ) , which actually resolves the algorithm.

NIST Express Working Form Programmer’s Reference Page 12



Stephen Nowland Clark

Procedure:

Parameters;

Returns:

Requires:

Description:

ALGput_retum_type

Algorithm algorithm - algorithm to modify

Type type - the algorithm’s return type

void

ALGget_class(algorithm) = ALG_FUNCTION
Set the return type of a function. Note that procedures have no return type, and that

the return type of a rule must be ty_logical, which is the default.

Procedure:

Parameters:

Returns:

Description:

ALGput_scope

Algorithm algorithm - algorithm to modify

Scope scope - new local scope for algonthm

void

Set the local scope of an algorithm. This scope will include declarations of the

algorithm’s formal parameters as well as any local variables.

Procedure:

Parameters:

Returns:

Description:

ALGresolve

Algorithm algorithm - algorithm to resolve

Scope scope - scope in which to resolve

void

Resolve all references in an algorithm defmition. This is called, in due course, by
EXPRESSpass_2 ( ) .

5.3 Case Item

Procedure:

Parameters:

Returns:

Description:

CASE_ITcreate

Linked_List of Expression labels - list of case labels

Statement statement - statement associated with this branch

Case_Item - the case item created

Create a new case item. If the ’labels’ parameter is list_null, a case item matching

in the default case is created. Otherwise, the case item created will match when the

case selector has the same value as any of the Expressions on the labels list

Procedure:

Parameters:

Returns:

Description:

CASE_ITfree

Case_Item item - case item to free

void

Release a case item. Indicates that the item is no longer used by the caller; if there are

no other references to the item, all storage associated with it may be released.

Procedure:

Parameters:

Returns:

Description:

CASE_ITgetJabels

Case_Item item - case item to examine

Linked_List - list of case labels

Retrieve the list of label Expressions for which a case item matches. For an item

which matches in the default case, list_null is returned.

Procedure:

Parameters:

Returns:

Description:

CASE_ITget_statement

Case_Item item - the case item to examine

Statement - statement associated with this branch

Retrieve the statement to be executed when this case item is matched.

NIST Express Working Form Programmer’s Reference Page 13



Stephen Nowland Clark

Procedure:

Parameters:

Returns:

Description:

CASE_ITinitialize

-- none --

void

Initialize the Case Item module. This is called by express initialize ( ) , and so
normally need not be called individually.

Procedure:

Parameters:

Returns:

Description:

CASE_ITresolve

Case„Item item - case item to resolve

Scope scope - scope in which to resolve

void

Resolve all symbol references in a case item. This is called, in due course, by
EXPRESSpass_2 ()

.

5.4 Constant

Procedure:

Parameters:

Returns:

Description:

CSTcreate

String name - name of new constant

Type type - type of new constant

Generic value - value for new constant

Constant - the constant created

Create a new constant.

Procedure:

Parameters:

Returns:

Description:

CSTcreate_from

Symbol constant - template symbol to create from

Type type - type of new constant

Generic value - value for new constant

Constant - the constant created

Create a new constant, using an existing symbol as a template. The name of the

template symbol is retained. This call is used in Fed-X’s parser to fill out generic

symbols returned by the lexical analyzer. The template Symbol is modified by this

call.

Procedure:

Parameters:

Returns:

Description:

CSTfree

Constant constant - constant to free

void

Release a constant. Indicates that the constant is no longer used by the caller; if there

are no other references to the constant, all storage associated with it may be released.

Procedure:

Parameters:

Returns:

Description:

CSTinitialize

- none --

void

Initialize the Constant module. This is called by EXPRESSinitialize () , and so

normally need not be called individually.

Procedure:

Parameters:

Returns:

CSTget_name

Constant constant - constant to examine

String - the name of the constant

Procedure:

Parameters:

Returns:

CSTget_type

Constant constant - constant to examine

Type - the type of the constant

NIST Express Working Form Programmer’s Reference Page 14



Stephen Nowland Clark

Procedure: CSTget_value

Parameters:

Returns:

Constant constant - constant to examine

Generic - the value of the constant

5.5 Construct

Type:

Description:

Constnict_Class

This type is an enumeration of CONS TR any, constr case item,
CONSTR EXPRESSION, CONSTR LOOP CONTROL, CONSTR SCOPE, or

CONSTR_STATEMENT.

Procedure:

Parameters:

Returns:

Description:

CONSTRcopy
Construct construct - construct to copy

Construct • copy of construct

Create a copy of a construct. This copy is a shallow copy, meaning that future changes

to the original will be reflected in the copy.

Procedure:

Parameters:

Returns:

Description:

CONSTRcreate

Construct_Class class - class of construct to create

Construct - newly created construct

Create a new construct. The new construct’s definition field is NULL.
CONSTRcreate ( ) is normally called by one of the client create functions, e.g.

EXPc reate ( ) , which then fills in the definition field.

Procedure:

Parameters:

Returns:

Description:

CONSTRdestroy

Construct construct - construct to destroy

void

Release a construct Indicates that the construct is no longer used by the caller; if there

are no other references to the construct, all storage associated with it may be released.

Procedure:

Parameters:

Returns:

CONSTRget_class

Construct construct - construct to examine

Construct_Class - class of construct

Procedure:

Parameters:

Returns:

CONSTRget_definition

Construct construct - construct to examine

Generic - defmidon of construct

Procedure:

Parameters:

CONSTRis_kind_of

Construct construct - construct to test

Construct_Class kind - kind of construct to test for

Returns: Boolean - is this construct of the given class?

Procedure:

Parameters:

CONSTRput_definition

Construct construct - construct to define

Generic definition - definition of construct

Returns:

Description:

void

Store into the definition of a construct

NIST Express Working Form Programmer’s Reference Page 15



Stephen Nowland Clark

5.6 Entity

Fh*ocedure:

Parameters:

Returns:

ENTITYadd_attribute

Entity entity - entity to modify

Variable attribute - attribute to add

void

Procedure:

Parameters:

Returns:

ENTITYaddjnstance
Entity entity - entity to modify

Generic instance - new instance

void

Procedure:

Parameters:

Returns:

Description:

ENTITYcreate

String name - name of new entity

Entity - the entity created

Create a new entity. The entity has a name, and is otherwise empty.

Procedure:

Parameters:

Returns:

Description:

ENTITYcreate_from
Symbol entity - symbol to create from

Entity - the entity created

Create a new entity, using an existing symbol as a template. The name of the template

symbol is retained. This call is used in Fed-X’s parser to fill out generic symbols
returned by the lexical analyzer. The template Symbol is modified by this call.

Procedure:

Parameters:

Returns:

ENTITYdelete_instance
Entity entity - entity to modify

Generic instance - instance to delete

void

Procedure:

Parameters:

Returns:

Description:

ENTITYfree

Entity entity - entity to free

void

Release an entity. Indicates that the entity is no longer used by the caller; if there are

no other references to the entity, all storage associated with it may be released.

Procedure:

Parameters:

Returns:

Description:

ENTITYget_all_attributes

Entity entity - entity to examine

Linked_List of Variable - all attributes of this entity

Retrieve the complete attribute list of an entity. The attributes are ordered as required

by the STEP Physical File format [AltemeullerSS]. This list should be LiSTf ree’d
when no longer needed.

Procedure:

Parameters:

Returns:

Description:

ENTITYget_attribute_offset

Entity entity - entity to examine

Variable attribute - attribute to retrieve offset for

int - offset to given attribute

Retrieve offset to an entity attribute. This offset takes into account all superclass of the

entity:, it is computed by ENT ITYget initial of f set (entity) +

VARget of f set (attribute) . iFthe entity does not include the attribute, - 1 is

retumed.~This call should be preferred over

ENTITYget named attribute offset!).

NIST Express Working Form Programmer’s Reference Page 16



Stephen Nowland Clark

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

ENnTYget_attributes

Entity entity - entity to examine

Linked_List of Variable - local attributes of this entity

Retrieve the local attribute list of an entity. The local attributes of an entity are those
which are defined by the entity itself (rather than being inherited from supertypes).
This list should be LiSTf ree’d when no longer needed.

ENTITYget_constraints

Entity entity - entity to examine

Linked_List of Expression - this entity’s constraints

Retrieve the list of constraints from an entity’s "where" clause. This list should nm be
LISTf ree’d.

ENTITYget_initial_offset

Entity entity - entity to examine

int - number of inherited attributes

Retrieve the initial offset to an entity’s local frame. This is the total number of explicit

attributes inherited from supertypes.

ENTITYget_instances

Entity entity - entity to examine

Linked_List - list of instances of the entity

Retrieve an entity’s instance list. This list should nm be LiSTf ree’d.

ENTITYget_mark
Entity entity - entity to examine

int - entity’s current mark

Retrieve an entity’s mark. See ENTlTYput_mark ( )

.

ENTITYget_name
Entity entity - entity to examine

String - entity name

ENTITYget_named_attribute

Entity entity - entity to examine

String name - name of attribute to retrieve

Variable - the named attribute of this entity

Retrieve the definition of an entity attribute by name. If the entity has no attribute with

the given name, variable_null is returned.

ENTITYget_named_atlribute_offset
Entity entity - entity to examine

String name - name of attribute for which to retrieve offset

int - offset to named attribute of this entity

Retrieve the offset to an entity attribute by name. If the entity has no attribute with the

given name, -1 is returned. This call is slower than

ENTITYget_^attribute_of f set ( ) , and so should be avoided when the actual

attribute definition is already available.

Page 17NIST Express Working Form Programmer’s Reference



Stephen Nowland Clark

Procedure:

Parameters:

Returns:

Description:

ENTITYget_resolved

Entity entity - entity to examine

Boolean - has entity been resolved?

Checks whether symbol references within an entity definition have been resolved.

Procedure:

Parameters:

Returns:

ENTITYget_scope
Entity entity - entity to examine

Scope - local scope of this entity

Procedure:

Parameters:

Returns:

Description:

ENTITYget_size

Entity entity - entity to examine

int - storage size of instantiated entity

Compute the storage size of an instantiation of this entity. This is the total number of

attributes which it contains.

Procedure:

Parameters:

Returns:

Description:

ENTITYget_subtypes
Entity entity - entity to examine

Linked_List of Entity - immediate subtypes of this entity

Retrieve a list of an entity ’ s immediate subtypes . This list should notbeLlSTf ree’d.
The issue, which arises in Express, of a boolean expression specifying the subtypes,

currently is not dealt with.

Procedure:

Parameters:

Returns:

Description:

ENTITYget_supertypes
Entity entity - entity to examine

Linked_List of Entity - immediate supertypes of this entity

Retrieve a list of an entity’s immediate supertypes. This list should not be
LISTf ree’d.

Procedure:

Parameters:

Returns:

Description:

ENTITYget_uniqueness_list

Entity entity - entity to examine

Linked_List of Linked_List - this entity’s uniqueness sets

Retrieve an entity’s uniqueness list Each element of this list is itself a list of

Variables, specifying a uniqueness set for the entity. The uniqueness list should nm
be LISTf ree’d, nor should any of the component lists.

Procedure:

Parameters:

ENTITYhas_supertype

Entity child - entity to check parentage of

Entity parent - parent to check for

Returns: Boolean - does child’s superclass chain include parent?

Procedure:

Parameters:

ENTITYhas_subtype

Entity parent - entity to check descendants of

Entity child - child to check for

Returns: Boolean - does parent’s subclass tree include child?

Procedure:

Parameters:

ENTITYhas_immediate_supertype
Entity child - entity to check parentage of

Entity parent - parent to check for

Returns: Boolean - is parent a direct supertype of child?

NIST Express Working Form Programmer’s Reference Page 18



Stephen Nowland Clark

Procedure:

Parameters:

Returns:

Fh-ocedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

ENTITYhas_subtype

Entity parent - entity to check children of

Entity child - child to check for

Boolean - is child a direct subtype of parent?

ENTITYinitialize

-- none --

void

Initialize the Entity module. This is called by EXPRESSinitialize ( ) , and so

normally need not be called individually.

ENTITYput_constraints

Entity entity - entity to modify

Linked_Lisi constraints - list of constraints which entity must satisfy

void

Set the constraints on an entity. The elements of the constraints list should be
Expressions of type TY_LOGICAL.

ENTITYput_inheriiance_count
Entity entity - entity to modify

int count - number of inherited attributes

void

Set the number of attributes inherited by an entity. This should be computed
automatically (perhaps only when needed), and this call removed. The count is

currently computed by ENTiTYresolve ( )

.

ENTITYput_name
Entity entity - entity to modify

String name - entity’s name

void

Set the name of an entity.

ENTITYput_mark

Entity entity - entity to modify

int value - new mark for entity

void

Set an entity’s mark. This mark is used, for example, in SCOPE_df s ( ) ,
part of

SCOPEget entit ies_superciass_orcier ( ) , to mark each entity as having

been touche? by the traversal.

ENTITYput_resolved

Entity entity - entity to modify

void

Set the ’resolved’ flag for an entity. This normally should only be called by
ENTiTYresolve ( ) ,

which actually resolves the entity definition.

Procedure:

Parameters:

Returns:

Description:

ENTITYput_scope
Entity entity - entity to modify

Scope scope - entity’s local scope

void

Set the local scope of an entity. This will contain defmitions of the entity’s locally-

defined attnbutes.

NIST Express Working Form Programmer’s Reference Page 19



Stephen Nowland Clark

Procedure: ENTITYput_subtypes
Parameters:

Returns:

Description:

Entity entity - entity to modify

Linked_List list - subclasses

void

Set the (immediate) subtype list of an entity. The elements of the list should be
Ent itys or (unresolved) Symbols. The issue, which arises in Express, of a boolean
expression specifying the subtypes, is not dealt with here.

Procedure:

Parameters:

Returns:

Description:

ENTITYput_supertypes
Entity entity - entity to modify

Linked_List list - superclass entities

void

Set the (immediate) supertype list of an entity. The elements of the list should be
Entitys or (unresolved) Symbols.

Procedure:

Parameters:

Returns:

Description:

ENTITYput_uniqueness_list
Entity entity - entity to modify

Linked_List list - uniqueness list

void

Set the uniqueness list of an entity. Each element of the uniqueness list should itself

be a list of Variables and/or (unresolved) Symbols referencing entity attributes.

Each of these sublists specifies a single uniqueness set for the entity.

Procedure:

Parameters:

Returns:

Description:

ENTITYresolve

Entity entity - entity to resolve

void

Resolve all symbol references in an entity defmidon. This function is called, in due
course, by EXPRESSpass_2 ( )

.

5.7 Expression

Constant: LITERAL_EMPTY_SET - a generic set literal representing the empty set

Constant:

Constant:

Constant:

LITERAL_INFINITY - a numeric literal representing infinity

LITERAL_PI - a real literal with the value 3.1415...

LITERAL_ZERO - an integer literal with the value 0

Type:

Description:

Expression_Class

This type is an enumeration of EXP IDENT, EXP literal, exp operation,
EXP_FUNCTION, and EXP_FIELD.

Procedure:

Parameters:

Returns:

Description:

EXPereate

Expression_Class class - class of expression to create

Expression - the expression created

Create and return a new expression of the indicated class. The type of the new
expression is initially TY_INTEGER. Other attributes are initially undefined.

NIST Express Working Form Programmer’s Reference Page 20



Stephen Nowland Clark

Procedure:

Parameters:

Returns:

Description:

Errors:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Requires:

Procedure:

Parameters:

Returns:

Requires:

Description:

Procedure:

Parameters:

Returns:

Procedure:

Parameters:

Returns:

Requires:

Description:

Procedure:

Parameters:

Returns:

Requires:

Procedure:

Parameters:

Returns:

Requires:

EXPcreate_binary

Op_Code op - operation

Expression opl - first operand

Expression op2 - second operand

Error* errc - buffer for error code

Expression - the expression created

Create a binary operation expression.

ERROR_wrong_operand_count - requested operation is not binary

EXPfree

Expression expression - expression to free

void

Release an expression. Indicates that the expression is no longer used by the caller; if

there are no other references to the expression, all storage associated with it may be

released.

EXPget_algorithm

Expression expression - expression to examine

Algorithm - the algorithm called in the expression

EXPget_class(expression)= EXP_FUNCTION

EXPget_algorithm_parameters

Expression expression - expression to examine

Linked_List of Expression - list of actual parameters

EXPget_class(expression)= EXP_FUNCTION
Retrieve the actual parameter Expressions from a function call expression. This

list should not be LiSTf ree’d.

EXPget_class

Expression expression - expression to examine

Expression_Class - the class of the expression

EXPgetJield

Expression expression - expression to examine

Symbol - field extracted by expression

EXPget_class(expression) = EXP_FIELD
Retrieve the name of the field from a field (attribute) extraction expression. The value

returned ought to be a Variable, but scoping for attribute references is not yet

handled, and so the reference cannot be resolved to a variable.

EXPget_fu-st_operand

Expression expression - expression to examine

Expression - the first (left-hand) operand

EXPget_class(expression) == EXP_OPERATION

EXPgetJdentifier

Expression expression - expression to examine

Symbol - the identifier referenced in the expression

EXPget_class(expresion) == EXP_IDENT

NIST Express Working Form Programmer’s Reference Page 21



Stephen Nowland Clark

Procedure:

Parameters:

Returns:

Requires:

Errors:

Procedure:

Parameters:

Returns:

Description:

Errors:

Procedure:

Parameters:

Returns:

Requires:

Errors:

Procedure:

Parameters:

Returns:

Procedure:

Parameters:

Returns:

Requires:

Procedure:

Parameters:

Returns:

Requires:

Errors:

Procedure:

Parameters:

Returns:

Requires:

Errors:

EXPget_integer_literal

Expression expression - integer literal to examine

Error* errc - buffer for error code

Integer - the literal’s value

EXPget_class(expression) == EXP_LITERAL
ERROR_integer_literal_expected

EXPget_integer_value

Expression expression - expression to evaluate

Error* errc - buffer for error code

int - value of expression

Compute the value of an integer expression. Currently, only integer literals can be
evaluated; other classes of expressions evaluate to 0 and produce a warning message.
EXPRESS I0N_NULL evaluates to 0, as well.

ERROR_integer_expression_expected

EXPget_logical_literal

Expression expression - logical literal to examine

Error* errc - buffer for error code

Boolean - the literal’s value

EXPget_class(expression) = EXP_LITERAL
ERROR_logical_literal_expected

EXPget_numb€r_of_operands
Op_Code operation - the opcode to query

int - number of operands required by this operator.

EXPget_operator

Expression expression - expression to examine

Op_Code - the operator invoked by the expression

EXPget_class(expression)= EXP_OPERATION

EXPget_real_literal

Expression expression - real literal to examine

Error* errc - buffer for error code

Real - the literal’s value

EXPget_class(expression)= EXP_LITERAL
ERROR_real_literal_expected

EXPget_second_operand

Expression expression - expression to examine

Error* errc - buffer for error code

Expression - the expression’s second operand

EXPget_class(expression) == EXP_OPERATION
ERROR_wrong_operand_count - expression is not a binary operation

NIST Express Working Form Programmer’s Reference Page 22



Stephen Nowland Clark

Procedure:

Parameters:

Returns:

Requires:

Description:

Errors:

Procedure:

Parameters:

Returns:

Requires:

Errors:

Procedure:

Parameters:

Returns:

Requires:

Description:

Procedure:

Parameters:

Returns:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Requires:

Description:

Procedure:

Parameters:

Returns:

Requires:

Description:

EXPget_set_literal

Expression expression - set literal to examine

Error* errc - buffer for error code

Linked_List of Generic - the literal’s contents

EXPget_class(expression) == EXP_LITERAL
Retrieve the value of a set literal, as a list

ERROR_set_literal_expected

EXPget_string_literal

Expression expression - string literal to examine

Error* errc - buffer for error code

String - the literal’s value

EXPget_class(expression) = EXP_LITERAL
ERROR_st ring_literal_expected

EXPget_stnicture

Expression expression - expression to examine

Expression - structure referenced by expression

EXPget_class(expression) == EXP_FIELD
Retrieves the structure examined by a field extraction expression. This is the

expression which computes the entity instance from which a field is to be extracted.

EXPget_type

Expression expression - expression to examine

Type - the type of the value computed by the expression

EXPinitialize

-- none --

void

Initialize the Expression module. This is called by express initialize ( ) , and
so normally need not be called individually,

EXPput_algorithm

Expression expression - expression to modify

Algorithm algorithm - function called by expression

void

EXPget_class(expression) == EXP_FUNCTION
ALGget_class(algorithm) = ALG_FUNCTION I ALG_RULE
Set the algorithm called by a function call expression.

EXPput_algorithm_parameters

Expression expression - expression to modify

Linked_List parameters - list of actual parameters

void

EXPget_cIass(expression) == EXP_FUNCTION
Set the actual parameter list to a function call expression. The elements of the

parameter list should be Express ions. The types of the actual parameters currendy

are not venfied against the formal parameter list of the called algorithm.

NIST Express Working Form Programmer’s Reference Page 23



Stephen Nowland Clark

Procedure:

Parameters:

Returns:

Requires:

Description:

Procedure:

Parameters:

Returns:

Requires:

Description:

Procedure:

Parameters:

Returns:

Require:

Description:

Procedure:

Parameters:

Returns:

Requires:

Description:

Procedure:

Parameters:

Returns:

Requires:

Description:

Errors:

Procedure:

Parameters:

Returns:

Requires:

Description:

Errors:

EXPput„field

Expression expression - expression to modify

Symbol field - field extracted by expression

void

EXPget„class(expression) == EXP_FIELD
Set the field in a field exQ-action expression.

EXPpulJdentifier

Expression expression - expression to modify

Symbol identifier - the referent of the identifier

void

EXPget_class(expression)= EXP_IDENT
Set the referent of an identifier expression.

EXPput_integer_literal

Expression expression - literal to modify

Integer value - the value for the literal

void

EXPget„class(expression)~ EXP_LITERAL
Set the type and value of an integer literal.

EXPput_logicaLliteral

Expression expression - literal to modify

Boolean value - the value for the literal

void

EXPget_class(expression)= EXP_LITERAL
Set the type and value of a logical literal.

EXPput_operand

Expression expression - expression to modify

Expression operand - the single operand to the expression

Error* errc - buffer for error code

void

EXPget_class(expression) == EXP_OPERATION
Set the single operand of a unary operation expression.

ERROR__wrong_operand__count - expression is not a unary operation

EXPput_operands

Expression expression - expression to modify

Expression operand 1 - the first operand to the expression

Expression operand2 - the second operand to the expression

Error* errc - buffer for error code

void

EXPget_class(expression) = EXP_OPERATION
Set the two operands to a binary operation expression.

ERROR_wrong_operand__count - expression is not a binary operation

NIST Express Working Form Programmer’s Reference Page 24



Stephen Nowland Clark

Procedure:

Parameters:

Returns:

Requires:

Description:

Procedure:

Parameters:

Returns:

Requires:

Description:

Procedure:

Parameters:

Returns:

Requires:

Description:

Procedure:

Parameters:

Returns:

Requires:

Description:

Procedure:

Parameters:

Returns:

Requires:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

EXPput_operator

Expression expression - expression to modify

Op_Code operaaon - the operation invoked by the expression

void

EXPget_class(expression)= EXP_OPERATION
Set the operator of an operation expression.

EXPput_real_literal

Expression expression - literal to modify

Real value - the value for the literal

void

EXPget_class(expression) == EXP_LITERAL
Set the type and value of a real literal.

EXPput_set_literal

Expression expression - literal to modify

Linked_List value - contents of the set literal

void

EXPget_class(expression) = EXP_LITERAL
Set the type and value of a set literal (from a list of Generic elements).

EXPput_string_literal

Expression expression - literal to modify

String value - the value for the literal

void

EXPget_class(expression) = EXP_LITERAL
Set the type and value of a suing literal.

EXPput_structure

Expression expression - expression to modify

Expression suiicture - structure referenced by expression

void

EXPget_class(expression) = EXP_FIELD
Set the structure examined by a field exu-action expression. This is the expression

which computes the entity instance from which a field is to be extracted.

EXPput_type

Expression expression - expression to modify

Type type - the type of result computed by the expression

void

Set the type of an expression. This call should actually be unnecessary: the t>pe of an

expression is derivable from its definition. While this is currendy true in the case of

literals, there are no rules in place for deriving the type from, for example, the return

type of a funcuon or and operator together with its operands.

EXPresolve

Expression expression - expression to resolve

Scope scope - scope in which to resolve

void

Resolve all symbol references in an expression. This is called, in due course, by
EXPRESSpass_2 () .

NIST Express Working Form Programmer’s Reference Page 25



Stephen Nowland Clark

5.8 Loop Control

Type: Loop_Control_Class

Description: This type is an enumeration of LOOP INCREMENT, LOOP SET SCAN,
LOOP_UNTIL, and loop_while.

Procedure:

Parameters:

Returns:

LOOP_CTLcreate_increment

Expression control - controlling expression

Expression start - initial value

Expression end - terminal value

Expression increment - amount by which to increment

Loop_Control - loop control created

Procedure:

Parameters:

Returns:

Requires:

Description:

Errors:

LOOP_CTLcreate_set_scan

Expression control - controlling expression

Expression set - set to scan over

Error* errc - buffer for error code

Loop_Control - the loop control created

TYPEget_class(EXPget_type(set)) == TYPE_SET
Create a set scan control over the indicated set. Set scan controls are eliminated by
Tokyo Express, but still appear in the Tokyo IPIM. This call may disappear at any
time.

ERROR_set_scan_set_expected - scan control is not a set

Procedure:

Parameters:

Returns:

Requires:

Errors:

LOOP_CTLcreate_until

Expression control - terminadon condidon

Error* errc - buffer for error code

Loop_Control - the loop control created

EXPget_type(control) == TY_LOGICAL
ERROR_control_boolean_expected - controlling expression is not boolean

Procedure:

Parameters:

Returns:

Requires:

Errors:

LOOP_CTLcreate_while

Expression control - condnuadon condidon

Error* errc - buffer for error code

Loop_Control - the loop control created

EXPget_type(control) == TY_LOGICAL
ERROR_control_boolean_expected - contJoUing expression is not boolean

Procedure:

Parameters:

Returns:

Description:

LOOP_CTLfree
Lx)op_Control control - control to free

void

Release a loop control. Indicates that the control is no longer used by the caller; if there

are no other references to the control, all storage associated with it may be released.

Procedure:

Parameters:

Returns:

LOOP_CTLget_controLclass

Loop_Control control - loop control to examine

Loop_Control_Class - the loop control’s class

Procedure:

Parameters:

Returns:

Requires:

LOOP_CTLget_control_set

Loop_Control control - loop control to examine

Expression - set scanned over by the control

LOOP_CTLget_control_class(control) == LOOP_SET_SCAN

NIST Express Working Form Programmer’s Reference Page 26



Stephen Nowland Clark

Procedure: LOOP_CTLget_controlling_expression

Parameters:

Returns:

Description:

Loop_Control control - loop control to examine

Expression - controlling expression

Retrieve a loop control’s controlling expression. For while and until controls, this is

the termination or continuation condition, respectively. For iteration and set scan
controls, this is the expression which receives successive values in the iteration.

Procedure:

Parameters:

Returns:

Requires:

Description:

LOOP_CTLget_final

Loop_Control control - loop control to examine

Expression - terminal value for controlling expression

LOOP_CTLget_control_class(control) == LOOP_INCREMENT
Retrieve the final value from an increment control.

Procedure:

Parameters:

Returns:

Requires:

Description:

LOOP_CTLget_increment

Loop_Control control - loop control to examine

Expression - amount to increment by on each iteration

LOOP_CTLget_control_class(control) == LOOP_INCREMENT
Retrieve the increment expression from an increment control.

Procedure:

Parameters:

Returns:

Requires:

Description:

LOOP_CTLget_start

Loop_Control control - loop control to examine

Expression - initial expression for controlling expression

LOOP_CTLget_control_class(control) == LOOP_INCREMENT
Retrieve the initial value from an increment control.

Procedure:

Parameters:

Returns:

Description:

LOOP_CTLinitialize

“ none --

void

Initialize the Loop Control module. This is called by express initialize () ,and

so normally need not be called individually.

Procedure:

Parameters:

Returns:

Description:

LOOP_CTLresolve

Loop_Control control - control to resolve

Scope scope - scope in which to resolve

void

Resolve all symbol references in a loop control. This is called, in due course, by
EXPRESSpass_2 ( )

.

5.9 Schema

Procedure:

Parameters:

Returns:

Description:

SCHEMAcreate
String name - name of schema to create

Scope scope - local scope for schema

Schema - the schema created

Create a new schema.

NIST Express Working Form Programmer’s Reference Page 27



Stephen Nowland Clark

Procedure:

Parameters:

SCHEMAcreate_from

Symbol schema - symbol to build from

Scope scope - local scope for schema

Returns:

Description:

Schema - the schema created

Create a new schema, using an existing symbol as a template. The template symbol’s
name is retained. This call is used in Fed-X’s parser to fill out generic symbols
returned by the lexical analyzer. The template Symbol is modified by this call.

Procedure:

Parameters:

SCHEMAdump
Schema schema - schema to dump

FILE* file - file to dump to

Returns:

Description:

void

Dump a schema to a file. This function is provided for debugging purposes.

Procedure:

Parameters:

Returns:

SCIffiMAget_name

Schema schema - schema to examine

String - the schema’s name

Procedure:

Parameters:

Returns:

SCIffiMAget_scop€

Schema schema - schema to examine

Scope - schema’s local scope

Procedure:

Parameters:

Returns:

Description:

SCHEMAfree
Schema schema - schema to free

void

Release a schema. Indicates that the schema is no longer used by the caller; if there

are no other references to the schema, all storage associated with it may be released.

Procedure:

Parameters:

Returns:

Description:

SCHEMAinitialize

- none --

void

Initialize the Schema module. This is called by EXPRESSinitialize ( ) , and so

normally need not be called individually.

Procedure:

Parameters:

Returns:

Description:

SCHEMAresolve
Schema schema - schema to resolve

void

Resolve all symbol references within a schema. In order to avoid problems due to

references to as-yet-unresolved symbols, schema resolution is broken into two passes,

which are implemented by SCHEMAresolve__passl ( ) and
SCHEMAresolve__pass2 ( ) . These two are called in turn by
SCHEMAresolve ( )

.

5.10 Scope

Procedure:

Parameters:

SCOPEaddJmport
Scope scope - scope to modify

Symbol schema - schema to import (assume)

Returns:

Description:

void

Add a schema to the import list of a scope. If the symbol given has not been resolved

to a schema, SCOPE resolve { ) will see to it that it is.

NIST Express Working Form Programmer’s Reference Page 28



Stephen Nowland Clark

Procedure:

Parameters:

Returns:

Description:

F^ocedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Errors:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

SCOPEadd_private

Scope scope - scope to modify

Symbol name - item to add to private list

void

Add an item to a scope’s list of private declarations. Note that after

SCOPEput everything_private ( ) is called, the items added to the private list

are actually The ones which are public.

SCOPEcreate

Scope scope - next higher scope

Scope - the scope created

Create an empty scope. Note that the connection between this new scope and its parent
(the sole parameter to this call) is uni-directional: the parent does not immediately
know about the child.

SCOPEdefme_symbol

Scope scope - scope in which to define symbol

Symbol symdef - new symbol defmition

Error* errc - buffer for error code

void

Define a symbol in a scope. There are several aliases for this procedure, which can be

used when the class of the symbol being defined is known:
SCOPEdef ine_algorithm { ) , SCOPEdefine_const ant ( )

,

SCOPEdef ine_entityO. SCOPEdefine_schema ( )

,

SCOPEdef ine_type ( ) , and SCOPEdefine_type (

)

Reports all errors directly, so only ERROR_subordinate_failed is propagated.

SCOPEdump
Scope scope - scope to dump
FILE* file - file stream to dump to

void

Dump a schema to a file. This function is provided for debugging purposes.

SCOPEfree

Scope scope - scope to free

void

Release a scope. Indicates that the scope is no longer used by the caller; if there are no
other references to the scope, all storage associated with it may be released.

SCOPEget_algorithms

Scope scope - scope to examine

Linked_List - list of locally defined algorithms

Retrieve a list of the algorithms defmed locally in a scope. The elements of this list are

Algorithms. The list should be LiSTf ree’d when no longer needed.

SCOPEget_constants

Scope scope - scope to examine

Linked_List - list of locally defined constants

Retrieve a list of the constants defined locally in a scope. The elements of this list are

Constants. The list should be LiSTf ree’d when no longer needed.

NIST Express Working Form Programmer’s Reference Page 29



Stephen Nowland Clark

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

SCOPEget„entities

Scope scope - scope to examine

Linked„List - list of locally defined entities

Retrieve a list of the entities defined locally in a scope. The elements of this list are
Ent itys. The list should be LiSTf ree’d when no longer needed. This function is

considerably faster than SCOPEget entities__superclass__order ( ) , and
should be used whenever the order ofthe entities on the list is not important.

SCOPEget„entities_superclass_order

Scope scope - scope to examine

Linked_List - list of locally defined entities in superclass order

Retrieve a list of the entities defined locally in a scope. The elements of this list are

Entity’s. The list should be L I ST f ree’d when no longer needed. The list returned

is ordered such that each entity appears before all of its subtypes.

SCOPEgetJmports

Scope scope - scope to examine

Linked_List - ’assumed’ schemata

Retrieve a list of the schemata assumed in a scope. The elements of this list are

Schemas. The list should not be LI ST f ree’d.

SCOPEgetjesolved

Scope scope - scope to examine

Boolean - has this scope been resolved?

Check whether symbol references in a scope have been resolved.

SCOPEget„schemata

Scope scope - scope to examine

Linked„List - list of locally defined schemata

Retrieve a list of the schemata defined locally in a scope. The elements of this list are

Schemas. The list should be LiSTf ree’d when no longer needed.

SCOPEget_superscope

Scope scope - scope to examine

Scope - next outer (containing) scope

Retrieve a scope’s parent scope.

SCOPEget_types

Scope scope - scope to examine

Linked_.List - list of locally defined types

Remeve a list of the types defined locally in a scope. The elements of this list are

Types. The list should be LiSTf ree’d when no longer needed.

SCOPEget_variables

Scope scope - scope to examine

Linked_List - list of locally defined variables

Retrieve a list of the variables defined locally in a scope. The elements of this list are

Variables. The list should be LiSTf ree’d when no longer needed.

NTST Express Working Form Programmer’s Reference Page 30



Stephen Nowland Clark

Procedure:

Parameters:

Returns:

Description:

SCOPEinitialize

— none --

void

Initialize the Scope module. This is called by EXPRESSinit ialize (

)

, and so
normally need not be called individually.

Procedure:

Parameters:

SCOPElookup

Scope scope - scope in which to look up name

String name - name to look up

Symbol_Class sections - section(s) in which to look

Boolean walk - look in parent and imported scopes?

Error* errc - buffer for error code

Returns:

Description:

Symbol - definidon of name in scope

Retrieve a name’s definition in a scope. This is the basic lookup function for scopes,

and normally is not called from outside the scope module. It is the heart of the six

lookup functions which follow. Two or more Symbol_Cl asses can be or’ed

together to form the sections parameter. Note that Symbol_any is the result of or’ing

together all of the known symbol classes. If the scope does not define the name, the

parent scopes are successively queried. If no definidon is found, SYMBOL_null is

returned. If an inappropriate definidon is found first, it is returned.

Errors: ERROR_inappropriate_use - the first definidon found is not of the requested

class

ERROR undef ined_identif ier - no definidon was found

Procedure:

Parameters:

SCOPElookup_algorithm

Scope scope - scope in which to look up name

String name - name to look up

Error* errc - buffer for error code

Returns: Algorithm - definidon of name as an algorithm in the scope

Procedure:

Parameters:

SCOPElookup_constant

Scope scope - scope in which to look up name

String name - name to look up

Error* errc - buffer for error code

Returns: Constant - definidon of name as a constant in the scope

Procedure:

Parameters:

SCOPElookup_endty

Scope scope - scope in which to look up name

String name - name to look up

Error* errc - buffer for error code

Returns: Endty - definidon of name as an entity in the scope

Procedure:

Parameters:

SCOPElookup_schema

Scope scope - scope in which to look up name

String name - name to look up

Error* errc - buffer for error code

Returns: Schema - definidon of name as a schema in the scope

Procedure:

Parameters:

SCOPElookup_type

Scope scope - scope in which to look up name

String name - name to look up

Error* errc - buffer for error code

Returns: Type - definidon of name as a type in the scope

NIST Express Working Form Programmer’s Reference Page 3

1



Stephen Nowland Clark

Procedure:

Parameters:

SCOPElookup_variable

Scope scope - scope in which to look up name
String name - name to look up

Error* errc - buffer for error code

Returns: Variable - definition of name as a variable in the scope

Procedure:

Parameters:

SCOPEput„everything_private

Scope scope - scope to modify

Boolean flag - a^e declarations private by default?

Returns:

Description:

void

Indicate whether declarations are private or exported by default. In Express, any
declaration is available to any scope which imports the scope in which it appears,

unless the declaration is explicitly marked ’private’. This is the default behavior for

the Scope abstraction. If this flag is set, however, a declaration is kept private by
default, unless it appears on the ’private’ list The meaning of the ’private’ list is thus

reversed. This is to allow the Express PRIVATE everything [except ...]
directives to be handled conveniently.

Procedure:

Parameters:

SCOPEput_imports

Scope scope - scope to modify

Linked_List imports - list of schemata to assume

Returns:

Description:

void

Set the entire list of assumed schemata in one fell swoop.

Procedure:

Parameters:

Returns:

Description:

SCOPEput_resolved

Scope scope - scope to modify

void

Set the ’resolved’ flag for a scope. This normally should only be called by
SCOPEresolve (

)

, which actually resolves the scope.

Procedure:

Parameters:

Returns:

Description:

SCOPEresolve

Scope scope - scope to resolve

void

Resolve all symbol references in a scope. In order to avoid problems due to references

to as-yet-unresolved symbols, scope resolution is broken into two passes, which are

implemented by SCOPE res olve__pas si ( ) and SCOPEresolve_pass2 ( )

.

These two are called in turn by SCOPEresolve ( )

.

5.11 Statement

Type:

Description:

Statement_Class

This type is an enumeration of stmt assignment, stmt case,
STMT COMPOUND, STMT IF, STMT PROCEDURE, STMT REPEAT,
STMT_RETURN, STMT__S IMPLE, and STMT__WITH.

Type:

Description:

Statement_Simple

This type is an enumeration of statement__eSCAPE and STATEMENT__skip.

Procedure:

Parameters:

STMTcreate_assignment

Expression Ihs - the left-hand-side of the assignment

Expression rhs - the right-hand-side of the assignment

Returns:

Description:

Statement - the assignment statement created

Create an assignment statement.

NIST Express Working Form Programmer’s Reference Page 32



Stephen Nowland Clark

Procedure:

Parameters:

STMTcreate_case

Expression selector - expression to case on

Linked_List case - list of case branches

Returns:

Description:

Statement - the case statement created

Create a case statement The elements of the case branch list should be Case items.

Procedure:

Parameters:

Returns:

Description:

STMTcreate_compound

Linked_List statements - list of compound statement elements

Statement - the compound statement created

Create a compound statement The elements of the statements list should be
Statements, in the order they appear in the compound statement to be represented.

Procedure:

Parameters:

STMTcreateJf

Expression test - the condition for the if

Statement then - code executed when test == true

Statement otherwise - code executed when test= false

Returns:

Description:

Statement - the if statement created

Create an if statement For a simple if . . then . . with no else clause, set the

third parameter to statement_null.

Procedure:

Parameters:

STMTcreate_procedure_call

Algorithm algorithm - procedure called by statement

Linked_List parameters - list of actual parameters

Returns:

Requires:

Description:

Statement - the procedure call created

ALGget_algorithm_class(Algorithm) == ALG_PROCEDURE
Create a procedure call statement. The elements of the actual parameter list should be
Expressions which compute the values to be passed to the procedure.

Procedure:

Parameters:

STMTcreate_repeat

Linked_List controls - list of controls for the loop

Statement body - statement to be repeated

Returns:

Description:

Statement - the repeat statement created

Create a repeat statement. The elements of the controls list should be
Loop_Controls.

Procedure:

Parameters:

Returns:

Description:

STMTcreate_retum

Expression expression - expression to compute return value

Statement - the return statement created

Create a return statement.

Procedure:

Parameters:

Returns:

Description:

STMTcreate_simple

Statement_Simple simple - type of simple statement

Statement - the simple statement created

Create a simple statement A simple statement is a statement which consists of a single

keyword. In Express, the two examples are ’escape’ and ’skip’.

Procedure:

Parameters:

STMTcreate_with

Expression expression - controlling expression for the with

Statement body - controlled statement for the with

Returns:

Description:

Statement - the with statement created

Create a with statement

NIST Express Working Form Programmer’s Reference Page 33



Stephen Nowland Clark

Procedure:

Parameters:

Returns:

Description:

STMTfree

Statement statement - statement to free

void

Release a statement. Indicates that the statement is no longer used by the caller; if there

are no other references to the statement, all storage associated with it may be released.

Procedure:

Parameters:

Returns:

Requires:

STMTget_assignment_lhs

Statement statement - statement to examine

Expression - left-hand-side of assignment statement

STMTget_class(statement) = STMT_ASSIGNMENT

Procedure:

Parameters:

Returns:

Requires:

STMTget_assignment_rhs

Statement statement - statement to examine

Expression - right-hand-side of assignment statement

STMTget_class(statement) = STMT_ASSIGNMENT

Procedure:

Parameters:

Returns:

Requires:

Description:

STMTget_caseJtems

Statement statement - statement to examine

Linked_List - case branches

STMTget_class(statement) = STMT_CASE
Retrieve a list of the branches in a case statement. The elements of this list are

Case_Items.

Procedure:

Parameters:

Returns:

Requires:

Description:

STMTget_case_selector

Statement statement - statement to examine

Expression - the selector for the case statment

STMTget_class(siatement) = STMT_CASE
Retrieve the selector from a case statement. This is the expression whose value is

compared to each case label in turn.

Procedure:

Parameters:

Returns:

STMTget_class

Statement statement - statement to examine

Statement_Class - the class of the statement

Procedure:

Parameters:

Returns:

Requires:

Description:

STMTget_compound_items

Statement statement - statement to examine

Linked_List - list of statements in compound

STMTget_class(statement) — STMT_COMPOUND
Retrieve a list of the Statements comprising a compound statement.

Procedure:

Parameters:

Returns:

Requires:

STMTget_else_clause

Statement statement - statement to examine

Statement - code for ’else’ branch

STMTget_class(statement) == STMT_IF

Procedure:

Parameters:

Returns:

Requires:

STMTget_if_condition

Statement statement - statement to examine

Expression - the test condition

STMTget_class(statement) == STMT_IF

NIST Express Working Form Programmer’s Reference Page 34



Stephen Nowland Clark

Procedure:

Parameters:

Returns:

Requires:

Description:

Fh-ocedure:

Parameters:

Returns;

Requires:

Description:

Procedure:

Parameters:

Returns:

Requires:

Description:

Procedure:

Parameters:

Returns:

Requires:

Description:

Procedure:

Parameters:

Returns:

Requires:

Description:

Procedure:

Parameters:

Returns:

Requires:

Procedure:

Parameters:

Returns:

Requires:

Procedure:

Parameters:

Returns:

Requires:

STMTget_procedure

Statement statement - statement to examine

Algorithm - algorithm called by this statement

STMTget_class(statement) == STMT_PROCEDURE
Retrieve the algorithm called by a procedure call statement.

STMTget_procedure_parameters

Statement statement - statement to examine

Linked_List - actual parameters to this call

STMTget_class(statement) = STMT_PROCEDURE
Retrieve the actual parameters for a procedure call statement. The elements of this list

are Expressions which compute the values to be passed to the called routine.

STMTget_repeat_body

Statement statement - statement to examine

Statement - the body of the loop

STMTget_class(statement) — STMT_REPEAT
Retrieve the body (repeated portion) of a repeat statement.

STMTget_repeat_controls

Statement statement - statement to examine

Linked_List - list of loop controls

STMTget_class(statement) = STMT_REPEAT
Retrieve a list of a repeat statement’s controls. The elements of this list are

Loop_Controls.

STMTget_retum_expression

Statement statement - statement to examine

Expression - expression returned by this statement

STMTget_class(statement) = STMT_RETURN
Retrieve the expression whose value is computed and returned by a return statement.

STMTget_simple_name

Statement statement - statement to examine

Statement_Simple - the name of this simple statement

STMTget_class(statement) = STMT_SIMPLE

STMTget_then_clause

Statement statement - statement to examine

Statement - code for ’then’ branch

STMTget_class(statement) = STMT_IF

STMTget_with_body

Statement statement - statement to examine

Statement - statement forming the body of the with statement

STMTget_class(statement) == STMT_WrrH

NIST Express Working Form Programmer’s Reference Page 35



Stephen Nowland Clark

Procedure:

Parameters:

Returns:

Requires:

Description:

STMTget_wiih_control

Statement statement - statement to examine

Expression - the controlling expression

STMTget_class(statement) = STMT_WITH
Retrieve the controlling expression from a with statement. This is the expression
which will be prepended to any expression which cannot otherwise be evaluated in the
current scope.

Procedure:

Parameters:

Returns:

Description:

STMTinitialize

-- none --

void

Initialize the Statement module. This is called by EXPRESSinitialize {) , and so

normally need not be called individually.

Procedure:

Parameters:

STMTput_procedure

Statement statement - statement to modify

Algorithm procedure - defmidon of called algorithm

Returns:

Requires:

Description:

void

STMTget_class(statement) = STMT_PROCEDURE
Set the actual algorithm called by a procedure call statement. If a procedure stub
(unresolved Symbol) is present in the statement, it is replaced such that all references

remain valid.

Procedure:

Parameters:

STMTresolve

Statement statement - statement to resolve

Returns:

Description:

Scope scope - scope in which to resolve

void

Resolve all symbol references in a statement. This is called, in due course, by
EXPRESSpass_2 () .

5.12 Symbol

Type:

Description:

SymboLClass

This type is an enumeration of symbol any, symbol reference,
SYMBOL ALGORITHM, SYMBOL CONSTANT, SYMBOL ENTITY,
symbol_schema, symbol_type, symboLevariable, and
SYMBOL_OBJECT. SYMBOL ANY is the bitwise-or of all other values of

Symbol_Class, and is useful in SCOPElookup ( ) . SYMBOL_REFERENCE
indicates a symbol reference which has not yet been resolved. SYMBOL_object is

used by the STEP Working Form.

Procedure:

Parameters:

SYMBOLbecome
Symbol old - symbol to replace definition of

Symbol new - symbol to replace with

Returns:

Requires:

void

old != SYMBOL.NULL
new != SYMBOL_NULL

Description: Replace a symbol with a new symbol. All references to the old symbol will now refer

to the new symbol. This call is used by the various XXXresolve ( ) routines when
an initial interpretation of some symbol turns out to be wrong.

NIST Express Working Form Programmer’s Reference Page 36



Stephen Nowland Clark

Procedure:

Parameters:

Returns:

Description:

SYMBOLcopy
Symbol symbol - symbol to copy

Symbol - copy of symbol

Create a copy of a symbol. This copy is a shallow copy, meaning that future changes
to the origin^ will be reflected in the copy.

Procedure:

Parameters:

Returns:

Description:

SYMBOLcreate
Symbol_Class class - class of symbol to create

Symbol - newly created symbol

Create a new symbol. The new symbol’s definition field is NULL.
SYMBOLcreate ( ) is normally called by one of the client create functions, e.g.

ALGcreate { ) , which then fills in the definition field.

Procedure:

Parameters:

Returns:

Description:

SYMBOLdeep_copy
Symbol symbol - symbol to copy

Symbol - copy of symbol

Create a deep copy of a symbol. This call copies the symbol header, so that multiple

headers (thus with different names) can point to the same definition. This clearly

causes problems with memory management, but is needed in order to deal with

declarations like TYPE foo = bar.

Procedure:

Parameters:

SYMBOLequal
Symbol syml - first symbol to test

Symbol sym2 - second symbol to test

Returns:

Description:

Boolean - are the symbols equal?

Test two symbols for equality. Two symbols are equal if they are the same symbol or

if they share the same definition (in Lisp terminology, if the headers are eq or the

definitions are eq).

Procedure:

Parameters:

SYMBOLfiree

Symbol symbol - symbol to free

void (*func)(Generic) - function to destroy symbol definition

Returns:

Description:

void

Free a reference to a symbol. If there are no more references to the symbol, its

definition is passed to the given destructor function before the symbol header is

f ree’d. The usual destruction paradigm for a symbol client is to have a function

FOOfree(Foo foo) which calls SYMBOLfree ( foo, FOOdestroy) , where
module Foo includes a static function FOOdestroy ( St ruct Foo*). Of course,

in a truly object-oriented environment, this garbage would be unnecessary!

Procedure:

Parameters:

Returns:

SYMBOLget_class

Symbol symbol - symbol to examine

SymboLClass - class of symbol

Procedure:

Parameters:

Returns:

Description:

SYMBOLget_defmition

Symbol symbol - symbol to examine

Generic - defmition of symbol

Retrieve a symbol’s definition field. This will need to be cast to the appropriate pointer

type, according to the class of the symbol.

Procedure:

Parameters:

Returns:

SYMBOLgetJine_number
Symbol symbol - symbol to examine

int - line number of symbol

NIST Express Working Form Programmer’s Reference Page 37



Stephen Nowland Clark

Procedure; SYMBOLget_name
Parameters;

Returns;

Symbol symbol - symbol to examine

String - name of symbol

Procedure;

Parameters;

Returns;

Description;

SYMBOLget_resolved

Symbol symbol - symbol to examine

Boolean - is the symbol resolved?

Test whether a symbol has been resolved.

LProcedure;

Parameters;

Returns;

SYMBOLis_kind_of

Symbol symbol - symbol to test

SymboLClass kind - kind of symbol to test for

Boolean - is this symbol of the given class?

Procedure;

Parameters;

Returns;

Description;

SYMBOLput_class

Symbol symbol - symbol to modify

SymboLClass class - class for symbol

void

Set a symbol’s class.

Procedure;

Parameters;

Returns;

Description;

SYMBOLput_definition

Symbol symbol - symbol to define

Generic definition - definition of symbol

void

Store into the definition field of a symbol.

Procedure;

Parameters;

Returns;

Description;

SYMBOLput_line_number

Symbol symbol - symbol to modify

int number - line number for symbol

void

Set a symbol’s line number.

Procedure;

Parameters;

Returns;

Description;

SYMBOLpuLname
Symbol symbol - symbol to name

String name - name of symbol

void

Set the name of a symbol.

Procedure;

Parameters;

Returns;

Description;

SYMBOLpuLresolved
Symbol symbol - symbol to mark resolved

void

Marie a symbol as being resolved. This is normally called by the client

XXXput_resolved ( ) functions, since a symbol cannot itself be resolved.

5.13 Type

Constant;

Description;

TY.AGGREGATE
Type for general aggregate of generic.

NIST Express Working Form Programmer’s Reference Page 38



Stephen Nowland Clark

Constant:

Description:

TY.GENERIC
The simple type ’generic.’

Constant:

Description:

TYJNTEGER
Integer type with default precision.

Constant:

Description:

TY.LOGICAL
Logical type.

Constant:

Description:

TY_NUMBER
Number type.

Constant:

Description:

TY_REAL
Real type with default precision.

Constant:

Description:

TY_SET_OF_GENERIC
Type for unconstrained set of generic.

Constant:

Description:

TY_STRING
String type with default precision (length).

Type:

Description:

Type_Class

This type is an enumeration of TYPE AGGREGATE, type array, type bag,
TYPE ENTITY, TYPE ENUM, TYPE GENERIC, TYPE INTEGER, TYPE LIST,
TYPE LOGICAL, TYPE NUMBER, TYPE REAL, TYPE SELECT, TYPE SET,
and TYPE_STRING.

Procedure:

Parameters:

Returns:

Description:

TYPEcompatible

Type lhs_type - type for left-hand-side of assignment

Type rhs_type - type for right-hand-side of assignment

Boolean - are the types assignment compatible?

Determine whether two types are assignment-compatible. It must be possible to assign

a value of rhs_type into a slot of lhs_type.

Procedure:

Parameters:

Returns:

Description:

TYPEcreate

Type_Class class - the class of type to create

Type - the type created

Create a new type. The type’s class is as specified; all other fields have appropriate

NULL values.

Procedure:

Parameters:

Returns:

Description:

TYPEcreate_from

Symbol type - template symbol to fill in for type

Type_Class class - the class of type to create

Type - the type created

Create a new type of the indicated class, using an existing symbol as a template. The
template symbol’s name is retained. All other attributes of the type have appropriate

NULL values. This call is used in Fed-X’s parser to fill out generic symbols returned

by the lexical analyzer. The template Symbol is modified by this call.

NIST Express Working Form Programmer’s Reference Page 39



Stephen Nowland Clark

Procedure:

Parameters:

Returns:

Description:

TYPEfree

Type type - type to free

void

Release a type. Indicates that the type is no longer used by the caller; if there are no
other references to the type, aU storage associated with it may be released.

Procedure:

Parameters:

Returns:

Requires:

Description:

TYPEget_aggregate_optional

Type type - type to examine

Boolean - are elements of this aggregate optional?

TYPEget_class(type) — TYPE_ARRAY
Retrieve the ’optional’ flag from an aggregate type. This flag is true if and only if a

legal instantiation of the type need not have all of its slots filled.

Procedure:

Parameters:

Returns:

Requires:

Description:

TYPEget_aggregate_unique

Type type - type to examine

Boolean - must elements of this aggregate be unique?

TYPEget_class(type)= TYPE,ARRAY 1 TYPE.LIST
Retrieve the ’unique’ flag from an aggregate type. This flag is true if and only if a legal

instantiation of the type may not contain duplicates.

Procedure:

Parameters:

Returns:

Requires:

Description:

TYPEget_base_type

Type type - type to examine

Type - the base type of the aggregate type

TYPEget class(type)= TYPE AGGREGATE 1 TYPE ARRAY 1 TYPE BAG 1

TYPE.LIST 1 TYPE.SET
Retrieve the base type of an aggregate. This is the type of each element of an

instantiation of the type.

Procedure:

Parameters:

Returns:

TYPEget_class

Type type - type to examine

Type_Class - the class of the type

Procedure:

Parameters:

Returns:

Requires:

Description:

TYPEget_entity

Type type - type to examine

Entity - definition of entity type

TYPEget_class(type)= TYPE_ENTITY
Retrieve the entity referenced by an entity type.

Procedure:

Parameters:

Returns:

Requires:

Description:

TYPEget_fields

Type type - type to examine

Linked_List - list of selectable types

TYPEget_class(type) = TYPE.SELECT
Retrieve a list of the selectable types from a select type.

Procedure:

Parameters:

Returns:

Requires:

Description:

TYPEget_items

Type type - type to examine

Linked_List - list of enumeration items

TYPEget_class(type)= TYPE_ENUM
Retrieve an enumerated type’s list of identifiers. Each element of this list is a

Constant.

NIST Express Working Form Programmer’s Reference Page 40



Stephen Nowland Clark

Procedure:

Parameters:

Returns:

Requires:

TYPEget_lower_limit

Type type - type to examine

Expression - lower limit of the aggregate type

TYPEget class(type) == TYPE AGGREGATE 1 TYPE ARRAY 1 TYPE BAG 1

TYPE_LIST 1 TYPE_SET
Description: Retrieve an aggregate type’s lower bound. For an array type, this is the lowest index;

for other aggregate types, it specifies the minimum number of elements which the

aggregate must contain.

Procedure:

Parameters:

Returns:

TYPEget_name

Type type - type to examine

String - the name of the type

Procedure:

Parameters:

Returns:

Requires:

Description:

TYPEget_precision

Type type - type to examine

Expression - the precision specification of the type

TYPEget_class(type) = TYPE.INTEGER 1 TYPE_REAL 1 TYPE_STRING
Retrieve the precision specification from certain types. This specifies the maximum
number of significant digits or characters in an instance of the type.

Procedure:

Parameters:

Returns:

Description:

TYPEget_resolved

Type type - type to examine

Boolean - has type been resolved?

Checks whether symbol references within a type have been resolved.

Procedure:

Parameters:

Returns:

Description:

TYPEget_size

Type type - type to examine

Boolean - logical size of a type instance

Compute the size of an instance of some type. Simple types all have size 1, as does a

select type. The size of an aggregate type is the maximum number of elements an

instance can contain; and the size of an entity type is its total attribute count. If an
aggregate type is unbounded, the constant TYPE_unbounded_SIZE is returned.

TTiis value may be ambiguous; the upper bound of the type should be relied on to

determined unboundedness. It is intended that the initi^ memory allocation for such

an aggregate should give space for type_unbounded^s i ze elements, and that this

should grow as needed. By returning some reasonable Initial size, this call allows its

return value to be used immediately as a parameter to a memory allocator, without

being checked for validity. This is the approach taken in the STEP Working Form
[Clark90d], [Clark90e].

Procedure:

Parameters:

Returns:

Requires:

TYPEget_upper_limit

Type type - type to examine

Expression - upper limit of the aggregate type

TYPEget class(type) == TYPE AGGREGATE 1 TYPE ARRAY 1 TYPE BAG 1

TYPE_LIST 1 TYPE_SET
Description: Retrieve an aggregate type’s upper bound. For an array type, this is the high index; for

other aggregate types, it specifies the maximum number of elements which the

aggregate may contain.

NIST Express Working Form Programmer’s Reference Page 41



Stephen Nowland Clark

Procedure:

Parameters:

Returns:

Requires:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Requires:

Description:

Procedure:

Parameters:

Returns:

Requires:

Description:

Procedure:

Parameters:

Returns:

Requires:

Description:

Procedure:

Parameters:

Returns:

Requires:

Description:

Procedure:

Parameters:

Returns:

Requires:

Description:

TYPEget„varying

Type type - type to examine

Boolean - is the string type of varying length?

TYPEget_class(type)= TYPE„STOING
Retrieve the ’varying’ flag from a string type. This flag is true if and only if the length
of an instance may vary, up to the type’s precision. It is true by default

TYPEinitialize

- none --

void

Initialize the Type module. This is called by EXPRESSinitialize ( ) , and so

normally need not be called individually.

TYPEpuLaggregate^optionai

Type type - type to modify

Boolean optional - are array elements optional?

void

TYPEget_class(type)~ TYPE^ARRAY
Set the ’optional’ flag for an array type. This flag indicates that all slots in an instance

of the type need not be filled.

TYPEput_aggregate_unique

Type type - type to modify

Boolean unique - are aggregate elements required to be unique?

void

TYPEget_class(type)^ TYPE_ARRAY I TYPE„LIST
Set the ’unique’ flag for an aggregate type. This flag indicates that an instantiation of

the type may not contain duplicate items.

TYPEput_base„type

Type type - type to modify

Type base - the base type for this aggregate

void

TYPEget_class(type)= TYPE_AGGREGATE I TYPE..ARRAY 1 TYPE_BAG I

TYPE„LIST I TYPE..SET

Set the base type of an aggregate type. This is the type of every element.

TYPEput^entity

Type type - type to modify

Entity entity - definition of type

void

TYPEget„class(type)= TYPE„ENTITY
Set the entity referred to by an entity type.

TYPEput_fields

Type type - type to modify

Linked_List list - list of selectable types

void

TYPEget_class(type)~ TYPE„SELECT
Set the list of selections for a select type. An instance of any these types is a legal

instantiation of the select type. Each Type on the list should be of class

TYPE ENTITY or TYPE SELECT.

NIST Express Working Form Programmer’s Reference Page 42



Stephen Nowland Clark

Procedure:

Parameters:

Returns:

Requires:

Description:

Procedure:

Parameters:

Returns:

Requires:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Requires:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Requires:

Description:

TYPEput_items

Type type - type to modify

Linked_List list - list of enumeration items

void

TYPEget_class(type) == TYPE_ENUM
Set the list of identifiers for an enumerated type. Each element of this list should be a
Constant.

TYPEputJimits

Type type - type to modify

Expression lower - lower bound for aggregate

Expression upper - upper bound for aggregate

void

TYPEget_class(type) = TYPE.AGGREGATE I TYPE.ARRAY I TYPE.BAG I

TYPE.LIST 1 TYPE.SET
Set the lower and upper bounds for an aggregate type. For an array type, these are the

low and high indices; for other aggregates, the specify the minimum and maximum
number of elements which an instance may contain.

TYPEput.name

Type type - type to modify

String name - new name for type

void

Set the name of a type.

TYPEput.precision

Type type - type to modify

Expression prec - the precision of the type

void

TYPEget.class(type) = TYPE.INTEGER I TYPE.REAL I TYPE.STRING
Set the precision of certain types. This is the maximum number of significant digits or

characters in an instance.

TYPEput.resolved

Type type - type to modify

void

Set the ’resolved’ flag for a type. This normally should only be called by
TYPE resolve ( ) , which actually resolves the type.

TYPEput.varying

Type type - type to modify

Boolean varying - is string type of varying length?

void

TYPEget.class(type) = TYPE.STRING
Set the ’varying’ flag of a siring type. This flag indicates that the length of an instance

may vary, up to the type’s precision. The default behavior for a string type is to be

varying, i.e., strings are initialized as if TYPEput.varying(string, true) were called.

NIST Express Working Form Programmer’s Reference Page 43



Stephen Nowland Clark

Procedure: TYPEresolve

Parameters: Type type - type to resolve

Scope scope - scope in which to resolve

Returns:

Description:

void

Resolve all references in a type definition. This is called, in due course, by
EXPRESSpass_2 ( ) .

5.14 Variable

Type:

Description:

Reference_Class

This type is an enumeration of REF internal, ref external, and
REF_DYNAMIC.

Procedure:

Parameters:

VARcreate

String name - name of variable to create

Type type - type of variable to create

Returns:

Description:

Variable - the Variable created

Create a new variable. The reference class of the variable is, by default,

REF DYNAMIC. All special flags associated with the variable (e.g., optional) are

initially false.

Procedure:

Parameters:

VARcreate_from

Symbol variable - symbol to create from

Type type - type of variable to create

Returns:

Description:

Variable - the Variable created

Create a new variable, using an existing symbol as a template. The reference class of

the variable is, by default, dynamic. All special flags associated with the variable (e.g.,

optional) are initially false. The template symbol’s name is retained. This call is used
in Fed-X’s parser to fill out generic symbols returned by the lexical analyzer. The
Symbol provided is used as a template, and is modified and returned as the function

value.

Procedure:

Parameters:

Returns:

Description:

VARfree

Variable var - variable to destroy

void

Release a variable. Indicates that the variable is no longer used by the caller; if there

are no other references to the variable, all storage associated with it may be released.

Procedure:

Parameters:

Returns:

Description:

VARget_derived

Variable var - variable to examine

Boolean - value of variable’s derived flag

Retrieve the value of a variable’s ’derived’ flag. This flag indicates that an entity

attribute’s value should always be computed by its initializer; no value will ever be

specified for it.

Procedure:

Parameters:

Returns:

Description:

VARget_initidizer

Variable var - variable to modify

Expression - variable initializer

Retrieve the expression used to initialize a variable.

Procedure:

Parameters:

Returns:

VARget_name

Variable var - variable to examine

String - the name of the variable

NIST Express Working Form Programmer’s Reference Page 44



Stephen Nowland Clark

Procedure:

Parameters:

Returns:

Description:

VARget_offset

Variable var - variable to examine

int - offset to variable in local frame

Retrieve the offset to a variable in its local frame. This offset alone is not sufficient in
the case of an entity attribute (see ENT ITYget attribute offset ()).

Procedure:

Parameters:

Returns:

Description:

VARget_optional

Variable var - variable to examine

Boolean - value of variable’s optional flag

Retrieve the value of a variable’s ’optional’ flag. This flag indicates that a particular

entity attribute need not have a value when the entity is instantiated.

Procedure:

Parameters:

Returns:

VARget_reference_class

Variable var - variable to examine

Reference_Class - the variable’s reference class

Procedure:

Parameters:

Returns:

VARget_type

Variable var - variable to examine

Type - the type of the variable

Procedure:

Parameters:

Returns:

Description:

VARget_variable

Variable var - variable to examine

Boolean - value of variable’s variable flag

Retrieve the value of a variable’s ’variable’ flag. This flag indicates that an algorithm

parameter is to be passed by reference, so that it can be modified by the callee.

Procedure:

Parameters:

Returns:

Description:

VARinitialize

- none --

void

Initialize the Variable module. This is called by EXPRESSinitialize ( ) , and so

normally need not be called individually.

Procedure:

Parameters:

VARput_derived

Variable var - variable to modify

Boolean val - new value for derived flag

Returns:

Description:

void

Set the value of the ’derived’ flag for a variable. This flag is currently redundant, as a

derived attribute can be identified by the fact that it has an initializing expression. This

may not always be true, however.

Procedure:

Parameters:

VARputJnitializer

Variable var - variable to modify

Expression init - initializer

Returns:

Description:

void

Set the initializing expression for a variable.

NIST Express Working Form Programmer’s Reference Page 45



Stephen Nowland Clark

Procedure:

Parameters:

Returns:

Description:

VARput_offset

Variable var - variable to modify

int offset - offset to variable in local frame

void

Set a variable’s offset in its local frame. Note that in the case of an entity attribute, this

offset isfrom the first locally defined attribute, and must be used in conjunction with
entity’s initial offset (see ENTlTYget_attribute_of f set ( )

).

Procedure:

Parameters:

Returns:

Description:

VARput_optional

Variable var - variable to modify

Boolean val - value for optional flag

void

Set the value of the ’optional’ flag for a variable. This flag indicates that a particular

entity attribute need not have a value when the entity is instantiated. It is initially false.

Procedure:

Parameters:

Returns:

Description:

VARput_reference_class

Variable var - variable to modify

Reference_Class ref - the variable’s reference class

void

Set the reference class of a variable. The reference class defaults to REF_dynamic.

Procedure:

Parameters:

Returns:

Description:

VARput_variable

Variable var - variable to modify

Boolean val - new value for variable flag

void

Set the value of the ’variable’ flag for a variable. This flag indicates that an algorithm

parameter is to be passed by reference, so that it can be modified by the callee.

Procedure:

Parameters:

Returns:

Description:

VARresolve

Variable variable - variable to resolve

Scope scope • scope in which to resolve

void

Resolve all symbol references in a variable definition. This is called, in due course, by
EXPRESSpass_2 ()

.

6 Express Working Form Error Codes

The Error module, which is used to manipulate these error codes, is described in

[Clark90c].

Error:

Defined In:

Severity:

Meaning:

Format:

ERROR_bail_out

Express

SEVERITY.DUMP
Fed-X internal error

-- none --

NIST Express Working Form Programmer’s Reference Page 46



Stephen Nowland Clark

Error:

Defined In:

Severity:

Meaning:

Format:

ERROR_control_boolean_expected

Loop_Control

SEVERITY_WARNING
The controlling expression for a while or until does not seem to return boolean. In the

current implementation, this message can be erroneously produced because proper
t>pes are not derived for complex expressions; thus, an expression which truly does
compute a boolean result may not appear to do so according to the Working Form.
- none --

Error:

Defined In:

Severity:

Meaning:

Format:

ERROR_corrupted_expression

Expression

SEVERITY.DUMP
Fed-X internal error, an Expression structure was corrupted

%s - function detecting error

Error:

Defined In:

Severity:

Meaning:

Format:

ERROR_corrupted_statement

Statement

SEVERITY.DUMP
Fed-X internal error a Statement structure was corrupted

%s - function detecting error

Error:

Defined In:

Severity:

Meaning:

Format:

ERROR_corrupted_type

Type

SEVERITY.DUMP
Fed-X internal error a Type structure was corrupted

%s - function detecting error

Error:

Defined In:

Severity:

Meaning:

Format:

ERROR_duplicate_declaration

Scope

severity.error
A symbol was redeclared in the same scope

%s - name of redeclared symbol

%d - line number of previous declaration

Error:

Defined In:

Severity:

Meaning:

Format:

ERROR_inappropriate_use

Scope

SEVERITY.ERROR
A symbol was used in a context which is inappropriate for its declaration.

%s - the name of the symbol

Error:

Defined In:

Severity:

Meaning:

Format:

ERROR_include_file

Scanner

SEVERITY_ERROR
An iNCLUDEd file could not be opened.

%s - the name of the file

Error:

Defined In:

Severity:

Meaning:

Format:

ERROR_integer_expression_expected

Expression

SEVERITY_WARMING
A non-integer expression was encountered in an integer-only context

- none --

NIST Express Working Form Programmer’s Reference Page 47



Stephen Nowland Clark

Error:

Defined In:

Severity:

Meaning:

Format:

ERROR_integer_literal_expected

Expression

SEVERITY_WARMING
A non-integer or non-literal was encountered in an integer-literal context

— none -

Error:

Defined In:

Severity:

Meaning:

Format:

ERRORJogicalJiteraLexpected

Expression

SEVERITY_WARMING
A non-logical or non-literal was encountered in a logical-literal context

- none -

Error:

Defined In:

Severity:

Meaning:

Format:

ERROR„missing_subtype

Pass2

SEVERITY„WARMING
An entity which lists a particular supertype does not appear in that entity’s subtype list.

%s - the name of the subtype

%s - the name of the supertype

Error:

Defined In:

Severity:

Meaning:

Format:

ERROR_missing_supertype

Pass2

SEVERITY„ERROR
An entity which lists a particular subtype does not appear in that entity’s supertype list

%s - the name of the supertype

%s - the name of the subtype

Error:

Defined In:

Severity:

Meaning:

Format:

ERROR_nested_comment

Scanner

SEVERITY_WARMING
A start comment symbol ( * was encountered within a comment.

- none --

Error:

Defined In:

Severity:

Meaning:

Format:

ERROR_overloaded_attribute

Pass2

SEVERITY.ERROR
An attribute name was previously declared in a supertype

%s - the attribute name

%s - the name of the supertype with the previous declaration

Error:

Defined In:

Severity:

Meaning:

Format:

ERROR_real_literal_expected

Expression

SEVERITY^WARMING
A non-real or non-literal was encountered in a real-literal context

— none --

Error:

Defined In:

Severity:

Meaning:

Format:

ERROR_.set_literal_expected

Expression

SEVERITY_WARMING
A non-set or non-literal was encountered in a set-literal context

- none --

NIST Express Working Form Programmer’s Reference Page *^8



Stephen Nowland Clark

Error:

Defined In:

Severity:

Meaning:

Format:

Error:

Defined In:

Severity:

Meaning:

Format:

Error:

Defined In:

Severity:

Meaning:

Format:

Error:

Defined In:

Severity:

Meaning:

Format:

Error

Defined In:

Severity:

Meaning:

Format:

Error:

Defined In:

Severity:

Meaning:

Format:

Error:

Defined In:

Severity:

Meaning:

Format:

Error:

Defined In:

Severity:

Meaning:

Format:

ERROR_set_scan_set_expected

Loop_Control

SEVERITY.WARNING
The control set for a set scan control is not a set

— none --

ERROR_shadowed_declaration

Pass2

SEVERITY_WARNING
A symbol declaration shadows a definition in an outer (or assumed) scope.

%s - name of redeclared symbol

%d - line number of previous declaration

ERROR_string_literal_expected

Expression

SEVERITY.WARMING
A non-string or non-literal was encountered in a string-literal context

- none --

ERROR_syntax

Express

SEVERITY.EXIT
Unrecoverable syntax error

%s - description of error

%s - name of scope in which error occurred

ERROR_undefined_identifier

Pass2

SEVERITY.WARMING
An identifer was referenced which has not been declared. This error only produces a

warning because Fed-X does not deal with all of the scoping issues in algorithms.

%s - the name of the identifier

ERROR_undefmed_type

Pass2

SEVERITY.ERROR
An undeclared identifier was used in a context which requires a type.

%s - the name of the type

ERROR_unknown_expression_class

Expression

SEVERITY_DUMP
Fed-X internal error

%d - the offending expression class

%s - the context (function) in which the error occurred

ERROR_unknown_schema
Pass2

SEVERITY.WARMING
An unknown schema was ASSUMEd
%s - the assumed schema name

NIST Express Working Form Programmer’s Reference Page 49



Stephen Nowland Clark

Error:

Defined In:

Severity:

Meaning:

Format:

ERROR_unknown_subtype
Pass2

SEVERITY_WARNING
An entity lists a subtype which is not itself declared as an entity.

%s - the subtype name

%s - the supertype name

Error:

Defined In:

Severity:

Meaning:

Format:

ERROR_unknown_supertype

Pass2

SEVERITY.EXIT
An entity lists a supertype which is not itself declared as an entity. Fed-X is unable to

proceed in this situation.

%s - the supertype name

%s - the subtype name

Error:

Defined In:

Severity:

Meaning:

Format:

ERROR_unknown_type_class

Type

SEVERITY_DUMP
Fed-X internal error

%d - the offending type class

%s - the context (function) in which the error occurred

Error:

Defined In:

Severity:

Meaning:

Format:

ERROR_wrong_operand_count

Expression

SEVERITY_WARNING
Mismatch between actual and expected (on the basis of code context) operand count

%s - the operator

NIST Express Working Form Programmer’s Reference Page 50



Stephen Nowland Clark

A References

[AltemeullerSS] Altemeuller, J., Mapointi from Express to Physical File Structure.

[SOTC184/SC4/WG1 Document N280, Septembner, 1988

[ANSI89] American National Standards Institute, Prosrammins Language C.

Document ANSI X3. 159- 1989

[Clark90a] Clark, S. N., An Introduction to The NIST PDFS Toolkit, NISTIR
4336, National Institute of Standards and Technology, Gaithersburg,

MD, May 1990

[Clark90bJ Clark, S.N., Fed-X: The NIST Express Translator. NISTIR 4371.

National Institute of Standards and Technology, Gaithersburg, MD,
August 1990

[Clark90cJ Clark. S.N., The NIST PDFS Toolkit: Technical Fundamentals.

NISTIR 4335, National Institute of Standards and Technology,

Gaithersburg, MD, May 1990

[Clark90d] Clark. S.N.. The NIST Working Form for STEP. NISTIR 4351.

National Institute of Standards and Technology, Gaithersburg, MD,
June 1990

[Clark90e] Clark, S.N., NIST STEP Working Form Programmer’s Reference,

NISTIR 4353, National Institute of Standards and Technology,

Gaithersburg, MD, June 1990

[Schenck89] Schenck, D., ed.. Information Modeling Language Express:

Language Reference Manual, ISO TC184/SC4AVG1 Document

N362, May 1989

[Smith88] Smith, B.. and G. Rinaudot, eds.. Product Data Exchange

Specification First Working Draft, NISTIR 88-4004, National

Institute of Standards and Technology, Gaithersburg, MD,
December 1988

NIST Express Working Form Programmer’s Reference Page 5

1



'V.? |f'",

mi'

f/ ,; ;
»

0- '.

'* '

:
...' '‘< 00..

'0

/i.

ijtyyj',i,v'’*jiA 1,

I
,

)'

:: u .j

Atv,
;

-pr'
1'.

A

? -^AA'A

; J '

..:
'"

-v
'

"

5
'

' ; -A
'

'

''
^' '

'

: :"'f'A.
A' ,A ; ’A''’P'A : A*'- 2

:^''c-'.
"p.'

' A:;:'
'

'

'

,

:

'

:P". ,:
“;

P; r

' ' '“"

,i'''
*

A/: A ,.;A.,A

'].".%
. A/A ’^'':'',PAaA

VIA'

'

.A-"'"' A.'.

'J'y, /
'!

'.a.,
'

a: A,'

’p" m

H ‘

'

.. ,
. r.p '.

mimm

‘m

t
, i .1 4 V. -.

'

"J

^
'"i

V
''



NIST.114A U.S. DEPARTMENT OF COMMERCE
(REV. 3^) NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY

BIBLIOGRAPHIC DATASHEET

1. PUBLICATION OR REPORT NUMBER 1

NISTIR 4407
|

2. pEKFonumQ onoAMOAnoH nsFORT numsu
,

1

!

3. PUBUCATION DATE

SEPTEMBER 1990 !

4. TITUE AND SUBTITLE

NIST Express Working Form Programmer *8 Reference
|

i

S. AUTHOR(8)

Stephen Novland Clark

1. PERFORMING ORGANIZATION (IF JOINT OR OTHER THAN NIST, SEE INSTRUCTIONS)

U.S. DEPARTMENT OP COMMERCE
NATIONAL IKSimm OF STANDARDS AND TECHNOLOGY
GATTHERSBURO, MO 20M9

7. CONTRACT/QRANT NUMBER

a TYPE OF REPORT AND PEfUOO COVERED

. SPONSOPOMO OROAMIZATION NAME AND COMPLETE ADDRESS (STREET, CITY, STATS, ZIP)

10. SUPPLEMENTARY NOTES

DOCUMSNTOESCRIBES A eOMPUTSR PROGRAM; SP-ltS. RPS SOPTWARE SUMMARY, IS ATTACHED.

11. ABSTRACT (A 200>WOR0 OR LESS FACTUAL SUMMARY OF MOST SKMtFICANT INFORMATION. IF DOCUMENT MCUJDES A SIONIFICANT BIBUOGRAPHr OR
UTERATimS SURVEY, MENTION IT HERE.)

The Product Data Exchange Specification (PDES) is an emerging standard for the exchange of
product information among various manufacturing applications. PDES includes an information
model written in the Express language; other PDES-related information models are also
written in Express. The National PDES Testbed at NIST has developed software to manipulate
and translate Express models. This software consists of an in-memory working form and an
associated Express language parser, Fed-X. The internal operation of the Fed-X parser is
described. The implementation of the data abstractions which make up the Express Working
Form is discussed, and specifications are given for the Working Form access functions. The
creation of Express language translators using Fed-X is discussed.

1Z. KEYWORDS (E TO 12 ENTRIES; ALPHASETICAl. ORDER; CAPITALIZE ONLY PROPER NAMES; AND BSPARATE KEYWORDS BY SMICOLONS)

data modeling; Express; PDES; schema translation; STEP

«. AVAiLABiLmr
—

-X- UNLwrm
FOR OFFICIAL DISTRIBUnON. DO MOT RELEASE TO NATIONALTECHNICAL BIFOIIMATION SERVICE (WTIB).

ORDER FROM SUPERINTENDENT OF DOCUMENTS, U.S. QOVCRNMINT FRINTING OFFICE.
WASHINOTON, DC 20402.

X ORDER FROM NATIONAL TECHNICAL INFORMAT10K SERVICE (MT1S). SFRiNOPm-D VA 221t1.

14. NUMBER OF PRINTED PAGES

56

ia PRICE

A04

electronic form







3
oa

XT—
^

•n V —

^

a>
^

or

K)

K)O

H ÔO

^ s
4^ S.O ^
'-1

â

Z O Q z

n>

“1
o
3“

O
G

C G “O
u, xs

^

ON O-
-, 0> 5
5 o "

G

!


