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Abstract

During directional solidification of a binary alloy at constant velocity, thermosolutal

convection may occur due to the temperature and solute gradients associated with

the solidification process. For vertical growth in an ideal furnace (lacking horizontal

gradients) a quiescent state is possible. For a range of processing conditions, the

thermal Rayleigh number is sufficiently small that the stabilizing role of the thermal

field during growth vertically upwards may be neglected, and only solutal convection

need be considered. The effect of a time-periodic vertical gravitational acceleration (or

equivalently vibration) on the onset of solutal convection is calculated based on linear

stability using Floquet theory. We find that a stable base state can be destabilized

due to modulation, while an unstable state can be stabilized. The flow and solute

disturbance fields show both synchronous and subharmonic temporal response to the

driving sinusoidal modulation.
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1. Introduction

During solidification of a binary alloy, temperature and solute gradients are inherently

present, and cause a density gradient in the melt. The action of a gravitational field on

this density gradient can give rise to fluid flow in the melt with consequent redistribution of

solute, which may result in an undesirable solute distribution. The possibility of processing

materials in space is attractive, since the low level background gravitational acceleration

(10
-6

of the earth’s gravitational acceleration, ge )
can potentially eliminate buoyancy-driven

convection. However, owing to orbital maneuvers and inherent mechanical vibrations, the

occurrence of time-dependent local acceleration (g-jitter) may by itself induce buoyant con-

vection. The local residual accelerations in space laboratories have been characterized [1, 2].

On earth vibration may be useful as a means for controlling convection. This idea has been

investigated recently for two systems (CsCdCl3 [3] and CdTe [4]), where low frequency vi-

brations were used in an effort to control the interface shape and position during Bridgman

growth.

For vertical Bridgman growth, the growth direction is aligned with the gravity vector.

Ideally, only the vertical thermal and solutal gradients from the solidification process exist

and a quiescent state in the melt is possible. For growth of a pure material vertically upwards,

the temperature will increase with height, and for a normal melt which expands on heating

the density will decrease with height. Hence, for growth vertically upwards the temperature

field is stabilizing with respect to convective instabilities. For an alloy which rejects a light

solute upon solidification, the solute gradient which develops above the interface tends to

increase the density of the melt with height. As a result of this situation, either solutal or

thermosolutal convection may occur depending on the relative magnitude of the temperature

and concentration gradients.

The onset of thermosolutal convection during directional solidification in a constant grav-

itational field was studied by Coriell et al. [5], and the onset of solutal convection alone by

Hurle et al. [6]. The review article by Glicksman et al. [7] gives a comprehensive bibliography

on convection in directional solidification, which includes studies of the related interfacial in-
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stability problem as well as the interaction of convective and interfacial instabilities. Results

from these previous studies indicate that for dilute alloys under processing conditions where

interfacial instabilities should not occur, it may be very difficult to avoid convection under

terrestrial conditions. In order to evaluate the practicality of space-based processing using

the Bridgman technique, the effect of local time-dependent residual accelerations on buoyant

convection must be investigated. A recent review by Alexander [8] discusses the effect of

residual accelerations on heat and mass transfer in low-gravity materials experiments. The

concern of the present study is whether sinusoidal time-dependent accelerations can lead

to the onset of convection in a quiescent melt when the accelerations are aligned with the

growth direction.

The stability of fluid systems undergoing time-periodic forcing has been reviewed by

Davis [9] and Ostrach [10]. The bulk of the existing work has concentrated on Rayleigh-

Benard convection subject to gravity modulation or boundary temperature modulation, and

Taylor-Couette flow with time-periodic torsional oscillation of the cylinders. Some early

work on temporally modulated Rayleigh-Benard convection by Gershuni and Zhukhovitskii

is summarized in their book on convective stability [11]. They considered different aspects

of time-periodic modulation, including Floquet theory for the linear onset conditions and

finite-difference calculations of the nonlinear behavior for sinusoidal modulation. They found

that both stabilization and destabilization can be obtained as a result of the modulation.

They also employed averaging techniques to study the asymptotic behavior in the case of

high frequency modulation. For Rayleigh-Benard convection subject to sinusoidal gravita-

tional acceleration, Gresho and Sani [12] performed an extensive study of the linear theory

parameter space using Floquet analysis and a highly truncated Galerkin expansion for the

disturbance solutions. In the extreme case of a single expansion function, the analysis is

reduced to consideration of the stability behavior of the Mathieu equation. They found

that sinusoidal gravity modulation has a significant effect on the stability limits of Rayleigh-

Benard convection. Disturbance response having the same frequency as the modulation

(synchronous behavior) is found for low to moderate modulation frequencies, while response
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with half the modulation frequency (subharmonic behavior) is obtained for high frequency

modulation. In addition to linear theory, they studied the nonlinear behavior resulting from

sinusoidal modulation using a low-order Galerkin expansion.

More recently, Wadih and Roux [13] have considered the effect of gravity modulation on

an infinite vertical cylinder of fluid subject to a constant vertical temperature gradient. A

three-dimensional simulation of Rayleigh-Benard convection with gravitational modulation

has been performed by Biringen and Peltier [14]. Nonlinear convection was simulated re-

sulting from both sinusoidal and random modulation with and without a one-<7 background.

They obtained synchronous and subharmonic response resulting from sinusoidal modulation

in agreement with Gresho and Sani, and showed how the finite-amplitude solutions transport

heat under various modulation conditions.

In the following section, the simplified model of solutal convection in directional solid-

ification is presented. The emphasis of the present work is the conditions for the onset of

convection from the quiescent state based on linear stability theory. Because of the periodic

time-dependent forcing, Floquet theory is used in the stability analysis. The solution for the

onset conditions requires numerical solutions of the resulting differential eigenvalue problem.

Two distinct numerical approaches are used to obtain the linear stability solutions. Results

for a range of parameters corresponding to different alloy systems are presented. Some brief

results from nonlinear calculations are included to elucidate the hnear results and provide

an additional verification of the hnear theory results.

2. Governing equations

The model for solutally-driven buoyant convection in directional solidification is shown in

Fig. 1. The exponential solute profile in the melt results from the rejection of solute at the

interface. Depending on the densities of the alloy constituents and the growth direction, a

statically unstable density stratification may result from the concentration variation. For

steady-state conditions, the solid composition is equal to the far-field concentration in the

liquid c^o. The solute jump at the interface is characterized by the equilibrium segregation
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coefficient k, which is the ratio of the solid and liquid concentrations at the interface; for

k less than one, solute is rejected at the interface. For growth vertically upwards, rejection

of a light solute produces the unstable stratification. For the present study, the effects of

the thermal field and deformation of the interface will not be included, but are part of an

ongoing investigation of this problem. We also assume that the densities of the crystal and

the melt are equal, thus neglecting the possibility of convection due to a density change.

In order to investigate the onset and development of buoyancy-driven solutal convection

during directional solidification, the governing equations are written in terms of a Cartesian

coordinate system (x, y,z) which is attached to the planar crystal-melt interface moving

at constant growth velocity V in the positive 2 direction. The fluid velocity in the melt

is described by the vector field u = (u,v,w). This velocity is measured in the laboratory

frame in which the crystal is at rest, so that in the undisturbed state u = 0. Assum-

ing an incompressible Newtonian fluid, the basic governing equations for the problem are

the conservation of mass equation, the Navier-Stokes equations written in vector form, the

convection-diffusion equation for the solute concentration c, and a linear equation of state

expressing the dependence of the melt density p on solute concentration,

V • u = 0

dU r.— + (u* • V)u = -Vp/po + uV 2u + gp/ po

~ + (u* V)c = DV 2
c

dt
v '

p = p0 [l - (3{c-c0 )\

(la)

(lb)

(lc)

(l d)

where the velocity u* = u — (0, 0, — V) results from fixing the reference frame to the moving

solid-liquid interface. Here p is the fluid pressure, v is the kinematic viscosity, D is the solute

diffusion coefficient, and (3 is the solutal expansion coefficient. The Boussinesq approximation

is employed which assumes that density variation is important only in the body force term

in the Navier-Stokes equations. The remaining fluid parameters {v, D, and (3) are assumed

constant. The subscript zero refers to reference values of the parameters.
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For a gravitational field aligned with the growth direction, a motionless solution exists.

We consider the linear stability of this motionless base state subject to time-periodic gravita-

tional acceleration. The model for solutal convection during directional solidification assumes

growth with a rigid planar interface in the presence of a vertical gravitational field that varies

sinusoidally in time according to g(t) = go + g\ cos(Of), where Q is the dimensional forcing

frequency. The liquid is assumed to be semi-infinite in the vertical
(
2

)
direction, and laterally

unbounded so that solutions that are periodic in the horizontal directions are possible. The

steady-state base solution consists of no fluid motion and the exponential solute profile ob-

tained from solving the steady, one-dimensional diffusion equation in the semi-infinite liquid

region subject to solute conservation at the growing interface, given by

D^- = -V(l-k)c,
( 2 )

and subject to the far-field concentration value Coo.

For the linear stability analysis of the base state, the flow field variables are written as

the superposition of the base state component and a perturbation. The perturbed quantities

are Fourier analyzed in the lateral directions, so that the flow variables are written as

/ f
,V \

u {x, y,z, t) 0

1

u(z,t
)

^

v(x,y,z,t) 0 v(z,t),

w(x,y,z,t) = 0 + w{z,t)

p(x,y,z,t) ?'%-) p(M)

^
c{x,y,z,t)

y v
c(M)

J

exp^a^x + ia yy ), (
3

)

where ax and ay are the wavenumbers in the lateral directions. The base state components

are denoted by a zero superscript and the quantities u, v, etc are the perturbation amplitudes.

Governing equations for the perturbation quantities are obtained by substituting the above

quantities into the set of equations (1) and linearizing in the perturbation quantities. The

set of linearized equations for the perturbation quantities contain time-dependent coefficients

resulting from the assumed form of the gravitational acceleration.

For the linear stability analysis, the problem can be reduced to solving a single fourth-

order equation for the the perturbed vertical velocity w, using the standard manipulation for
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hydrodynamic stability analyses to remove the pressure [15], and the second-order equation

for the perturbed solute concentration c. The variables are made dimensionless by introduc-

ing the length scale D/V and the time scale D/V 2
,
and by measuring the flow velocity in

units of the solidification velocity V and the solute field in units of the far field concentration

Coo. The dimensionless linearized equations for the stability problem are then

—{Lw t — Lw z )
= L 2 w — 4- Rs^ cos(flt)]c, (4a)

Sc

c
t
- cz + wc[0) = Lc

,
(4b)

Here, subscripts indicate partial derivatives, and = —[(1 — k)/k]e~ z
is the gradient of

the unperturbed solute field. We have defined the operator L = (d 2/dz 2 — a 2
), where a

is the spatial wavenumber in the horizontal directions (a = yja 2
-fi a 2

). Sc — vfD is the

Schmidt number, Rs^ — gofic^D/V)3
/ {vD) is the Rayleigh number based on the mean or

d-c gravitational field, Rs^ = gxfic^D/V) 3
/ (vD) is the Rayleigh number based on the a-c

part of the gravitational field, and Q. = QD/V 2
is the dimensionless oscillation frequency.

Table 1 summarizes the dimensional and dimensionless parameters.

The dimensionless boundary conditions at the interface, 2 = 0, are

w = wz = 0 (5a)

cz + (1 — k)c = 0. (5b)

The perturbations are required to decay as 2 —* oo. For numerical purposes, we assume that

the spatial domain extends from the interface 2 = 0 to a truncated value of the semi-infinite

domain denoted by hi. The perturbation quantities are set equal to zero at the far-field

boundary.

Solutions to the above set of equations which have time-periodic coefficients can be

obtained using the framework of Floquet theory [16], in which the solutions are represented

as the product of a temporally periodic function and an exponential function of time. Two

different numerical implementations of Floquet theory were employed to solve the stability

problem formulated above and are discussed briefly below.
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The first approach consists of representing the periodic component of the solutions by a

truncated complex Fourier series in time. The solutions for the perturbation quantities w

and c are represented by the product of a periodic Fourier series and an exponential term

with complex growth rate cr,

w(z,t) = e"‘ £ wm{z)e'
m!u

,

|

m
|

< A/

c(z,t) = e" £ cm (z)e'
mn ‘.

|m|<Af

Substitution of the series expansion into the equations and boundary conditions above yields

a set of 12M + 6 coupled two-point boundary value problems in the spatial variable 2 for

the complex Fourier coefficients (inm ,cm )
of the periodic solution components . The re-

sulting set of coupled ordinary differential equations subject to the homogeneous boundary

conditions yields an eigenvalue problem that is solved in a manner similar to the one de-

scribed in [5]. The homogeneous eigenvalue problem, is converted into an inhomogeneous,

nonsingular problem using the approach suggested by Keller [17]. The coupled set of linear

two-point boundary value problems is solved using the computer code SUPORT [18], which

uses superposition of numerically integrated solutions with an orthonormalization procedure

to maintain the linear independence of the solution set. A high-order Adams-type method

is used for the numerical integration of the spatial dependence in the SUPORT code. Here,

the temporal resolution depends on the number of coupled Fourier modes (A/) used to ap-

proximate the periodic part of the solution. The value of M depends most strongly on the

modulation frequency, with lower frequencies requiring more temporal modes to obtain a

given level of accuracy.

The set of equations contains the complex growth rate cr as a parameter. The base

state subject to periodic forcing is linearly stable for a given set of parameters if, for all

disturbances, crr < 0, where crr is the real part of cr. In the calculations, setting cr r = 0

allows for the determination of marginal values of the modulation amplitude, Rs^, and the

imaginary part of the growth rate, cr,, for fixed values of the remaining parameters. For the

results presented, only neutral disturbances with cr, = 0 or Q/2 are obtained. In this solution
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approach, the number of complex valued unknowns is reduced to 6M + 6, if the marginal

values of Rs^ are determined for the specific values, cr
x = 0 or fl/2.

The second approach employed consists of approximating the spatial behavior of the

disturbance quantities via the pseudospectral technique in the physical domain as described

in [19]. The approach corresponds to expanding the solutions in terms of truncated series of

Chebyshev polynomials Tn (s),

N
w(z,t

)
= WM ^n(s),

n=0

N
c{z,t

)
= Tn {s),

n=0

where s = (2z/hi) — 1. The pseudospectral discretization requires that the solution ex-

pansions satisfy the governing equations at specific collocation points for the Chebyshev

polynomials. When implemented in the physical domain the unknowns are the solution

values at the collocation points. The spatial differential operators in the governing partial

differential equations are replaced by discrete matrix operators. As a result, the governing set

of partial differential equations and boundary conditions becomes a set of coupled ordinary

differential-algebraic equations in time for the unknown solution values at the collocation

points.

The computer code DASSL [20] is used to solve the differential-algebraic system for one

complete period of the driving temporal modulation. The algorithm uses backward differen-

tiation of up to fifth-order to meet specified local error tolerances. This integration procedure

is well-suited for stiff behavior, which is often exhibited by differential-algebraic systems [21].

In this second solution approach, Floquet analysis [16] is implemented by constructing a fun-

damental solution matrix. The columns of this matrix are linearly independent calculated

solutions for the unknowns at the end of one forcing period. The eigenvalues of this matrix

are the Floquet multipliers from which the complex growth rate a is obtained. The utility

of the second approach is that cr itself is the eigenvalue, so that its magnitude is obtained

for a given Rs( l

\ which simplifies the search for marginal values and gives more information

regarding the proximity of other modes.
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In order to check our numerical results, we have used both methods for selected cases

and obtained agreement to five significant figures. Accurate results are obtained for the

parameter range studied using fromM = 4 to 8 temporal Fourier modes in the first approach.

The required number of modes increases as the frequency decreases. A relative local error

tolerance of 10
-10

is used for spatial integration. In the second approach, the Chebyshev

series is truncated with N = 20. A convergence study indicated this number of spatial modes

is sufficient for the parameter range studied. For the temporal integration, a relative local

error tolerance of 10
-6 was chosen. These same two solution methods were used for a related

study of modulated Taylor-Couette flow, where additional details concerning accuracy and

convergence are given [22].

As an additional check, the full two-dimensional nonlinear equations were solved using

the approach described in [23]. Briefly, the flow field is calculated in two dimensions using

the vorticity-streamfunction approach, which eliminates the need to calculate the pressure

explicitly. Standard second-order finite-difference techniques are used to solve for the finite

amplitude behavior of the two-dimensional velocity and solute concentration fields.

3. Results and Discussion

Even for the present simplified model of directional solidification, a significant number of

parameters appear in the problem. For the initial calculations, conditions relevant to a

microgravity processing environment are assumed. With a background gravitational acceler-

ation of 10~ 6
<?e ,

the steady-state solutal Rayleigh number Rs^ will typically be very small.

It is of interest to determine whether sinusoidal acceleration in time can lead to the onset

of solutal convection. So initially, we set Rs^ = 0, and look for values of Rs^^ that lead

to instability for given values of the acceleration frequency. Calculations are performed for

Schmidt numbers 10 (corresponding to semiconductor type alloys), 81 and 144; the latter

two values correspond to the lead-tin and tin-bismuth systems, respectively. The value k =

0.3 is used for the lead-tin system and k = 0.28 is used for tin-bismuth. The extent of the

liquid region, hi is fixed at 15 for all the results presented; this value is sufficiently large that
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it approximates a semi-infinite domain.

In Fig. 2, we show the neutral stability boundaries (cr r = 0) at a fixed value of the lateral

wavenumber, a = 0.5, for Sc = 10, k = 0.3, hi = 15, and Rs^ = 0. The value a = 0.5

was chosen, since it is close to the critical value for the unmodulated case. The modulation

amplitude, Rs^ is plotted versus the inverse of the modulation frequency. Unstable regions

are shaded. For the range of frequencies investigated, two unstable regions are obtained cor-

responding to growing disturbances exhibiting either synchronous or subharmonic temporal

response. At higher frequencies, the the theory predicts unstable subharmonic disturbances,

where <7, = Si/ 2. The subharmonic stability boundary is lobe-shaped, and approaches infin-

ity as the modulation frequency becomes large. The synchronous stability boundary (where

<7, = 0) lies to the right of the subharmonic lobe, but there is a small overlap region. The

complete structure of the synchronous region was not investigated. The interest here is in

the minimum modulation amplitude that yields instability. It is entirely possible that a

banded structure of alternating modes exists above the lowest synchronous boundary; this

is a known characteristic of some simpler modulated stability problems [11].

It is interesting to compare the magnitude of the modulation amplitude required to cause

instability with the critical solutal Rayleigh number for the unmodulated case. From the

results of Hurle et al. [6] for Schmidt number 10, the critical solutal Rayleigh number is

4.43. Thus, for a modulation amplitude of approximately fifteen times the steady critical

value, instability resulting from sinusoidal modulation occurs for a range of frequencies. Fig.

3 shows the same type of stability diagram for Sc = 81 with all remaining parameters held

fixed. The diagram is qualitatively similar, but both the horizontal and vertical scales have

changed substantially. The minimum of the subharmonic branch is larger than the Schmidt

number 10 value, and its width is smaller. The dimensional modulation period is 2ttD /{V
2
Sl)\

for diffusion coefficients on the order of 10
~ hcm 2

/s and crystal growth velocities on the order

on 10
_4cm/s, a value Si = 10 corresponds to a period of 600 seconds. Our primary interest

is in shorter time periods, so we have not extended the calculations to smaller values of Si.

Results representing the tin-bismuth system, for which space experiments are planned
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[24], are shown in Fig. 4. For this alloy, Sc = 144 and k = 0.28. The qualitative behavior is

the same as Figs. 2 and 3. For this higher Schmidt number, the trend observed for Schmidt

number 10 and 81 continues, with the minimum of the subharmonic mode increasing and the

width of the lobe decreasing. The reduction of k from 0.3 to 0.28 in this set of calculations

has some effect on the magnitude of the modulation amplitude, e.g., with fi = 35, RsW =

570.1 and 517.4 for k = 0.3 and 0.28, respectively.

All the results presented so far are for fixed lateral wavenumber. To actually determine

the stability of the system, one must find the minimum value of RsW for all values of a. We

have not done this in general due to the extensive number of calculations required. However,

for selected frequencies, we have found the minimum as a function of a, and these results are

shown as the solid dots in Fig. 4. There is only a small difference between the a = 0.5 values

and the minimum values, indicating that fixing a at the value 0.5 is a good approximation.

We have investigated in detail the dependence of Rs (b on a for a fixed Q = 32.0. The

results are shown in Fig. 5. There is subharmonic branch at low values of a and a synchronous

branch at higher values of a, with the two branches intersecting in the vicinity of a = 0.45. For

a = 0.5, as RsW increases the system becomes unstable to a subharmonic disturbance, then

regains stability and finally becomes unstable to a synchronous disturbance. The behavior

is also evident from Fig. 4 at this frequency. However, when one considers stability with

respect to all possible values of a, the system is unstable for Rs^ greater than the minimum

value on the subharmonic branch, which occurs at a about 0.4.

The previous results were for Rs = 0, so that the system is stable without modulation.

We also consider whether sinusoidal modulation can stablize an otherwise unstable system.

As mentioned earlier, the critical Rayleigh number for the unmodulated system is about

5, with a weak Schmidt number dependence [6], We set Rs^ = 20, Q = 200, and k =

0.28, and calculate the stability of the system for Schmidt numbers of 10 and 144. The

modulation amplitudes, Rs^\ as a function of wavenumber, a, are shown in Figs. 6 and 7.

For small Rs^\ the system is unstable to a synchronous mode. However, as the modulation

amplitude increases, the system becomes stable for a range of Rs^

,

losing stability again to
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a subharmonic mode at sufficiently large values of Rs^

.

The calculations were limited to a

greater than 0.25. Disturbances with a less than 0.25 correspond to wavelengths greater than

25 D/V, which is on the order of a typical container width. In addition, these disturbance

wavelengths are larger than the vertical extent of the domain (hi = 15) which makes the

calculations sensitive to the value of hi. For sufficiently large values of a, the system is stable

for zero modulation. The marginal curve (Rs 1
'
0 ) vs a) for the unmodulated case is U-shaped;

for Rs = 20, there is a range of a for which the system is unstable. For the cases with

modulation shown in Figs. 6 and 7, the region of instability intersects the axis Rs* 1
* = 0 (no

modulation) in precisely this range. Because the calculations were restricted to a greater

than 0.25, only the upper limit of this range is shown.

To help illustrate the temporal character of the disturbances, we have used the nonlinear

code described previously to compute finite amplitude solutions for Q = 20 and three values

of Rs
,
as shown in Fig. 8. The solutions are computed over nine periods of the gravitational

acceleration, and the growth or decay of the solution is examined to compare with the results

of the linear analysis shown in Fig. 3. We have plotted the value of the streamfunction at

a fixed point in the domain as a function of time for the gravitational acceleration g shown

in the lower subplot. For Rs^ = 400, the system is unstable with a period twice that of

the modulation (subharmonic response), in agreement with the prediction of linear theory.

If the solutal Rayleigh number is increased to Rs^ = 500, the system is stable, with a

slow decay in the maximum values assumed by the streamfunction over two periods of the

modulation. The linear analysis for Rs 1
'
1

) = 500 shows that the system is linearly stable,

with a slowest decaying mode that is subharmonic; there is also a synchronous decaying

mode with a decay rate that is three times larger than the subharmonic mode. Finally, for

Rs 1
'
1 '* = 600 the system is unstable with a synchronous response, which is also in agreement

with the prediction of the linear analysis.

In Fig. 9 we plot the linear eigenfunctions, w(z
,
t) and c(z, f), at the onset of instability of

the subharmonic mode for D = 20 and the parameters of Fig. 3. The modulation amplitude,

Rs™ is 339.6. The spatial coordinate is normalized by hi and time is normalized by the
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modulation period. Since this is a subharmonic mode, its period is twice the modulation

period. The decay of the eigenfunctions as 2 —> 1 shows that the value of hi used approxi-

mates the semi-infinite region well. The eigenfunctions for subharmonic response exhibit the

symmetry f(z,t + T) = —f(z,t), where T is the modulation period.

In summary, in the absence of mean gravitational acceleration
(
Rs

=

0) and for large

frequencies, instability occurs with subharmonic temporal response to the driving modula-

tion. The amplitude of modulation, Rs^ l

\ necessary for instability increases with increasing

Schmidt number and modulation frequency. At lower frequencies, instability occurs with

synchronous response. When the system is unstable in the absence of modulation, there is

a range of modulation amplitudes for which the system is stable.

In the absence of modulation the critical Rayleigh number for the onset of convection

is only weakly dependent on the Schmidt number for large Schmidt numbers [6]. However,

for the case of pure modulation (Rs^ = 0), it is clear from Figs. 2-4 that Rs 1
'
1

'

1 depends

strongly on the Schmidt number.
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Table I

Definition of Symbols

Dimensional Parameters

liquid diffusion coefficient D cm 2
/s

solidification velocity V cm/s

bulk liquid concentration Coo wt%

kinematic viscosity V cm 2
/s

solutal expansion coefficient P wt% — 1

vertical domain height H cm

gravitational acceleration g(t) = go + gi cos {Sit) cm/s 2

Dimensionless Parameters

distribution coefficient k

Schmidt number Sc = v/

D

unmodulated solutal Rayleigh number Rs^ = gofic^D/V) 3/(uD)

modulated solutal Rayleigh number Rs^ = gl /3c00(D/V) 3/(vD)

oscillation frequency Q = SlD/V 2

vertical domain height hi = HV/

D
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Figure Captions

Figure 1. Schematic diagram of directional solidification model.

Figure 2. The modulation amplitude at the onset of solutal convection as a function of the

inverse of the frequency for sinusoidal gravitational acceleration.

Figure 3. The modulation amplitude at the onset of solutal convection as a function of the

inverse of the frequency for sinusoidal gravitational acceleration.

Figure 4. The modulation amplitude at the onset of solutal convection as a function of

the inverse of the frequency for sinusoidal gravitational acceleration. Solid points indicate

minimum with respect to wavenumber a.

Figure 5. The modulation amplitude at the onset of solutal convection as a function of the

wavenumber.

Figure 6. The modulation amplitude at the onset of solutal convection as a function of the

wavenumber. In the absence of modulation the system is unstable.

Figure 7. The modulation amplitude at the onset of solutal convection as a function of the

wavenumber. In the absence of modulation the system is unstable.

Figure 8. Nonlinear calculations showing the value of the streamfunction at a fixed point

in the melt as a function of time. The time-periodic gravitational acceleration is shown in

the lower figure. The system is unstable for Rs = 400 and 600, and is stable for Rs 1
'
1

'

1 =

500.

Figure 9. Linear eigenfunctions w(z, t) and c(z, t) plotted for two modulation periods (sub-

harmonic response) for Q = 20, Rs = 339.5, Rs^ = 0, Sc = 81, and a = 0.5.

-18-



Figure 1



Solutal Convection with Vertical g-Jitter
Sc = 10.0 k = 0.3 = 15

R#= 0.0 a = 0.5

O

Figure 2



Solutal Convection with Vertical g-Jitter
Sc = 81.0 k = 0.3 = 15

Rsf°)= 0.0 a = 0.5

O
o

Figure 3



Rs«

100.0

300.0

500.0

700.0

900.0

Solutal Convection with Vertical g-Jitter

Sc = 144.0 k = 0.28 = 15

R^°)= 0.0 a = 0.5

Figure 4



Rs^

200.0

400.0

600.0

800.0

Solutal Convection with Vertical g-Jitter

Sc = 144.0 k = 0.28 = 15

R^°)= 0.0 n = 32.0

Sub

STABLE

0.3 0.4 0.5 0.6

a

0.7 0.8

n
0.9

Figure 5



Rs«

1000.0

2000.0

3000.0

4000.0

5000.0

6000.0

Solutal Convection with Vertical g-Jitter

Sc = 10.0 k = 0.28 = 15

RsJ°)= 20.0 Q = 200.0

STABLE

Figure 6



RsW

500.0

1000.0

1500.0

2000.0

2500.0

Solutal Convection with Vertical g-Jitter

Sc = 144.0 k = 0.28 = 15

R^°)= 20.0 n = 200.0

Sub

STABLE

0.25 0.50

t
1 r

1.25 1.50

Figure 7



Rs (0) = 0 Q = 20 = 15

Sc = 81 k = 0.3 a =0.5

tuo

Time Figure 8



Figure





NlST-1 14A U.S. DEPARTMENT OF COMMERCE
(REV. 3-89) NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY

BIBLIOGRAPHIC DATA SHEET

1. PUBLICATION OR REPORT NUMBER
NISTIR 4389

Z PERFORMING ORGANIZATION REPORT NUMBER

3. PUBLICATION DATE

August. 1990
4. TITLE AND SUBTITLE

The Effect of Gravity Modulation on Solutal
Convection during Directional Solidification

5. AUTHOR(S)

B. T. Murray, S. R. Coriell, and G. B. McFadden

6. PERFORMING ORGANIZATION (IF JOINT OR OTHER THAN NIST, SEE INSTRUCTIONS)

U.S. DEPARTMENT OF COMMERCE
NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY
GAITHERSBURG, MD 20899

7. CONTRACT/GRANT NUMBER

8. TYPE OF REPORT AND PERIOD COVERED

9 SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (STREET, CITY, STATE, ZIP)

10 SUPPLEMENTARY NOTES

| |

DOCUMENT DESCRIBES A COMPUTER PROGRAM; SF-185, FIPS SOFTWARE SUMMARY, IS ATTACHED _____
11. ABSTRACT (A 200-WORD OR LESS FACTUAL SUMMARY OF MOST SIGNIFICANT INFORMATION. IF DOCUMENT INCLUDES A SIGNIFICANT BIBLIOGRAPHY OR

LITERATURE SURVEY, MENTION IT HERE.)

During directional solidification of a binary alloy at constant velocity, thermosolutal
convection may occur due to the temperature and solute gradients associated with the

soldi fication process. For vertical growth in an ideal furnace (lacking horizontal
gradients) a quiescent state is possible. For a range of processing conditions, the
thermal Rayleigh number is sufficiently small that the stabilizing role of the thermal
field during growth vertically upwards may be neglected, and only solutal convection
need be considered. The effect of a time-periodic gravitational acceleration (or

equivalently vibration) on the onset of solutal convection is calculated based on
linear stability using Floquet theory. We find that a stable base state can be
destabilized due to modulation, while an unstable state can be stabilized. The flow
and solute disturbance fields show both synchronous and subharmonic temporal response
to the driving sinusoidal modulation.

12. KEY WORDS (6 TO 12 ENTRIES; ALPHABETICAL ORDER; CAPITAUZE ONLY PROPER NAMES; AND SEPARATE KEY WORDS BY SEMICOLONS)

solutal convection; directional solidification; hydrodynamic stability;
Floquet theory; pseudospectral collocation

13. AVAILABILITY 14. NUMBER OF PRINTED PAGES

X UNLIMITED 30
FOR OFFICIAL DISTRIBUTION. DO NOT RELEASE TO NATIONAL TECHNICAL INFORMATION SERVICE (NTIS).

ORDER FROM SUPERINTENDENT OF DOCUMENTS, U.S. GOVERNMENT PRINTING OFFICE,
WASHINGTON, DC 20402.

IS. PRICE

A03
X ORDER FROM NATIONAL TECHNICAL INFORMATION SERVICE (NTIS), SPRINGFIELD, VA 22161.

ELECTRONIC FORM



_






