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Abstract

During crystal growth from the melt, a fundamental problem is

to understand the interaction of the crystal-melt interface with fluid

flow in the melt. This problem combines the complexities of the

Navier-Stokes equations for fluid flow with the nonlinear behavior

of the free boundary representing the crystal-melt interface. Some
progress has been made by studying explicit flows that allow a base

state corresponding to a one-dimensional crystal-melt interface with

solute and/or temperature fields that depend only on the distance

from the interface. This allows the strength of the interaction be-

tween the flow and the interface to be assessed by a linear stabil-

ity analysis of the simple base state. The case of a Taylor-Couette

flow interacting with a cylindrical crystalline interface is currently

being investigated both experimentally and theoretically. We con-

sider the changes in the linear stability of this system produced by

density-driven convection generated by the interaction of the density

gradients with the gravitational and centripetal acceleration.

1 Introduction

The study of crystal growth from the hquid or melt phase provides a rich

source of free boundary problems, the solutions for which are of great prac-

tical interest. (Some descriptions of common crystal growth techniques are

given by Hurle and Jakeman in [1] and references therein.) When growing

crystals of doped semiconductors or metallic alloys, the concentration of so-

lute at the freezing interface is of special concern [2]. In most appHcations

it is desirable to produce crystals with homogeneous distributions of solute
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throughout the crystal, and great care is taken in the design of the crys-

tal growth apparatus to attempt to control the concentration and thermal

fields near the interface. In directional solidification from the melt, for ex-

ample, an idealized furnace that is free from imperfections would produce a

planar crystal-melt interface with one-dimensional temperature and solute

fields, allowing solute to be incorporated uniformly in the growing crystal.

In reahty, even such a planar crystal-melt interface is subject to various

instabihties [3, 4] which can result in segregation of solute at the interface

and produce inhomogeneous distributions of solute in the crystal. In addi-

tion to instabilities associated with the interface itself [5], under terrestriaJ

growth conditions it is often difficult to avoid the occurrence of fluid flow

in the melt due to natural convection [6]. Such flows are themselves able to

cause imdesirable segregation of solute [7] and may result in the production

of inferior quahty crystal. Avoiding natural convection is one of the main

motivations for developing the capability of crystal growth under the mi-

crogravity conditions available in low earth orbit, where the driving force

for natural convection is lower by orders of magnitude. In addition, such an

environment allows more precise fundamental experiments on interface dy-

namics to be performed without the complicating effects of buoyancy-driven

convection [8].

The study of the interaction of fluid flow with a crystal-melt interface

is thus an area of fundamental importance in materials science, but despite

much recent research [9] the understanding of such interactions is fragmen-

tary. The general problem combines the complexities of the Navier-Stokes

equations for the fluid flow in the melt with the nonlinear behavior of the

free boundary representing the crystal-melt interface. Some progress has

been made by studying exphcit flows that allow a base state corresponding

to a one-dimensional crystal-melt interface with solute and/or temperature

fields that depend only on the distance from the interface. This allows the
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strength of the interaction between the flow and the interface to be assessed

by a linear stability analysis of the simple base state.

For example, one can examine changes in the morphological stability [5] of

the interfcice in the presence of flow in the melt. Specific flows that have been

considered in this way include plane Couette flow [10, 11], thermosolutal

convection [7, 12], plane stagnation flow [13, 14], rotating disk flow [15],

and the asymptotic suction profile [16]. One can also examine changes in

the hydrodynamic stability of a given flow that occur when a rigid bounding

surface is replaced by a crystal-melt interface. Examples here include the

instabilities associated with Rayleigh-Benard convection [17], thermosolutal

convection [6, 18, 19], plane Poiseuille flow [20], the asymptotic suction

profile [16], thermally-driven flow in an annulus [20, 21], and Taylor Couette

flow [22, 23].

In previoiis work [22, 23] we have described the interaction of a Taylor-

Couette flow with a cylindrical crystal-melt interface under the assumption

that the effects of buoyancy can be neglected. This preliminary work is in

support of experimental studies being conducted with succinonitrile; for this

material the crystal-melt interface is predicted to have a significant effect

on the conditions for marginal stabihty of the flow. Since large tempera-

ture differences in the system are capable of driving natural convection in

the melt [24, 25], it is desirable to include such effects in our theoretical

treatment as well. In this paper we reformulate the problem to include

the effects of buoyancy when the axis of the cylinders is aligned with the

direction of gravity. This generates a more complicated flow field in the

bcise state, which then is subject to not only centrifugal instabilities but

buoyant instabilities as well [26, 27]. We also include the effects of density-

driven convection produced by the interaction between the radial density

gradient and the centripetal acceleration of the azimuthal flow in the base

state [28]. Linear stability resiilts are obtained numerically for a typical
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FIG. 1. Schematic diagram of the crystalline inner annulus (labeled “S”)

surrounded by the liquid phase (labeled “L”). In the base state the unper-

turbed crystal-melt interface is cylindrical, with h(z,4>,i) = Ri.

experimental configuration. For these conditions we find that the effect of

the contribution from the interaction of the radial density gradient with the

centripetal acceleration is not significant. The natural convection causes a

slight stabilization of the system; however, there is a two-fold increase in

the wavelength of the most dangerous disturbance.

2 Taylor-Couette Flow with Buoyancy

We consider Taylor-Couette flow [29, 30] in the presence of a crystal-melt

interface f = h{z^(f>,i) (overbars will denote dimensional quantities). A

cylindrical coordinate system (r, 2
, 0) is used. The melt occupies the region

h{z, (/>,<)< r < R2 ,
and the crystal occupies the region Rq < r < h{z^ (f>, t)

(see Fig. 1); in the unperturbed base state the interface is an infinite cylin-

der with h = Ri. We also consider the convection-diffusion equation for

heat transport as well. We consider steady rotation of the system; the

outer cylinder is stationary and the inner cylinder and crystal rotate with
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angular velocity Cli. The temperature dependence of the density is taken

into account in a Boussinesq approximation [31], which allows convective

effects due to the interaction of the density gradient with the gravitational

and centripetal acceleration terms. We £issume the axis of the cylinders is

aligned with the gravity vector, —gz, where z is the iinit vector along the

z-axis.

The nonlinear dimensional governing equations in the melt are the con-

tinuity equation.

du u \ dv dw „ ,, ,_
-I- _ 4- = 0, (la)

or r r ocp oz

the momentum equations.

Du dp

Di df

u 2 dv
Po— + S = /< I ^ I

+
f2 d<f>

(lb)

Dv 1 dp

_ Dw dp _

(lc)

(l d)

and the energy equation

DT— = /cV^T,
Dt

where

D d _ d V d _ d

(le)

and
-

2 __^ 1_5 1 d^ ^
df2 f Qf f2 Qfjj;! ^^2

Here u, v, and w are the velocity components in the f,
<f>, and z direc-

tions, respectively, p is the pressure, T is the temperature in the melt, p

is the viscosity coefficient, k is the thermal diffusivity in the melt, and

p = po{l — a[T — Te]) is the density, where po and Te are reference densities

and temperatures, and a is the coefficient of thermal expansion. In the
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Boussinesq approximation employed here [28, 31], the temperature varia-

tion in the density is neglected in the advection terms on the left hand sides

of the momentum equations.

The sohd is rotating with an azimuthal velocity rfii, and the tempera-

ture in the sohd, Ts, obeys

^ + = (If)

where ks is the thermal diffusivity in the crystal.

At the outer boimdary r = R2 ,
have u = w = v = 0, and T = T2 ,

where T2 is the (constant) temperature imposed at the outer cyUnder; T2

is assumed to exceed the melting point Tm of the material. At the inner

boundary r = we have Ts = Tbi where Tb is the (constant) temperature

imposed at the inner cyhnder; Tb is assumed to he below Tb,. At the interface

f = h{z, (f>,t) the boundary conditions are [6]

u = u? = 0, (2a)

V = A(z, 0, F)Qi,

f = fs = fm- frr^TK,

_r
^ di ^

\ d<f> d4> dz dz

,
(dfs Idhdfs dhdfs\isl—-TT-—

(2b)

(2c)

(2d)

df h'^ d<p d(f>

where F is a capillaiy length, Tv is the latent heat of fusion per unit volume

of crystal, K is the mean curvature of the interface, and and ks are

the thermal conductivities in the hquid and sohd, respectively. We have

assumed equal densities of crystal and melt, and equal heat capacities in

each phase.
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3 Base State

The equations admit an annular base state with h{z,<l),t) = Ri, u = 0
,
v =

F(f), w = W{f)^ p = P(f, f), T = 0(r), and Ts = 05(r). Dimensionless

variables may be introduced as follows. The length scale is chosen to be the

melt gap width L = R2 — Ri, the time scale is chosen to be where

1/ = fi/pQ is the kinematic viscosity, the velocity scale is v/ L, the pressure

scale is pou '^ and the deviation of the temperature from its value at the

unperturbed interface is measured in units of the temperature difference

across the melt, AT = T2 — Tm + fmT/Ri. The melt then occupies the

region 7//(l — 77) < r < 1/(1 — tj), the unperturbed interface is located at

r = Tj/
{
1 — 7}), and the crystal occupies the region 775/(1 —77) < r < 77/(1 — 77),

where 77 = R1/R2 and tjs = RqIR2 < V- (Dimensionless counterparts to the

dimensional variables will lack overbars.)

The resulting dimensionless expressions for the bcLse state variables axe

as follows. The base azimuthal velocity can be written in the form

,

1 Re 77^

(1-772)^ r(l - 772)(1 -77)2’

where Re = L'^Qi/u is the Reynolds number. The solution for the axial

velocity that is appropriate to model a closed system with no net axial

volume flux,

is given by

W{r) =
-G

16(1-77)2

/‘«2

/ rW{r)dr = 0, (3)

- 4
(4

^ -77^)
2Nln^

In 77

where G = gaL^AT/u"^ is the Grashof number, ^ = (1 — T})r, axid

^ (1 - 772)(1 - 3772) - 477^ In
77

(1 - 772)2 + (1 - 77^*) ln 77

The dimensionless temperature fields are given by

ln(^/77)
0(r) =

ln(l/77)’
(4a)
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and

e (r) (4b)

The radial pressure gradient balances the centrifugal force, and the axial

pressure gradient is constant.

4 Linearized equations

We next consider the dimensionless equations hnearized about the steady

base state. We Fomier transform the axial and azimuthal coordinates, which

introduces the axial wavenumber a and the azimuthal wavenumber n, and

write

u(r,2,0,t)
^

[
°

1

^ u(r)
^

v(r,2,0, t) y(r) v(r)

w{r,z,(i>, t) W{r) w { t )

p(r, 2 ,<^,f) — P{r,z) + p{r)

T{r,z,<f>,t) 0(r) 0(r)

Ts{r,z,(f>,t) Qs{r) 0s(r)

h{z,(f),t)
^ ^

^/(l - V)
! [

h
)

exp(<Tf + in<j> + iaz),

where the perturbation amphtudes (quantities with hats) are assumed small.

The complex growth rate a = <Tr + io'i determines marginal stabihty: the

flow is stable if <Tr < 0 for all values of n and a. If one sets D = d/dr^ the

linearized equations in the melt region 7//(l — r;) < r < 1/(1 — Tf) taJce the

form

. 1 » m ^ . .Du H—u H V + law = 0,
r r

inV . . ^

ail ^ u + iaWu + Dp =

(5a)

(5b)

D^u ^—Du —
r

a r
. 2.n.'i

,

„(l-e0)l/,
u —V + 2 V fc).
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(5c)
inV in

Gv H V + iaWv + uDV H p —
r T

D^v + —Dv — ^ 2m (1 - eQ)V .

V + ——u u.

inV
GW H w 4- iaW

w

+ uDW + tap =
r

D^w H—Dw —
r

2 ^
+ — + G0,

inV A
(70 H 0 4- zaW^0 4- uDQ = — Z)‘^0 4

—

DQ —
r Pr \ r

and, in the region ps/{l — rj) < r < rj { {I — p), one obtains

a + ^

(5d)

0 ,
(5e)

1

(705 4" mRe05 =
(
D^Qs 4—DQs ~ Tt

4- — 05 . (5f)

Here Pr = vjkl is the Prandtl number, P, = i//«5 ,
and e = aAT.

The linearized boundary conditions are u = t; = i2; = 0 = Oatr =

1/(1 — T/), 05 = 0 at r = 775 /( 1 — 7;), and, at the interfacer = = rj / (1 —77),

^ = 0, (5g)

w + hDW = 0, (5h)

V 4- hDV = Keh, (5i)

Q + hDe = es + hDSs = -7 (^j)

- irCh = [Oe - qUBs) •
(5k)

where 7 = {TmT)/{LAT), C = {uLv)/{kLAT), and q = ks/ki.

5 Numerical Results

The linearized equations constitute an eigenvalue problem from which the

complex growth rate g = Gr icn can be determined for each choice of the
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remaming parameters. Curves of marginal stability may be obtained by set-

ting (Tr = 0 and computing instead a pair (Re, cr,) as a function of wavenum-

ber, which can be done (see [20]) in the manner suggested by Keller [32].

The numerical procedure was checked carefully against previously pubHshed

linear stability results for related problems [22, 27, 28, 33].

To illustrate the relative importance of the eifects of buoyancy on the

stability of the system, we use the material properties of succinonitrile [21]

for a typical container geometry. We take R2 = 1.60 cm, Ri = 1.11 cm, and

Ro = 0.458 cm, giving rj = 0.690 and rjs = 0.286. We assume a temperature

gradient in the melt of 2.5 K/cm, which produces a temperature difference

across the melt gap of AT = 1.225 K, giving C = 455, e = 9.923 • lO"'*,

G = 170, and 7 = 4.9 • 10“^; for simplicity we set 7 = 0 . The thermal

properities of the liquid and solid are similar for succinonitrile, and we take

the ratio of thermal conductivities to be g = 1, with = Pg = 22.8. We

restrict our discussion to axisymmetric disturbances (n = 0), which are

expected to be the most dangerous modes in this configuration.

Marginal stability curves (<7^ = 0) are compared in Fig. 2 for four dif-

ferent cases. The Reynolds number Re of the flow is plotted versus the

axial wavenumber a of the disturbance. The curves in this plot are com-

puted with e = 0, so that the interaction of the density gradient with the

centripetal acceleration is neglected.

The top two curves correspond to the classical Taylor-Couette problem

with rigid isothermal surfaces boxmding the hquid, and the bottom two

curves correspond to the two-phase problem with a crystal-melt interface

a.t f = Ri. We first consider the two cases without buoyancy {G = 0).

The rigid-walled system haa a critical Reynolds number Re = 35 (see Ta-

ble I), corresponding to the onset of the classical secondary flow consisting

of toroidal Taylor-vortex cells. The crystal-melt interface destabilizes the

system, giving a smaller critical Reynolds number Re = 9; the axial wave-
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length of the most dangerous disturbance, A = 27r/a, is shifted to larger

values. This effect has been described in our previous work [22, 23]; the size

of the destabilization is foimd to vary with the Prandtl number of the melt.

The results for a rigid-walled system actually provide the limiting values

for a conduction-dominated system with Pr -C 0. The destabilization due

to a crystal-melt interface becomes pronounced for convection-dominated

systems with Pr ^ 1. For G = 0 the disturbances are stationary in both

cases, with <7^ = 0.

FIG. 2. Marginal values of the Reynolds number. Re, versus the axial

wavenumber of the perturbation, a, for axisymmetric disturbances, com-

paring the effects of buoyancy (G = 170) for the rigid-wailed system (top

two curves) and for the system with a crystalline inner cylinder (lower two

curves).

For G = 170 the marginal curves are shifted, as indicated by the dashed

curves in Fig. 2. The rigid-walled system is destabilized slightly from

Re = 35 to Re = 32, with a small increase in wavelength. This destabiliza-

tion of the Taylor-Couette flow by the buoyancy forces is consistent with

the trends reported previously [27]. The toroidal cells are no longer station-

ary, but drift downwards with an axial phase velocity equal to —a,/a. The

effect of buoyancy when a crystal-melt interface is present is qmte different.
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however. There is a slight increase in the criticaJ Reynolds number when

buoyancy is present, and there is a two-fold increase in the wavelength of the

most dangerous disturbance. The secondary cells have a slow upward drift

(cTi < 0), but the phase velocity is smaller by three orders of magnitude.

This decrease in phase velocity is likely due to the strong coupling between

the interface and the flow: the interface deforms and accommodates the

cellular flow structure, allowing the instability to occur at lower Reynolds

numbers. For the cellular structure to translate in the axial direction, how-

ever, the deformed interface must melt and freeze for the wave to propagate,

which retards the dynamics of the process.

Table I

Pr G € Re CTi a

0 0 0 35.2520 0 3.143

0 0 0.001 35.3777 0 3.143

0 170 0 32.3174 4.6937 2.967

0 170 0.001 32.2991 4.6881 2.967

22.8 0 0 9.4518 0 1.782

22.8 0 0.001 9.4508 0 1.782

22.8 170 0.0 11.1517 -2.7096 -10-3 0.904

22.8 170 0.001 11.1509 -2.7101 -lO-^ 0.904

Critical values of the Reynolds number Re, the time constant <t,-, and the

critical wavenumber a for the rigid-walled case {Pr = 0) and the case of a

crystalline inner annulus of succinonitrile (Pr = 22.8). Buoyancy forces are

absent for G = 0, and the interaction of the centripetal acceleration with

the radial density is absent for e = 0.

In Table I we give values of the critical Reynolds numbers, the time

constant <t,, and the critical wavenumber a for the cases shown in Fig.

2, and we also give results for the same cases computed with a non-zero

contribution from the interaction of the centripetal acceleration with the

radial density gradient, using the value e = 0.001. The changes brought

about by including density variation in the centripetal acceleration are seen

to be insignificant for these cases. The larger change in the stability of the
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system with a radial temperature gradient is clearly due to gravitational

forces.
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