
A111D3 mVbOM

NIST

PUBLICATIONS

SOFTWARE
DEVELOPMENT
TOOLS

Glenn P. Forney
Walter W. Jones

U.S. DEPARTMENT OF COMMERCE
National Institute of Standards

and Technolo^
National Engineering Laboratory

Center for Fire Research
Gaithersburg, MD 20899

U.S. DEPARTMENT OF COMMERCE
Robert A. Mosbacher, Secretary

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
John W. Lyons, DIroetor

-QC

100

.056

//4363

1990
NIST

NATIONAL INSTITUTE OF STANDARDS &
TECHNOLOGY

Research Mormation Center

Gaithersburg, MD 20899

SOFTWARE
DEVELOPMENT
TOOLS

Glenn P. Forney
Walter W. Jones

U.S. DEPARTMENT OF COMMERCE
National Institute of Standards

and Technology

National Engineering Laboratory

Center for Fire Research
Gaithersburg, MD 20899

July 1990

U.S. DEPARTMENT OF COMMERCE
Robert A. Mosbacher, Secretary

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
John W. Lyons, DIroctor

4

u<)NAt 2'’7rrnrrE op oTanI).

TF.CHKOtOC-'"
mJ a;

• -h',b‘'"f3burg, Mr»

X«fuio^ f8ffie!0

a^nol M i-BlIifeW

twft

vi{iT««0'<«J SoH*««tS«3

w««J: 'iUK

' y-
'

\

’lO TVOWTJW^ *»«

fOHAOHAtf 30 Krt^trtiHI 4iA«W(tAM
f©OJtONlt'O®®'

mntrM ^vmKti *y<
U

A'-.

CONTENTS

1. INTRODUCTION

2. PROGRAM DEVELOPMENT TOOLS
2.1 Analyzing Program Structures, ROADMAP
2.2 Checking Common Blocks, COMCHECK
2.3 Comparing Two FORTRAN Programs, FDIFF

3. INTERFACE MODULES
3.1 Screen Input and Output

3.1.1 Initialization, CSPACE
3.1.2 Windows, WINDOW
3.1.3 Scrolling, SCROLLU and SCROLLD
3.1.4 Cursor visibility, CURSON and CURSOF
3.1.5 Output to the screen

3.1.6 Curso! positioning, CHRLOC and CHRMOV
3.1.7 Inverting text, BARCODE
3.1.8 Saving and restoring screens, VSTOW and VSHOW.
3.1.9 Saving and restoring the palette registers.

3.2 Parsing Text

3.2.1 Parsing a General Line of Text, PARSE
3.2.2 Parsing a File Name, FPARSE
3.2.3 Parsing a Command Line with Options, PPARSE

3.3 Character Manipulation and Conversion

3.3.1 Identi^rg Alphabetic Characters, ALPHA
3.3.2 Finding tne Length of a Character String, LENGTH
3.3.3 First non-olank character, NOBLNK
3.3.4 Identify a Numerical Character, NU^'
3.3.5 Changing the Case of Character(s) UPi ER, TOUPPER, TOLOWER
3.3.6 Finding character strings in a text line, SSTRNG

3.4 Memory Management
3.4.1 Copy blocks of memory, CPYPTR
3.4.2 Validity of a pointer to memory, DCODE
3.4.3 Delete a block of memory, DELPTR
3.4.4 Allocctc a block of memory, GETPTR
3.4.5 Size ' a block of memory, GETSIZ
3.4.6 Initializing the Memory Manager, INITMM
3.4.7 Encoding a Memory Block, NCODE
3.4.8 Changing the Size of a Memon lock, RESIZ

3.5 File Handling

3.5.1 Determining Whether a File Name is Valid, LEGAL
3.5.2 Opening a File, OPENFL
3.5.3 Creating a New File, NEWFIL
3.5.4 Speeding Up File I/O, DABUFR
3.5.5 Finding Gles, FFILE

iii

1

3

3

6

9

12

12

12

13

13

13

13

14

14

15

15

16

17

17

18

18

18

19

19

20

20

21

21

21

22

22

23

23

23

^ '

2h

24

24

25

25

26

27

APPENDIX A Sample Programs for Development Tools 29

APPENDIX B Sample Programs for Software Modules 31

References 37

iv

Introduction

Software Development Tools

Glenn P. Forney

Walter W. Jones

Center for Fire Research

National Institute of Standards and Technology

This paper discusses the use of software tools to aid in the development of models produced by the Center

for Fire Research (CFR). There are two typjes of tools described in this paper. The first type consists of

executable programs that characterize the subroutine and data structures of FORTRAN programs. A
second class of software tools are subroutines that support various utility functions required by CFR
models. We will discuss how each of these tools are used and why their development was necessary. In

addition, we will indicate how these toots might be improved.

1. INTRODUCTION

This paper discusses how software tools are used to help develop fire growth and

smoke spread models produced at the Center for Fire Research (CFR). There are two types

of tools described in this paper. The first type consists of stand-alone or executable programs

that characterize the subroutine and data structures of FORTRAN programs. A second class

of software tools are subroutines that support various utility functions required by CFR fire

models. We will discuss how each of these tools are used and why their development was

necessary.

The underlying theme is the reuse of reliable routines. In general, programs use only

a few techniques to solve most of the problems encountered in programming. Once a reliable

routine ’as been developed, much time can be saved by reusing this routine rather than

rewriting it, with the attendant debugging and documentation. This is an attempt to document

a few such routines which the authors have found to be generally useful.

The stand-alone tools, ROADMAP, FDIFF and COMCHECK examine a program’s

procedure and data structures. They help to identify and eliminate problems that may exist in

the subroutine and data structure. ROADMAP determine how subroutine are related to

each other by reporting the an. etors and decendants of each subroutine in a program.

Software Development Tools

FDIFP compares two FORTRAN programs. Its primary usage is to document differences in

versions as a module develops over time. COMCHECK determines how common blocks

variables are used (or misused) in a program.

A second category of software tools are subroutines that support utility functions

required by CFR fire models. Some of these subroutines provide an interface between a

FORTRAN program and the graphical capabilities of computers and terminals. Other

subroutines parse text, examine character strings, manage memory and access files. These

tasks are required by the tools described above and fire models such as FAST[1],

CFAST[2] and CCFM.VENTS[3].

These two types of tools are designed to increase the productivity of a software

developer by shortening the time required to understand how a program is structured,

identifying differences between similar versions of a program, determining where and how
common block variables are used and providing software building blocks to be used to write

other programs. These tools are also designed to make it easier to move procedures or

algorithms from one project to another, and to insure that their interfaces are consistent. Both

types of tools have been used on a wide variety of computers, thus attesting to their

portability. They have been used on several development projects, so they can claim re-

usability.

2

Program Development Tools

2. PROGRAM DEVELOPMENT TOOLS

The program development tools, ROADMAP, COMCHECK and FDIFF provide in-

formation about a program’s routine and data structures. The tools ROADMAP and

COMCHECK were designed to read a cross-reference’ listing produced by a FORTRAN
compiler. ROADMAP was originally written to document the structure of CCFM.VENTS[3]
and was designed to examine a Cyber 855 FORTRAN listing. It was adapted to examine

FORTRAN programs on an MSDOS compatible micro-computer so that it could be used to

examine the structure of CFAST[2]. COMCHECK was written to determine where common
block variables are being changed.

FDIFF was written to compare two FORTRAN programs. What sets it apart from

other text comparison programs is that it uses the fact that it is examining FORTRAN
programs. It can optionally ignore blanks and comment statements since changes in this area

will not affect the results of a FORTRAN compilation. It also examines each file to be

compared subroutine by subroutine. This tool was used to indicate which subroutines in the

input, model and plot portions of CFAST were essentially identical.

Each tool can be executed from the command line in MSDOS. The software tools

read in one or more files and produce an output file. Since similar structures exist for other

programming languages, and operating systems, FDIFF, COMCHECK and ROADMAP could

easily be ported to C, Pascal or Ada.

2.1 Analyzing Program Structures, ROADMAP

When working with small programs it is easy for the original developer to keep the

plan or roadmap of the program in his head. As a program grows in size and complexity it

becomes increasingly difficult to understand how it is structured by just examining a source

listing. This is especially true for newcomers to a programming project. Further, when
making changes to the subroutine or data structures in a computer program it is necessary to

know the effect these changes will have on the rest of the program. The tool, ROADMAP,
provides an automatic means of determining what other parts of a program need to be

altered. Obtaining this information by hand always leaves the possibility that a required

change will be missed. An example will help illustrate the point. Suppose that a subroutine

XYZ has three arguments as in:

A cross-reference listing indicates how and where each subroutine symbol (variable,

statement label, subroutine name, common block name) is used.

3

Software Development Tools

SUBROUTINE XYZ(A,B,C).

The developer wishes to add a variable to the argument list so that the new subroutine

statement is given by

SUBROUTINE XYZ(A,B,C,D).

To cx)mplete the change, every location in the program that "calls" XYZ must be located so

that statements of the form

CALL XYZ(A,B,C)

can be changed to

CALL XYZ(A,B,C,D).

This information, the routines that call XYZ, is not readily available from a program’s source

listing, A text editor, a program for editing text files, could be used to search for occurrences

of the string "CALL XYZ" This is a tedious and error prone process. A simple text search

would not find the string "CALL XYZ" since more than one blank exists between CALL
and XYZ. The tool, ROADMAP, provides an automatic means of providing the required

information by listing each routine that calls a given routine. The usage of ROADMAP is

given below. Parameters in brackets are optional.

ROADMAP The program, ROADMAP, displays information about subroutine usage in a

FORTRAN program. It determines the structure of a program by printing

for each subroutine the routines that call it, the routines that it calls and
the common blocks that are referenced, ROADMAP also determines the

routines that access common blocks. The file names file1 and file2 may
be any valid MSDOS file name. Further, file1 may contain MSDOS wild-

card characters, and/or ’?’ to specify a list of filenames to be examined.

The characters may be used to represent the parent and current

directory respectively in a path used to specify a file.

syntax:

ROADMAP file1 [file2]

file1 required File containing a cross-reference listing. This file must be generated by

compiling a FORTRAN program using the Lahey FORTRAN compiler with the

XREF listing option turned on,

file2 optional File containing a report produced by this program.The default name for

this file is the same name as file, with the extension .RDM.

To examine the structure of a program using ROADMAP, consider program ONE
given in the appendix. Suppose it is located in the file ONE.FOR. At an MSDOS prompt.

4

Program Development Tools

type:

F77L ONE

making sure that the X-REF options has been turned on. F77L is the name of Lahey’s

FORTRAN compiler. A file named ONE.LST will be created. Next type:

ROADMAP ONE.LST

This command creates the file ONE.RDM which contains ROADMAP’s analysis of the pro-

gram ONE.

File names used with ROADMAP may in general be full path names containing wild

card characters such as or ’?’ and symbolic directory names such as the parent directory,

or the current directory, To generate a ROADMAP for all subroutines in a directory

named \PROG, first compile each routine in \PROG. Next type

ROADMAP \PROG*.lst CPROG.rdm

ROADMAP vvdll input each cross-reference listing found in the directory \PROG and output

the result to the file CPROG.RDM .

Each subroutine entry, NAME, in the ROADMAP output has up to four sub-head-

ings: CALLS, LIB, COMMONS and CALLED BY. The subheadings CALLS and LIB are

similar. They both list external references to NAME., Le., routines that NAME calls. The
source code for routines that are listed under CALLS appeared in cross-reference listings that

ROADMAP examined. On the other hand, the source code for routines listed by the LIB
sub-heading did not. Some examples of routines that would appear under LIB are functions

that are specific to FORTRAN such as ABS, SQRT, MOD, etc. The names listed next to

COMMONS are the COMMON blocks that appear in the routine NAME. The routines that

are listed next to CALLED BY are those routine that call NAME. A generic entry in the

ROADMAP output is given by

Routine: NAME

CALLS: SUBl, SUB2, ... ;

LIB: SUBA, SUBB, ... ;

COMMONS: COM 1, COM2, ... ;

CALLED BY: SUBa, SUBb, ... ;

subroutines that NAME calls

same as above but not present in source file

common blocks used by NAME
routines that call NAME

The ROADMAP output for the program ONRFOR listed in the Appendix A is given by

*** PROGRAM MAP (1 LEVEL DEEP) ***

5

Software Development Tools

*** SOURCE ROUTINES ***

ROUTINE: ONE

CALLS: SUB1 SUB2 SUB3

COMMONS: PARM1 PARM2
CALLED BY: NONE - NO ROUTINES CALL ONE

ROUTINE: SUB1

CALLS: SUB2
LIB: SUBA

CALLED BY: ONE

ROUTINE: SUB2
LIB: SIN

COMMONS: PARM1
CALLED BY: ONE

SUBA

SUB1

ROUTINE: SUB3

LIB: SUBA
CALLED BY: ONE

ROUTINE: SUB4

CALLED BY: NONE NO ROUTINES CALL SUB4

*** LIBRARY ROUTINES ***

ROUTINE: SIN

CALLED BY: SUB2

ROUTINE: SUBA
CALLED BY: SUB1 SUB2 SUB3

*****************lk***********iikW*****

*** COMMON BLOCK MAP ***

COMMON: PARM1 SIZE = 12

USED BY: ONE SUB2

COMMON: PARH2 SIZE = 12

USED BY: ONE

2.2 Checking Common Blocks, COMCHECK

The tool, COMCHECK, was created to identify common block variables that are

changed by a subroutine. A variable has changed if it appears in an assignment statement on

the left of an equals sign. In the CCFM/FAST consolidation project it was decided that a

certain set of subroutines could access common blocks but would not be allowed to change

them. The routines to be examined were responsible for calculating the right hand side of the

differential equation to be solved. COMCHECK examines a FORTRAN cross-reference

listing and "flags" each common block variable that was changed by a subroutine and indicates

6

Program Development Tools

how it was used. The usage of COMCHECK is given in below. Parameters listed in brackets

are optional.

COMCHECK The program, COMCHECK, displays information about common block

variables used by a FORTRAN program. It determines which subroutines

reference and change which common block variables. The file names file1

and file2 mav be any valid MSDOS file name. Further, filet may •'ontain

MSDOS wild dird characters, and/or ’?’ to specify a list of file imes to

be examined by COMCHECK The characters may be used to

represent the parent and current directory respectively in a path used to

specify a file.

syntax:

COMCHECK filet [file2] [options]

filet required File containing a cross-reference listing. This file must have been

generated by compiling a FORTRAN program using LAHEY 3.0 with the XREF
listing option turned on.

file2 optional File containin •'esults output from this program.The default value for this

parameter is the same . ^ime as filet with the extension .CMK .

Option usage and default values are given by;

/V Produce a table ordered by variable name. COMCHECK will not produce a table

when this option is preceded with an ’N’, i.e. /NV . By default this table is

produced

/S Produce a table ordered by subroutine name. COMCHECK will not produce a

table when this option is preceded with an ’N’, i.e. /NV . By default this table is

produced.

To show how COMCHECK examines common block variable usage, consider program

ONE given in Appendix A. Again suppose it is located in the file ONE.FOR. At an

MSDOS prompt type

F77L ONE

making sure that the X-REF option has been turned on. A file n med ONE.LST will be

created. Note that if ONE.LST was already created to use with Ry/ADMAP then it does not

have to be re-generated. Next type:

COMCHECK ONE.LST

This command creates the file ONE.CMK which contains COMCHE CK’s analysis of tiie

common blocks o program ONE.

7

Software Development Tools

File names used with COMCHECK, like ROADMAP, may in general be full path

names containing wild card characters such as or ’?’ and symbolic directory names such as

the parent directory, or the current directory, To generate a COMCHECK report for

all subroutines in a directory name \PROG first compile each routine in \PROG. Next type

COMCHECK \PROG*.lst CPROG.cmk

COMCHECK will input each cross-reference listing found in the directory \PROG and output

the summary to the file CPROG.CMK .

A common block variable is "written to" if it appears to the left of an equals sign(=)

in an assignment statement. A common block variable is "passed" if it appears in a argument

list of a subroutine. A common block variable is "used" if it is used in a subroutine in some
other significant way besides "written" or "passed" Note, a common block variable is not

"used" by a subroutine if it only appears in a COMMON statement or a declaration statement

such as INTEGER or REAL type statements. COMCHECK flags variables that are not used

by any subroutines.

In the consolidation project we were interested in knowing how routines that were

called by DSOURC affected common block variables. DSOURC is the subroutine called by

the ordinary differential equation (ODE) solver that calculates the right hand side of the

ODE. To obtain this information we used ROADMAP to identify which routines DSOURC
calls. Next we used COMCHECK to see how these routines use common block variables.

After the subroutines were modified so that they no longer allowed common blocks to be

written to, we re-ran COMCHECK on the new program to verify that all of the required

changes were made.

The information presented by COMCHECK is arranged by variable name and by

subroutine name. In the first listing given below, for each variable, COMCHECK lists each

subroutine that uses that variable and how it is used. In the second listing, for each

subroutine, COMCHECK lists each variable that is used by the subroutine and how it is used.

The third listing gives the size in bytes of each common block found. If a common block is a

different size in two different subroutines then a warning will be printed in this section.

Camnon Block Usage by Variable Mane

VARIABLE: A COMMON: PARM2
*** NOT USED IN ANY ROUTINE ***

VARIABLE: B COMMON: PARM2
WRITTEN: ONE

VARIABLE: C COMMON: PARM2
*** NOT USED IN ANY ROUTINE ***

VARIABLE: X COMMON: PARM1
PASSED: ONE SUB2

8

Program Development Tools

VARIABLE: Y

WRITTEN: SUB2
COMMON

:

PARM1

VARIABLE: Z

WRITTEN: SUB2

COMMON: PARM1

Ccmiion Block Usage By S(i>routine Name

ROUTINE: ONE
WRITTEN: B

PASSED: X

ROUTINE: SUB1
• NO COMMON BLOCK VARIABLES ACCESSED BY THIS ROUTINE ***

ROUTINE: SUB2
WRITTEN: Y Z

PASSED: X

ROUTINE: SUB3
*** NO COMMON BLOCK VARIABLES ACCESSED BY THIS ROUTINE ***

ROUTINE: SUB4
*** NO COMMON BLOCK VARIABLES ACCESSED BY THIS ROUTINE ***

CXM40N BLOCK Sizes

COMMON: PARM2 SIZE: 12

COMMON: PARM1 SIZE: 12

The tools ROADMAP and COMCHECK were both used to produce the information con-

tained in some of the appendices for the CCFM.VENTS Software Reference Manual and the

CFAST Programmers manual. These tools can be improved by providing an option to

generate the output files in a format more compatible with WordPerfect. For examr'le, the

routine name could be marked in bold and routines and common blocks contained i lists

could be automatically indented. This would reduce the time required to merge the output

from these tools into a report document.

23 Comparing Two FORTRAN Programs, FDIFF

The tool, FDIFF, was created to compare two FORTRAN programs. The CFAST
suite of programs, CF_IN, CFAST and CF_PLT, had several subroutines with the same name.

FDIFF was used to ider-tify which of those routines were essentially identical. It was decided

to put these routines a common directory LIB. This makes program maintenance easier

since changes need on. . oe made in one place.

FDIFF is an enhancement of a tool, DIFFER, that was developed for the CCFM
project DIFFER is similar to many other file comparison programs in that the files to be

compared are just text files. FDIFF assumes that the files to be compared are FORTRAN

9

Software Development Tools

programs. FDIFF therefor neglects differences that would not have any effect on the

FORTRAN compilation. Some examples of non-essential differences in a FORTRAN
program are changes in comment statements or spacing within a FORTRAN statement.

FDIFF would consider the statement

X = 3.

the same as

X =3.

since the FORTRAN compiler would produce the same result in either case. The usage of

FDIFF is given below. Parameters in brackets are optional

FDIFF The program FDIFF finds the differences between two FORTRAN programs.

syntax:

FDIFF file1 file2 [fileS] [options]

file1 required First FORTRAN program to be compared
file2 required Second FORTRAN program to be compared
files optional File containing results of comparison. The default value for this

parameter is the same name as file1 with the extension .DIF .

Option usage and default values are given by:

/An Number of consecutive mis-matches that must occur before FDIFF ’gives up’ on

comparing a routine. The default value of ’n’ is 40
/F A full report is generated. All insertions, deletions and mismatched lines are

printed to files.

/Ln Number of lines in filet and file2 to look ahead for a match. The default value of

’n’ is 40

/Rn This parameter determines the number of consecutive lines that must match after

a mismatch occurs before the routine comparison is re-synchronized. The default

value for ’n’ is S.

/S A summary report is generated. The number of lines in each version of a routine

and the number of matches are printed to files.

To compare two FORTRAN programs consider programs ONE and TWO given in

Appendix A Type :

FDIFF ONE.FOR TWO.FOR

This command creates the Gle ONE.DIF which contains FDIFFs comparison of the two

10

Program Development Tools

programs. FDIFF sorts each file by subroutine name so order is not important. FDIFF
indicates whether a routine is present in only one of the two files. If the routine is present in

both files then the two versions are compared line by line. FDIFF ignores comment
statements and any blanks or tabs found in FORTRAN statements. The rational for this is

that changes of this type will not alter the machine code that is generated by the compiler.

The output from FDIFF upon comparing programs ONE and TWO are given by:

*** ROUTINE:ONE DELETED FROM FILE:PR0G1 .FOR ***

*** COMPARING: SUB1 ***

2 LINES MATCHED INrSUBi

1 LINES WERE INSERTED INTO: PR0G2.F0R
I WRITE(6,*)' THIS LINE WAS ADDED IN PR0G2'

3 LINES HATCHED IN:SUB1

*** ROUTINE: SUBI ***

LINES IN PR0G1.F0R = 5

LINES IN PR0G2.F0R = 6
LINES THAT MATCHED = 5

*** COMPARING: SUB2 ***

7 LINES MATCHED IN:SUB2
NO CHANGES IN R0UTINE:SUB2

*** COMPARING: SUB3 ***

2 LINES MATCHED IN:SUB3
1 LINES WERE INSERTED INTO: PR0G2.F0R

I WRITE(6,*)' THIS IS A TEST'

2 LINES HATCHED IN:SUB3

**•

ROUTINE: SUB3
LINES IN PR0G1.F0R
LINES IN PR0G2.F0R
LINES THAT MATCHED =

R0UTINE:SUB4
ROUTINE: SUBS
ROUTINE: SUBS

= 4
= S

4

DELETED FROM FILE:PR0G1 .FOR

INSERTED INTO F I LE : PR0G2 . FOR

INSERTED INTO FILE:PR0G2.F0R

11

Software Development Tools

3. INTERFACE MODULES

The software modules documented in this section perform various utility functions

required by tools presented in Section 2 and fire models such as CFAST and CCFM.VENTS.
Some examples of the use of an interface in these programs are routines for performing

screen input and output, parsing character strings, manipulating character strings, managing

blocks of memory and handling files. These software building blocks allow productivity

increases by re-using code to perform similar functions.

3.1 Screen Input and Output

The routines described in this section incorporate only the most primitive elements of

windowing. Further they are text based. There are two reasons for this. First, the idea of

portability is important. These concepts have been used in the models described earlier on a

very wide range of computers. Initial development was on a Concurrent 3200 series

computer. This was followed by a Cyber 855, an Apollo workstation, and currently the

MSDOS computers which will be discussed here. Others have taken these routines and put

equivalent modules on the VAX series of computers. The point is that FORTRAN is the

most widely supported language for scientific computing. This type of windowing is quite

useful for developing and using programs, and these concepts can be utilized in most

computing environments.

The second point is that simple but elegant displays of information can be extremely

useful for conveying ideas. In almost all cases, this can be accomplished with the minimum of

tools. Extremely complex modules usually only add headaches and not value. Further, with

portability one of our overriding concerns, simplicity is of the essence. An example of the use

of these routines is given at the end of the section. The code for this example is shown in

Appendix B.

3.1.1 Initialization, CSPACE

Initialization of the screen input/output routines consists of determining the computer

environment that one is using. This involves determining the type of screen (dimensions or

pixel resolution), directory structure and so forth. The routine which does this for the screen

input and output is CSPACE. An example will be given later.

The primary requirement to use the services which follow is that the terminal, or

graphics adaptor, be able to switch modes while it is being used. The basic command set is

the ability to switch to and from reverse video, and move and locate the cursor on the screen.

Color is very useful, but not essential in any of the routines which follow.

12

Software Modules

3.1.2

Windows, WINDOW

The most important advantage of text based input and output is that video screens are

reasonably well defined. In general there are 80 characters per line, and 23 to 25 lines per

screen. There are many variants on this general theme, but by sticking to these limitations,

portability is generally assured. The routine is WINDOW and is invoked by

CALL WINDOW (TOP, LEFT, BOTTOM, RIGHT, FOREGROUND, BACKGROUND)

All four arguments are integers, and define the upper left and lower right corners of the

window. For a standard screen, these numbers can vary from 0 to 24. There are, however,

many variations, with some top left comers beginning at one, and some screens with only 23

lines.

3.1.3

Scrolling, SCROLL- ' md SCROLLD

A window can be moved up or down by one or more rows. Indeed, one might

consider left or right scrolling. In some cases we do that, but it happens seldom enough that

general purpose code is not worthwhile. Also, there is a mechanism built into most display

adapters and terminals to enable very fast scrolling ic the vertical direction. Thus there is a

much bigger gain in direct access to the video hard- ire for this case.

The routines for scrolling up and down are SCROLLU and SCRC.,.,. D respectively.

The protocol is

GALL SCROLLU (TOP, LEFT, BOTTOM, RIGHT, BAGKGROUND, FOREGROUND)

and

CALL SCROLLD (TOP, LEFT, BOTTOM, RIGHT, BACKGROUND, FOREGROUND)

All arguments are integers. The first four are analogous to the arguments for W7' ’DOW.
The last two specify the background and foreground colors to use in subsequent text

operations.

3.1.4

Cursor visibility, CURSON and CURSOF

There are also complementary routines for it ning the cursor on and off. They are

CURSON and CURSOF. Their use should be obvious.

3.x.5 Output to the screen, MESSNR

13

Software Development Tools

The routine MESSNR writes a character variable to the screen. The present

implementation uses the PC BIOS routines, but there are equivalent direct screen writes for

display adapters, and of course serial output over RS232 lines can be done in a similar

manner. In our case, the reason for doing it through the BIOS interrupts is the portability

issue again. Normally, if one were concerned only with speed, and the target were a specific

computer, then direct screen writes are considerable faster.

The protocol is

CALL MESSNR (MESSAGE, LENGTH).

The MESSAGE is a character variable, and LENGTH is an integer. An alternative would be

to require the C protocol which terminates a string with a null (hex 0). This the would not

require an explicit length parameter. Our formation is more general, however, and includes it

as a subset.

3.1.6 Cursor positioning, CHRLOC and CHRMOV

CHRLOC finds the position of the cursor and CHRMOV moves the cursor to a

specific location. There is one part of this that is tricky. Earlier it was stated that most

character based displays operate with 80 columns and 23 to 25 lines. There is no safeguard

for 40 column displays within the routines themselves. In the case of PC’s, the BIOS will

protect the user from harming the system, and similar checks are done for terminals.

However, such considerations do come into play in designing screens. All displays which allow

cursor manipulation also have a provision for ascertaining the size of the screen. This service

is not provided here, but if dealing with a wide variety of displays, then this should be a

consideration.

The protocol is

CALL CHRLOC (X, Y) AND CALL CHRMOV (X, Y)

In both cases, X and Y are integers, and generally range from 0 to 24 and 0 to 79

respectively. Once again, there are many variations on this theme, such as beginning at one,

or ending at 25, 23 or some other length.

3.1.7 Inverting text, BARCODE

It is sometimes useful to be able to highlight text. This is most easily done simply by

inverting the colors in the attribute byte of a display. The fact that the arrangement of the

bytes in display memory varies widely from system to system is the biggest argument for letting

the system handle functions such as writing to the screen or inverting text. Otherwise, one is

faced with the problem of handling each case separately.

14

Software Modules

The protocol is

CALL BARCODE (FLAG, ROW, COLUMN, LENGTH OF THE BAR)

FLAG is not used in this implementation. Originally it was used to set the direction of the

inversion, whether on or off. BARCODE simply acts as a toggle for the inverse text. ROW,
COLUMN specify the starting position and LENGTH is the number of characters to invert.

One must be cognizant of the offset discussed above for CHRLOC and CHRMOV.

3.1.8 Saving and restoring screens, VSTOW and VSHOW.

One of the many tricks in windowing systems is the ability to insert some text, a help

screen for example, and then restore the text. These services are available with the routines

VSTOW and VSHOW. The former saves the contents of the display memory in a buffer, and

the latter restores the screen. The screen saves are stacked, and then restored in reverse

order. The use is demonstrated in the routine SWINDOW. Within that routine is the logic

for actually doing the screen input and output, once again through the BIOS routines.

CALL VSTOW (BUFFER, ROW, COLUMN, LENGTH)

and

CALL VSHOW (BUFFER, ROW, COLUMN, LENGTH).

The arguments are integers. The buffer must be big enough to contain the size of the

screen being saved. The low level implementation of this is very hardware specific in that the

actual form of the screen data determines the size of the buffer. For example, in our present

example, the buffer is a sixteen bit integer array, since each character on the screen has only

an attribute and character byte associated with it. In a more general system, there might be

information on the relative intensity of the red, green and blue video guns, whether the

character is visible, and so on.

There is no requirement that the data go back to the place from which it came, so this

has the side effect of allowing fast moves of blocks of data. In a general sense, these routines

are memory management routines. However, screen information is a very special type of

memory, and conceptually can most usefully thought of as distinct from normal computer

RAM. ROW and COLUMN specify the starting position, and LENGTH is the number of

characters to be saved.

3.1.9 Saving and restoring the palette registers.

Most display devices go through a look up table to translate attribute bytes into colors

which then appear on the screen. There are many advantages to this scheme, not the least of

15

Software Development Tools

which is the reduction in the cost by reducing the number of chips necessary to display

information. The routines are EGAGET, EGAPUT and SETPAL. The procedure calls are

CALL EGAGET (TABLE, LI, L2)
CALL EGAPUT (TABLE)

and

CALL SETPAL (TABLE)

where TABLE is the appropriate table for the hardware of interest. In the case of the PC,

this is an integer array of length 17 whose size is two bytes per entry. Another example would

be the Lexidata 3700 which uses a table whose size is 4x256 of 16 bit integers.

An example of using these routines is shown in the first part of the program in

Appendix B. This example opens a window, moves the cursor to various locations and inserts

text. The result of the screen up to the first request for keyboard input is

'IV/INDOW V 1.0

05/06/90

»Main Heading

Sub Heading

Normal Text

Protected Text

Example of windowing showing text and cursor movement

This example is continued in section 3.5.5.

3.2 Parsing Text

One aspect of a user-friendly program is to allow free form input; that is, not requiring

16

Software Modules

input to the program to occur in any particular column or columns. A program then

processes the input by parsing a line of text into a series of tokens. A token is a group of text

that "stands on its own". For example, in the FORTRAN statement

XYZ = ABC + DEF

the compiler would consider the following strings in quotes to be tokens ’XYZ’, ’ABC’, ’DEF’,

’=’, ’+’

.

In our applications a token can usually be thought of as a contiguous group of non-

blank characters.

The parsing routines documented in this section each process different types of text.

The routine, PARSE, processes a general line of text. The routine, FPARSE, parses a file

name with or without a path. The routine, PPARSE, parses a command line and records

information about options delimited with a ’-’ or a 'P.

3.2.1 Parsing a General Line of Text, PARSE

The routine, PARSE, determines the beginning and ending of each token contained in

a line of text. A blank or a comma is used to separate tokens. The token boundaries found

by PARSE are used by the calling program to identify and handle input data.

The protocol is

CALL PARSE (LINE, SB, SE, NIKS)

where

LINE is a character variable containing the line of text to be parsed;

SB,SE are integer arrays containing the beginning and ending of each token, the I’th token

contained in LINE would be given by LINE(SB(I):SE(I)), if the I’th token is absent

from LINE then SB(I)=0;

NTKS is the number of tokens found.

3.2.2 Parsing a File Name, FPARSE

' Full file names parsed by FPARSE have the form X:\dirl\ ... \dirN\file where X is a

valid drive and dirl, ... , dirN are valid directory names and file is a valid file name. The
software tools described in Section 2 accepts full file names as input. This routine determines

the local file name in a convenient manner. It would be FTLE(SB(N):SE(N)), if the I’th

component of the full file name is absent then SB(I) =0

The protocol is

17

Software Development Tools

CALL FPARSE(FILE,SB,SE,N)

where

FILE is a character variable containing the file name, possibly including the full path name;

SB,SE are integer arrays containing the beginning and ending of each file name component,

where a component may be a drive, directory or file name. The I’th component of the

full file name is given by FILE(SB(I):SE(I)). If the I’th component is absent then

SB(I) = 0;

N is the number of components that make up the file name.

3.2.3 Parsing a Command Line with Options, PPARSE

The routine, PPARSE is used to parse a string of text contained on the command line.

It considers two types of tokens, parameters and options. An option modifies how a

parameter is treated by the program. For example, in the tool FDIFF, the /F option causes

FDIFF to generate a full report to the output file rather than a summary report. An option

begins with either a or a T character.

The protocol is

CALL PPARSE (LINE , SBPARM , SEPARM , NPARM , SBOPT , SEOPT , AFTPRM , NOPT)

where

LINE is a character variable containing the command line to be parsed;

SBPARM and SEPARM
are integer arrays containing the beginning and ending of each parameter. The

I’th parameter is given by LINE(SBPARM(I):SEPARM(I)). If the I’th

parameter is absent then SB(I)=0

NPARM is the number of parameters;

SBOPT and SEOPT
are integer arrays containing the beginning and ending of each

option contained on the command line;

AFTPRM is an integer array identifying which parameter the option follows;

NOPT is the number of option tokens on the command line.

33 Character Manipulation and Conversion

3.3.1 Identifying Alphabetic Characters, ALPHA

18

Software Modules

The logical function, ALPHA, returns .true, if its input is an alphabetic character (a

character between ’A’ and ’Z’ or ’a’ and ’z’) and .false, otherwise.

The protocol is

LALPHA - ALPHA (C)

where

C is a character variable of length 1;

ALPHA is a logical function.

3.3.2 Finding the Length of a Character String, LENGTH

The integer function, LENGTH, returns the position of the last non-blank character

in a character string. This is different than the FORTRAN function, LEN. LEN returns the

length of the space allocated to a character string. To clarify the difference between LEN
and LENGTH consider the following two FORTRAN statements.

CHARACTER*80 LINE
LINE=’ABC’

LEN(LINE) = 80 which is the space allocated to LINE while LENGTH(LINE) = 3 which ‘

the amount of information actually contained in LINE.

The protocol is

ITEMP - LENGTH (LINE)

where

LINE is a character variable of arbitrary size;

LENGTH is an integer function which determines the column number containing tne last

non-blank character in LINE.

3.3.3 First non-blank character, NOBLNK

Tnis integer function, NOBLNK, returns the coLmn of a character string containing

the first nonblank character and a zero if the character string is completely blank. This

function is the reverse of LENGTH. NOBLNK(LINE) and LENGTH(LINE) point to the

first and last non-blank characters in LINE.

The protocol is

19

Software Development Tools

ITEMP - NOBLNK(LINE)

where

LINE is a character variable of arbitrary size;

NOBLNK is an integer function which calculates the column of LINE that contains the

first non-blank character.

3.3.4 Identify a Numerical Character, NUM

The logical function, NUM, returns .true, if the input is a number between 0 and 9

and returns .false, otherwise.

The protocol is

LTEMP - NUM (CHAR)

where

CHAR is a character variable of size 1;

NUM is a logical function which returns .true, is CHAR is a number and returns

.false, otherwise.

3.3.5 Changing the Case of Character(s) UPPER, TOUPPER, TOLOWER

The routine, UPPER, converts characters in the input character variable, LINFRM, to

upper case. TOUPPER is the equivalent of UPPER in FUNCTION form. TOLOWER
performs the opposite function, converting a character to lower case. The functional form of

TOLOWER is the same as TOUPPER. UPPER converts a character string of arbitrary size

to upper case while TOUPPER only converts a single character.

The protocol for UPPER is

CALL UPPER (LINFRM, LINTO)

where

LINFRM is a character variable containing the string to be converted;

LINTO is a character variable containing the converted string.

Note: LINFRM and LINTO may be the same variable in the calling routine. The character

conversion is done "in place".

20

Software Modules

The protocol for TOUPPER and TOLOWER is

CHARACTER*! TOUPPER, TOLOWER, CHARACTER

ICHAR = TOUPPER (CHARACTER)

where

CHARACTER is the character of size 1 to be converted,

ICHAR is the converted character again of size 1.

3.3.6 Finding character strings in a text line, SSTRNG

SSTRNG is used to find continuous strings of text within a character string. It serves

a purpose similar to PARSE in section 3.2.1, but looks at the tokens one at a time. This is

useful for context sensitive decoding of a string. The procedure is

SSTRNG (string, start, count, first, last, valid).

String is a character sti '"g, start is the offset within the string to begin the search, count is the

total number of characters to search, first is the offset of the first nonblank character, last is

the offset of the last continuous nonblank character. These latter four are integers. Valid is

a logical variable, to indicate whether any valid string was found. Any nonblank character is

valid data, so control characters count in this sense.

3.4 Memory Management

It is often not known when writing a program how much memory will be required.

For example, ROADMAP requires memory to store ancestors and descendants of each

subroutine. Some subroutines could have many more ancestors than others. Statically

dimensioning FORTRAN arrays so that each array could contain a maximum number of

ancestors would be inefficient, since many subroutines would not require the space. A
memory manager then is a means to allocate memory as needed on the fly.

The ^ 3mory module is a collection of routines written in standard Fortran that

provide a mec\ns for allocating and de-allocating blocks of memory. These FORTRAN
allocation/de-allocation routines are similar to the capabilities provided with C and Pascal.

This allocation process is not truly dynamic, for all memory assigned by the memory module

comes from the common block /MEMRY/. This was done to allow this software module to

run on any machine that supports standard FORTRAN 77.

3.4.1 Copy blocks of memory, CPYPTR

21

Software Development Tools

The routine, CPYPTR, copies a block of memory to another portion of memory and

returns a pointer to the new block.

The protocol is

CALL CPYPTR (OLDPTR , TYPE , NEWPTR , NEWS I Z , ERCODE

)

where

OLDPTR is an integer pointing to a memory block that is to be copied,

TYPE is an integer specifying the type of block (1= integer, 2= floating point)

NEWPTR is an integer pointing to the re-sized memory block,

NEWSIZ is an integer specifying the size of the new block,

ERCODE is an integer returning the error code, 0, if all is o.k.

3.4.2 Validity of a pointer to memory, DCODE

The routine, DCODE, determines whether a pointer to a block of memory is valid.

This routine is used by other memory management routines to insure that they were passed

valid memory pointers.

The protocol is

LCODE - DCODE (JDATA)

where

JDATA is the first array element of a memory block to be decoded.

DCODE is a logical function return .true, if the block is valid and .false, otherwise.

3.4.3 Delete a block of memory, DELPTR

The routine, DELPTR deletes a block of memory.

The protocol is

CALL DELPTR (PTR, TYPE, ERCODE)

where

PTR
TYPE
ERCODE

is an integer pointing to a memory block that is to be deleted,

is an integer specifying the type of block (l=integer, 2= floating point)

is an integer returning the error code, 0, if all is o.k.

22

Software Modules

3.4.4

Allocate a block of memory, GETPTR

The routine, GETPTR, allocates a block of memory of a given size and type. The
valid types are integer and floating point. This is similar to the functions MALLOC and

CALLOC used in the C programming language.

The protocol is

CALL GETPTR (PTR,S I ZE, TYPE, ERCODE)

where

PTR is an integer pointing to a memory block that is to be allocated,

SIZE is the size of the block to be allocated,

TYPE is an integer specifying the type of block (l=integer, 2= floating point)

ERCODE is an integer returning the error code, 0, if all is o.k.

3.4.5

Size of a block of memory, GETSIZ

The routine, GETSIZ, determines the size of a block of memory. This routine

requires a pointer to the block and its type (integer, real or double precision). The
initialization routine INITMM specifies how many integers correspond to a unit of both

single and double precision memory.

The protocol is

CALL GETSIZ(PTR, TYPE, SIZE)

where

PTR is an integer pointing to a memory block whose size is to be found,

TYPE is an integer specifying the type of block (l=integer, 2=floating point)

SIZE is the size of the block,

3.4.6

Initializing the Memory Manager, INITMM

This routine initializes the memory manager by defining a first and last block which

are used internally by the memory manager and carmot be deleted

The protocol is

CALL INITMM

23

Software Development Tools

3.4.7 Encoding a Memory Block, NCODE

The routine, NCODE, encodes a block of memory so that the block can be checked

later for validity i.e. when deleting a block of memory we make sure that the block is valid.

The protocol is

CALL NCODE (JDATA)

where

JDATA is the first array element of a memory block to be decoded.

3.4.8 Changing the Size of a Memory Block, RESIZ

The routine, RESIZ, resizes a block of memory. If there is not enough room where

the block is located it will allocate another block and copy the old block to the newly

allocated block.

The protocol is

CALL RES I Z (PTR , NEWS I Z , TYPE , ERCODE

)

where

PTR
NEWSIZE
TYPE
ERCODE

is an integer pointing to a memory block that is to be re-sized,

is the new size of the block,

is an integer specifying the type of block (l=integer, 2= floating point)

is an integer returning the error code, 0, if all is o.k.

3.5 File Handling

The routines shield the programs from details of the underlying operating system.

They all perform fairly obvious, and often used functions. Most programs (and programmers)

do not care about the details of how these operations are carried out. Thus we provide

generic file functions, whose details can be modified to suit each language or operating system

as necessary.

3.5.1 Determining Whether a File Name is Valid, LEGAL

The logical function, LEGAL, returns .true, if file is a legal file name and .false, other-

24

Software Modules

wise.

The protocol is

LFILE -= LEGAL (FILE)

where

FILE is a character variable containing a candidate file name
LEGAL is true or false depending on whether FILE is a valid file name or not

3.5.2 Opening a File, OPENFL

The routine, OPENFL, provides a central location where a file can be opened for

input or output depending on the value of the parameter, ICODE. It also does some

rudimentary error handling. Before opening the file for input, OPENFL checks to see if the

file exists. If the file does not exist, then a non-zero error code is returned. Opening files in

a central location makes it easier to port program to other computers since I/O requirements,

specific forms of key words for example, vary from one computer to the next.

The protocol is

CALL OPENFLC lUNIT , PATH , FFILE , FTEMP , ICODE , lERR)

where

lUNIT is the FORTRAN unit number used to reference the file;

PATH a character variable containing the path name of the file to be

opened, this parameter may be blank;

FFILE a character variable containing the file name, OPENFL
attempts to open the file PATH//FFILE;

FTEMP a character scratch variable;

ICODE ICODE=0 for input, ICODE=l for output;

lERR IERR=0 if all went o.k.

3.5.3 Creating a New File, NEWFTL

This routine was written to insure uniform behavior of programs that open files for

output when the file already exists. This routine tries to open a file specified by FNAME. IF

the file already exists then NEWFIL deletes it and opens a clean copy.

The protocol is

25

Software Development Tools

CALL NEWFIL(IUNIT,FNAME)

where

lUNIT is the FORTRAN unit number used to reference the file and

FNAME is a character variable containing the file to be opened.

3.5.4 Speeding Up File I/O, DABUFR

The tool, FDIFF, described in Section 2 uses the routine DABUFR to reduce the

time required to perform disk I/O. This routine is written in standard FORTRAN but will

work best when the size of the disk buffer, CBUF, is a multiple of the sector size of the hard

disk used which is 512 bytes for MSDOS formatted disks. Note that the record size of CBUF
is determined by the calling routine not by DABUFR.

FDIFF uses direct access files to store the files it is comparing. It uses direct access

files rather than sequential files so that it can later access any subroutine in any order.

DABUFR buffers input and output by using the fact that when a line of text needed by a

program it is likely that other lines near this one will also be required. DABUFR stores many
lines of text into one record. The calling routine requests a line of text from DABUFR. If

the line is in the buffer, CBUF, then it is copied to the variable, CREC. If the line is not in

CBUF then DABUFR has to read from disk to get the correct record.

The protocol is

CALL DABUFR(lODA , CBUF , IBUF , NBUFS , CREC , IREC , INCUT , lERR , IWORK)

where

lODA
CBUF

lERR
IWORK

NBUFS
CREC

IREC
INOUT

the unit number used to reference the direct access file being used;

a character variable containing many lines of text. Each line of text must be

the same size as CREC;
the total number of ’CBUF records contained in the file referenced by lODA;
a character variable containing the line of text that the calling routine retrieved

from the direct access file (if INOUT=0) or wrote to the direct access file (if

INOUT = 1);

the record number;

INOUT = 0 means that the calling routine is writing to disk, INOUT = 1

means that the calling routine wishes to read from disk;

lERR = 0 if all is o.k.;

An integer array of size 4, which contains pointer information.;

IWORK(l) must be zero on the first call to DABUFR; since

this routine can be used for many buffers, a separate CBUF and

IWORK are required for each.

26

Software Modules

3.5.5 Finding files, FFILE, FILEFRST, FILENEXT and FILELAST

This routine looks up a file based on the path given to it. No assignment is done, but

rather a list of valid file names is returned. Its use is something like the INQUIRE statement

from FORTRAN, but it will use a template to search for a list of files. The actual

implementation is platform dependent, of course. In this case, the routine FFILE makes calls

to the routines FILEFRST, FILENEXT and FILELAST which in turn use the MSDOS
interrupt services. This is much faster than a general search of file names. For MSDOS
systen”; it is extremely important that FILELAST be called after FILEFRST is called. There

is a p< iter in the task for buffered input and output. This gets exchanged while doing the

file find function. It must be restored, or the system will crash randomly. The space provided

by the calling program may not be sufficient for the general case that the operating system

deals with. The procedure calls are

CALL FFILE (FILE, NRTN)
CALL FILEFRST (FILEN, BUFFER, NRTN)
CALL FILELAST

FILE, FILEN and BUFFER are character variables. The lengths must be at least

FILE 12

RLEN 43

BUFFER 128.

An example of its usage is shown in the continuation of the program in Appendix B.

TUINDOW V 1.0
05/06/90

CAT.EXE

CP.EXE
DOSED! T.COM
F0IFF.EXE
FILEUTIL.COH
FILT.EXE
GET.EXE There are 37 files in this directory
KC- PAL. COM
KCSETPAL.COM
LIST.COM
LOADHl.COM
LOADHI.OPT
LOADHI.SYS
LS.COM
MFT.EXE
MFT.HLP
MV.EXE
NOTES

^X

27

Software Development Tools

Starting at the point in section 3.1 which showed the example of a window with text, press

the <PgDn> key to continue. This invokes the FFILE procedure, which lists all of the files

in the current directory, and puts this list on the screen. It shows also the use of the vstow

functions to save sections of the screen. Pressing escape restores the screen. The cursor keys

can be used to scroll up and down through the list of files, if there are more than 18, the

number that can be shown at one time.

28

Appendix A

APPENDIX A Sample Programs for Development Tools

The following two example programs were used to illustrate the use of ROADMAP,
FDIFF and ROADMAP.

PROGRAM ONE
C

C*** THIS PROGRAM DOES NOT DO ANYTHING USEFUL
C IT IS USED AS AN EXAMPLE TO ILLUSTRATE THE USE

C OF ROADMAP AND COMCHECX. IT IS ALSO COMPARED WITH

C PROGRAM TWO TO ILLUSTRATE THE USE OF FDIFF

C

COMMON /PARM1/X,Y,Z
COMMON /PARM2/A,B,C
CALL SUB1

CALL SUB2(X)
C

C*** COMCHECK SHOULD SHOW THAT B IS WRITTEN
C

B = 1.

CALL SUB3
STOP
END

SUBROUTINE SUB1
CALL SUBA
CALL SUB2
RETURN
END
SUBROUTINE SUB2
COMMON /PARM1/X,Y,Z

C

C*** COMCHECK WILL SHOW THAT BOTH Y AND Z ARE WRITTEN TO
C AND THAT X IS REFERENCED IN A SUBROUTINE
C

Z = 1.

C

C*** ROADMAP WILL SHOW THE SIN FUNCTION AS A LIBRARY ROUTINE
C SINCE ITS SOURCE IS NOT PRESENT IN THIS FILE
C

Y = SIN(X)
CALL SUBA
RETURN
END

SUBROUTINE SUB3
CALL SUBA
RETURN
END

SUBROUTINE SUBA
RETURN
END

PROGRAM TWO
C

C*** THIS PROGRAM DOES NOT DO ANYTHING USEFUL
C IT IS USED AS AN EXAMPLE TO ILLUSTRATE THE USE
C OF ROADMAP AND COMCHECK. IT IS ALSO COMPARED WITH

29

Software Development Tools

C PROGRAM ONE TO ILLUSTRATE THE USE OF FDIFF
C

COMMON /PARM1/X,Y,Z
COMMON /PARM2/A,B,C
CALL SUB1
CALL SUB2

C

C*** THESE COMMENTS ARE DIFFERENT BUT FDIFF DOESN'T CARE. IT

C IGNORES COMMENT STATEMENTS AND ANY BLANKS OR TABS CONTAINED
C IN A FORTRAN STATEMENT
C

B = 1.

CALL SUB3
STOP

END

SUBROUTINE SUB2
COMMON /PARM1/X,Y,Z

C

C*** COMCHECK WILL SHOW THAT BOTH Y AND Z ARE WRITTEN TO

C AND THAT X IS REFERENCED IN A SUBROUTINE
C

Z = 1.

C

C*** ROADMAP WILL SHOW THE SIN FUNCTION AS A LIBRARY ROUTINE
C SINCE ITS SOURCE IS NOT PRESENT IN THIS FILE
C

Y = SIN(X)
CALL SUBA
RETURN
END

SUBROUTINE SUB3
CALL SUBA

WRITE(6,*)' THIS IS A TEST'

RETURN
C

C*** NOTE THAT SUBROUTINE SUBA WAS REMOVED FROM PROGRAM TWO
END

SUBROUTINE SUBI

CALL SUBA
WRITE(6,*)' THIS LINE WAS ADDED IN PROG2'

CALL SUB2
RETURN
END

SUBROUTINE SUBS
C

C*** NOTE THAT SUBROUTINE SUBS WAS ADDED TO PROGRAM TWO
C

RETURN
END

30

Appendix B

APPENDIX B Sample Programs for Software Modules

The following program is used to show an implementation of the routines in section

3 . 1 .

PROGRAM TESTUIND

C MAIN DRIVER PROGRAM FOR ILLUSTRATION OF WINDOWING SCHEME

CHARACTER BL0CIC*1(4), P0INT*1, POINTU, DAT0UT*8, FILEN*13

INTEGER RWHERE(4), CWHERE(4), SPKEY, ICSETV(11), VERSION

LOGICAL SPECIAL

C PASS THE COLORS AROUND

COMMON /TW/ I CHDR , I CSUB , I CTXT , I CPRO, I CMSG , I CHLP , I CBG , I CMBG,

. ICHBG, ICEBG, ICEMS

EQUIVALENCE (ICHDR, ICSETV)

C VERSION = 100*MAIN VERSION NUMBER •*- SUB VERSION NUMBER

DATA BL0CK/4*Z'DB'/, POINT/Z' 10'/, RWHERE/2,4,6,8/
DATA CWHERE/6,6,6,6/, POINTU/Z' 18'/

DATA ICSETV/14,5,15,3,10,15,0,1,1,7,12/

C INITIALIZATION

IW = 1

VERSION = 100

CALL DATE (DATOUT)
CALL CSPACE
CALL CURSOF

ICBGP = I CBG
104 CALL HEADING (VERSION, DATOUT)

CALL WINDOW (16, 0, 24, 79, ICBGP, ICTXT)
DO 103 I = 1, 16

103 CALL MESSNS <21, 6+1*3, BLOCK, 3, ICBG ,
1-1)

102 CALL WINDOW (1. 0, 16, 79, ICBG, ICBG)

CALL MESSNS (2, 5, 'Main Heading', 12 , ICBG, ICHDR)
CALL MESSNS (A, 5. 'Sub Heading' , 11

,

ICBG, I CSUB)
CALL MESSNS (6, 5, 'Normal Text', 11, ICBG, ICTXT)
CALL MESSNS (8, 5, 'Protected Text', 14, ICBG, ICPRO)

100 IR = RWHERE(IW)
IC = CWHERE(IW)
CALL MESSNS (IR, IC-2, POINT, 1, ICBG, ICTXT)
CALL MESSNS (22, 10+3*ICFORE, POINTU, 1, ICBGP, ICBGP)
ICFORE = ICSETV(IW)
CALL MESSNS (22, 10+3*ICFORE, POINTU, 1, ICBGP, ICTXT)

101 CALL NPUTKB (SPECIAL, SPKEY, 'PgDn to show a list of files', 28)
IF (.NOT. SPECIAL) GO TO 101

IF (SPKEY. EQ. 13) THEN
CALL MESSNS (IR, IC-2, POINT, 1, ICBG, ICBG)
IW = IW - 1

IF (IW.LT.1) IW = 4

GO TO 100
ELSE IF (SPKEY. EQ. 18) THEN

31

Software Development Tools

CALL MESSNS (IR, IC-2, POINT, 1, ICBG, ICBG)
IW = IW + 1

lU = MOO{IW-1,4) + 1

GO TO 100

ELSE IF (SPKEY.EQ.15) THEN
CALL MESSNS (22, 10+3*ICFORE, POINTU, 1, ICBGP, ICBGP)

ICFORE = ICFORE - 1

IF (ICFORE. LT.O) ICFORE = 15

ICSETV(IW) = ICFORE

ELSE IF (SPKEY.EQ.16) THEN

CALL MESSNS (22, 10+3*ICFORE, POINTU, 1, ICBGP, ICBGP)
ICFORE = ICFORE + 1

ICFORE = MOOdCFORE, 16)

ICSETV(IW) = ICFORE

ELSE IF (SPKEY.EQ.11) THEN
CALL CSPACE
STOP

ELSE IF (SPKEY.EQ.19) THEN

FILEN =

CALL SUINDOW (2, 2, 24, 57)

CALL FFILE (FILEN, NRTN)
CALL RUINDOU

END IF

GO TO 1

END

SUBROUTINE FFILE (FILEN, NRTN)

C THIS ROUTINE USES THE DOS INTERRUPT SERVICE TO SEARCH FOR A LIST

C OF FILES. THE DATA STRUCTURE IS IN LFILE, THE LIST OF FILES IN

C FI LEX AND THE PATH IN DATAPATH.

C IF THERE ARE MORE THAN 16 FILES IN THE DIRECTORY, THEN YOU CAN SCOLL

PARAMETER (MAXFIL=200)
LOGICAL SPECIAL, VALID
CHARACTER LBUF*128, LFILE(43)*1, FILEX(MAXFIL)*13, FILEY*13,

. FILEN*13
INTEGER FILECNT, SPXEY, WHERE, OFILE, FIRST, COUNT
EQUIVALENCE (LFILE(31), FILEY)

COMMON /TW/ ICHDR,ICSUB,ICTXT,ICPRO,ICMSG,ICHLP,ICBG,ICMBG,
. ICHBG, ICEBG, ICEMS

C

NRTN = 0

FILECNT = 0

WHERE = 2

LBUF = FILEN//CHAR(0)
FILEY = ' '

CALL FILEFRST(LFILE, LBUF, NRT)

IF (NRT.EQ.O) THEN
NRTN = 0

CALL FILELAST
RETURN

ENDIF
FILECNT = 1

FILEX(I) = ' •

CALL SSTRNG (FILEY, 13, 1, FIRST, LAST, VALID)
COUNT = LAST - FIRST + 1

FILEX(1)(1:COUNT) = FILEY(FIRST:LAST)

2 FILEY = ' '

CALL FILENEXT(NRT)
IF (NRT.GT.O) THEN

32

Appendix B

FILECNT = FILECNT + 1

FILEX(FILECNT)(1:13) = FILEY

IF (FILECNT. LT.MAXFIL) GO TO 2

END IF

3 CALL FILELAST

URITE(LBUF,1) FILECNT

1 FORMAT('There are ',14,' files in this directory')

CALL MESSNS (8, 20, LBUF, 38, ICMBG, ICTXT)

LCOUNT = MIN(18, FILECNT)

LCOUNT 1 = LCOUNT 1

CALL wTnDOU (2, 2, LCOUNTJ, 14, ICHBG, ICTXT)

C SORT BY NAME AND EXTENSION

CALL FILESORT (FILEX, FILECNT)

C AND LIST IN A WINDOW

DO 5 I = 1, LCOUNT

CALL CHRMOV (1+1,2)
5 CALL MESSNR (FILEX(I), 13)

C^LL BARCODE (1, WHERE, 2, 13)

UPILE = 1

91 CALL NPUTXB (SPECIAL, SPKEY, 'This shows overlapping windows', 30)
II (SPECIAL) GO TO 92

FILEN = FILEX(QFILE)
NRTN = QFILE
RETURN

92 IF (SPKEY. EQ. 18) THEN

IF (WHERE.lt. LCOUNT 1) THEN
CALL BARCODE (0,~WHERE, 2, 13)

WHERE = WHERE + 1

QFILE = QFILE + 1

CALL BARCODE (1, WHERE, 2, 13)

ELSE
IF (QFILE.lt. FILECNT) THEN
CALL BARCODE (0, WHERE, 2, 13)

CALL SCROLLU (2, 2, LCOUNT 1, 14, ICHBG, ICTXT)
QFILE = QFILE + 1

CALL CHRMOV (LCOUNT 1, 2)

CALL MESSNR (FILEX(QFILE), 13)

CALL BARCODE (1, WHERE, 2, 13)
END IF

ENDIF
ELSE IF (SPKEY. EQ. 13) THEN

IF (WHERE. GT. 2) THEN
CALL BARCODE (0, WHERE, 2, 13)

WHERE = WHERE - 1

QFILE = QFILE - 1

CALL BARCODE (1, WHERE, 2, 13)
— ELSE

IF (QFILE. GT.1) THEN
CALL BARCODE (0, WHERE, 2, 13)

CALL SCROLLD (2, 2, LCOUNT 1, 14, ICHBG, ICTXT)
QFILE = QFILE • >

CALL CHRMOV (2, t)

CALL MESSNR (FILEX(QFILE), 13)

CALL BARCODE (1, WHERE, 2, 13)
ENDIF

ENDIF
ELSE IF (SPKEY. EQ.1) THEN

33

Software Development Tools

FILEN = FILEX(QFILE)
NRTN = OFILE
RETURN

ELSE IF (SPKEY.EQ.11) THEN

NRTN = 0

FILEN = • '

RETURN
ENDIF

GO TO 91

END

SUBROUTINE HEADING (VERSION, DATOUT)

C DISPLAY THE HEADING

INTEGER VERSION
CHARACTER DATOUT*8, LBUF*128

COMMON /TU/ICHDR, ICSUB, ICTXT, ICPRO, ICMSG, ICHLP, ICBG, ICMBG,

. ICHBG, ICEBG, ICEMS

C WHERE TO PUT THE HEADING

XVERS = FLOAT(VERSION)/100.
CALL WINDOW (0, 0, 23, 79, ICBG, ICHDR)

C HEADING, TIME, DATE AND VERSION STAMP

LBUF = '

WRITE(LBUF, 1) XVERS
1 FORMAT CTW I NDOW v',F4.1)
2 FORMAT (128A1)

LBUF (73:80) = DATOUT(1:8)

CALL MESSNS (0, 0, LBUF, 80, ICMBG, ICHDR)

RETURN
END

SUBROUTINE MESSNS (ROW, COL. PHRASE, Z, BACK. FORE)

C THIS SUBROUTINE IS WRITTEN TO SIMPLIFY THE WRITING OF A LITERAL

C STRING OF CHARACTERS. USING THIS ROUTINE CUTS DOWN ON THE

C NUMBER OF WRITE/FORMAT STATEMENTS THAT MUST BE USED.

INTEGER Z, ROW, COL, BACK, FORE

CHARACTER PHRASE*(*)

CALL WINDOW (ROW, COL, ROW, COL+Z-1, BACK, FORE)

CALL CHRMOV (ROW, COL)
CALL MESSNR (PHRASE, Z)

C

RETURN
END

SUBROUTINE NPUTKB (SPECIAL, SPKEY, MESSAGE, ML)

C READ IN A STRING • THIS CALL WILL ACCEPT ALPHANUMERIC INPUT

CHARACTER MESSAGE*(*)
INTEGER SPKEY

INTEGER*2 SP

LOGICAL SPECIAL

COMMON /TW/ ICHDR, ICSUB, ICTXT, ICPRO, ICMSG, ICHLP, ICBG, ICMBG,

34

Appendix B

. ICHBG, ICEBG, ICEHS

CALL WINDOW (23, 0, 24, 79, ICBG, ICTXT)

CALL CHRMOV (23, 0)

CALL MESSNR
. ('Use the cursor keys to move around the screen or <esc> to quit'

. , 62)
CALL CHRMOV (24, 0)

CALL MESSNR (MESSAGE, ML)

4 CALL REAOKB (SP)

C WAIT FOR A <CR> OR OTHER SPECIAL CHARACTER

IF(SP.EQ.O) GO TO 4

SPECIAL = .TRUE.

SPKEY = SP

CALL CURSOF
RETURN
END

SUBROUTINE READKB (SP)

INTEGER*2 CH, SP, HIT, TABLE(31)

DATA TABLE 759,60,61,62,63,64,65,66,67,68,27,71,
* 72,73,75,77,79,80,81,82,83,84,85,86,87,88,89,90,
* 91,92,93/

C THE FOLLOWING EXTENDED KEY COOES ARE RECOGNIZED AND RETURNED:

c KEY DEC. CODE TABLE #
c F1-F10 (59-68) 1-10

c ESCAPE (27) 11

c HOME (71) 12

c UP ARROW (72) 13

c PAGE UP (73) 14

c LFT ARROW (75) 15

c RT ARROW (77) 16

c END (79) 17

c DWN ARROW (80) 18

c PAGE DWN (81) 19

c INSERT (82) 20

c DELETE (83) 21

c SHIFT Fn (84-93) 22-31

SP = 0

CALL GRABKY (CH, HIT)
IF (HIT.NE.O) THEN

IF (HIT.GT.1.0R.CH.EQ.27) THEN
C

C SPECIAL CODE
C

J = 0

10 J = J+1

IF (CH.EQ.TABLE(J)) THEN
C SPECIAL CODE RECOGNIZED

SP = J

ELSE IF (J.LT.22) THEN
GO TO 10

END IF

ELSE
IF (CH.EQ.13) THEN

C END OF STRING

35

Software Development Tools

ENDIF
ENDIF

ENDIF
RETURN
END

SUBROUTINE SWINDOW(TR, LC, BR, RC)

LOGICAL SAVEINPT, SAVETHRM, ADVFEA
INTEGER GTRAIL, FASTFOR, VERSION, LOGERR, SAVECL(11), SAVEUN(7)
COMMON /FIN006/GTRAIL, FASTFOR, SAVEINPT, SAVETHRM, LOGERR, VERSION,

. ADVFEA, SAVECL,SAVEUN

C SAVE A WINDOW

INTEGER TR, BR, LC, RC, ROW
INTEGER ACTIVE, OFFSET(IO), R(10), C(10), LEN(IO), WID(IO)
INTEGER*2 BUFFER(6000)

DATA ACTIVE/0/

IF (ACTIVE. GE. 10) STOP 'TOO MANY WINDOWS ACTIVE'

C GENERATE THE STATS FOR THIS BUFFER

ACTIVE = ACTIVE+1
IF (ACTIVE. EQ.1) THEN

OFFSET(ACTIVE) = 1

END IF

R(ACTIVE) = TR

C(ACTIVE) = LC

WID(ACTIVE) = RC-LC+1
LEN(ACTIVE) = BR-TR+1

C STORE THE TEXT UNDER THE WINDOW TO BUFFER

I = OFfSET(ACTIVE)
I START = I

11 FORMATCSW I NDOW - SCREEN SPACE -> ',2110)

DO 10 ROW=TR,BR
CALL VSTOW(BUFFER(I),ROW,LC,WID(ACTIVE))
I = I-*-WID(ACTIVE)

IF (I.GT.6000) STOP 'BUFFER SPACE EXCEEDED'
10 CONTINUE

IF (ACTIVE. LT. 10) THEN
OFFSET(ACTIVE+1) = 1+1

END IF

RETURN

ENTRY RWINDOW

C RESTORE THE PREVIOUS WINDOW

IF (ACTIVE. LT.1) RETURN

I = OFFSET(ACTIVE)
DO 20 ROW = R(ACTIVE), R(ACTIVE)+LEN(ACTIVE)-1

CALL VSHOW(BUFFER(I),ROW,C(ACTIVE),WID(ACTIVE))
1 = I+WID(ACT1VE)

20 CONTINUE
ACTIVE = ACTIVE-1
RETURN
END

36

References

References

[1] Jones,W.W. and Peacock,R.D., FAST Technical Reference Guide for Version 18,

National Institute of Standards and Technology Technical Note 1262 (1990).

[2] Jones,W.W. and Forney,G.P., A Programmer’s Reference Manual for CFAST, the

Unified Model of Fire Growth and Smoke Transport, to be published as a NISTIR.

[3] Forney,G.P. and Cooper,L.Y., The Consolidated Compartment Fire Model (CCFM)
Computer Application CCFM.VENTS - Part II: Software Reference Guide, National

Institute of Standards and Technology Internal Report 90-4343 (1990).

37

•

•VP •

f..; -*1. : ‘n-bvT r&A'’! ..Cl.'i,3t’3cio,Bi>‘i blr^ .V/.W,!pi?ai

>. -.-itJ- niv:H>l2«T

-I- :" ;AVnMfta^i aiCf;fK,va.S!tJ<^.

a^vjj.irueigcnfll A bna

.'j.4o«t'2 h(i& (iPf/oiO »ti jte4>Q|4,bi3fiiyal

ri5. [n*< .3:i» siYa-in^ooO tms X0,t^0W^ *

- 2T'V13VM«rcO A
yj-^- -"• tnmual i<^olorub3T ons xbTsbflKiS lo J

/i ' .- 10*'
-'' »!?•• ’'

- ifji

- ., '.nytM
• '*> i *1 »

‘ r
.*

.«'? -
’* if

»’ ;

'

A .

'. ‘tvl 'it(V* ' iV" »

Id ‘iOV'
, I . VI ., ,

i! ^ JO >
'

' VI } \

‘
. .. /

1

\ t

I. -1 / .'! •
'/ I

f 1 -

NIST-1 14A

(REV. 3-90)

U.S. DEPARTMENT OF COMMERCE
NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY

1. PUBUCATION OR REPORT NUMBER

NISTIR 4363

BIBLIOGRAPHIC DATA SHEET
2. PERFORMING ORGANIZATION REPORT NUMBER

3. PUBUCATION DATE

July 1990

4. TITLE AND SUBTITLE

Software Development Tools

5. AUTHOR(S)

Glenn P. Forney and Walter W. Jones

6. PERFORMING ORGANIZATION (IF JOINT OR OTHER THAN NIST, SEE INSTRUCTIONS)

U.S. DEPARTMENT OF COMMERCE
NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY
GAITHERSBURG, MD 20899

7. CONTRACT/GRANT NUMBER

Final
a. TYPE OF REPORT AND PERIOD COVERED

9. SPONSORINQ ORGANIZATION NAME AND COMPLETE ADDRESS (STREET, aTY, STATE, ZIP)

10.

SUPPLEMENTARY NOTES

11.

ABSTRACT (A ZOO-WORD OR LESS FACTUAL SUMMARY OF MOST SIGNIFICANT INFORMATION. IF DOCUMENT INCLUDES A SIGNIFICANT BIBUOGRAPHY OR
LITERATURE SURVEY, MENTION IT HERE.)

This paper discusses the use of software tools to air in the development of models
produced by the Center for Fire Research (CFR) . There are two types of tools described in

this paper. The first type consists of executable programs that characterize the

subroutine and data structures of FORTRAN programs. A second class of software tools are
subroutines that support various utility functions required by CFR models. We will discuss
how each of these tools are used and why their development was necessary. In addition,
we will indicate how these tools might be improved.

12.

KEY WORDS (6 TO 12 ENTRIES; ALPHABETICAL ORDER; CAPITALIZE ONLY PROPER NAMES; AND SEPARATE KEY WORDS BY SEMICOLONS)

compartment fires; fire growth; mathematical models; numerical models; software development

13. AVAILABILITY 14. NUMBER OF PRINTED PAGES

X UNUMITED 42
FOR OFFICIAL DISTRIBUTION. DO NOT RELEASE TO NATIONAL TECHNICAL INFORMATION SERVICE (NTIS).

ORDER FROM SUPERINTENDENT OF DOCUMENTS, U.S. GOVERNMENT PRINTING OFFICE,
WASHINGTON, DC 20402.

IS. PRICE

AO3

X ORDER FROM NATIONAL TECHNICAL INFORMATION SERVICE (NTIS), SPRINGFIELD,VA 22161.

ELECTRONIC FORM

!" ;

V
jio>«;?jws#o3^ jm^fT^W.AD

i9ti^ JiVTBir.

••-v^^nKiasKw^^

'y^'xa Hoi »

vX,4il

''3»,

T33He ATAQ OIH<)AnDOU8ia

I;..

co^SrTCj » wn *4bsiA «£> jT

waAoX. '.V

»«>

tlmf 3o»ffli^o.i:9v»a.
,

»tiWi|t1lt»a;
^t-

.-.a'

:' ' *

«

, f.
.-:

'

^C, ri^
,ViNMSwfPaf turn mmimvit«» jJiretm

,

m»fi ou.P^i

^' (' '

r»
' SiJr'i TjiA^MTmowirS^^ 7M»4V>SSW^

aittbOOT :3a:^aiiqol3V3i> rti tfia slab.? ^•XJBrtOid* ft841 ftl|!S'*^8»S0a08|l>;^

. :.dwii..a:5b .10^3 io 3'iqy;? o^3 a-ss aiArTf

3ii3 '^4143 ftId[«?t/oaJK» io saaiais^w a*
-.1 v.r*.- .^tir^loa’’ h

b „i?'; »W .<1 lab JO >:TJ oaTJ^tOl^ai ftaoljaaai «f;jJkXlatw, 84i027W ^?6q<|fW6

- '.Iij.faf.a ni , a^iw ja.’t'sijfoi.ftwb ?i,4MlT l>£M54;:»'Xft aXa<ij|(

,

V .bsvo^qjBi ad s'd.'jlfti. eX'ooi ©sa^f? vod
'

f*r-ih -a-rcvilo* ;n l''f»tiott(Utol^iastte }8X,aibdiWMaai3«urti«Jl^*Mti'

IJnSJoaSSTTiTow^
I'iaaii

Vkit.-

-ESSBS-Tir

£0 a

ViiA'j .‘;W''W‘'"4;

.»m ie>sr»4iw w>»rAiiift5^ ^

UK ns

