
NEW NIST PUBLICATION

DESIGN ISSUES FOR
CONFORMANCE
TESTING OF THE
PHIGS STANDARD

John Cugini
Lynne S. Rosenthal

U.S. DEPARTMENT OF COMMERCE
National Institute of Standards

and Technology

National Computer Systems Laboratory

Gaithersburg, MD 20899

U.S. DEPARTMENT OF COMMERCE
Robert A. Mosbacher, Secretary

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
John W. Lyons, Director

NIST



I



NISTIR 4384

DESIGN ISSUES FOR
CONFORMANCE
TESTING OF THE
PHIGS STANDARD

John Cugini
Lynne S. Rosenthal

U.S. DEPARTMENT OF COMMERCE
National Institute of Standards

and Technology

National Computer Systems Laboratory

Gaithersburg, MD 20899

August 1990

U.S. DEPARTMENT OF COMMERCE
Robert A. Mosbacher, Secretary

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
John W. Lyons, Director





Design Issues for Conformance Testing of the PHIGS Standard

John V. Cugini

Lynne S. Rosenthal

National Computer Systems Laboratory

National Institute of Standards and Technology

ABSTRACT: Conformance testing for the Programmer’s Hierarchical Interactive Graphics

System (PHIGS) standard presents certain novel difficulties, especially the indirect effect

of many functions, and the inaccessibility to the program of visual effects. The model of

logical inference offers a way to organize a system of the complexity needed to overcome

these problems. This complexity makes the use of certain database concepts quite valuable

in allowing users to comprehend the system. The problem of inaccessible effects can be

addressed only by careful design of the user interface, so as to minimize the operational

difficulty and subjectivity inherent in testing such features.

KEYWORDS: conformance testing; graphics standards; human factors; PHIGS standard;

validation of software

1 Overview

Standards for graphics programming [GKS85, PHIGS88], while similar in some respects to

programming language standards, present special challenges for conformance testing. The

National Computer Systems Laboratory (NCSL) of the National Institute of Standards and

Technology (NIST) has undertaken the development of a PHIGS Validation Test (PVT)

system [CUGI90] for the recently adopted standard for PHIGS. In this test suite, we have

attempted to address systematically some of the problems posed by the nature of graphics

standards.

The PHIGS standard, unlike programming language standards, and to some extent unlike

the GKS standard, is built very largely around a state-machine concept. Many functions,

such as POLYLINE, which might normally be thought to generate graphic output, do not

directly do so. Rather they either set or inquire a complex state environment. The two most

significant data structures are those describing the state of the workstation, upon which

graphical objects may be drawn, and the Centralized Structure Store (CSS) which contains

a hierarchical database logically describing graphical objects. It is only when these two are

1



made to interact, by posting parts of the CSS to a workstation that a program generates

any visible results. These visible results are, moreover, not subject to automatic testing,

since PHIGS (unlike GKS) provides no function for reading pixels from the screen. Thus,

most of the functions to be tested have effects which are either indirect
,
or inaccessible to

the program.

2 Testability

Let us examine in detail how the problem of indirectness arises within PHIGS. PHIGS
interacts with the external world directly only via the parameters of its functions (visible to

the program) and its graphic effects (visible to the operator). Schematically, we can think

of the input/output structure of PHIGS functions as depicted in Figure 1.

IDS

INP: Input parameters

OTP: Output parameters

GIN: Graphic input

GOT: Graphic output

IDS: Internal data structures

Figure 1: Input/output structure of PHIGS functions

No single PHIGS function has all these potential inputs and outputs; the figure describes a

framework within which one can categorize the influences on, and effects of, each function. In

order for a function to be automatically and directly testable, its only input must be INP and

its only output OTP. Only a few PHIGS functions (utilities for calculating transformation

matrices) fit this description. At the other extreme, functions for archiving portions of the

2



CSS to a file (or retrieving them), depend strongly on the IDS and have their main effect

on the IDS. In order to test such a function, we must wrap it within a known environment,

so that the compound data flow has directly accessible first inputs and last outputs. For

example, we might construct the following template for testing the < archive structure>

function (n.b., names of PHIGS functions in angle brackets) as shown in Figure 2.

INP

I.

<polyline>

i

<archive structure

>

Cretrieve structure>

Cinquire element content >

i

OTP

Figure 2: Testable segment for <archive structure>

In general, for a template to be testable, all its inputs must be known and controlled by the

program or operator, and its output must be visible, either to the program or operator. The

idea is to arrange functions so that all the IDSs are at an intermediate stage of the segment.

Of course, the price paid is that in general only combinations of functions can be tested.

3 PVT as Logical System

We need some model to guide the construction of testable code segments, rather than ap-

proaching this as an ad hoc task. In particular, we must solve the problem of relating such

test segments back to the standard which supposedly justifies them.

3



One helpful way of understanding conformance testing is within the framework of deductive

logic. In a logical system, the basic operation is that of inference. From a finite number of

given premises, one can infer a set of conclusions. If the premises are true and the inference

is valid, then the conclusions must also be true. Conversely, if the inference is valid and the

conclusion is false, then one of the premises relied upon must be false. This latter mode of

reasoning is the one typically used in conformance testing.

3.1 Application to PHIGS standard

The PHIGS standard can be understood as a set of premises or axioms for a logical system.

The premises are of the form: “For all X, if X is a conforming implementation, then X must

behave in the following way: ...”; i.e., the standard defines the behavior of a conforming

implementation. When we test an alleged implementation, P, we rely on the additional

premise: “P is a conforming implementation.” From these premises we can then infer a

great deal about the behavior of P. If we discover that the actual behavior of P contradicts

this theoretical behavior, we can then conclude that the premise that P conforms is false.

Although this outline is neat in theory, in practice there are a number of difficulties. First

and foremost, the standard is not cast as a series of logical premises, but as a document

composed of English prose. Second, in order to infer a seemingly simple conclusion, one

often needs a large number of premises from the standard including several which are not of

direct interest to the test at hand. Finally, it is difficult to relate all this logical machinery

to the actual code.

Despite the impracticality of carrying out the full realization of the pure logical model, it

serves as an ideal which can suggest ways of structuring the actual system. In particular,

the PVT uses the notion of semantic requirements (SRs), which play the role of the premises

of the standard, and test case (TC) results, which play the role of conclusions.

3.2 Semantic Requirements

The PVT system consists of modules (see below), each of which contains a set of semantic

requirements. These SRs represent a partial axiomatization of a given topical area of the

standard: the premises for that section of the standard. Like logical premises, well-designed

SRs should be:

1. Independent - If one SR implies another we keep only the stronger of the two, since

the other is redundant.

2. Complete - The SRs should require everything that the standard requires.

3. Consistent - The SRs should not contradict each other.

4



4. Specific - Each SR must have some testable consequence, perhaps in conjunction with

other SRs. Broad generalities are to be avoided in favor of lower-level concrete asser-

tions.

5. Simple - An SR should not be a long list of requirements; to a reasonable extent, each

SR should state an atomic rule about conforming implementations.

Even given these guidelines, there is no uniquely best way of formulating the SRs for a given

module. Once a set of SRs has been developed, however, we do have a clear statement of

the requirements to which an implementation will be held. This serves to sharpen any inter-

pretation question which may emerge. These cases serve as feedback to the standardization

process so that inconsistent or incomplete specifications in the standard may be corrected.

3.3 Test Cases

From a single SR, it is usually impossible to infer any conclusion about the behavior of an

implementation. Thus, it is generally not the case that an SR will be testable in isolation.

The typical situation, rather, is that from a set of SRs some conclusion can be drawn which

is directly testable. Such a conclusion is the basis for a test case (TC) within the module.

Each module contains, not only a set of SRs, but a set of programs each of which contains in

turn a set of TCs. These TCs are the executable core of the PVT system. Each TC consists

of an explicit conclusion about the behavior of a conforming implementation, worded so as

to state what “should” happen.

The important thing is to relate these TCs back to the SRs. Each TC is associated with a

set of SRs in order to suggest how a proof that all conforming implementations succeed in

the TC might be constructed. There is, in general, a many to many relationship between

SRs and TCs: one TC will typically depend on several SRs, and each SR may be used by

several TCs. Passing the TCs is no guarantee that an implementation really does conform;

it might well violate the standard in untested areas. But failure in a valid TC does strictly

imply failure to conform.

4 PVT as a database

We have seen that there are several types of entities involved in a conformance test system:

PHIGS functions, PHIGS data structures, programs, semantic requirements, test cases, and

the PHIGS standard itself. Users of the test system need to navigate around this set of

objects. In particular, conformance tests must be informative about the relationship of the

test to the standard, otherwise the advantages of the logical model are lost. We took it as

a central goal not merely that the tests be logically correct, but also that interested users

be given a way to see for themselves that the expected outcome is correctly grounded in the

specifications of the standard.

5



The database paradigm provides well-understood techniques for addressing these issues.

The '

‘navigation problem can be thought of as a database design problem. We developed

a database schema to express the relationships among the objects mentioned. By adopting

strict conventions for the documentation, we not only enhance human readability, but also

allow automatic capture of the “data” to be used in comprehending the PVT system.

The SRs anchor the system; they specify the precise behavior of PHIGS functions and data.

Therefore, the SRs also serve as the reference points for related entities. Specifically, each SR
is annotated with a list of related functions, data structures, and references to the standard.

By adopting a canonical numbering of the functions and data structures and documenting

the references according to a well-defined format (see examples in next section), we allow

cross-reference tables to be built automatically once the original annotation is done.

Besides enabling users to navigate within the system, an equally important goal of this

approach is that it gives us a good coverage metric: we can see which functions and data

structures have been probed by the total PVT system.

Figure 3 contains a diagram exhibiting the main features of this database, namely its entities

and the relationships among them. Note the central role of the SRs.

5 PVT Architecture

Given the design goals and models set forth, the question becomes how to realize these in

an actual system of software and documentation. The representation of the abstract entities

should be such as to be easily accessible by both automatic processes and the human user.

5.1 Modularity

The set of all SRs for the entire PHIGS standard is far too large to be handled as a single

entity. Rather, they are divided into topically coherent subsets, which we call modules.

Ideally there would be no interaction between modules and strong logical interdependence

within each module.

Recalling the many-to-many relationship between SRs and TCs, we strive to keep each TC
dependent mainly on the SRs of its own module. Thus, the rationale for grouping a set of

SRs and TCs into one module is that their functions and data structures must be tested

together, i.e., their behavior is strongly interrelated. Hence, the module’s set of SRs and

TCs form a “natural cluster.”

Although the SRs of a module are closely related, the TCs may be numerous or diverse

enough to justify further subdivision into several programs. We tried to strike a reasonable

balance, grouping closely related TCs within single programs, yet keeping the programs fairly

small and comprehensible. We thereby avoid unwieldy programs at one extreme, and the

high overhead of one test case per program at the other.

6



An arrowhead next to an entity indicates that there may be many instances of the entity. For

example, the D relationship between Test Module and Semantic Requirements is one-to-many; the

B relationship between Semantic Requirements and Functions is many-to-many.

Relationships: Captured by:

A. SR
B. SR
C. SR
D. Module

E. Module

F. Program

G. TC

is derived from

depends on

depends on

tests

contains

contains

directly tests

Standard Specs

Function

Data Structure

SR
Program

TC
SR

#S in SR
#F in SR
#D in SR

SR in DOC.TXT
design in DOC.TXT
“TEST:” in design

SR list in TCs

Figure 3: The PVT as a database

7



Thus, the PY T suite is organized as a set of logically independent modules, each of which

contains a set of SRs and a set of TCs, with the TCs distributed among several programs.

Concretely, each module will consist of a) a single documentation file, conventionally named
DOC.TXT, containing the SRs and the design of the programs, and b) several source code

files, one per program.

SR4. <Inquire predefined polyline representation returns the

linetype, linevidth scale factor, and polyline colour index for a

predefined polyline bundle.

#F 263

#D 6.10.2

#S n

#T P02/1 P02/5 P03/2

SR6 . No two of the first 5 predefined polyline bundles have

identical sets of attributes.

#F 263

#D 6.10.2

#S 4.5.2/43/3 4.14/113/3 4.14/114/1 6.7/322/1

#T P02/5

Figure 4: Example of Semantic Requirements

Figure 4 contains an excerpt from the semantic requirements for the module on the poly-

line bundle table. The lines beginning “#F” refer to related PHIGS functions, which are

numbered according to their order in the standard. #D lists related data structures, #S the

relevant section, page, and paragraph number in the standard, and #T the related test cases.

The #T entries are generated automatically from the program design, as illustrated below

in Figure 5. The module documentation contains a dictionary for the numbered entities (#F

and #D), so that casual readers can decode the numbers. The system-level documentation

contains three cross-reference tables indexed by function, data structure, and section of the

standard. These tables allow users to identify the parts of the test system that deal with

the entity of interest.

Figure 5 contains an excerpt from the design of the program which tests the requirements.

This is the fifth test case in that program, hence the reference to “P02/5” under both SR4

and SR6 above in Figure 4. Note that the “TEST:” line refers to the semantic requirements

under test. Executing “pass” or “fail” causes the system to generate a message consisting

of the test case statement (“The first five ...”) and an indicator that the test was passed or

failed. These messages can be routed to any combination of three destinations: the screen,

8



PROGRAM 2: Validity of predefined polyline bundles

TEST: #SR 4 6

"The first five predefined polyline bundle entries should all be

mutually distinguishable."

do pli = 1 to 5

<inquire predefined polyline representation for index pli, determine

pdlt = predefined linetype

pdlw = predefined linevidth scale factor

pdci = predefined polyline color index

do pli2 = 1 to pli-1

if svpdlt (pli2) = pdlt and

svpdlv (pli2) = pdlw and

svpdci (pli2) = pdci then

fail

message about pli, pli2

goto done

endif

loop

svpdlt (pli) = pdlt

svpdlv (pli) = pdlw

svpdci (pli) = pdci

loop

pass

done

:

Figure 5: Program Design Excerpt with Test Case

9



an individual message file for this program only, or a cumulative message file for the whole

system.

5.2 Tree Organization

The standard is not just an undifferentiated set of requirements, but has clearly delineated

functional areas. We considered using the sequence of function definitions in section 5 of the

standard or the data structures of section 6 as an organizing principle, but it seemed finally

that the more conceptual organization of section 4 provided the best model, especially given

the goal that each module deal with all the strongly related requirements of a topic. For

instance, a set and inquire function often must be tested together and obviously belong in

the same module, even though in section 5 all the inquires are treated as a separate group.

The standard is organized in a hierarchical structure. Moreover, most computer systems

provide a hierarchy for their file systems. It therefore seemed reasonable to take advantage

of this built-in order and organize the modules into a topical hierarchy, or tree, to be realized

using the tree structure of the file directory system.

6 Real Effects Testing

Version 1.0 of the PVT system incorporates the design concepts discussed above, but was

deliberately limited to the state-machine semantics of PHIGS. The next version must address

the issues surrounding the so-called “real effects” of PHIGS programming, those associated

with the “GIN” and “GOT” interfaces of PHIGS functions described above under Testability.

PHIGS semantics are described in English. These descriptions appeal freely to notions such

as “dotted line,” “yellow,” “invisible,” and so on - the common-sense vocabulary of human

visual perception. These terms are taken as primitive; for instance, there is no attempt

in the standard to define “dotted line”. Barring exotic technology such as robotic vision,

this means that a test system for PHIGS must rely on human operators. A good operator

interface then becomes essential to the tests, not just an incidental feature. Such an interface

should minimize both the difficulty of operating the tests, and the subjectivity involved in

verifying graphical input and output.

The only system which has confronted these issues is the conformance test suite for GKS
[GKST89]. The GKS tests typically present the operator with a non-trivial visual display.

The operator must have at hand the (paper) documentation for the test, which asks several

yes/no questions regarding the display. E.g., for linetype, the display includes a depiction of

the sun, with rays of various linetypes emanating from it. The operator script includes the

questions:

Do four rays and clouds appear on the display surface, with annotation (in anti-

clockwise order starting from the horizontal) of ’SOLID’, ’DASHED’, ’DOTTED’,

10



and ’DASHED-DOTTED’?

and

Is each ray drawn in a linetvpe that is recognisable as ’SOLID’, ’DASHED’,
’DOTTED’, and ’DASHED-DOTTED’, in the order described above?

The operator then writes his/her answers on the sheet, perhaps with comments, and this

constitutes the result of the test.

In version 2.0 of the PVT, we plan a somewhat different approach. First, as far as possible,

operator responses to the tests will be performed via the computer, rather than paper and

pencil, if for no other reason than to allow machine-readable recording of the results. Sec-

ond, we will emphasize simpler screen displays and questions. It seems reasonable to suppose

that this will lessen the potential for confusion, and help to isolate non-conforming behavior.

Third, we hope to test the adequacy of the visual display more directly. For instance, instead

of asking the operator whether certain linetypes are “recognisable,” we can test recognizabil-

ity by requiring the operator to match linetypes with their official verbal description. The

screen could display lines of each of the four types (with perhaps a fifth non-standard type as

well), and then the operator would be prompted to point to the dotted one, the dashed one,

etc. His/her ability to do so correctly is proof enough of their recognizability. Conversely,

if the operator is unable to distinguish the dotted line from the others, it is a fair inference

that the implementation does not adequately meet the specifications of the standard.

The PHIGS features for geometric transformations (which provide 3-D perspective views of

objects) are an important part of the standard, yet difficult to verify visually, because of

the fine judgment involved. We believe these features are susceptible to test by simulation.

After the 2-D capabilities of PHIGS have been verified, the test system could include a

simulator for the 3-D features built on the trusted 2-D operations. This simulator need

not be fast, just logically correct. It would then be possible to generate an expected display,

perhaps overlapping and slightly offset from the actual display generated directly by PHIGS.

The operator then need only look for non-parallel lines, which we assume would be quite

conspicuous.

7 Summary

Conformance testing becomes more difficult as software standards address more complex

computational applications. Nonetheless, by drawing on a variety of techniques which have

originated in non-graphical areas of computer science, the testing process can be made

reliable, comprehensible, and predominantly automated.

11



References

[CUGI90]

[GKS85]

[GKST89]

[PHIGS88]

John Cugini, Mary T. Gunn, Lynne S. Rosenthal, User’s Guide for the PHIGS
Validation Tests (Version 1.0), NISTIR 90-4349, National Institute of Stan-

dards and Technology, Gaithersburg, MD, 1990.

Computer Graphics - Graphical Kernel System (GKS) Functional Description
,

ANSI X3. 124-1985, American National Standards Institute, New York NY,

1985.

GKS Validation Test Suite
,
Version 2.1, National Institute of Standards and

Technology, Gaithersburg, MD.

Computer Graphics - Programmer’s Hierarchical Interactive Graphics System

(PHIGS) Functional Description, Archive File Format, Clear-Text Encoding

of Archive File, ANSI X3. 144-1988, American National Standards Institute,

New York NY, 1988.

12



1 NIST-1 14A U.S. DEPARTMENT OF COMMERCE
(REV. 3-90) NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY

i

BIBLIOGRAPHIC DATA SHEET
'

1. PUBLICATION OR REPORT NUMBER
NISTIR 3484

X PERFORMING ORGANIZATION REPORT NUMBER

X PUBLICATION DATE

AUGUST 1990
4. TITLE AND SUBTITLE

DESIGN ISSSUES FOR CONFORMANCE TESTING OF THE PHIGS STANDARD

:
5. AUTHOR(S)

John Cugini, Lynne Rosenthal
6. PERFORMING ORGANIZATION OF JOINT OR OTHER THAN NIST, SEE INSTRUCTIONS)

U.S. DEPARTMENT OF COMMERCE
1 NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY

GAITHERSBURG, MD 20899

7. CONTRACT/GRANT NUMBER.

X TYPE OF REPORT AND PERIOD COVERED

9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (STREET, CITY, STATE, ZIP)

10.

SUPPLEMENTARY NOTES

li

1 1

.

ABSTRACT (A 200-WORD OR LESS FACTUAL SUMMARY OF MOST SIGNIFICANT INFORMATION. IF DOCUMENT INCLUDES A SIGNIFICANT BIBLIOGRAPHY OR
LITERATURE SURVEY, MENTION IT HERE.)

Conformance testing for the PHIGS graphics standards presents certain novel difficulties,
especially the indirect effect of many functions, and the inaccessibility to the program of
other effects. The model of logical inference offers a way to organize a system of the
complexity needed to overcome these problems. This complexity makes the use of certain
database concepts quite valuable in allowing users to comprehend the system. The problem of
inaccessible effects can be addressed only by careful design of the user interface, so as to
minimize the operational difficulty and subjectivity inherent in testing such features.

12.

KEY WORDS (6 TO 12 ENTRIES; ALPHABETICAL ORDER; CAPITALIZE ONLY PROPER NAMES; AND SEPARATE KEY WORDS BY SEMICOLONS)

Conformance testing; graphics standards; human factors; PHIGS; testing of software;
vlaidation of software

IX AVAILABILITY

~JT UNLIMITED

FOR OFFICIAL DISTRIBUTION. DO NOT RELEASE TO NATIONAL TECHNICAL INFORMATION SERVICE (NTIS).

15
!

ORDER FROM SUPERINTENDENT OF DOCUMENTS, U.S. GOVERNMENT PRINTING OFFICE,
WASHINGTON, DC 20402.

IX PRICE

A02 .

X ORDER FROM NATIONAL TECHNICAL INFORMATION SERVICE (NTIS), SPRINGFIELD,VA 22181. —!

14. NUMBER OF PRINTED PAGES

ELECTRONIC FORM








