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Abstract

The integral l£^£i{k,k') = ji{kr)j£i{k'r) r'^dr, in which the spherical Bessel func-

tions je{kr) are the radial eigenfunctions of the three-dimensional wave equation in spher-

ical coordinates, is evaluated in terms of distributions, in particular step functions and

delta functions. We show that the behavior of is very different in the cases i — i' even

(0, ±2, ±4, ...) and £ — £' odd (±1, ±3, ...). For £ — £' even it is expressed in terms of the

delta function, step functions, and Legendre polynomials. For £ — £' odd it is expressed

in terms of Legendre functions of the second kind and step fimctions; no delta functions

appear.

Key words: delta functions; distributions; integrals of Bessel functions; non-convergent

integrals; spherical Bessel functions; step functions.
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ON THE EVALUATION OF THE INTEGRAL

poo

Iij.{k,k')= / je{kr)je>{k'r)
Jo

'dr
(
1

)

I. Introduction

The integral l£^£' as defined in (1) arises in connection with the solutions of the three-

dimensional wave equation in spherical coordinates, for which the radial eigenfunctions

are the spherical Bessel functions j£{kr). Although the integral does not converge, it can

be expressed in terms of distributions, in particular step functions and delta functions.

For i = £' the result is well-known; in this case it can be expressed in terms of the delta

function:

IiAKk') = ^8{k-k')
. (2)

In this note we extend this result by evaluating (1) for arbitrary (integer) £ and £'

.

We

show that the behavior of l£^£i is very different in the cases £ — £' even (0, ±2, ±4, ...)

and £ — £' odd (±1, ±3, ...). For £ — £' even, the integral l£^£i may be written in terms of

step functions and the delta function. For £ — £' odd, it may be expressed in terms of step

functions alone - no delta function appears. In both cases, however, there is a singularity

when k = k'
,

diS has been noted for the related integral

dt ( 3 )

which is discussed in some detail in [1], pp. 398-410. Although we will make use of the

results given there, it should be noted that the integral, (3), is considered in [1] only under
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the conditions wliich are sufficient for convergence [Re{fi + i/ + 1) > Re{X) > —1 for a ^ b

and Re{iJ -f i/ + 1) > Re{\) > 0 for a = b]. Thus our integral l£^£'{k,k') does not follow

directly from the results in [l]. More importantly, the presence (or lack) of a delta function

in l£^£'{k^ k') when k = k' does not appear at all in the analysis in [1].

The form of our result for i — i' even is

= 6(k’ -k) e = e'

2kk'
^ ’

in which the step function 6{k' — k) is defined by

0{k' -k) =
1 k' > k

0 k' < k

and the delta function S{k' — k) by

(5)

S{k' -k) = 0 for k' k (
6

)

and

roc

/ 6{k' - k)dk' = 1

J — OO

(7)
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For i even, the functions ge,e'{k, k') are finite polynomials in k/k'-, we show that they

are related to Legendre polynomials,* P^.

On the other hand, for t — i' odd the integral has the form

k') = ge,e'{k, k')e{k - k') + ge^k', k)9{k' - k)
. (8)

For i — odd, however, the fimctions gt,e>{k^ k') are related to Legendre functions* of the

second kind, Qi. Specific expressions for the functions g£j'[k,k') for £ — P even and for

£ — £' odd are given in (53) and (56) and in (69) and (70), respectively.

II. Derivation of integrals for k ^ k'

We carry out the analysis for k ^ k' m terms of the ordinary Bessel functions J^{x),

which are related to the spherical Bessel functions je{kr) by

Jt+i{kr) . (9)

In order to secure convergence we start with the more general integral

roo

/(e) = / J£^^{kr) j£i^i{k'rA ^ dr
,

e > 0 . (10)

Here in the integrand, r~^ is a convergence factor. Further, we assume 0 < k' < k. We

note that the integral is convergent provided k ^ k' and e > 0. After writing the expression

for this integral for e > 0, we let e O'*". From [1], p. 401 (2), we have

* Throughout this paper, imless specifically noted, the Legendre functions PjJ and

as used here axe those defined in [2], p. 122 (3) and (5).
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oo

j£+^{kr) Ji.^i{k'r) ^ dr ^ K+ (5/2)-e r(^' + |)

x 2 F'l
e+e'+3-e e'-e-£

2 ’ 2
+ 1- _1_ 3 .

-r 1
,
c

2 ’ ^2

(
11

)

where 2 Fi{a,b] c; z) is the hypergeometric function ([2], Chapter II). We then let e —> O'*",

giving, for the integral in (1),

7rk
if

h,i'{k,k') = g((,(k,k') =
r(

e+f+3

r(^' + |)r(^)

X 2F1

^+^'+3 fluf I 1 ./' ,
3.

9 ’ 9 *•*•1^*95 for k' < k

(
12

)

We note from (1) that Ii^i>{k^ k') is invariant under the interchange i ^ ,
k ^ k'

.

Thus

in the case k < k' we have

(13)

+ for k < k' .

Now, as noted in [1], “it so happens that the expressions on the right in [(12) and

(13)] are not the analytic continuations of the same functions.” This may in fact be seen

directly. In the present Ccise, if we consider the function as defined in (12), then the

desired analytic continuation is given in [2], p. 107 (34) together with the expressions given

in [2], p. 105 (1), (9), and (13), namely.
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(14)

r L ^
r(c)r(6-a) ^-a rp r z, -U2Fi{a,b;c]z) = Y(^c-a)T{b)

2Fi{a,a + I - c;a + I - b; z
)

+
r(c)r(a-6),

( — z) 2-^1 (^ 5

6

+l“"C;t + l — ci;2
r(c- 6)r(a)

Applying (14) to the hypergeometric fimction in (12), we find that the analytic continuation

of k') as defined by (12) is, in the region y > 1, given by

II-' lA9e,e'[k,k) g£i^£{k ,k)
r(

^~^'
)
r(

^+^'+i
)

X 2-^1 (^^ + 1
,

-( +

(15)

where

+ 1 for Im{^) > 0

£ =
— 1 for /m(^) < 0

The difference between the case i—i' even and £—i' odd is illustrated most strikingly in

the expressions (12), (13), and (15). Thus, for^ — even, if < £ then from (12) l£^£i{k,k')

is a finite polynomial for k' < k^ whereas from (13) it is identically zero for A: < A:' in view

of the factor r(^-^) in the denominator. The analytic continuation of l£^£i{k^k') in the

region y > 1 is then the second term on the right hand side of (15), which is also a finite

polynomial, as it must be since the polynomial given on the right hand side of (12) has

no singularity at ^ = 1. On the other hand, ii i — £' is odd, then neither g£,e'{k, k') nor

9t',t{k' ,
k) is zero, but again g£> ^£{k'

^
k) is not the analytic continuation of 9£^£'{k, k'); there

is the added term in (15). Again the 2F1 function there is a finite polynomial. However,
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the entire second term is then purely imaginary in view of the factor ^ = ±h

We shall see this most clearly in some of the examples given later.

At this point in our analysis we consider separately the cases t — t' even and t — t'

odd.

A. Integral for i — t’ even, k ^ k'

From (12) and (13) we then have, for k ^ k'

,

and

h,e'{k.k') =
nk'^ {i' + |)n+i

K+ 3 nl

+ l+n-,e' + 6{h~k') for ( > f

(16)

It,r{k,k') =
nk^ (^+|)n+i
k'i+^ ni

X 2-^1
(
“^7 + )

0{k — k) for i £

(17)

where

and

n = iK-^'l-i

(£ + |)n+l - (^ + |) (^ + |) (^ + I + n) (18)

The expressions in (16) and (17) can be combined in the single result

6



where

£< = min

/:< = min {k, k')

ky = max (fc, A:')

For £ = £'

,

we note from both (12) and (13) that

(20)

IeAk<>^') = 0 for k ji k' . (21)

B. Integral for £ — £' odd, k ^ k'

In the case £ — £' odd, the hypergeometric fimctions in (12) and (13) do not reduce

to finite polynomials. The integral in (1) is now given by (12) for k' < k and'by (13)

for k' > k. These two expressions can again be written more compactly using the step

function, viz., we can write, for k ^ k\

h,v{k. k') = gt,t'{k, k')d{k - k') + g,.,i{k', k)0{k' - k)
. (22)

Although the hypergeometric fimctions in (12) and (13) appear to be rather intractible for

£ — £' odd, we show in Section IV that they can be expressed in terms of Legendre functions



of the second kind, i.e., in terms of polynomials and the logarithm, log
|

\. Explicit

expressions for specific values of £ and £' are given at the end of this note.

III. The region k' ^ k

We now consider the region aroimd k = k' and a possible term S(k' — k) in l£^£i{k, k').

Note that thus far we have assumed k' ^ k, for which the delta function would not appear.

We therefore examine, for arbitrarily small positive ei and 62 ,
the integral *

h
pk-\-e2 /“C

/
g{k')dk'

/
J k— €i Jo

je{kr)jf{k'r)r‘^dr (23)

where g{k') is assumed to be a continuous function having at least one derivative in the

region k — e\ < ^ + €2 ,
but otherwise arbitrary. Inverting the order of integration we

have

yoo rk+e2

l6= r'^ dr j£{kr) / j£<{k'r)g{k')dk' . (24)
Jo Jk— t\

Now it is clear that the contribution to the outer integral from any finite region of r goes

to zero when ei —> 0 “*“, 62 ^ 0
"*“.

Thus we can write

yOO rk+ £2

Is dr j£{kr) / j£>{k'r)g{k')dk' . (25)
Jn Jk-ei

* Although we do not write it explicitly, one may consider the inner integral over r in

(23) to have a convergence factor e~‘^. The remaining steps are then justified, and the

limit £ ^ 0 caji be taken at the end.

8



with N arbitrarily large but finite. Now the arguments of both of the spherical Bessel func-

tions in (25) are arbitrarily large, and hence we can substitute their asymptotic expansions

and obtain

h = -r

1 f f
—

I
dr sm{kr — I

^ Jn Jk

sin(fc'r - U'tt)
g{k')dk' (26)

-ei

(Note that we need to retain only the first term in each of the asymptotic expansions;

the terms of higher order in 1/k'r or 1 /^r give contributions which go to zero when

Cl 0 ‘'',e2 —> O"*".) Writing h{k') = g{k')/k' in the inner integral in (26), an integration

by parts gives

sm{k'r — 'K)h[k')dk'
— cos{k'r —

r
h{k')

k+e2

k-€i

-1 rk+e2

+ - cosik'r — ^i'7r)h'{k')dk' . (27)
r Jk-e,

We may now neglect the integral on the right-hand side of (27), since its contribution to

the integral over r goes to zero when ei —> O"*”, 62 —> We then have

1 f°° dr ,

±6 = — I — sm(fcr — x^tt)
k Jn r

X [/i(/j — ei) cos((/c — ei)r — — h{k + €2) cos (^{k e2)r — . (28)

Here, although ei << k and 62 << k, we cannot take the terms ejr and £2 ^ be small

since r —> 00 in the integrand. We then obtain, for the terms in
[ ]

in (28),

9



- cos{kr — [h{k — €i) cos eir — h{k -f €2) cos e2r)

+ — sin(^’r — [h{k — Ci) sin Cir + h{k + ^2) sin €2^)

(29)

Next we combine these terms with the remaining factor in the integrand, writing

sin(A:r — cos{kr — ^ [sin(^' ~'^)f -\-sm2kr cos{i' —cos2kr sin(^'

and

sm{kr—^i7r)sin(kr — ^i'TT) =
| [cos(^'— £)-| — sin2/:r sin(^'+^)^ — cos2fcr cos(£'+^) j]

(
30

)

The integrals to be evaluated are then, apart from factors independent of Ci and 62, of the

form

f
cos €ir — cos €2r .

Ji= dr ( 1
,
sm 2 A:r, cos 2kr)

In r

I COS £1 V
J2 =€. I dr ( 1

,
sin 2kr, cos 2kr)

(
31

)

Jn ^

roo
/ Sin £ir . r,,

J3 = (l,e) / dr (1, sm 2 kr, cos 2kr)
Jn r

and integrals obtained from J2 and J3 with Ci replaced by €2- Here, in J2 and J3, the

factor € represents a term of order e\ or 62, e.g., h{k — ci) — h[k) or h{k + €2) ~ h{k) .

In the integrands in
(
31 ), terms with factors sin 2kr or cos 2kr can be combined,

writing

10



cos eiT sin 2kr = |[sin(2A; + €i)r + sin(2/: — ei)r]

sin Cir cos 2kr — |[sin(2A: + ei)r — sin(2A; — ei)r]

cos eir cos 2kr = |[cos(2A: + € 1 )
7’ + cos(2/i: — Ci)?']

sin eir sin 2kr = |[— cos(2A; + €i)r + cos(2A: — ei )r]

Thus the terms in J2 are all of the form

(32)

f
dr

e I
— cos eir

,

or

/•°® dr
/

— sin {2k dz ei)r
,

JN ^

/°° dr
/

— cos {2k ± ei)r
Jn r

(33)

In the limit of small ei, these integrals are, respectively, of order e log(A^ei), e, and e,

and hence go to zero when €1 —> O"*", e2 —> Next, the terms in J3 are of the form

(1,^) r
JN

sm cir
dr

or

(1,^) r
JN

(1,^) r
JN

[cos(2A; — ei)r — cos(2 A: + €i)r]

[sin(2 /: + ei)r — sin( 2 fc — ei )r]

dr

dr (34)

All three integrals here have finite integrands as r —> 0, and the contribution to the integrals

11



from finite r goes to zero when we take the limit ei —>0'^. We may thus extend the lower

limit of these integrals to r = 0 and evaluate them exactly. The integrals in (34) are then

and

sm €ir
dr

r

TT

2
(35)

I

oo
cos(2A: — ei)r — cos(2A: + ei)r

r
log

2k + €i

2k — Cl
(36)

Thus in the limit Ci —^ 0"^, the last two integrals in (34) are zero and the first is y.

Moreover we may neglect the terms with a factor e multiplying the first integral in (34).

We have, finally, the integrals in Ji. Here, as with the integrals in J3 ,
the integrands

are finite as r 0 and the contribution from finite r goes to zero as ei —> 0 "^, e2 —> 0 *^.

We may thus again extend the lower limit of these integrals and evaluate them exactly.

We then find

cos ciT — cos e2 r

(
1

,
sin 2/i:r, cos 2/cr) dr = (log —

,
0

, i log
{2k + Cl )(2k — Cl)

(
2k + C2 )( 2k — 62 )

(37)

The last term here gives zero in the limit ei —> 0“^, 62 —^ O'^, independently of the order

in which Ci and C2 go to the limit. We thus have, now including the relevant factors from

(28) and (30), and substituting h{k) = g{k)/k,

h =
2fc2

TT

g{k)\og — s\n{^'

-

+ — g{k) cos{^'

-

(38)

12



Thus, for t — II! even we have

^ (
39

)

i.e., for i — i' even, Ie^£'(k,k') has a term
2^ ~^)/2 which we may write

more symmetrically as

Sik'-k)

On the other hand, for £ — i' odd we have

(40)

Is
2P gW (41)

This contribution is infinite if ei and €2 approach their limits independently and can have

any finite value if Ci and £2 ^-re related linearly. However, it is zero if Ci = £2 ?
that is,

referring to the definition of Is given in (23), we get no contribution from an integration

over the region k' = k that integral is considered as a principle part. This conclusion

is clear if we consider the expansion of l£^£i{k,k') and l£>^£{k',k) in the neighborhood of

k' = k for £ — £' odd. The expansion of the hypergeometric functions in (12) and (13)

about the point ^ ~ ^ £ — £' odd is given in [2], p. 75 (4):

and

+ ^' k'>k (42)

13



where R and R' are terms which are finite as y —+ 1 and p ^ 1 ,
respectively. Thus,

in the neighborhood of k' = for both k' < k and k' > k, we can write, for £ — £' odd.

Ie,£'{k,k') = l£>^e{k',k) = • ^ + finite terms
. (43)

The behavior of l£^£'{k^k') for £ — £' even is very different. Although there is a delta

function 6{k' — k), the limits k' ^ k — 0 and k' k 0 are finite: From (12) and (13), for

£>£'

lim
k'-^k-O

l£,£>{k,k')
4k^

{£-£'){£ + £' + 1
)

(44)

lim
k'-*k+0

Ie,e'{k,k') = 0

while for £' > £

(45)

IV. Expression of l£^£'{k,k') in terms of Legendre functions

In this section we show that the integral, (1), can be expressed in terms of Legendre

functions. Specifically, for £ — £' even it can be expressed in terms of Legendre polynomials,

P/, and for £ — £' odd it can be expressed in terms of Legendre functions of the second kind,

Q/, which can in turn be expressed in terms of elementary functions and the logarithm,

lim l£ £i(k,k') = 0
Jt-o

’ ^ ^

lim l££i(k,k')
c' —fc+O ’

7r(-l)

4k^
{£'-£){£ + £' + 1

)

14



log| [. The expressions for k') may be written in several forms, both for £ — i'

even and for i — odd. Since all of these expressions have the form of derivatives of the

Legendre function, we choose that form which has the least number of derivatives for a

given set of indices,* £,£'. The results then fall into four categories:

(1) £ — £' even
,
{&)£<£'

,
(b) £ > £'

(2) £-£' odd
,
{^)£<£'

,
(b) £>£•

(1) £ — £' even

(a) £<£'

In this case the integral, (1), is given by l£^i'{k^k') in (13), for k < k\ and is zero

for k' < k, from (12). We first transform the hypergeometric function in (13) using [2],

p. 102 (5):

( 1) (a)n(c
1

2 Fi(a + n,6;c+ n;z) = ^ [(1 - z)“+" Si^i(a, 6; c; z)]
(c)n

(46)

We then have, for the hypergeometric function in (13), with n = £,

d‘

d{x'‘Y
(1 _ ;r")(w'+i)/2 -e+3 e-e'

2 ’ 2 + 1
;

(47)

* Specifically, the minimum number of derivatives is ^< + 1.

15



where

0 < a: (48)

Now for i — t' even and i < £' the hypergeometric function on the right-hand side of (47)

can be expressed directly in terms of Legendre polynomials. Using [2], pp. 126, 127 (22),

-7rl/2x(x2 - 1)1/2

r(i + ^)r(^)^ ‘ (49)

Further, from [2], p. 140 (7),

T{£' - i)

r{e' -i + 2)
PI,_({x) (50)

and from [2], p. 148 (4),

Pl_e{x) (a:^ - 1)1/^ ^ Pe>-e{x) (51)

Thus, from (49)-(51),

2F1

e-e' + T -•
r +

1)
r r(f - e)

7ri/2a:r(^' -^-h2)

d ^ .V
—Pe<-e{x) .

ax

(52)

The question of the phcise of (a:^ — 1) in (49) and (51) does not, therefore, enter our final

expression. Substituting (52) in (47) and then substituting this in (13) we then have, after

16



considerable simplification of the gamma functions,*

Iff'ik k') -
^

^+1 ^ _ 2 x (£-£'- 1)/2

X
d{x'^Y

^ Pe-e{x)
ax

e{k' - k) (53)

for £ — C even, £ < £\ with x = k/k'

.

In particular, for £ = 0, (53) reduces to the very simple result

/o,^'(^, k')
7r(-l) -^'-1 d

2kk''^ dx
— Pi.{x)-e{k'-k) . (54)

Next we consider

(1) £ — £' even

(b) £>£'

In this case the integral, (1), is given by l£^£’{k, k') in (12), for k' < k, and is. zero for

k' > k, from (13). We now transform the hypergeometric fimction in (12), again using (46),

but now set n = £'

.

Observing that (12) may be obtained from (13) by the interchange

£ ^ £'
^
k k'

,

we follow the identical steps leading from (13) to (53) and obtain, for £ — £'

even, £ > £'

,

with

0 < y
k'

1 < ^ (55)

* We use, extensively, r( 2:) T{\ — z) = -k

/

sin ttz and r(22) = 2^^ ^ tt r(-2^) r(2^ + |)-

17



/'+ 1

(1 _ j^

2 ^(^'-£- 1)/2

S'
""

d{y^r
,-l(l_,2)(.4-.'-fl)/2^p^_^,(^)

• 9{k - k') (56)

Now, for £' = 0, (56) reduces to

I,Mk,k') =
‘

^P,{y)-e{k-k') .
(57 )

Next we consider

(2) £-£' odd

(a) £<£'

For £ — £' odd, the integral (1) is given by l£^£i{k,k') in (22). We again make use of

(46)

,
and now apply it to both of the hypergeometric functions in (22), in both cases with

n = £. For the second hypergeometric function in (22) we then have the result given in

(47)

. (Note, however, that now none of the parameters in the hypergeometric functions in

(47) is a negative integer or zero, since now £ — £' is odd.) For the first hypergeometric

function in (22) we have

p, ( ^+£'+32^1 —2—

’

i' -t.

2 + 1; + |;
y'

(_l)^(r-^+|),(l-y2)(^-^'-l)/2

S
^ d{y^y

(1
e'-e

2
+ !;£'-£ + . (58)
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The hypergeometric function on the right-hand side of (58) can now be expressed in terms

of the Legendre functions of the second kind using [2], pp. 134, 135 (41):

2Fl(^,^ + l;r-^+|;y^) (59)

We then use [2], p. 148 (5):

Q\,_t{x) = {x^ - X)'!'^ — Q,:-i{x) (60)

from which

2-Fi f £'-£+3

\ 2

£'-£

2
+ l;£'-i +

2£'-£+i + I )

7ri/2 r(f-^-|- 2
)

^^'-f+2
-^Qf-Ax)

(61)

For I — i' odd, the hypergeometric function in (47) can be expressed in terms of

Legendre fimctions of the second kind and Legendre polynomials (rather than in terms of

Legendre polynomials alone, as in (49)-(52)). From [2], pp. 134, 135 (40) and pp. 126, 127

(22), we have, for I — I' odd and I <

19



and

;rl /2 (;,2 _ 1
)

1/2

2r(^^ + i)r(^) + ^-^' + 1 . 1.
) 2 > (63)

In (62), in the exponential, the upper sign is taken for Imx > 0, the lower sign for

Imx < 0. This sign will, however, drop out of our final result. From (62) and (63) we now

have, using (50), (51), (60), and from [2], p. 140 (2),

Qt-M
r{i' - £)

r(P -e + 2)
(64)

-£+3
2

+ 1;

X A
dx

(Q£>^£{x) ±
iir

~2 P£>-£{X
)) (65)

Substituting (61) in (58) and (65) in (47), then substituting both of these in (22), and

again simplifying the gamma functions, we have, for k') as given in (22), with i — £'

odd and i < £'

,
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Ie,v{Kk') =

(
66

)

(_l)(^+^'-l)/2 a-^+l (i_^2)(^-£'-l)/2

(Note the last term in (66), involving the term Pf/_^(x), is identical to the result given in

(53).) In (66), if A: > A:' then the second term on the right-hand side is zero in view of the

factor ^(A;' — A:), and, in the first term, x = l/y = k/k'>l. On the other hand, if A; < A:'

then the first term is zero, and, in the second term, x = k/k' < 1. Now from [2], p. 152

(24) we have

Q„(z) = ip„(z)log(f±l) - Tr„_.(z) (67)

where Wn-\{z) is a polynomial of degree n — 1. For z = x ± fO where 0 < x < 1 we can

then write log(z — 1) = log(l — x) ± itt and

ZTT

(5n(a:±z0) ± —Pn{x) = |P„(x)log(i±f) - W„.,(x)

= Qn(^) (68)
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from [2], p. 153 (26).* We thus have, for i — t' odd and i < i'

y^' + l
(1 _ ^2^(^-£'-l)/2

d{y^Y
d{k - k')

(_l)(^+^'-l)/2 ^t+l
(1 _ ^2)(^-£'-l)/2

S
d{x'^Y

-1

dx
e{k' - k)

. (69)

Finally, for •£ — £' odd and i > i'

,

since Ie^e'{k,k') as given in (22) is invariant under the

interchange i ^ ^ fc', we have

* We use Qn to describe the function defined in [2], p. 143 (2):

Q„(x) = |[Qn(a: + fO) -f Qn(a: - fO)]
,

-1 < x < 1.
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d^'

d{x'^)2V’
X

dy
e{k' - k)

+
(_l)(^+^'-l)/2 yi'+ l

(1 _ ^2^(£'-£-l)/2

S'
^

diy^r
^-1(1_,2)(.+.'+1)/2^q^_^,(^) 0{k-k') . (70)

In particular, for ^ = 0, (69) reduces to

Io,Hk,k')
(_l)(^'-l)/2

ki^

d

dx
Qi>{x)-e{k-k')

+
(_l)(^'-l)/2 A

dx
Qe'{x) 9{k' - k) (71)

Similarly, from (70), for ^' = 0 we have

^e,o{k. k') = - Q,(y) • 0(k' - k)

(_l)(^-l)/2 d

23



If we define, for both 0 < a: < 1 and x > 1,

Qn{x) = ReQn{x) = lPn{x)\og
1 + a:

1 — X

= i-Pn(2:)log
k k[J

k - k'
-Wr,-i{x) (73)

then we can write the expressions in (71) and (72) in the simpler form

^

^ QAx) (74)

I>Ak,k') =
^ Q,iy) (75)
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