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In response to a Goddard Space Flight Center effort to look at the requirements for a computing
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Group approach to telerobot computing architectures. It is shown how a seven microprocessor con-

trol system can achieve teleoperation with an around-the-loop time of 10 ms. The document focus-

es on low-level, real-time robotics and does not discuss some issues relevant to space systems such

as space-qualification and thermal design.
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1. Introduction

This document presents a basic design for a telerobot. The complete robot design is not pre-

sented here, however, detailed designs of principal subsystems are presented. The emphasis is on

the approaches taken toward softw-are and hardware design of the computing architecture. Example

designs are taken from the Servo Level. The motivation for the control system design is completely

documented in the references at the end. The bibliography is a complete list of publications from

the Robot Systems Division, National Institute of Standards and Technology (NIST), related to the

design of telerobot control systems.

2. Software

To facilitate the discussion and simplify the figures, the following discussion on the design of

software will concentrate on the Servo Levels of two main subsystem's of the telerobot, the hand-

controller subsystem of the operator interface and the manipulator subsystem of the robot side.

These two subsystems are the main emphasis for projects such as Martin Marietta’s FTS and God-

dard’s Multiple Algorithm Robot Control System (MARCS). Other levels and subsystems will

have similar structure, so the example can be applied to other parts of the system as well.

The control system forms two main hierarchies, one for the operator interface and one for the

robot. In the operator interface hierarchy, a hand-controller subsystem consists of a Primitive and

Servo Level under the E-move Level. Likewise, as shown in Figure 1, a manipulator controller

Figure 1. Subsystem Design for Arm and Hand Controller of Telerobot.
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consists of a Primitive and Servo Level under the Manipulation E-move Level. On the robot side

there are also E-move Levels for the Perception and Positioning subsystems. There is a second ma-

nipulator subsystem under the Manipulation E-move Level. This subsystem controls the second

manipulator arm in a two arm telerobot. Similarly, there is a second hand-controller subsystem in

the operator interface. In the discussion, the control subsystem for only one manipulator/hand-con-

troller pair will be presented, the assumption being that a second manipulator/hand-controller pair

would have a duplicate control structure.

The Servo Levels depicted in Figure 1 are directed by the corresponding Primitive Levels.

However, in teleoperation mode, the two Servo Levels are linked through the global data system.

The manipulator is moved based on sensory data generated in the hand-controller subsystem and

the hand-controller is activated by sensory data generated in the manipulator subsystem. This tele-

operation mode will be the focus of the discussion.

Figure 2 shows a detailed design for the Servo Levels of Figure 1 . Figure 2. a represents the ma-

nipulator subsystem Servo Level and Figure 2.b represents the hand-controller Servo Level. Each

box in Figure 2 is a cyclicly-executing, concurrent software process of the control system. The

ovals are global data buffers. System processes communicate only through these global buffers.

The particular configuration of boxes shown in Figure 2 is primarily based on the control archi-

tecture of the NIST lab system, but includes elements for the implementation of Martin Marietta’s

control algortihm. This design is also similar to the MARCS system, which is specifically designed

to support algorithms like Martin’s. (See Appendix 1 for the detailed MARCS design.) Additional

boxes might be added for other algorithms, such as the Goddard teleoperation algorithm with adap-

tive gains, however the basic arrangement and characteristic of software processes depicted in Fig-

ure 2 is designed to support a wide range of algorithms without major modification.

Note that not all possible inputs and outputs of processes are shown in the figure. The figure

shows all inputs and outputs necessary for the basic teleoperation mode under consideration. De-

tailed descriptions of the inputs and outputs to the processes in Figure 2 can be found in the refer-

ences. Interfaces shown are assumed to be complete interfaces as described in the documents even

though only a subset of a given interface might be used for the algorithm being discussed. Also,

the output from the Servo Level is the desired torque for the joints. It is assumed that either this

value is directly proportional to the required motor current, as in the direct-drive case, or that torque

loops are provided subsequent to the output.

The data buffers used for communication between subsystems are shown shaded in Figure 2.

The two buffers are repeated in both figures for clarity. The buffer f^^ contains the force feedback

from the robot force sensor related to the Cartesian coordinates of the hand-controller. The buffer

Zq contains the Cartesian hand-controller command related to the Cartesian coordinates used for

the robot control. The Zq data is the final hand-controller command which includes indexing and

scaling.

Each process at the Servo Level in Figure 2 has associated with it a number appearing in the

upper right-hand comer of the box. Table 1 gives the execution times for each process executing

the appropriate component of the Martin Marietta algorithm. Note that the Martin algorithm is

completely implemented by the numbered processes. In fact, some additional functionality (such

as gravity compensation) is provided which is not available in Martin’s implementation. The exe-

cution times are based on Martin Marietta published data. Martin Marietta obtained these times by

Approach to Computing Arch. 3



5

A

U

0
c
0

0 c
t—

'

c
0

c/5

c/5

0
00 <

x>
0

A

W

—

\

Q bfl

H £

£
CO Co

(N

Q c
H 0

0 3
0
0

0 X
00 W

V2
<_, (U

^ c 3
O C."->0

-
04
u
fO

4->

c 8
•H (U

Cu 0 <u

CO lu

<N
cr
EH

4-) (U

(0 u
•H 0

Q- M 0
CO s bj

b«

oj o
052
u- c
O o

<*-. c/3

4

Figure

2.

a.

Manipulator

Subsystem

Detailed

Design.



oc

C O
O C

c/5
•4—

» ^
c 3

o

5

Figure

2.
b.

Hand

Controller

Subsystem

Detailed

Design.



Table 1. Execution/Communication Times for Figure 2 Processes in Martin Algorithm.

Process Process Function in Martin Algortihm Execution Time (msec)

1 Acquire joint feedback 0.34

2 Acquire force/torque sensor data 0.17

3 Calc, position mod. based on impedance 1.50

4 N/A 2.10

5 Calc, inertia decoupling matrix 17.00

6 N/A 4.70

7 Forward kinematics on joint position 1.43

8 Trans, force sensor data to control coord. 0.38

9 Translate manip. to hand cntllr coord. 0.39

10 Combine imp. and cmd/ inverse kinematics 1.47

11 Joint rate limiting 0.27

12 Joint PD control with inertia decoupling 0.90

13 N/A 0.25

14 Force feedback limiting 0.27

15 Jacobian transpose multiplication 0.57

16 Translate hand cntrllr to manip. coord. 0.78

17 N/A 1.80

18 Calc, hand-controller Jacobian 1.32

19 Forward kinematics on joint position 1.43

20 Acquire joint feedback 0.34

implementing and timing actual Ada code on the 80386 microprocessor. In calculating the times

for Table 1 for each process, Martin Marietta execution times for functions performed in a process

were summed and the resulting value was multiplied by 1.2 to allow for a communication overhead

of 20%. The result is rounded up to the nearest hundredth of a millisecond. For processes for which

execution times are not available, times obtained on Ada code implemented on the 68020 for a sev-

en degree-of-freedom manipulator control system were used as comparable values. The execution

times of Table 1 are used in the next section to show how processes can be distributed to processors

for real-time performance when the correct hardware architecture is chosen.

3. Hardware

The problem of telerobot control requires a powerful multiprocessing architecture. This multi-

processing architecture must involve a large number of tightly-coupled processors to perform the

Approach to Computing Arch. 6



highly centralized aspects of coordinated control. This fact will be demonstrated for the example

subsystems of Section 2. First, consider the following desirable features of the centralized part of

the computer architecture design for a telerobot.

3.1. Processor coupling via a 32-bit data bus.

The rate that data is transferred between processors in the control system requires that the com-

munication bus support a high communication bandwidth. Since many processors will share

the same data bus, megaword-per-second data rates are necessary. Also, the word size for val-

ues used in robot applications is mostly 32 bits, since robot control computations are done using

32-bit floating point representations. Current floating point hardware technology is capable of

computations with no less than 32 bits. Any smaller representation requires expensive conver-

sions to a larger format. In addition, 32-bit data is the state-of-the-art in microprocessors and

multi-microprocessor backplanes.

3.2. Multislot (>20) backplane.

To accommodate the large number of processors and allow for easy system expansion, a mul-

tislot backplane is required. Processor and other hardware elements connected by an address

and data bus configured as a multislot backplane provides for tight coupling with the added

benefit that elements can easily be added or removed. Even a 20-slot backplane may not be big

enough depending on the complexity of the system and its degree of autonomy. Multiple mul-

tislot backplanes may be desirable.

3.3. Subsystem bus capability.

In addition to a high-bandwidth main bus connecting processors, it is useful to have subsystems

buses that allow subgroups of processors to communicate separately from the main bus. For

example, the processors performing centralized control of an arm need to communicate more

frequently with each other than they do with the processors controlling the other arm, in gen-

eral. This communication is local to the arm processors and traffic on the main bus can be re-

duced by giving the arm processors a separate subsystem bus. The arm processors can still use

the main bus, but use the subsystem bus for communication within the subsystem. Since the

values transferred over the subsystem bus are for the most part 32-bit, the subsystem bus should

also have a 32-bit data path.

3.4. Industry standards.

Any computer architecture design should try to use industry standards where possible. Com-
pliance to industry standards reduces development costs, improves reliability, and increases the

compatibility with current and future products. This feature, along with items 3. 1-3.3, indicates

that a good choice for the coupling processors would be an industry standard 32-bit address and

data bus, such as Multibus-II or VME bus, configured as a multislot backplane. This type of

architecture has been in use for many years and is well tested.

With respect to the distributed part of the control system, i.e., the part that resides in the ma-

nipulator arms, it is our understanding that there are two major problems. The first problem is ca-

Approach to Computing Arch. 7



bling. It is desirable to minimize the number of cables passing through a manipulator. The second

problem relates to themral control within a manipulator. The amount of heat generated within an

arm should be kept to a minimum. With these points in mind, here are some features that may be

desirable for the distributed part of the hardware architecture.

3.5. Only local control at the joints.

The nature of the control problem for a serial mechanism such as a robot manipulator requires

a centralization of control for coordination. An example of this is the inertia decoupling com-

pensation required for FTS. This decoupling can only be done for the manipulator as a whole,

not by each joint independently. Any attempt at joint-local decoupling will result in high com-

munication requirements between joints, defeating the whole purpose of the local joint control.

Thus, it is important that any control distributed to joint controllers be truly local. For the FTS
this means that only joint torque control loops should be done in joint-mounted electronics.

3.6. Digital communication bus in arm.

The large number of sensors (current, temperature, etc.) and the desire to reduce cabling leads

to the conclusion that sensory data should be digitally encoded and transmitted over a common
link. A simple hardware link, such as a twisted-shielded pair, may be best for this purpose since

the cable will need to be quite flexible to minimize cable friction. This need, along with item

3.4, may indicate that 1553 is an appropriate choice. The bandwidth required for this link

should not be that great provided the link only transmits sensor feedback and reference signals

for local control at the joints. If additional bandwidth is needed, an additional digital bus of the

same type can be added to the manipulator.

3.7. Programmable torque loops.

The widely varying thermal conditions in which the FTS will operate, and the inability to test

it fully in real space environments, make it likely that the torque loop parameters will need to

be modified after the FTS is constructed. In addition, if the FTS is to operate for a number of

years on the space station, wear and other aging factors will also require that control parameters

change. Thus, the torque loops operating on the joints should be programmable in that all the

control parameters could be modified. The most flexible way to do this is to implement digital

torque loops on a general microprocessor, although it may be just as easy to implement the

torque loops using a microcontroller or programmable gain amplifiers. Not using general mi-

croprocessors may be the better approach in minimizing size and heat generated at the joints.

3.8. Single motor power bus.

To minimize cabling complexity the motor power for the various joints in a manipulator should

all be taken off of a single power bus. This implies that the PWM electronics for providing mo-

tor currents should be distributed in the manipulator. The motor command for the PWM’s will

be taken from the output of the torque loops.

Considering all of the above points, the telerobot hardware architecture for a manipulator/hand-

controller Servo Level pair is obtained as depicted in Figure 3. (For further validation of this basic

Approach to Computing Arch. 8
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approach, consider the hardware architecture developed independently for MARCS in Appendix

1.) In this design, all of the general processors reside in a common backplane. These processors

communicate with each other over Multibus II using common memory residing on the shared bus.

The number of general 386 processors is seven, which is chosen to correspond with the number of

microprocessors used by Martin Merietta for a manipulator/hand-controller pair. The processors

communicate with device-mounted electronics over the 1553 serial data lines.

The device-mounted electronics include all the electronics necessary to receive the digital

torque commands from the 1553 and produce the corresponding actuator motions. In addition,

these electronics interface the sensors to the digital bus for sensor feedback. For the manipulator,

the device-mounted electronics could be physically located within the links of the manipulator arm.

The electronics may include, in addition to the 1553 interface, power electronics, commutation

electronics, PWM electronics, torque control loops, and analog i/o hardware. It is assumed that

general microprocessors are not used in the device-mounted electronics.

Referring back to Figure 2, all the processes depicted in the figure reside on the seven general-

purpose processors in the multislot backplane. Thus, the communication at the "bottom" of the Ser-

vo Levels, (joint torques and feedback in Figure 2,) is over the 1553 bus. By restricting 1553 data

to be this low-level data only, the ability of the 1553 bus to meet the communication requirements

is assured. For example, if seven 16-bit joint torques are sent, seven 32-bit joint positions and six

16-bit force/torque values are received, this requires 27 16-bit words. With the 1553, each 16-bit

word is transferred at a cost of 20 bits, for a total of 540 bits. Add a few protocol words and the

total transfer is about 600 bits. If this data is transferred every millisecond then the required bus

rate would be 600Kbits/s. This rate is well within the capabilities of the 1553 which has a specifi-

cation for 1 Mbit/s. If an actual 1553 bus only achieved 80% of this (800Kbit/s), the transfer of 600

bits would still take only 0.75 ms.

Now consider the execution times presented in Table 1, and note the following. Processes 4, 5,

6,17, and 1 8 can run at a fairly slow rate with respect to the rest of the system and not effect control

system performance. These processes need not update their outputs more than about 20 times a sec-

ond. There are numerous ways to distribute the remaining processes to processors. The system is

completely flexible in this respect since all processors are tightly coupled. Processes can be distrib-

uted to minimize the around-the-loop time of the teleoperation control, maximize the processing

margin, minimize the time between new updates of joint torques, or optimize a number of other

factors.

Suppose, as an example, a minimum around-the-loop time for the force-feedback teleoperation

control is desired. Note that the around-the-loop time is defined by the process sequence {2, 8, 9,

13, 14, 15,20, 19, 16, 10, 11, 12}. By grouping processes 4,5,6,17, and 18 on one processor, each

of these processes would compute a new output at around 37 Hz. The remaining processes can be

distributed to processors as follows.

CPU-1 : 4,5,6,17,18

CPU-2 : 1,2,8

CPU-3 : 9,13,14

CPU-4: 15,20

CPU-5: 19,16,10,11

Approach to Computing Arch. 10



CPU-6: 12

CPU-7: 7,3

Here, each processor executes the processes in the order listed. Processors 2, 3, 4 and 6 can each

execute their processes in less than a millisecond. The reader may verify this by adding the execu-

tion times from Table 1. Processor 5 can execute its processes in less than 4 ms, while processor 7

takes less than 3 ms. Thus, all the processors can be synchronized on a one-millisecond boundary

so that outputs of processes 1, 2, 8, 9,13,14,15, 20, and 12 get updated every millisecond, outputs

of processes 7 and 3 get updated every 3 ms, and the outputs of processes 19, 16, 10, and 11 get

updated every 4 ms. The around-the-loop time is determined by the processor sequence {CPU-2,

CPU-3, CPU-4, CPU-5, CPU-6}. Adding up the times for this sequence (1-1-14-1-1-4+1=8), and mak-

ing the mild assumption that the additional time-delay for the 1553 and the device-mounted elec-

tronics is less than 1 ms per combined torque/feedback transaction, the around-loop-time is 10 ms.

This loop has pipelined updates coming every millisecond. In addition, the example achieves a

333 Hz local joint control rate, and a 100 Hz impedance loop rate.

The important point is that the hardware architecture provides many options in terms of allo-

cating computing resources. Other processing resource allocations can easily be made without

changing either the hardware or software architectures. For example, the distribution

CPU-1 : 4,5,6,17,18

CPU-2 : 2,8,9,13,14,15,20

CPU-3: 19,16

CPU-4: 10,11

CPU-5: 1,12

CPU-6: 7,3

with processors 2, 3, and 4 repeating every 2.5 ms, processor 5 repeating every 1.25 ms, and pro-

cessor 6 repeating every 3.75 ms, results in an implementation with a 14 ms teleoperation around-

the-loop time and a 400 Hz local position loop on the manipulator. And this is with a spare proces-

sor left over. It is possible to implement the whole system on just five processors and still achieve

good performance by making the distribution

CPU-1 : 4,5,6,17,18

CPU-2 : 1,2,8,9,13,14,15,20

CPU-3: 19,16

CPU-4: 10,11,12

CPU-5: 7,3.

The examples show the tradeoffs in performance for the implementation of the Martin Marietta

algorithm that can be made for the computing architecture approach of Figures 2 and 3. It should

be noted, however, that the Martin algorithm has not been shown to be superior in any way to other

approaches. In fact, Martin’s use of explicit inverse kinematics in the control loop ensures that the

algorithm can not be used for arms with more than six degrees of freedom, or even with six degree-

of-freedom arms without simple kinematics. This has been the conclusion of both the NIST and

Approach to Computing Arch. 11



Goddard labs. Thus, it is important that the control system design for a telerobot be able to run more

than just the Martin Marietta algorithm. The system should be easily extensible to run other algo-

rithms and additional levels of the telerobot functional architecture.

4. Extensibility

As discussed in Section 2, the complete telerobot architecture involves many more components

than the Servo Levels analyzed in Sections 2 and 3. Some of these components are depicted in the

partial telerobot architecture of Figure 4.

Primitive Levels, as depicted in Figure 2, connect the manipulator and hand-controller Servo

Levels to the upper levels of the telerobot. These Prim Levels generate trajectories and autonomous

reference commands for the manipulator and hand-controller. There must be a Prim and an E-move

Level for autonomous manipulator operations such as automatic end effector exchange. Thus, the

processes which realize these upper levels must be given computing resources within the system.

Note that, in general, resources cannot be taken away from the Servo Level processes since many

of the processes must remain in operation when the upper levels are active. (The E-move, Prim,

and Servo Levels form a pipeline for hierarchical control.)

With the hardware design of Figure 3, extra slots are available to add processors for the upper

levels. Some processors from the seven original ones may also be available to implement the upper

levels depending on how processes are allocated to processors at the Servo Level. Extra processors

LEVEL 4

LEVEL 3

LEVEL 2

LEVEL 1

TELEROBOT

Figure 4. Partial Telerobot Control System.
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can also be made available to execute other subsystems of the telerobot such as Safety, Positioning

and Perception.

With respect to Perception, if the telerobot is to eventually have the capability to analyze im-

ages, then it must be possible to add computing resources to the telerobot to perform this function.

Generally, specialized hardware is used to perform the computationally expensive function of con-

verting the input intensity image from an iconic (spatially based) image to a symbolic (feature

based) image. Additional general support computers process the symbolic image to complete the

perception task. A number of specialized hardware systems exist for performing image analysis in-

cluding PIPE, WARP, PIFEX, and DATACUBE. Such specialized hardware should be easily in-

corporated into the control system.

With the hardware design of Figure 3, the specialized vision hardware can be given a dedicated

processor in multislot backplane. The approach which has been successful in the NIST laboratory

has been to use a PIPE interface board along with a general processor to control and configure the

PIPE. This allows the processor to use the PIPE like an accelerator to speed up vision computation.

The addition of the PIPE has little effect on the performance of the rest of the control system.

5. Conclusion

The design approach presented here represents an accumulation of knowledge from many years

of work at NIST. This approach is well-documented in the references which follow. The design

presented here supports flexibility in control system performance, a variety of control algorithms,

and provides an evolutionary path to additional telerobot functionality.

Approach to Computing Arch. 13
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Appendix 1.

The Multiple Algorithm Robot Control System (MARCS) is currently under development in God-

dard Space Flight Center’s robotics laboratory. This system is designed to run three different tele-

operation algorithms, a Martin Marietta-style algorithm, a JPL teleoperation algorithm, and an al-

gorithm developed at Goddard. The following pages are taken from early design efforts in the

project and are presented here only to show a consensus of viewpoint among two labs working on

telerobot systems development. The first two figures show the Servo Levels for the manipulator

subsystem and the hand-controller subsystem. The last figure shows a preliminary hardware archi-

tecture to support these two Servo Levels.
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