
U.S. DEPARTMENT OF COMMERCE NEW NIST PUBLICATION
National Institute of Standards and Technology

. r u 1 9 9

1

NISTIR 4371

National PDFS Testbed

Report Series

Fed-X: The NIST
Express li'anslator

Revised Novembej^. 1990

NATIONAL

TESTBED

U.S. DEPARTMENT OF COMMERCE
National Institute of Standards and Technology

I NISTIR 4371

T

' National PDES Testbed

S Report Series

1

NATIONAL _ , ^

^ f Fed-X: The NIST
iSc Express Translator

TE
Stephen Nowland Clark

i

i

!

i

U.S. DEPARTMENT OF

COMMERCE

Robert A. Mosbacher,

Secretary of Commerce

National Institute of

Standards and Technology

John W. Lyons, Director

November 19, 1990

Disclaimer

No approval or endorsement of any commercial product by the National Institute of

Standards and Technology is intended or implied

Oracle is a registered trademark of Oracle Corporation

Smalltalk-80 is a trademark of ParcPlace Systems, Inc.

Sun-3 and Sun-4 are trademarks of Sun Microsystems, Inc.

Unix is a trademark of AT&T Technologies, Inc.

Table Of Contents

1 Introduction 1

1.1 Context 2

2 Implementation Environment 2

3 Running Fed-X 2

4 Design Overview 3

4.1 Fed-X Control Flow 3

4.1.1 First Pass: Parsing 3

4.1.2 Second Pass: Reference Resolution 4

4.1.3 Third Pass: Output Generation 4

4.2 Working Form Data Structures 4

4.2.1 Constant 4

4.2.2 Type 5

4.2.3 Entity 6

4.2.4 Variable 6

4.2.5 Expression 7

4.2.6 Statement 8

4.2.7 Algorithm 9

4.2.8 Scope 9

4.2.9 Schema 10

5 Missing Features 10

6 Conclusion 10

Appendix A: References 12

iii

'•|0

A '' .(TjW.t) "'* iui • «t) (. ;Ji: "s

: -i'.' . M. ' T >,•.^ oj • •'•

,

P
• < •« ft ^ ^ > *tf* i ‘

r.' '.rt'
;'

•

.rJtUfi,^‘'t. it :
.

. - . :^
•"

'

v®?“,

.'tvt'i /"5' *.'', > “-illiv-ii Ai.u f V •'i' ' ' *+. • ‘ J.tS J ro_'fc:,'?V>''

, ''ir-’ '

;iS»

'

'Ssai,

\Z::r,X-ho^
,

^n|0nu>)i^

^ T; .

^^•|•. ;•'’

*. i
» *'•

U'< •< £>' .W- ;
• - .. •#-

•• t • *•*» (• «> Ay t.AA *•

;!> ’i -.’i tk- I ''Xt)}*. r
’

'Ik!C*

» t 9iA»k <•»'* Alt ^ if*

•vfr-t 1 . • —•

>’ # (If
< < . u* I f** •> 1 j « a < Vi'p-}

,,„u, ...V,. w, ,, .V'tJiH 'ks^j(ii)3

. , ri^'iiin'it>/^^6 i}j :;i.;0 Jb’U'rft t>f

,:;.... mi^n<0
14 .*^ .

•' ..V*

• • « t* 4 1'^ »*.* .

.

,i.. < 4 .. 4 M

i !>.' *'')*’• •«.•..' 1 t<(i ,6 J,,|t'l{0'ilip|

r t-* 1)
>*’*•¥.. * AitA I^y I*, 4" • vK-A 4' S v,'# (vnaH^.

;

:»|
™ . .;5!!....

•':

.
,
jM

'j'':'m: ‘If «

Fed-X: The NIST Express Translator

Stephen Novvland Clark

1 Introduction

The NIST (Federal) Express Translator (Fed-X), and the associated Express Working

Form, are Public Domain software tools for manipulating information models^ written

in the Express language [Schenck90]. The Express Working Form is pan of the NIST
PDFS Toolkit [Clark90a]. It is intended to be used to provide the input to various con-

ceptual-schema-driven applications in a STEP implementation. For example, tools

such as QDES, a prototype STEP model editor developed at NIST [Clark90d], and the

STEP Working Form with its associated STEP physical file parser, STEPparse

[Clark90b], have been written independently of any panicular information model.

Fed-X-based translators are used to provide the information model definitions to drive

these applications. This approach results in smaller applications (which need not have

entire information models embedded within them), as well as insulating these applica-

tions against changes in the conceptual schema and, to a certain extent, in Express itself.

Indeed, an application such as STEPparse can be used with different conceptual sche-

mas, or different versions of the same schema, without modification. QDES has been

used to edit STEP product models in the context of several different Express informa-

tion models.

A primary goal in the development of Fed-X was to provide a clean back-end interface,

in order to allow various output modules to be easily plugged into a basic front-end

parser. To accomplish this, the Fed-X parser populates a set of data structures (the Ex-

press Working Form, or WF) containing all of the information in an Express specifica-

tion. Fed-X can then dynamically load one or more output modules. Each module

walks through the data structures, extracting relevant portions of the available data and

producing an appropriately formatted output file. Two Fed-X output modules are pro-

vided with the NIST PDES Toolkit^. One of these produces Smalltalk-80'^’^ class def-

initions [Clark90e] for use with QDES. The other forms the back end of Fed-X-SQL,

a translator which produces relational database table definitions in SQL from an Ex-

press information model [Morris90] [Metz89].

1 . The terms information model, data model, and conceptual schema are used interchangeably throughout this

document.

2. In the past, the GMAP Batch Input Language (BEL) has also been generated by Fed-X [Perlotto89] , as have

various expenmental sets of C language data structures and functions. However, these output modules are

no longer supported, and cannot be used with the current version of the Working Form without modification.

The latter were early attempts at a working form for STEP product models, now replaced by the schema-driv-

en software described in [Clark90b].

Fed-X: The NIST Express Translator Page 1

Stephen Nowland Clark

1.1 Context

The PDES (Product Data Exchange using STEP) activity is the United States’ effon in

suppon of the Standard for the Exchange of Product Model Data (STEP), an emerging

international standard for the interchange of product data between various vendors’

CAD/CAM systems and other manufacturing-related software [SmithSS]. A National

PDES Testbed has been established at the National Institute of Standards and Technol-

ogy to provide testing and validation facilities for the emerging standard. The Testbed

is funded by the CALS (Computer-aided Acquisition and Logistic Support) program of

the Office of the Secretary of Defense. As part of the testing effort, NIST is charged

with providing a software toolkit for manipulating PDES data. This NIST PDES Tool-

kit is an evolving, research-oriented set of software tools. This document is one of a set

of repons which describe various aspects of the Toolkit. An overview of the Toolkit is

provided in [Clark90a], along with references to the other documents in the set.

2 Implementation Environment

Fed-X was developed on Sun Microsystems Sun-3’^‘'^ and Sun-4T‘’^ series workstations

running the Unix'^-’^ operating system. The Working Form is implemented in ANSI
Standard C [ANSI89]. The Fed-X parser itself is implemented in Yacc and Lex, the

Unix languages for specifying parsers and lexical analyzers. In the NIST development

environment, the grammar is actually processed by Bison, the Free Software Founda-

tion’s implementation of Yacc. The lexical analyzer is produced by Flex , a fast. Pub-

lic Domain implementation of Lex. The C compiler used is GCC, also a product of the

Free Software Foundation, although the Working Form code does not specifically de-

pend on any particular compiler.

3 Running Fed-X

Fed-X takes several optional command-line arguments:

fedex [-d <number>]

[-e <express>]
(-w|-i all

1
none

I
<warning>

}

The -d option controls the debugging level; the argument can range from 0 (the de-

fault) to 10. The Express source file is specified with -e; if no -e option is given,

Fed-X reads from standard input. The last two options control which warning messages

Fed-X will produce, -w is used to turn on warning classes and - i (ignore) to turn them

1. The Free Software Foundation (FSF) of Cambridge, Massachusetts is responsible for the GNU Project,

whose ultimate goal is to provide a free implementation of the Unix operating system and environment.

These tools are not in the Public Domain: FSF retains ownership and copyright privileges, but grants free dis-

inbution rights under certain terms. At this writing, further information is available by electronic mail on the

Internet from gnu@prep.ai.mit.edu.

2. Vem Paxson’s Fast Lex is usually distributed with GNU software. It is, however, in the Public Domain,

and is not an FSF product. Thus, it does not come under the FSF licensing restrictions.

Fed-X; The NIST Express Translator Page 2

Stephen Nowland Clark

off. A parameter of all behaves in a predictable fashion, instructing Fed-X to

enable/disable all of the warning classes initially; similarly, none instructs Fed-X to

begin with no warning classes enabled/disabled. Allowable values for <warning>,
with their interpretation and default values, are:

subtypes

code

assume

comment
shadows

- Warnings about subtypes: Fed-X only traverses the class

hierarchy by way of superclass information, so problems in

subclass lists can "safely" be ignored. Default: on.

- Warnings about problems in algorithms and where clauses.

Fed-X does not yet handle all of Express’ scoping rules

properly, nor does it attempt to compute the return types of

expressions, so some of these warnings may be extraneous.

Default: off.

- Warnings about schema names listed in assume directives.

Default: on.

- Nested comment warning. Default: off.

- Warnings about overloaded names. The scoping rules of

Express can disambiguate these shadowed definitions, but

cannot be invoked outside of Express, e.g. in STEP files.

Default: on.

Fed-X can be built in two different ways, resulting in different interaction patterns. For

many applications, a single output module is bound into Fed-X at build time. In this

statically linked case, after the first two passes are completed, the user is normally

prompted for a single file name. This is the name of the file to which Fed-X’ s output

will be written. In the other (dynamically linked) version, no specific output module is

loaded at build time. In this case, when the first two passes are complete, the program

asks for an output module. If the file named is an appropriate object file, it is loaded

and an output file name requested. This is the name of the file to which the output will

be written. Another output module is then requested, and this sequence continues until

an empty line is entered as the name of the output module, which signals Fed-X to exit.

This dynamic loading facility is available only under BSD4.2 Unix and its derivates.

4 Design Overview

Fed-X is a three-pass parser. The first two passes are the standard parsing and symbol-

table resolution passes of a traditional compiler. The third is a flexible output genera-

tion pass. The Working Form which is produced by the first two passes consists of

tightly-linked data structures which directly reflect the structure and contents of the Ex-

press source. The third pass, which can be tailored to various specific applications,

traverses these data structures and produces output in a specified format.

4.1 Fed-X Control Flow

4.1.1 First Pass: Parsing

The first pass of Fed-X builds up a set of loosely-connected data structures which com-

pletely represent the information in the Express input. This pass makes no attempt at

resolving most name references; thus, the resulting data structures are linked only indi-

Fed-X: The NIST Express Translator Page 3

Stephen Nowland Clark

rectly by names: in order to resolve a function call, the name of the function must be

looked up in the symbol table for the appropriate scope. The entire structure of the file

is represented at this point, however. If any syntax errors are encountered, the parser

attempts to print meaningful error messages and to continue parsing.

4.1.2 Second Pass: Reference Resolution

In the second pass, an attempt is made to resolve all names. An error message is gen-

erated for any reference to an undefined name and for any use of a name in an inappro-

priate context (e.g., an algorithm name as the type of a variable). Some checks are made
on the consistency of the model during this pass. For example, one check ensures that

every supenype of a given entity also lists the entity as a subtype, and vice versa. Also

during this pass, warnings may be issued about names which are multiply defined in

different scopes. Express has a hierarchical scoping mechanism to disambiguate these

names, so that such overloading is allowed. In practice, however. Express models are

mapped onto STEP physical files, which have no notion of a hierarchically scoped in-

formation model. When this "flattening out" of the model takes place, overloaded

names may conflict; hence the need for these warnings about shadowed definitions.

4.1.3 Third Pass: Output Generation

After the first two passes have built and linked the in-core Working Form, the third pass

kicks in to write the output. This pass can load several output modules in succession,

so that several file representations of the Express input can be produced from a single

parse. Alternatively, a specific module can be built into the translator, and this dynamic

loading phase bypassed.

4.2 Working Form Data Structures

The Express Working Form is designed in object-oriented fashion, with one data ab-

straction corresponding to each concept in Express. Thus, there are abstractions which

represent types, entities, variables (which include entity attributes and formal parame-

ters, as well as local variables), expressions, statements, algorithms, and schemas. An
additional concept which recurs in Express, and which is represented by a correspond-

ing data abstraction, is that of a scope, which is, in effect, a symbol table. Algorithms,

schemas, and entities all introduce their own local scopes.

In the following sections, we examine each abstraction in turn. Although each abstrac-

tion parallels the corresponding construct in Express quite closely, so that the descrip-

tions below often seem to be echoing [Schenck90], bear in mind that the objects

described are actually the abstract data types of the Express Working Form.

4.2.1 Constant

The Constant abstraction represents symbolic constants. In the current implementation

of the Working Form, constants appear only as elements of an enumerated type. A con-

stant is named, and is marked with a type. The type of an enumeration constant simply

points back at the enumeration of which it is an element. Each constant has a value,

which can be of any C type (although it should be compatible with the type of the con-

stant); in the case of enumeration constants, this value is always an integer.

Fed-X: The .NIST Express Translator Page 4

Stephen Nowland Clark

4.2.2 Type

The Type abstraction is used to represent Express types. Every type has a name, which

is empty in many cases. When it is not, the type represents a type declaration, as in the

TYPE <id> = <type> END_TYPE construct of Express. When the name is empty,

the type represented appears within some other context - perhaps as the type of a func-

tion parameter or the base type of an aggregate. A type may have a list of constraints

(WHERE rule) associated with it; these constraints restrict the legal values of the type.

Several classes of types are represented, including simple types (numeric, logical,

string), enumerations, various aggregates, entity types, and select types. Several type

classes are implicitly or explicitly subclasses of other type classes. Thus, boolean is a

subtype of logical, and the various classes of aggregation types are subclasses of the

general aggregate type. The attributes of a type depend on its class. Thus, integer,

floating point, and string types may have a precision specification: an expression which

constrains the number of significant digits or characters allowed in a value of the type.

An enumeration type includes a list of the enumeration constants which are the allow-

able values for the type.

Every aggregate type (which may be an array, bag, list, set, or general aggregate) in-

cludes a base type, which indicates the type of objects which can be insened into an in-

stance of the aggregate type. In addition, an aggregate type may have lower and upper

bounds. In the case of an array, these expressions indicate the first and last allowable

index into the array. For other aggregate types, these expressions constrain the total

number of objects which can (must) appear in an instantiation. If the bounds are not

specified, they are assumed to be 0 and infinity, respectively. Two flags are also asso-

ciated with each aggregate type, corresponding to the UNIQUE and OPTIONAL key-

words in an Express aggregate definition. The ’unique’ flag, if set, indicates that all

elements of an aggregate must be unique among themselves. As this requirement al-

ready applies to a set, the flag is not valid for a set type. The ’optional’ flag, which ap-

plies only to an array type, indicates that all positions in the array need not be filled in

a valid instantiation of the type - the array may contain null entries.

An entity type is simply one or more entities packaged as a type. No further informa-

tion is added beyond the entity definitions themselves. Entity types exist to allow entity

instantiations to be represented (c.f. STEP Working Form [Clark90b]), and to provide

a clean mechanism for recognizing entity names in type contexts.

A select type consists of a list of selectable types. An instantiation of any of these se-

lections is a valid instantiation of the select type. In this sense, the select is similar to

the C language union construct and the Pascal variant record. In Express, the list

of selections may only include references to named types.

There are two type classes, generic and number, which are distinguished by the fact that

the corresponding Express types (GENERIC and NUMBER, respectively) cannot be

instantiated. These can only be used as types of formal parameters to algorithms, where

an actual parameter will provide an instantiation of a more specific type at run time.

Fed-X; The NIST Express Translator Page 5

Stephen Nowland Clark

A special type class is used to represent type references. These are (possibly qualified)

references which appear in type contexts, but which are not yet resolved to a particular

type. In normal operation under the control of Fed-X, they are replaced during the sec-

ond pass by appropriate type constructs. A type reference uses an expression (see sec-

tion 4.2.5) to record the qualified type name it represents. The components of this

expression are identifiers, and they are combined into binary expressions with the dot

operator.

There are several type constants available. These constants can be used to avoid creat-

ing multiple copies of some common types, including generic, integer, unbounded ge-

neric set, logical, etc.

4.2.3 Entity

The Entity abstraction represents Express entity declarations. Every entity consists of

a name, and (possibly empty) lists of attributes, subtypes, and supertypes. In addition,

an entity includes a boolean expression which describes the relationships among its var-

ious subtypes. The attributes are represented as variables which are defined in the local

scope of the entity. The sub- and supertypes are themselves entities.

In order to give a hierarchical structure to an Express model, entities are arranged in a

class hierarchy, as in the Object-Oriented world. This hierarchy is defined by the sub-

class and superclass lists of its component entities. As specified by Express, the class

hierarchy provides for conjunctive as well as disjunctive subclassing: foo SUPER-
TYPE OF (bar AND blat) means that any instance of foo is also an instance

both of bar and of bl at, while f00 SUPERTYPE OF ONEOF (bar, blat,
blit

)

represents standard inheritance, in which an instance of foo is also either an

instance of bar or an instance of blat or an instance of blit.

An entity may also include a list of uniqueness sets (from the Express UNIQUE rule)

and a list of constraints (from the Express WHERE clause). Each uniqueness set is a

list of attributes whose values, when taken together, must uniquely identify a particular

instance of the entity. The constraints, if any, are expressions which compute logical

results. Each must evaluate to true in a valid product model. These constraints can

apply to individual instantiations of the entity as well as to the collection of all instances

of the entity.

Since one possible way of looking at an entity class is as the collection of its instances,

provision is made in this abstraction for maintaining this collection. Thus, it is possible

to add instances to an entity, or to retrieve a list of all of the instances of an entity. This

mechanism is used by the STEP Working Form.

4.2.4 Variable

The Variable abstraction is used to represent entity attributes and formal parameters to

algorithms as well as local variables in a scope. A variable consists of a name, a type,

a reference (or storage) class, an offset, and some flags. A variable may optionally have

an initializer, which is an expression used to specify an initial value for the variable.

Fed-X: The NIST Express Translator Page 6

Stephen Nowland Clark

The reference class of a variable, meaningful only for entity attributes, may be ’inter-

nal,’ ’external,’ or ’dynamic,’ corresponding to the three reference classes defined in

Express. An ’internal’ attribute can only be instantiated with an embedded entity in a

STEP physical file. An ’external’ attribute must be instantiated with a reference to an-

other entity instance in the physical file. A ’dynamic’ attribute can be instantiated in

either way.

A variable’s offset indicates its position in a storage block. Thus, the offset of a local

variable is its offset into the data space of the scope in which it is defined, while the

offset of an entity attribute is its position relative to the first attribute of the entity. It is

important to realize that, in the latter case, this offset is not sufficient to locate the at-

tribute in an instantiation of the entity, since this total offset cannot be determined from

the entity definition alone. To see this, consider entities A and B, each with a single at-

tribute (call these aa and bb, respectively) The offset to bb in an instantiation of B is

0. But now suppose there is a third entity class, C, which inherits from both A and B,

in that order. Then the offset to bb in an instance of C must be 1, even though bb is

inherited from B, where its offset was 0. Thus, a variable’s offset may not be a useful

piece of information by itself.

The ’optional’ flag is used with entity attributes, and indicates that the attribute need

not have a value in a valid instantiation of the entity. A variable representing an entity

attribute can also be marked ’derived,’ indicating that the attribute value is always de-

rived from the values of other attributes, and can never be specified by a user. The

’variable’ flag, meaningful for formal parameters, indicates that the parameter is to be

passed by reference, i.e., it can be modified by the receiver.

4.2.5 Expression

Expression is one of the more complex abstractions, simply because of the wide variety

of expressions found in Express. There are five basic classes of Expressions, some of

which are further divided into conceptual subclasses: literals (including integer, logical,

real, set, and string literals), identifiers, operations (including unary operations and bi-

nary operations), function calls, and queries. Every expression includes a type, which

is the type of the value it computes. Although this type is intended to be computed au-

tomatically, it currently is neither computed nor used by the Working Form code, ex-

cept in the case of a literal. In this case, the type is an implied part of the definition of

the literal’s class.

Literal classes exist for most of the concrete simple types (as opposed to the abstract

simple types, NUMBER and GENERIC). Boolean literals do not exist in Express; they

are interpreted as logical literals instead. There may also be set literals (notably, the

empty set). There are several literal expression constants representing, for example,

zero, infinity, and the empty set.

An identifier expression represents a reference to a variable. It consists simply of the

variable referenced. (Simple) identifier expressions can be composed using (binary)

field reference expressions to form the complex qualified identifiers which Express

provides.

Fed-X; The NIST Express Translator Page 7

Stephen Nowland Clark

An operation expression includes one (unary operation) or two (binary operation) op-

erands, which are themselves expressions, and an operator, such as addition, negation,

array indexing, or attribute extraction. All of the operations of Express are supported.

A function call is composed of an algorithm (which may not be a procedure) and a list

of actual parameters to the algorithm. The actual parameters to the function call are

themselves expressions. Entity subtype expressions (see section 4.2.3) make use of a

closely related expression class, the oneof expression, which consists of a list of entity

references.

A query expression represents the set-theoretic "set of all x in X such that ..." construct.

It consist of a domain set (X), a temporary identifier which represents each element of

the domain successively (x), and a list of conditions to apply to each x. The result com-

puted is a set containing all of the values of x which satisfy the constraints.

4.2.6 Statement

The Statement abstraction is used to represent the wide variety of statements which oc-

cur in Express. There are many classes of statements, including assignments, case

statements, conditionals, loops, procedure calls, returns, and with statements. A series

of statements may be combined into a single compound statement.

An assignment statement consists of a left-hand-side expression, which must be assign-

able (this limits the expression to a possibly qualified identifier, although the restriction

currently is not enforced by the Working Form), and a right-hand-side expression, com-

puting the value to be assigned.

A CASE statement is, as in Pascal, a multi-branch conditional. It contains an expres-

sion (the case selector) and a list of branches. Each branch is a case item, represented

b>- the Case Item abstraction. A case item consists of a list of one or more values against

which the selector will be compared and a statement to be executed if the selector

matches on of these values.

The looping construct in Express is quite general, combining the functionality of the

repeat .. until, while .. do, and for loops of modem programming lan-

guages. An Express loop consists of a controlled statement (the body of the loop) and

a list of loop controls. There are three classes of loop control: increment (correspond-

ing to a FOR loop), until, and while. The first consists of a controlling identifier expres-

sion, initial and terminal expressions, and an optional increment expression, which

defaults to 1 if not present. The controlling identifier takes on successive values from

the initial to the terminal expressions, and is incremented by the increment expression

on each iteration. An until control consists of a single expression (which must compute

a boolean result); it causes the loop to terminate when this expression evaluates to

true. Similarly, a while control causes the loop to terminate as soon as its single ex-

pression evaluates to false.

A procedure call is very much like a function call, with the exception that the algorithm

is expected to be a procedure, rather than a function or rule. The procedure call state-

ment includes a list of expressions, representing the actual parameters to the call.

Fed-X: The NIST Express Translator Page 8

Stephen Nowland Clark

A RETURN statement is the mechanism by which a function repons a value to its call-

er. It contains a single expression, which computes the value to be returned.

A simple statement is one which consists of a single keyword. There are two such state-

ments in Express: ESCAPE and SKIP. No statement class is provided for simple state-

ments; rather, they are represented by statement constants, unique instances the

Statement abstraction itself.

Finally, Express includes the WITH statement, which resembles Pascal’s construct of

the same name. It includes a controlled statement and a controlling expression which

provides (optional) partial qualification to any expression in this statement. If a name

in the controlled statement cannot be resolved, an attempt is made to resolve the name

as if it were prepended with the controlling expression. The Working Form currently

does not attempt to acknowledge WITH statements when resolving identifiers.

4.2.7 Algorithm

Express functions, procedures, and rules are each represented by a subclass of the Al-

gorithm abstraction. A procedure is simply a sequence of statements. A function is a

sequence of statements which computes a result and returns it to the caller. A rule is a

special kind of function whose result is always a boolean (logical). A rule also has

slightly different scoping rules than other algorithms, to allow it to manipulate entity

classes as well as instances.

Any algorithm consists of a name, a list of formal parameters (which are represented by

variables), and a list of statements forming the body of the algorithm. In addition, a

function has a return type. A rule implicitly returns a logical value. This value is com-

puted by a list of constraints (WHERE clause), which is evaluated after the statements

which form the rule body.

4.2.8 Scope

All scoping and symbol table functionality are managed by the Scope abstraction. A
local scope is established by each algorithm, schema, and entity. For this reason, each

of these abstractions is considered to be a subclass of scope, thereby inheriting all of its

functionality. Pascal-like hierarchical scoping and inheritance are implemented by

having each scope point to its immediate containing scope(s), if any. For example, an

algorithm’s local scope points to the scope in which the algorithm is defined; an entity’s

scope may have several parents; the scope in which the entity is defined, and all of the

supertype entity scopes. In its role as a symbol table, a scope includes definitions of

various names as entities, types, variables, algorithms, constants, and schemas.

A scope can be queried for its definition of a particular symbol. If the scope does not

itself define the symbol, its superscopes are in turn queried, and so forth. If no defini-

tion can be found, the query fails.

In order to support the ASSUME directive of Express, a scope includes a list of import-

ed schemas. When a query to the scope (including all ancestor scopes) fails, the local

scope of each schema on the import list is queried for an appropriate definition.

Fed-X; The NIST Express Translator Page 9

Stephen Nowland Clark

Finally, a scope includes a list of definitions which are private. These definitions can-

not be seen outside the scope, even if the scope is ASSUME’d elsewhere.

4.2.9 Schema

The Schema abstraction represents the Express construct of the same name, which is,

in effect, a named scope. Most operations of interest are performed on the scope.

The object produced by the first two passes of Fed-X is a schema, which ultimately con-

tains all of the definitions found in the source file. This corresponds to the fact that and

Express source file, contains, at the highest level, a single SCHEMA ... END_SCHEMA
construct.

5 Missing Features

Although Fed-X accepts all of the syntactic constructs of Express, the Working Form
does not yet represent all of them; nor does it observe all of those which it represents.

The MAP directive and the cardinality operator are both accepted and silently discard-

ed. The PRIVATE directive is represented in the Working Form, but is ignored at the

crucial moment: during symbol lookup. With statements are parsed and represented,

but have no effect when identifiers are being resolved.

Although the full type system of Express is represented in the Working Form, type der-

ivations are not performed. It is theoretically possible to assign a type to any expression

on the basis of the operator and operands (or by looking up a function in the symbol

table), but this functionality is not yet implemented. Thus, erroneous messages about

type mismatches are sometimes produced simply because type information about cer-

tain expressions is not available.

Due to problems with the Express language definition, qualified identifiers may not al-

ways be interpreted properly. Problems are particularly common when dealing with

enumeration identifiers. Similarly, Express allows a subtype entity to redefine an at-

tribute which it inherits from a supertype. The effect of this redefinition on scoping re-

mains an open issue, and so Fed-X currently does not allow it.

Fed-X responds robustly to semantic errors. Syntax error recovery is somewhat more

haphazard.

Comments are discarded during lexical analysis and so have no chance of being record-

ed by the parser.

6 Conclusion

Although the Express Working Form in its current state is sufficient for current appli-

cations, it is only a matter of time before some of the missing features are required. In

addition. Express is still evolving, and the software must continue to change with the

language.

Fed-X: The NIST Express Translator Page 10

Stephen Now land Clark

Fed-X has proven to be an effective tool for the creation of schema-independent appli-

cations based on STEP. Translators using each of the output modules distributed with

the Express Working Form are in common use at NIST, as are three applications driven

by Fed-X: QDES, STEPparse, and the NIST Oracle® database for PDES.

For further information on Fed-X, the Express Working Form, or other components of

the Toolkit, or to obtain a copy of the software, use the attached order form.

Fed-X; The NIST Express Translator Page 1

1

Stephen Nowland Clark

A References

[ANSI89] American National Standards Institute, Programming Lansuase C.

[Clark90a]

Document ANSI X3. 159-1989

Clark, S. N., An Introduction to The NIST PDES Toolkit. NISTIR
4336, National Institute of Standards and Technology, Gaithersburg,

MD, May 1990

[Clark90b] Clark, S.N., The NIST Working Form for STEP. NISTIR 4351.

National Institute of Standards and Technology, Gaithersburg, MD,
June 1990

[Clark90c] Clark, S.N., NIST Express Working Form Programmer’s Reference,

NISTIR 4407, National Institute of Standards and Technology,

Gaithersburg, MD, September 1990

[Clark90d] Clark, S.N., ODES User’s Guide, NISTIR 4361, National Institute

of Standards and Technology, Gaithersburg, MD, June 1990

[Clark90e] Clark, S.N., ODES Administrative Guide, NISTIR 4334, National

Institute of Standards and Technology, Gaithersburg, MD, May
1990

[Metz89] Metz, W.P., and K.C. Morris, Translation of an Express Schema into

SOL, PDES Inc. internal document, November 1989

[Morris90] Morris, K.C., Translating Express to SOL: A User’s Guide, NISTIR

434 1 , National Institute of Standards and Technology, Gaithersburg,

MD, May 1990

[Perlotto89] Perlotto, K. L., The Use ofGMAP Software as a PDES Environment

in the National PDES Testbed Proiect, NISTIR 89-4117, National

Institute of Standards and Technology, Gaithersburg, MD, June

1989

[Schenck90] Schenck. D., ed.. Exchange of Product Model Data - Part 1 1 : The

Express Language, ISO TCI84/SC4 Document N64, July 1990

[Smith88] Smith. B., and G. Rinaudot, eds.. Product Data Exchange

Specification First Working Draft, NISTIR 88-4004, National

Institute of Standards and Technology, Gaithersburg, MD,
December 1988

Fed-X; The NIST Express Translator Page 12

I
ORDER and INFORMATION FORM

MAIL TO: I

NATION^_ National Institute of Standards and Technology

Gaithersburg MD., 20899

Metrology Building, Rm-A127

Attn: Secretary National PDES Testbed

_ (301) 975-3508

Please send the following documents
and/or software:

I I

Clark. S An Introduction to The NIST PDES Toolkit

I [

Clark. S The NIST PDES Toolkit: Technical Fundamp.ntak

I [

Clark. S.N.. Fed-X: The NIST Express Translator

Q Clark, S .N., The NIST Working Form for STEP

I I

Clark. S.N.. NIST Express Working Form Programmer’s Reference

I I

Clark, S.N., NIST STEP Working Form Programmer’s Reference.

[~| Clark. S J^.. ODES User’s Guide

I [

Clark. S J^.. ODES Administrative Guide

I I

Morris, K.C., Translating Express to SOL: A User’s Guide

I I

Nickerson, D., The NIST SOL Database Loader: STEP Working Form to

SQL

[I

Strouse, K., McLay, M., The PDES Testbed User Guide

OTHER (PLEASE SPECIFY)

These documents and corresponding software will be
available from NTIS in the future, '^en available, the

NTIS ordering information will be forthcoming.

TESTBED

i

:"w

A :
. r;!".

ul
-. -1... ,

. .

,

'I/,,. .'1

A

,
. tj-{. ‘?:

v
,

}.. ,

I

>„ • *. viJvi

A •!.• i-

invaiai'

K.'M!

,

'

’avv.' 'ail'‘ii'',a'.;}r;

.

: V ';::'’tf'A!i-
.''' ' ' '

' V
a.' aWff/

-t'<4jV.^.»^«W/»f>*%»«>»»i I 'Ita niipfMm 1 1 I

m
Ki

Afc’iK

Ifw
'i/li '.I iiiiritirvt' n*>ilW Pi-4n4»A <*Lrft rtf SlYXI/t rrtin% «ikMHb Aj\ .oiulifls^ tif OTIjl m<n\

.^mmoorirnlM^ U.t'#

‘

JiAT e.> ,

•^5;

. ;.
•," •r''»

' '

-v f W ' '

^ " '

' ' “''

' ,’i‘.:

'm-

m-

I

IST-114A U.S. DEPARTMENT OF COMMERCE
: 3-90) NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY

BIBLIOGRAPHIC DATA SHEET

1 PUBUCATION OR REPORT NUMBER

NISTIR 4371
2. PERFORMING ORGANIZATION REPORT NUMBER

3. PUBUCATION DATE

AUCL'ST 1990
TITLE AND SUBTITLE

“ '

"FED-X: The NIST Express Translator"

AUTHOR(S)

Stephen Nowland Clark

PERFORMING ORGANIZATION (IF JOINT OR OTHER THAN NIST, SEE INSTRUCTIONS)

U.S. DEPARTMENT OF COMMERCE
NATIONAL INSTITUTE OF STANDARDS ANO TECHNOLOGY
GAITHERSBURG, MO 20S99

7. CONTRACT/GRANT NUMBER

8. TYPE OF REPORT AND PERIOD COVERED

SPONSORINQ ORQANIZATION NAME ANO COMPLETE ADDRESS (STREET. CITY, STATE, ZIP)

). SUPPLEMENTARY NOTES

I. ABSTRACT (A 200-WORD OR LESS FACTUAL SUMMARY OF MOST SIGNIFICANT INFORMATION. IF DOCUMENT INCLUDES A SIGNIFICANT BIBUOGRAPMY OR
UTERATURE SURVEY, MENTION IT HERE.)

The Product Data Exchange Specification (PDES) is an emerging standard for the

exchange of product information among various manufacturing applications. PDES includes

an information model written in the Express language; other PDES-related information
models are also written in Express. The National PDES Testbed at NIST has developed
software to maniputlate and translate Express models. This software consists of an

in-memory working form and an associated Express language parser, FED-X. The design
and capabilities of FED-X and the Express Working Form are discussed.

2. KEY WORDS (6 TO 12 ENTRIES; ALPHABETICAL ORDER; CAPITAUZE ONLY PROPER NAMES; ANO SEPARATE KEY WORDS BY SEMICOLONS)

date modeling; Express; product data exchange; PDES; PDES implementation tools; schema-

independent software; schema translation; STEP

3. AVAILABIUTY 14. NUMBER OF PRINTED PAGES

13X UNUMITEO

FOR OFFICIAL DISTRIBUTION. DO NOT RELEASE TO NATIONAL TECHNICAL INFORMATION SERVICE (NTIS).

ORDER FROM SUPERINTENDENT OF DOCUMENTS, U.S. GOVERNMENT PRINTING OFFICE,
WASHINGTON, DC 20402.

ORDER FROM NATIONAL TECHNICAL INFORMATION SERVICE (NTIS), SPRINGFIELD, VA 22161.

IS. PRICE

AO 2

ELECTRONIC FORM

^ -J yi>OJO'iA' 0,V

'HirjiO '.f]

<fVV I Ui'J/'.

M,

rar^iiB

1 »l I II

> 1. II-H

ill 1 OJ ' •,:••* fivv', tf.O-*:'^ , '-lO 31*1 VT .t)

«y
'

.

*
. , ^OfsSry^a^Vsfswrfc

-
•

''t 'A

wm

::y:ilW00iiS!^ jfeS
•.^•.‘..n..u^.' TM*cr~Ti:ai^ A. fcjv'orrr::' ^jcf'jVS^S^T

'v

-(,,3. ;?';il ',>‘J h^<. isX

,•- ;'rru.\J ,b-.
3

•. U\- c^S'Cl'^ '5 W'.t?'?''

^

.; 1.
'

..'tf'''0 - 3 .. •1-3 ' 03/,
,

>:r. !'<f
, , .M '!^

' • ‘
• ^ x-j s; g-iji Jtfa

"'3#

•

••
• '

:' iii;''''' I

' aC3>y^iMs.’ Vd. «?.n'''0
•< <'»!

,4_V'

..aOAS UjTtM#**! ><0 «)|1*<W‘ »•

•i Ua
itwr*i .fcr

:
, /, ,

iff"
/i'r.

»* -T •

.3' "i®:*'
'’ < /Wiiwvi*

i»T 6!i: AVrOjaiifem/wg
iii iiiiiwiMiiigx t uiii Kwiw* " > w*iM'wii» i

niw»\muH i
M

m

u'M iwidw ii > mm ii

