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Scope of the Document

This document describes a technique to obtain three-dimensional range from two arbitrarily-

placed, stationary cameras. The method uses an inverse perspective algorithm to determine the

position of each of the cameras with respect to a set of four coplanar points. Using the two

transformations obtained, the relationship between the two cameras is determined. Subsequently,

the range to a corresponding feature point that appears in both of the camera images can be

calculated using triangulation.
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1. Introduction

The determination of position and orientation of an object from extracted features can be

accomplished using a variety of techniques applied to camera images [2]. Of these methods, two

in particular seem computationally efficient and accurate for use with static cameras. The first,

stereo vision, uses triangulation between two camera images which view the same object features

to compute the object’s pose. In order to determine pose from stereo, the focal length of each

camera lens and the relative position and orientation between cameras is needed. Only with this

information can triangulation be performed. The second method uses an inverse perspective

transformation. By using the inverse perspective method, the relative position and orientation

between cameras can be determined in order to perform subsequent triangulation calculations.

Inverse perspective methods use the known geometry of a pattern to compute position and

orientation of the pattern. There are several algorithms that implement inverse perspective

techniques [ 1 ] [2] [3] [4] [6] . Of these, the Hung-Yeh-Harwood algorithm has an advantage in that it

uses a closed-form solution to solve for pose from a unique projection of four coplanar points in

an image.

The system used to demonstrate this idea is composed of two cameras each mounted on a

tripod. There is no restriction on the initial placement of the two cameras with respect to each other.

They need not be at the same height nor do they need to have parallel optical axes. In addition, they

do not need to be in any known location or orientation. The cameras’ poses are arbitrary with the

only restrictions being that they must remain stationary after each camera’s transformation to a

common surface is determined and that the surface appear in both camera images. In addition, any

feature point to which range is to be determined must also appear in both camera images.

The work presented in this paper is a useful step to using a two-camera system to determine

range. It determines range from triangulation and requires no a priori knowledge of extrinsic

camera parameters. The sensitivity of the extrinsic parameters are calculated for a two-camera

system, and it is shown how this initial parameter estimation affects the subsequent range

calculation.

2. Initializing the Transformation

The transformation from a planar surface to each camera’s image plane is determined using an

inverse perspective method for four coplanar points which define this surface [1]. The extrinsic

camera parameters that quantize the image plane’s position and orientation with respect to the

planar surface are computed by comparing the known distance between the four points with their

relationship as they appear in the camera image. The four points on the planar surface can be

thought of as having positional vectors pQ , p j5 p2
, and p

3
defined as the distance between the lens
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Figure 1. Four Coplanar Feature Points in the Camera Coordinate Frame

center and each point on the surface (see figure 1). The rectangle formed by these four points can

be described by the equation:

Po(l-a-p) +api + (3p 2 = p 3
. (!)

The values for a and (3 are computed by knowing the width and height of the rectangle defined by

the four points. The points have projected positions on the image plane v
Q

, v , v ,
and v

3
defined

as the distance between the lens center and each point on the image plane. The relationship between

the positional vectors and the image coordinates is:

Pi = k
«
v

.

where the k.s are the unknowns that are used to scale the points in the image plane frame of

reference to the three-dimensional coordinates of the points in the planar surface frame of

Range from Triangulation 3



(3 )

reference. Substituting this relationship into equation (1) yields:

os 1 2 n— (l-a-p)v 0
+— av

1
+ — pv

2 = V
K

2 3
K

3

The v.s are determined from the image coordinates, and the k.s can be computed from equation (3)

by using the relationship:

k
3

PqP
3

k o
;— v n — V

(4)

Next, the three-dimensional coordinates of the points in the planar surface’s reference frame can

be found from solving equation (2). Knowing the three-dimensional coordinates in both the image

plane’s reference frame and the planar surface coordinate system, the transformation between the

two frames can be computed using the relationship:

X '’ll
r
12

r
13 X ‘x

y
- r

21
r
22

r
23 y

+
‘y

z_
C _

r
31

r
32

r
33_

_z
p

where the subscripts c and p denote quantities observed in the camera and planar surface frames

respectively, and the matrix elements r represent the rotation between the two frames and the

matrix elements t represent the translational component. To estimate the extrinsic camera

parameters of translation and rotation with respect to the planar surface, the origin of the reference

frame on the planar surface is chosen to be at p ,
and

p^
and p

2
are at (0, a, 0) and (0, 0, b)

respectively. The value a represents the height of the rectangle formed by the four points and the

value b represents the width. Then, the second and third columns of the rotational matrix are:

Pi
-
Po

Pi -
Poll (6)

P2 Po

IIP2 - Poll

Knowing the two columns of the rotational matrix, the first column can be found by taking the

cross product of the second and third columns. The translation between the two frames can be

found by solving equation (5).

Once the transformation between the surface and each camera’s image plane is known, the

relationship between the two cameras can be deduced. Knowing the transformation matrix between

rn
r
72

r
32
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each camera’s image sensor and the surface, the relative transformation between the two cameras’

image sensors can be obtained using the relationship:

= 5
\ -

cam
'X (8)

cam^ cam
1

cam^

cam
'X = (

S
X )~

l

-

s
x (9)

cam^ v camj cam^

where s\ represents the transformation between the surface and camera 1

,

cam
x

r 1

\ represents the transformation between the surface and camera 2

,

and cam'>.

cam
^represents the transformation between camera 1 and camera 2.

This relationship is shown below in figure 2:

As a result, any point in one camera image can be transformed to a reference frame defined with

respect to the other camera. This fact is used to convert the origins, or focal points, of both cameras

as well as feature points on the image planes into the same coordinate system. Therefore, one

camera’s focal point coincides with the origin of the coordinate system chosen, and all other points

are converted to this frame of reference. The transformation in equation (9) is then used to convert

all points from camera 2’s frame of reference into the same coordinate system with respect to

camera 1.
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Figure 3. Intersecting Lines to Obtain Range

3. Computing Range

The feature points used in this set of experiments are computed using the centroid of a single object

in the camera’s field of view. This application computes the centroid of a thresholded intensity

image. Alternatively, the centroid of a thresholded motion image could be used as could other

extracted feature points. The only constraint on this process is that any feature point in the world

to which range is to be calculated must appear in both camera images. A line which extends out

from the camera and contains the feature point on the image chip and the camera’s focal point is

computed for each camera. The three-dimensional position where these two lines intersect

corresponds to the world position of the imaged feature point, as shown in figure 3.

Realistically, these two lines will not actually intersect but rather cross over each other in a

skewed relationship as in figure 4. To compute the range using two non-intersecting lines, a more

complicated solution is necessary. For each camera, a plane is found which contains the line that

passes through the focal point and feature point and which is perpendicular to the X,Z plane. The

equation of the plane can be represented by the general point-normal plane equation:

a(x-x0 ) + b(y-y0 ) +c(z-z0 ) +d = 0 (10)
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plane containing line 1

line where planes intersect

where the coordinates for the camera’s focal point are represented by (x^, yQ , z^), the coordinates

for the feature point on the image sensor are (x, y, z), and a, b, c, and d are coefficients describing

the plane and which are found in the following manner.

The coefficients of each of the planes are determined by first finding two lines that are

contained in the plane. One of the lines is the line that extends through the focal point of the camera

and the feature point on the image plane. The other line is the projection of this line onto the X,Z
plane. The vector that is normal to these two lines is found by taking their cross product. Since the

resulting vector is normal to the plane containing the two lines, the vector’s parameters define the

plane coefficients a, b, and c. The remaining coefficient, d, is found by using two points on the

plane, the camera focal point and the feature point on the image plane, and the other known
coefficients and substituting them into equation (10).

The intersection of these two planes is found, and the solution forms a line. Using the equations

of the two planes:

a
x
x + b

x y + c z + = 0 (ID

a2x + byy + c2z + d2 = 0 (12)

the line is found by solving the following equations:
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z = t
( 13 )

X
-d2 - (c2t-b2y)

y =
d^C^t (2 d^d^)

a2b\
~ a \^i

(14)

( 15 )

where any value can be substituted for t to find a point on the line of intersection.

The line where the planes intersect is in turn intersected with each of the other lines that pass

through the cameras’ focal points. Each of these intersections produces a point that can be solved

for using the parameterized form of a line, which is detailed in equations (16) and (17).

*-*io = y-y\o =
z ~ z

io
= t ( 16)

*1 - *10 Jl-JlO Z
1

- Z
10

1

*-*po = y-ypo =
z ~ zpo

= t
(
17 )

*
P -*po yp-ypa zp~ zpo

p

where the points (.

z^)
and (x]Q , y

]()
, z

J0
) are on line 1, the points (x^, y^, z^) and (x^,W

are on the line formed by the intersection of the two planes, and the point (x, y, z) is the intersection

point of these two lines. By rearranging these equations, the parameter t

-

can be solved for as

shown below:

t =
(*1 — *10 ) (ypo-^io) - (*p0 — * 10 ) (>l->lo) ( 18 )

P ~
(*p-*po) (?1 ->io) - (*1

—
*10 ) (>p ->po)

By knowing the parameter, the intersection point for line 1 can be solved for using the

parameterized line equations below:

* = ‘p* (Xp-Xpo) +*po
( 19 )

y = l
p
x ov-^) + >po

(20)

z = ‘p x ( zp~ zpo) + z
p0 (21 )

The same procedure is used to solve for the intersection between line 2 and the line formed by the

intersection of the two planes. In this case, the points (x^ , y2> z
2) and (x

20 , y
7()

, z
?^)

on line 2 are

substituted for the points on line 1. The computed range to the feature point is found by taking the

mid-point of the two resulting points, as shown in figure 4. This method of determining range will

be referred to as the triangulation method in the remainder of this paper.
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Figure 5. Experimental Setup

4. Experimental Setup

In order to test the accuracy of the range calculation using the triangulation method, the system

was configured so that the actual range could be measured and compared to the computed range.

Two CCD cameras were arranged in a configuration shown in figure 5. They were fixed to an

optical bench so that the optical axis of camera 1 was approximately perpendicular to a planar

surface containing five white dots. The other camera, camera 2, was affixed to the optical bench

approximately 45 cm to the left of camera 1. Camera 1 was mounted on a rigid platform beneath a

string potentiometer. The string potentiometer was used to measure distances up to 50 inches using

voltage readings that were measured in 0.001 mV increments up to 10 V Camera 2 was mounted

on a stand that allowed for pan and tilt adjustment. The two cameras were placed at different

heights above the optical bench; camera 1 at 13 cm and camera 2 at 25 cm. This arrangement was

used to test both the error in range calculation due to the computation of the extrinsic camera

parameters and due to the computation using the triangulation method.

For the first set of experiments, the four outermost white dots on the planar surface were used

to compute the transformations to both cameras. The transformations are those referred to by the

Greek letter lambda in equations (8) and (9). The planar surface was moved parallel to the optical

axis of camera 1 over a range of positions from 300 cm to 1400 cm from camera 1 at intervals of

75 cm. Each time the surface was moved, the pan of camera 2 was adjusted to keep the four dots

in the field of view. Two different planar surfaces were used during the experiments. The first one

was a small black cube with five white dots where the four outermost dots formed a 92.5 cm square.

As the distance between the cameras and the surface grew larger, the separation of the white dots

in the image became less distinct. To minimize error in the transformation, it was necessary that
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the four outermost white dots be as disparate as possible. Therefore, at ranges greater than 80 cm,

a cube that was twice the size of the small one was used. Every time the cube was moved to a new
position, range was computed to the fifth dot at the center of the square in three different ways. The

first method measured the actual range using the string encoder. This measurement was used as the

“true” range to which the ranges from other methods were compared. The second method, referred

to as the lambda method, was to compute range using the translation vector from the transformation

between camera 1 and the planar surface. This provided range to the center of the four dot pattern,

which is where the fifth dot was located. The third method was to compute range using the

triangulation method described in sections 2 and 3.

The next set of experiments compared the accuracy of range calculations in a different manner.

The transformation was computed to the surface at a fixed range. Then, leaving the cameras in the

same position and orientation, range was computed to the center dot at different ranges which

varied from 300 cm to 1300 cm. The range was computed using the string potentiometer and the

triangulation method. Then, the initial transformation was taken at a different range, at increments

of 75 cm, and ranges to the feature point were again varied. This entire process of taking the

transformation at one position and measuring the range to the feature point at different distances

was repeated for transformations taken from 300 cm to 1300 cm. Analysis of the data taken during

these experiments is discussed in the next section.

5. Analyzing Sources of Error

The data from the two sets of experiments described in the previous section is graphed to

determine the affect that the transformation computation has on the accuracy of the triangulation

method. First, the accuracy of the transformation computation is quantified separately from the

accuracy of the triangulation calculation. The first set of graphs quantifies the amount of error

produced when using different transformations to estimate the position of a point. This measure is

useful to determine the amount of error present in the transformation. Next, the relationship of the

transformation algorithm and the triangulation algorithm can be determined. The next set of graphs

compares the actual range to the range computed using the translation component of the camera-

to-surface transformation and to the range computed from triangulation. This comparison is useful

to discover the influence of the transformation on the triangulation computation, since the second

algorithm depends on the first to compute range using two cameras. The last set of graphs shows

the accuracy of the range calculation when the transformation is computed at different distances.

These graphs demonstrate the sensitivity of the triangulation method to the range at which the

transformation is computed.

The amount of error present in the computation of the transformation can be determined by

using the transformation to estimate the position of one of the four coplanar points and to see how
much of a discrepancy exists. It is also useful to determine if there is any correlation between a

transform’s accuracy and its range from or angle to the surface defined by the coplanar points. In

figure 6, the graph shows the error in the computed position of the lower left-hand point on the

surface of the small cube. Transformations from the two different cameras over a range of distances

were used. The true position of the lower left-hand point is shown as the vertex of the two dark

lines. The scale to show the errors is reflected in tenths of a millimeter and the actual size of the
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Figure 6. Error in Transformation for Small Cube

small square is 92.5 mm.

The estimated dot positions show that orientation of the camera with respect to the planar

surface is the largest contributing factor to error in the transformation computation. The plotted

points fall into two basic groups. One set shows the transformations as computed using an image

from camera 1, which was oriented perpendicular to the surface. This set shows less than 0.05 mm
error in x position and 0.025 mm error in y position. The second set uses images from camera 2,

which was oriented at approximately a 45° angle from the surface. This set shows almost

consistently an error of -0. 1 mm in x position and -0.025 mm in error in y position. The different

errors in x position between the two groups are due significantly to error in orientation estimation.
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Figure 7. Error in Range Using Three Different Methods

The angle between the camera and the surface contributes more to error than the distance between

the two. The position estimates are consistent even though the range from each of the cameras to

the surface varied between 300 and 900 mm.

Next, it can be shown how this error in the transformation contributes in error in the calculated

range using the triangulation method. The graph in figure 7 plots the difference between the range

computed using the position vector of the transformation between camera 1 and the planar surface

and the actual range between the two measured by the string potentiometer. This error is plotted in

the lower sets of lines. The graph permits comparison of this accuracy with the difference between
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the actual range and the range computed using triangulation. This last measure of error is plotted

in the upper pair of lines.

The accuracy between the measurements using the small cube and those made using the large

cube can be compared using the sets of data that plot the error in the range from the transformation.

The lefthand set of data plots range estimates when the transformation was computed over closer

ranges using the small cube. The righthand set of data plots range estimates when the

transformation was computed over farther distances using the large cube. The increase in accuracy

evident between 800-900 mm occurs because each of the four circles on the large cube occupies

more area in the image than a small circle. This increases the ability to accurately compute the

circle’s centroid in the image. In addition, the four dots on the large cube are more widely separated

in the camera image. This increases the accuracy of the transformation because the dimensions of

the spacing between the dots is less sensitive to error.

From this graph, it can be seen that the error in the position computed by the transformation

increases from roughly 3 to 15 mm over the distance from 300 to 1400 mm. The difference in

position between the actual range and the range from the triangulation method remains generally

larger than the error in the range computed using the transformation. The conclusion is that, since

the triangulation method depends on this transformation, the method is limited in its accuracy by

the transformation accuracy.
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Figure 8. Percentage Error in Range Using Three Different Methods

By looking at the next graph in figure 8, we see that the percentage error of the transformation

range over this distance is relatively constant at about 1.0% of the actual distance. The error for the

triangulation methods actually decreases from 1.5% to 1.0% over this same distance. Therefore, it

is shown that the error in the triangulation method approaches the inaccuracy of the transformation

method. This occurrence is explained by the fact that as the planar surface is moved farther away

from the cameras, the angle between camera 2 and the surface decreases. Therefore, the increasing

inaccuracy in one transformation (with respect to camera 1) is compensated for by the increasing

accuracy in the other transformation (with respect to camera 2). The combination of the

transformations between each of the cameras is an integral part of the triangulation method.
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Lastly, it is useful to determine the effect of distance between the camera and the planar surface

at which the transformation is computed so that subsequent range is calculated with tolerable

accuracy. The graph in figure 9 shows 5 different lines which each reflect errors in range

computations. The error measurements computed on a specific line use one transformation, where

the transformation was computed to the planar surface at a fixed range. The distance at which the

transformation was obtained is indicated by a black dot. Then, leaving the cameras in the same

position and orientation, range was computed to a feature point at different ranges. The ranges to

each position of the feature point were computed using the triangulation method. These ranges

were compared to the actual ranges to obtain the error, and the result was plotted to yield one of

the lines in figure 9. Then, the initial transformation was taken at a different range, and ranges to

the feature point were again varied to produce each of the other four curves.

From this graph, we see that the error in the computed range usually increases beyond the point
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where the transformation was computed and decreases in front of this point. This generalization

can be made by comparing the effective baseline between the two cameras to the actual distance

to the point. When the baseline is large compared to the actual distance, the triangulation method

is more accurate than when the actual range increases and the effective baseline diminishes. The

exception shown in the line through transformation number 1 can be explained by the likely

influence of lens aberrations. Here, the first point is less accurate because its location appears very

far to the right in the camera 2 image where lens distortions more greatly influence the accuracy of

the image.

Figure 10 plots the percentage error instead of the absolute error. In this graph, the range curves

become more level as the distance where the transformation is computed increases. This

phenomenon is possible since the angle between camera 2 and the planar surface decreases as the

range between the two increases, producing a more accurate transformation. Even though the

triangulation calculation becomes less accurate with increasing distance, the increasing rate of its

inaccuracy is not as rapid. Though the accuracy improves as the transformation is computed at
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larger distances, it can be expected that at some point it would diminish. The accurate ability to

locate the four dots defining the planar surface decreases with increasing distance. This occurs

since the location of the centroid of a dot is more susceptible to pixel error when the area of the dot

is small. Also, the projected sides of the rectangle formed by the four dots decrease in length and

therefore become more affected by pixel error. Both of these inaccuracies contribute to incorrect

transformation computation as the distance between the planar surface and the camera increases.

6. Conclusions

The use of two cameras to calculate range to a known feature point can be done using two

arbitrarily-placed, stationary cameras. There are very few restrictions on the initial placement of

the two cameras with respect to each other. They need not be at the same height nor do they need

to have parallel optical axes. In addition, they do not need to be in any known location or

orientation. The cameras’ poses are arbitrary with the only restrictions being that they remain

stationary after each camera’s transformation to a common surface is determined and that the

surface appear in both camera images. In addition, any feature point to which range is to be

determined must also appear in both camera images and is assumed to be the same feature in both

images

When using this method to compute range, the accuracy of the range calculated depends on the

accuracy of the transformation computed for each of the two cameras and the effective baseline

between the cameras. The angle between each camera and the planar surface defined by the four

dots has a significant impact on the accuracy of the transformation. The effect of this angle can be

seen by describing the relationship between a fixed image plane and a simple rotation about the y

axis of the planar surface. As the angle between the image plane and the planar surface increases,

the projected width of the rectangle defined by the four points, or equivalently p - p , changes as

a function of cos0. Therefore, this projected width decreases as 0 approaches 90°. As this width

measurement decreases, any error caused by pixel inaccuracy has a greater impact on the

calculation of the second column in the rotational matrix in equation (6) and, as a result, in the

computation of the first column. Analogously, it can be seen that rotation about the x axis produces

error in computation in equation (7) which therefore impacts the transformation computation.

Regardless of transformation error, it is possible to obtain range with less than 2% error by

choosing an appropriate distance at which to compute the transformation to a shared planar surface.

The greater the distance between the camera and the planar surface, the less inaccurate the

transformation computation due to decreasing effects of the angle of rotation between the two

surfaces. By using a planar surface that is placed 700 mm from the camera, the error in range

calculation using the triangulation method remains under 2% for ranges between 0.4 and 1.0 m. In

general, an optimal location for the planar surface is at a distance that is both in the middle of the

desired work volume and where the area of the rectangle formed by the four points occupies one-

third of the image. This amount of error makes range using two cameras a reliable approach,

especially at ranges between 0.5 and 1.5 m, where the effective baseline is greater.
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