
U.S. DEPARTMENT OF COMMERCE
National Institute of Standards and Technology

NISTIR 4351

NationalPDFS Testbed

Report Series

The NISTWorking
Form for STEP

NATIONAL

TESTBED



-



U.S. DEPARTMENT OF COMMERCE
National Institute of Standards and Technology

NISTIR 4351

NationalPDFS Testbed

NA

1 The NISTWorking
Form for STEPi
Stephen Nowland Clark

U.S. DEPARTMENT OF

COMMERCE

Robert A. Mosbacher,

Secretary of Commerce

National Institute of

Standards and Technology

John W. Lyons, Director

June 11, 1990

fMisr



Disclaimer

No approval or endorsement of any commercial product by the National Institute of

Standards and Technology is intended or implied

Smalltalk-80 is a trademark of ParcPlace Systems, Inc.

Sun-3 and Sun-4 are trademarks of Sun Microsystems, Inc.

UNIX is a trademark of AT&T Technologies, Inc.



The NIST Working Form for STEP

Stephen Nowland Clark

1 Introduction

STEPparse, the NIST STEP physical file parser, and the associated STEP Working

Form, are Public Domain tools for manipulating product models stored in the STEP
physical file format [AltemuellerSS]. These tools.are a part of the NIST PDFS Toolkit

[Clark90a], and are geared particularly toward building STEP translators. The STEP
Working Form is an in-memory representation for STEP product models. It relies on

the NIST Express Working Form [ClarkQOb] as an in-core data dictionary, which pro-

vides a context in which STEP models can be interpreted. The Working Form code and

the STEPparse parser itself are both written to be independent of any particular schema:

simply plug in some Express language information model [Schenck89], and the code is

ready to run.

A primary goal in the development of STEPparse was to provide a clean back-end in-

terface which would allow various output modules to be easily plugged into the basic

front-end parser. To accomplish this, the parser builds up a set of data structures (the

STEP Working Form) containing all of the information in a STEP source fde. It can

then dynamically load one or more output modules. Each module walks through the

Working Form, extracting relevant subsets of the available data and producing an ap-

propriately formatted output file. Two STEPparse output modules are provided with

the NIST PDFS Toolkit: one which produces Smalltalk-80™ object instantiations and

one which loads an SQL database from the STEP Working Form [Nickerson90]. The

former is used by QDES [Clark90d], a prototype STEP model editor written in Small-

talk-80.

1.1 Context

The PDFS (Product Data Exchange using STEP) activity is the United States’ effort in

support of the Standard for the Exchange of Product Model Data (STEP), an emerging

international standard for the interchange of product data between various vendors’

CAD/CAM systems and other manufacturing-related software [Smith88]. A National

PDFS Testbed has been established at the National Institute of Standards and Technol-

ogy to provide testing and validation facilities for the emerging standard. The Testbed

is funded by the CALS (Computer-aided Acquisition and Logistic Support) program of

the Office of the Secretary of Defense. As part of the testing effort, NIST is charged

with providing a software toolkit for manipulating PDFS data. This NIST PDFS Tool-

kit is an evolving, research-oriented set of software tools. This document is one of a set

of reports which describe various aspects of the Toolkit. An overview of the Toolkit is

provided in [Clark90a], along with references to the other documents in the set.

The NIST Working Form for STEP Page 1



Stephen Nowland Clark

2 Implementation Environment

STEPparse and the STEP Working Form were developed on Sun Microsystems Sun-

and Sun-4T‘'^ workstations running the UNIX’’"'^ operating system. The parser is im-

plemented in Yacc and Lex, the UNIX tools for generating parsers and lexical analyz-

ers. The Working Form data structures are implemented in ANSI Standard C
[ANSI89]. The grammar for the language is processed by Bison, the Free Software

Foundation’s^ implementation of the Yacc parser generator. The lexical analyzer is

produced by Flex , a fast, public domain implementation of Lex. The C compiler used

is gcc, also a product of the Free Software Foundation.

3 Running STEPparse

STEPparse takes several optional command-line arguments:

STEPparse [-d <number>]

[-e <express>]

[-S <step>]
The -d option controls the debugging level; the argument can range from 0 (the de-

fault) to 10. The Express schema file is specified with -e; if no -e option is given, the

schema is read from standard input. The STEP input file is specified with -s; again,

standard input is read if there is no -s option. At least one of -e or -s must be spec-

ified; STEPparse cannot read both from stardard input.

STEPparse can be built in two different ways, resulting in different interaction patterns.

For many applications, a single output module is bound into the translator at build time.

In this statically linked case, after the STEP source file has been parsed, the user is nor-

mally prompted for a single file name. This is the name of the file to which

STEPparse’s output will be written. In the other (dynamically linked) version, no spe-

cific output module is loaded at build time. In this case, after parsing its input, the pro-

gram asks for an output module. If the file named is an appropriate object file, it is

loaded and an output file name requested, which is where the output will be written.

Another output module is then requested, and this sequence continues until the user en-

ters an empty line as the name of the output module, which signals STEPparse to exit.

This dynamic loading facility is only available under BSD4.2 UNIX and its derivates.

1. The Free Software Foundation (FSF) of Cambridge, Massachusetts is responsible for the GNU Project,

whose ultimate goal is to provide a free implementation of the UNIX operating system and environment.

These tools are not in the Public Domain; FSF retains ownership and copyright priviledges, but grants free

distribution rights under certain terms. At this writing, further information is available by electronic mail on

the Internet from gnu(a)prep.ai.mit.edu.

2. Vem Paxson’s Fast Lex is usually distributed with GNU software, although, being in the Public Domain,

it is not an FSF product and does not come under the FSF licensing restrictions.

The NIST Working Form for STEP Page 2



Stephen Nowland Clark

4 Design Overview

The STEP Working Form (WF) is designed in an object-oriented fashion, and is intend-

ed to mesh cleanly with the NIST Express Working Form. Indeed, the WF currently

relies on the structures of the Express Working Form as an in-memory data dictionary.

This section discusses the design of the Working Form, describing STEPparse control

flow as well as the data abstractions of the WF. More technical detail can be found in

[Clark90c].

4.1 STEPparse Control Flow

A STEPparse translator consists of two separate passes: parsing and output generation.

The first pass builds an instantiated product model from a STEP source file. This model

can then be traversed by an output module in the second pass, producing whatever re-

port is desired.

As currently implemented, STEPparse must, in fact, parse an Express schema (with

Fed-X) before it can interpret the constructs in a STEP physical file. To do this,

STEPparse first invokes Fed-X ’s first two passes to build a data dictionary, and then

proceeds to parse its STEP source file.

4.2 Working Form Data Structures

The STEP Working Form consists of two data abstractions. The Object abstraction rep-

resents individual entity instances in a product model, as well as aggregates and un-

structured values (integers, booleans, etc.). A more object-oriented design would

clearly break these down into several separate subclasses of Object; implementation

considerations have resulted in a single module. The other abstraction represents a

complete product model. This basically consists of an ordered collection of Objects and

an Express model to give it a context. The Working Form currently does not record

header information (as found in STEP physical files), although this would certainly be

useful.

4.2.1 Object

As mentioned above, the Object abstraction is really the union of several other concep-

tual classes, representing entity instances, simple-typed data (integer values, booleans,

etc.), and various kinds of aggregates. Most of the access functions for this abstraction

are restricted to act on Objects of certain classes, which indicates very clearly the need

for this module to be broken down into its component classes; this has not been done,

primarily because of limitations of the implementation language, C.

Certain attributes are common to all Objects. For example, each object is marked with

a Type, which determines the context(s) in which it can be used. The Type also pro-

vides an interpretation for the Object’s value. A user data field is provided so that an

arbitrary C pointer can be associated with each Object in an instantiated model. This

allows a Working Form model to be linked to the internal data structures of a solid mod-

eler, for example.

The NIST Working Form for STEP Page 3



Stephen Nowland Clark

Finally, every Object has a value field. The type of this field varies widely with the type

of the Object, but there are three primary classes: simple (unstructured) values, aggre-

gates, and entity instances. Examples of Objects with simple values are numbers,

strings, and booleans. These objects each have a single, atomic value of the corre-

sponding C type (int, char*, etc.). An aggregate (which may be an array, bag, list,

or set) consists of a collection of values, each of which is itself an Object. These ele-

ments can be accessed via indexing, with valid indices ranging between lower and up-

per bounds specified in Express. The Express language also specifies type-specific

operations for each class of aggregates, such as intersection and union of sets and bags,

and list concatenation. These operations are provided by the STEP WE as the preferred

mode of interaction with aggregate Objects. An entity instance’s value again consists

of a collection of Objects. These are accessed by name, using the attribute names from

the entity’s class.

An Object may have a name. Normally, only external (non-embedded) entities will be

named; all other Objects will have NULL names. This is due to the usage prescribed by

STEP: an embedded entity cannot be referenced outside of the immediate context in

which it is defined, and so has no need for a name. An external entity, on the other hand,

can be referenced by any other entity in a product model. This reference requires the

entity’s name as a handle.

4.2.2 Product

The Product abstraction ties things together in the STEP Working Form. This module

is used to represent a PDES product model as a whole. A Product consists of a collec-

tion of (presumably interconnected) Objects and an Express conceptual schema to give

these Objects context. This schema serves as a data dictionary for the Product. Exter-

nal entities in a Product can be looked up by name; other Objects can only be retrieved

by coming upon them as components of known Objects.

Externally, a Product looks like a somewhat intelligent container object. New Object

(entity) instances can be added to this container, and existing Objects can be retrieved

from it by name. Additional functionality can be gained from the attached Express in-

formation model.

5 Missing Features

Currently, the Working Form does not handle user-defined entities. STEPparse accepts

user-defined entities in a source file, and prints a warning message indicating that they

cannot be represented in the Working Form.

As mentioned above, file header information from PDES/STEP physical files is not re-

tained in the Working Form, although STEPparse silently accepts file headers.

Aggregates with non-constant expressions as bounds are not handled properly. Such

an aggregate’s type information accurately reflects the true upper bound, but the STEP
WF routines treat the bound as if it were unspecified. Since unbounded aggregates are

dynamically sized, this does not cause memory management problems; the only draw-

back is that the Working Form does not enforce size constraints on such aggregates.

The NIST Working Form for STEP Page 4



Stephen Nowland Clark

Comments are currently discarded during lexical analysis, and so currently have no

chance to be recorded by the parser. There has been some interest in developing a

mechanism through which applications which modify STEP physical files can preserve

comments found in the input file.

6 Conclusion

The combination of the STEP Working Form with an Express Working Form data dic-

tionary provides a flexible mechanism for performing various manipulations of PDFS
data in a schema-independent manner. Although it remains to be seem how useful this

schema-independence will be in higher-level end-user applications (e.g., design editors,

configuration management systems, and process planning systems), the present archi-

tecture is quite useful for such generic tasks as translation and database loading.

For further information on STEPparse, the STEP Working Form, or other components

of the Toolkit, or to obtain a copy of the software, use the attached order form.

The NIST Working Form for STEP Page 5



Stephen Nowland Clark

A References

[Altemueller88] Altemueller, J., The STEP File Structure. ISO TC184/SC4AVG1
Document N279, September, 1988

[ANSI89] American National Standards Institute, Proerammine Lansuaee C.

Document ANSI X3. 159-1989

[Clark90a] Clark, S. N., An Introduction to The NIST PDES Toolkit, NISTIR

4336, National Institute of Standards and Technology, Gaithersburg,

MD, May 1990

[Clark90b] Clark, S.N., Fed-X: The NIST Express Translator, NISTIR,

National Institute of Standards and Technology, Gaithersburg, MD,
forthcoming

[Clark90c] Clark, S.N., NIST STEP Working Form Programmer’s Reference,

NISTIR 4353, National Institute of Standards and Technology,

Gaithersburg, MD, June 1990

[Clark90d] Clark, S.N., ODES User’s Guide, NISTIR 4361, National Institute

of Standards and Technology, Gaithersburg, MD, June 1990

[Nickerson90] Nickerson, D., The NIST SOL Database Loader: STEP Working

Form to SOL, NISTIR 4337, National Institute of Standards and

Technology, Gaithersburg, MD, May 1990

[Schenck89] Schenck, D., ed.. Information Modeling Language Express:

Language Reference Manual, ISO TC184/SC4AVG1 Document

N362, May 1989

[Smith88] Smith, B., and G. Rinaudot, eds.. Product Data Exchange

Specification First Working Draft, NISTIR 88-4004, National

Institute of Standards and Technology, Gaithersburg, MD,
December 1988

The NIST Working Form for STEP Page 6



ORDER and INFORMATION FORM

MAIL TO:

NATIONAL

TESTBED -

National Institute of Standards and Technology

Gaithersburg MD., 20899

Metrology Building, Rm-A127

Attn: Secretary National PDES Testbed

(301) 975-3508

Please send the following documents
and/or software:

I I

Clark. S.N.. An Introduction to The NIST PDES Toolkit

I I

Clark, S.N., The NIST PDES Toolkit: Technical Fundamentals

I I

Clark, S >1., Fed-X: The NIST Express Translator

I I

Clark. S J9.. The NIST Working Form fty STEP

I I

Clark, S.N., NIST Express Working Form Programmer’s Reference

I [

Clark. S.N.. NIST STEP Working Form Programmer’s Reference .

I I

Clark. S JJ.. ODES User’s Guide

[ I

Clark, S.N., ODES Administrative Guide

[ I

Morris, K.C., Translating Express to SQL: A User’s Guide

I I

Nickerson, D., The NIST SQL Database Loader: STEP Working Form to

SOL

I I

Strouse, K., McLay, M., The PDES Testbed User’s Guide

OTHER (PLEASE SPECIFY)

These documents and corresponding software will be
available from NTIS in the future. \^en available, the

NTIS ordering information will be forthcoming.

iMisr



ft

L- ...

-
V ipi.

^ t‘I
•

:,.

'

,.,i .vr*.*



NIST-1 14A U.S. DEPARTMENT OF COMMERCE 1. PUBUCAT10N OR REPORT NUMBER

(REV. 3-«9) NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY NISTIR 4351

BIBLIOGRAPHIC DATA SHEET
2. PERFORMING ORGANIZATION REPORT NUMBER

3. PUBUCATION DATE
JULY 1990

4. TITLE AND SUBTITLE

"The NIST Working Form for STEP"

5. AUTHOR(S)

Stephen Nowland Clark

6. PERFORMING ORGANIZATION (IF JOINT OR OTHER THAN NIST, SEE INSTRUCTIONS)

U.S. DEPARTMENT OF COMMERCE
NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY
GAITHERSBURG, MO 20899

7. CONTRACT/GRANT NUMBER

8. TYPE OF REPORT AND PERIOD COVERED

9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (STREET, CITY, STATE, ZIP)

10. SUPPLEMENTARY NOTES

DOCUMENT DESCRIBES A COMPUTER PROGRAM; SF-18S, FIPS SOFTWARE SUMMARY, IS ATTACHED.

11. ABSTRACT (A 200-WORD OR LESS FACTUAL SUMMARY OF MOST SIGNIFICANT INFORMATION. IF DOCUMENT INCLUDES A SIGNIFICANT BIBUOGRAPHY OR
UTERATURE SURVEY, MENTION IT HERE.)

The Product Data Exchange Specification (PDES) is an emerging standard for the exchange

of product information among various manufacturing applications. The neutral exchange

medium for PDES product models is the STEP physical file format. The National PDES Testbed

at NIST has developed software to manipulate and translate STEP models. This software

consists of an in-memory working form and an associated physical file parser, STEPparse.

The design and capabilities of STEPparse and of the STEP Working Form are discussed.

12. KEY WORDS (6 TO 12 ENTRIES; ALPHABETICAL ORDER; CAPITALIZE ONLY PROPER NAMES; AND SEPARATE KEY WORDS BY SEMICOLONS)

data modeling; product data exchange; PDES; PDES Implementation tools; schema-independent

software; STEP; STEP physical file

13. AVAILABILITY 14. NUMBER OF PRINTED PAGES

X UNUMITED 11
FOR OFFICIAL DISTRIBUTION. DO NOT RELEASE TO NATIONAL TECHNICAL INFORMATION SERVICE (NTIS).

ORDER FROM SUPERINTENDENT OF DOCUMENTS, U.S. GOVERNMENT PRINTING OFFICE,
WASHINGTON, DC 20402.

15. PRICE

AO 2

X ORDER FROM NATIONAL TECHNICAL INFORMATION SERVICE (NTIS), SPRINQRELD, VA 22161.

ELECTRONIC FORM



ithit,.

UU

'. .\:\r.

idiWitt'- jsi -B.U ,•%: ® ,,..

.^VWOW«U|t0tA

msm Arm,

-»r— I Kill Mil
I lAi

isw^iorife
' '

'
'

"' I » II...
, -j

I ^ I f
l^iii'iTiin H I >iiiiM I i

‘.ii^iiiii
'

( rt.llii iii(| i iiKiii >!
I

'

^

I /> n il I III II I r K i
jf l | [ |l|

•

|l l
ll \i\m ft i i n ii '• »> - <•<

"

'•iS): PKjciwu.'
'•fK’.t mv. '

’•>. ft

I
'

vi'H.f^-r r;'i« 4o»«ll>i»W
,,; y - >

IKS fii^S!»tHJwil^i

aigafc-Jsjcf »d> 'tolt b^nbtiA'if afi %4
•saftadsx* i«rnj»n fl4T '

h--d3>-.r»Y ?ia9 .Ifcrt©l3RV{ .ar{t.^ .4wrj|>;X

liXift eldbc^ffi

»>'rjifrr^3TE .T.#e-,nq ;»/ ri/

pacMwauib mot ijni'WtoH vOTe: srff,

’m^
'*'1 '91^9

ii,*-^,,;..

.®

»

i

111,

I'T^'o'Sb^i^STuJCiM^

i)n-Jjn*n»hffl«iUftti><o<| jftXpoi iStialH)iVf ’i|

:

2V
" ' '

" # 'I
I

v; 'f'l-

,. ,.^ - .iji!!;-.
, , ..

njut* PkWiw *jSimim "' ?

J

I

'^t8Sm

'.OA

;
vji.,.

,
,

.v

(mij wfirr^wsiotriw^^ ^

.1 M
Of 1

ftOKIHfTli

•in'"

ji/iisimmf''.

*' ^v^;a

' ^'ViwSi

sV '^v'






