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The Consolidated Compartment Fire Model (CCFM) Computer Code

Application CCFM.VENTS - Part IV: Software Reference Guide

Glenn P. Forney and Leonard Y. Cooper

ABSTRACT

A project was carried out at The National Institute of Standards and Technology (NIST) to study the feasibility of

developing a new-generation, multi-room, compartment fire model computer code, called the Consolidated

Compartment Fire Model (CCFM) computer code. The idea was that such a code would consolidate past progress in

zone-type compartment fire modeling, and allow readily for integration of future advances with the greatest possible

flexibility. Desired features of the CCFM would include: comprehensive documentation, user-friendliness,

significant modularity, numerical robustness, and versatility in the sense that the code would provide a capability of

analyzing a particular compartment fire problem by using any one of a range of physical-phenomena-modeling

sophistication, from the most basic to the most comprehensive. The project led to the development of a prototype

multi-room CCFM product called CCFM.VENTS. CCFM.VENTS involves a model formulation and code

structure that allows for the required future CCFM growth flexibility. It has a relatively sophisticated and very

general room-to-room forced and unforced vent flow capability. Finally, the CCM.VENTS code uses the simplest

possible, point-source-plume, smoke-filling fire physics in the rooms-of- fire-origin and a very simple heat transfer

calculation there and in other spaces.

This is Part II of a four-part report which documents CCFM.VENTS. The main objective of this Part II document

is to document the design and the underlying structure of the CCFM.VENTS computer software. It serves as a guide

for those persons interested in extending, modifying and if necessary correcting CCFM.VENTS at a later date.

The other three parts of this report are: Part I: Physical Basis; Part IH: Catalog of Algorithms and Subroutines; Part

IV: Users' Reference Guide.

Keywords: building fires; compartment fires; computer models; fire models; mathematical

models; vents; zone models
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1 . Introduction and Overview

The purpose of this document is to give the reader insight into the underlying structure and design

of CCFM.VENTS. This document is intended for those users of CCFM.VENTS who wish to

• extend its capabilities by installing additional physical models, modi-

fying input requirements, output display and/or modifying data struc-

tures

• understand the inner workings and structure of CCFM.VENTS.

In part I [10], the equations CCFM.VENTS uses to model fire phenomena are described. In part

m [11], the implementation of these equations into computational algorithms is presented . Part IV

[12] is a guide to using the software. This part (part II) explains how the physical algorithms are

linked together to form CCFM.VENTS. It also serves as a guide so that someone other than the

original developers can extend, modify, and if necessary correct CCFM.VENTS.

The framework or structure of CCFM.VENTS has two aspects: the algorithms or program

structure and the data structures. The algorithms are the plans for what calculations to per-

form and how to implement them. The data structures are the plans for storing the quantities that

are required by the algorithms. Program algorithms and data structures must be designed in con-

cert in order to achieve a practical implementation. Program attributes such as modularity, portabil-

ity and user friendliness are of little value if the desired computational results are not achieved in a

timely fashion.

The rest of this section gives an overview of the strategy used to program CCFM.VENTS. Sec-

tion 2 discusses the structure of CCFM.VENTS. Section 3 explains how to modify/add program

and data structure elements, how to install CCFM.VENTS on an IBM PC compatible computer

and what changes are required to move CCFM.VENTS to another computing environment. The

appendices document CCFM.VENTS' program and data structures. Appendices A and B are

glossaries for the program and data structures respectively. Appendix C lists the data file used by

CCFM.VENTS to define its menus and also the default fire scenario. This data file is called a

menu definition file and is discussed in Section 2.2.2.

To obtain a quick overview of CCFM.VENTS examine the figures, algorithms and tables of this

document first The figures illustrate the program and data structures, the algorithms detail the
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calculations and the tables detail the key data structures for each portion of CCFM.VENTS.

1 . 1 CCFM.VENTS Design Philosophy

The primary objective in the design of CCFM.VENTS was to translate the physical or modeling

equations into robust, efficient simulation software. A secondary objective was to design the

software modules of CCFM.VENTS so that they can be used in successors to this model. The

catalog of algorithms documented in Part HI [1 1], the INPUT module and utilities such as the

Memory Management Routines and the Character handling routines were written with this feature

in mind.

CCFM.VENTS was designed to be portable, in order to improve its robustness . A portable

program requires few software changes to install it on other computers. Any one computer/Fortran

compiler will not find all of a program's flaws and defects. Hidden assumptions built into a

program's design can be un-covered by porting it to several computers. In order to achieve

portability, a programming style had to be developed. Simply stated it was decided to strictly

follow the ANSI-FORTRAN 77 standard as defined by [ 1].

Software Modules in CCFM.VENTS were designed where possible to be re-usable. Plume,

natural vent and forced vent calculations are designed to be independent of the internal data

structures of CCFM.VENTS. All required input values and calculated output values are passed

through the subroutine argument lists. So they can be pulled out of CCFM.VENTS and used in

other fire models. The storage framework of CCFM.VENTS is not used within the low-level

physical routines, in other words these routines do not access CCFM.VENTS' common blocks.

Another feature important in the design of CCFM.VENTS is its maintainability. UPDATE, a

software tool on the CYBER 855/NOS was used to manage the development of CCFM.VENTS.

Similar tools exist on other computer systems. The purpose of this type of tool is to keep track of

software changes. Typically only differences are saved. Many versions of a software program

can be stored in one file by saving the differences between the current and the original version.

This usually takes less space than storing the complete program. In a large program it is very easy

(too easy) to make changes and then to forget where these changes were made. Using tools such

as this allows software to be developed in a team environment
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1 .2 CCFM.VENTS Programming Style Guidelines

In order to achieve the program design goals set forth in the previous section, a set of program-

ming guide-lines were developed. The guidelines are not arbitrary but serve a definite purpose as

detailed below.

1.2.1 Portability

Portability Guideline: Purpose of guideline: To simplify the installation of CCFM.VENTS on other computers.

• Strictly Follow FORTRAN 77 ANSI standard

Requirements not covered by the standard or parts of a program that may need to be changed when it is

ported to another computer are:

• file naming convention the allowed characters and length of file

names vary from computer to computer
• screen graphics

• floating point environment

CCEM.VENTS is designed to run on a number of different computers with minimal coding differ-

ences between the versions. It has been ported to micro-computers such as the Apple Macintosh,

the EBM PC and compatibles; mainframes such as the Cyber 855 and UNIX work stations such as

the Silicon Graphics Personal Iris, the Convex C120, the Sun Sparcstation 1, the Vax 8650 and

the IBM Rise 6000 Powerstation. Test cases run on the various computers listed above produce

results consistent with the solver error tolerances.

There are only 5 to 10 lines of code that are different between the Cyber 855, Apple Macintosh and

IBM PC versions. There are no differences in the various UNIX work station versions of

CCFM.VENTS. Most of the coding changes required to get CCFM.VENTS to run on a different

computer are in the input or output areas that are not addressed by the ANSI-77 Fortran standard.

For example the default name for the terminal input/output files for the Cyber is 'INPUT and

OUTPUT' but is 'C:' for the Concurrent 3252.

The floating point characteristic of most interest is the unit rounding or machine unit which is de-

fined to be the smallest positive floating point number which can be added to 1 to produce a

machine number different from 1. This is not the same as the smallest positive floating point num-

ber on the computer. This machine dependent parameter depends on the length of the fractional

portion (mantissa) of the machine representation for a real number. Getting machine dependent
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parameters correct is critical to insuring that a scientific code runs properly in different computing

environments.

The hard part then is designing a code to minimize the number of required changes. For machine

dependent parameters a popular approach for FORTRAN is to put the parameters for all

commercial machines into data statements in function subprograms with the names IIMACH, for

integer parameters, R1MACH, for real parameters, and D1MACH, for double precision param-

eters. When a code such as CCFM.VENTS is installed on a new machine, the installer must go

into these three routines and activate the data statements corresponding to his machine. This

involves changing a few comment statements into lines of code.

The user interface of CCFM.VENTS is presendy designed to run on all computers that support

standard FORTRAN 77. Since screen graphics is not a part of the ANSI FORTRAN 77 standard,

it is not possible to implement a "full-screen 1 " graphics interface (input and output) that will run on

a wide range of computers. One then has to write a different program for each computer to handle

its specialized graphics. The present strategy is to have one version of CCFM.VENTS that would

run on any computer that supports FORTRAN-77. Another strategy is to divide CCFM.VENTS

into three parts: a Graphics Input Interface, the Numerics Core, and the Graphics Output Interface.

The Numerics Core will be the same for all machines except for the slight differences in

I1MACH, R1MACH, and D1MACH. The front and back end portions of CCFM.VENTS

would then be customized to take advantage of the graphics available on the host computer.

As stated earlier another reason for installing a computer program on several computers is to make

the program more robust, i.e. run better. There are subde differences in how FORTRAN pro-

grams run on different computer systems. Even if they all support standard FORTRAN 77!

Errors that one computer system will tolerate will be caught by another. One example of this

phenomena of programs running differently on computers that support standard FORTRAN is in

the area of how computers initialize memory. There are three commonly used methods that

computers use to deal with memory that a program is about to use.

• load memory with indefinites - The computer's operating system loads the

programs "data area" with a value unlikely to be normally used. This value is

referred to as an indefinite. The operating system aborts your run if an arithmetic

A full-screen graphics program accesses terminal hardware such as cursor keys, the

home key, a mouse etc.
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operation is performed using an indefinite value. This method is the default

behavior of the CYBER 855.

• load memory with zeros - The computer's operating system sets the programs
"data space" to zero. This method is the behavior of the Concurrent 3252, IBM PC
and most UNIX work stations.

• keep memory the same - The computer's operating system does nothing with

the programs "data space". This method is the behavior of the Apple Macintosh.

A program designed assuming that memory is pre-loaded with zeros will not run on machines that

leave memory alone or load it with indefinites. A program designer would not normally depend on

computer characteristics such as zero memory pre-loading. This feature is dangerous to depend on

since it could change at any time.

1.2.2 Precision

This report will not debate whether 32 bits (single precision) is sufficient or 60-64 bits (full or

double precision) is necessary for scientific computing in general or fire modeling in particular.

That is the subject for another report Rather, the program precision guidelines are presented to

allow one to switch easily between single and double precision. If one starts out using single pre-

cision but finds that double precision is necessary then the conversion will be easy. This illustrates

another principle of good programming practice: "keep your options open." The guidelines to

achieve this are given by:

Program Procision Guideline Purpose of guideline: To simplify the conversion of CCFM.VENTS from

single to double precision

1 . every subroutine should have an IMPLICIT statement at the beginning: IMPLICIT REAL (A-H.O-Z)

for the real version of CCFM.VENTS and IMPLICIT DOUBLE PRECISION (A-H.O-Z) for the double

precision version.

2. Do not pass floating point constants to subroutines. Instead set a variable equal to the constant

and then pass that variable

3. All floating point constants used in the program should be of type double precision, e.g. 1 .0D0 not

1.0

4. For floating point variables do not over-ride the default type, i.e. variable names beginning with I, J,

... N should always be of type integer.

5. When using intrinsic functions (SIN, COS) always use the generic form (not DSIN, DCOS, DABS,

etc.).

If the above guidelines are followed then to switch precision one simply changes every statement

of the form
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IMPLICIT REAL (A-H,0-Z)

to

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

or visa versa.

1.2.3 Readability/Maintainability

A set of guidelines have been developed to improve the readability and maintainability of

CCFM.VENTS. As a software product matures more and more resources are devoted to its

maintenance rather than its design. To minimize the maintenance effort it is important to get the

design right in the beginning. Note that maintenance of a program is not simply the job of finding

and fixing bugs. It also includes updating and enhancing a programming product. These guide-

lines are not followed as strictly as the others and are given by:

Readabllity/Maintalnabillty Guldellna: Purpose of guidelines - To improve the readability and

maintainability of CCFM.VENTS

1 . calling subroutines with many arguments - put input arguments first, followed by output arguments.

In the sixth column (continuation column) put an T for lines containing input arguments and an ‘O’

for lines containing output arguments

2. documenting subroutines - Each subroutine shall contain a prologue describing the use and

purpose of the subroutine. It should have the following items in the prologue.

a. The first card in the prologue should be exactly C'BEG. This

signals to the program documentation generator that the

prologue is beginning.

b. a short description of the program

c. a description of each variable in the calling list and whether it is

an input, input/output or output variable

d. The last card in the prologue should be exactly, C*END. This

signals to the program documentation generator that the

prologue is finished.

3. Indent DO-loops and IF blocks in order to improve readability

4. When making a program change to improve efficiency weigh carefully its effect on program clarity

1.2.4 Modularity

The modularity guidelines are restricted to the coding of physical subroutines. This guideline is

key to the success of CCFM.VENTS for it allows for the import and export of routines by other

fire scientists. These guidelines are given by:
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Physical Routine Guideline: Purpose of guide-line: To allow other physical scientist to incorporate their work
into CCFM.VENTS with a minimum of effort and to allow CCFM.VENTS physical

routines to be used in other modeling projects and not through a common block.

• The physical subroutine should not depend on any data structure that exists within

CCFM.VENTS. Any quantities needed by the physical routine should be passed to it

through the argument list.

1.3 CCFM.VENTS Physical Units

Unless stated otherwise all physical units used in CCFM.VENTS are Scientific International

(S.I.). Some of the units used are listed in Table 1.4.

L

Table 1.4.1 CCFM.VENTS Physical Units

Quantity Unit

length [m]

area [m2]

volume [m3
]

mass [kg]

density [kg/m3
]

product concentration [unit of product/kg of total mass]

pressure [p] » [N/m2] - [kg/(m s)2
]

note: 101325 [p]
=> 1 atmosphere

temperature [K]

power [w]

time second
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2 . CCFM.VENTS Structure

2. 1 Overview of Program Structure

CCFM.VENTS consists of program structures and data structures. Figure 2.1.1 diagrams the

major program structures in CCFM.VENTS. The INPUT module consists of those routines that

solicit input from the user and transfer data that the user enters to the appropriate data structures.

The MODEL module is calculates the desired fire scenario as entered by the user. The OUTPUT

module creates reports or summaries of the simulation results in a form that is accessible to one

familiar with fire science.

There are three classes of physical routines used in the MODEL module in CCFM.VENTS as

illustrated in Figure 2. 1 .2. These are 1 . the physical routines, 2. the routines that compute the

ordinary differential equations (ODE) right hand side (rhs) and 3. the physical interface routines.

These three routine classes are indicated in the MODEL module portion of Figure 2.1.1.

The ODE rhs routines are FBUILD and FROOM. FROOM calculates the ODE rhs for one

room while FBUILD calls FROOM for each room. The physical routines, COMWL1,
VENTHP, VENTF, FANRES and PLUGO do not depend on any CCFM.VENTS data

structures, since all values required by these routines are passed to them through their argument

lists. The physical interface routines, UVENT, FVENT and FPLUME, provide the needed

variables by accessing the appropriate CCFM.VENTS data structures. New phenomena may be

added to CCFM.VENTS by writing subroutine that implements the new phenomena and calling it

from FBUILD.
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Figure 2.1.1 CCFM.VENTS Structure
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CCFM.VENTS has parameters used to define the sizes of various features of the model. These

features are the maximum number of rooms both inside and outside and the maximum number of

vents. An inside room is distinguished from an outside room by the fact that variables describing

the environment in inside rooms are computed and generally changing, while those variables for

outside rooms are completely specified. An outside room is assumed to be so large that no matter

what happens, i.e. how big the fire gets, the conditions in this room such as pressure or tempera-

ture will not change. These quantities are set at compile time and are given in Table 2.1.1. A pa-

rameter beginning with MX denotes a maximum size while a parameter beginning with N denotes

the actual size of a quantity used in CCEM.VENTS. These quantities are found in the SIZE

common block.

Table 2.1.1 CCEM.VENTS Parameter Bounds and Sizes

CCFM.VENTS name bound description

MXIRM (NIRM) 9

MXORM (NORM) 4

MXTRM (NTRM) 13- MXIRM + MXORM
MXVNTS (NVENTS) 20

MXFIRE (NFIRE) 1

MXPRD (NPROD) 3

MXRMDE (NRMDE) 10 - 4 + 2*MXPRD
MXXDES (NDES) 90 - MXIRM'MXRMDE

maximum (actual) number of inside rooms

maximum (actual) number of outside rooms

maximum (actual) total rooms - MXIRM + MXORM
maximum (actual) number of vents (unforced+forced)

maximum (actual) number of fires

maximum (actual) number of products of combustion

maximum (actual) number of ODE's per room

maximum (actual) number of ODE's

2.2 Input Module

The input module of CCFM.VENTS diagrammed in Figure 2.1.1 is responsible for soliciting input

from the user and placing this input into the appropriate data structures. The input module was

designed to run on any computer that supports ANSI-Standard FORTRAN 77. It can also exist

independent of CCFM.VENTS as an input module for other programs.

The INPUT module reads in a definition of CCFM.VENTS's menus from the menu description

file using the subroutine RDMENU . This file is named MENU790 (for July 1990) in the present

version of CCFM.VENTS. This definition file gives the names and help information for each

CCFM.VENTS command and a set of default data. Commands typed in by the user (or read in
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from a file) are split apart with PARSE and decoded with GETITM. The command is inter-

preted with MENU1 if the command is specific to CCFM.VENTS, and MENUO if the command

is not. The only action that is specific to CCFM.VENTS is the work performed by MENU1
transferring data entered by the user to CCFM.VENTS data structures. This routine is the only

one that has to be re-written when using the INPUT module in another program.

The key data structures used by the INPUT module are listed in Table 2.2.1. The INPUT module

calculations are detailed in Algorithm 2.2.1. The calculations for each major program structure of

CCFM.VENTS are detailed in algorithmic from as in Algorithm 2.2.1. These listings serve as a

guide for the person who wishes to examine the corresponding FORTRAN source. The numbers

of the form n.m indicate the order in which the steps are performed

Algorithm 2.2. 1 Input Module Calculations

1 .0 Set menu flags, constants

2.0 Open menu definition file, menu help file

3.0 Call RDMENU to read in menu definition file and process the following menu definition commands
3.1 .NM new menu
3.2 .NC new menu column

3.3 .C new command
3.4 .HB, .HE indicates the beginning and ending of help information for the previously entered

command
3.5 .PDB, .PDE indicates the beginning and ending of parameter description for the previously

entered command
3.6 .DF load default data, i.e. process CCFM.VENTS commands that define the default scenario

4.0 Process a CCFM.VENTS command
4. 1 Read in a card image from the input file

4.2 Call PARSE to split a card image into a collection of tokens

4.3 Call GETITM to identify the command by examining the first token. Handle the token in one of the

following three ways
4.3.1 unknown command - inform user that token could not be identified and try again

4.3.2 generic command - Call MENUO for handling generic commands
4.3.3 CCFM.VENTS command - Call MENU1 for handling CCFM.VENTS commands

4.4 Return to the calling routine and execute the model if requested by MENU1 otherwise go back to

4.1 and read another card

12



Table 2.2. 1 Key Input Module Data Structures

variable usage

CARD Character variable of length 80 containing the current input card image

SB, SE Integer arrays of length 40 recording the beginning and ending of each token found on the

current input card image

NTOK Number of tokens found on the current input card image

MMENU I/O Unit number of menu definition file

MHELP Unit number of menu help file

IBATCH IBATCH » 1 -*> running in batch mode (non-interactively). End of files are treated

differently when running in batch

ILOAD ILOAD - 1 »»> input data being read in with a LOAD command from a file

IBRIEF IBRIEF 1 »«> Menu's are not printed out after each CCFM.VENTS command is executed

IOLEVL Minimum message level printed by MSGPRT-

2.2.1 Menu Definition File

A principle of good programming practice is to separate the program from the data. A simple case

of this idea is to use a READ statement (READ(5,*) A ) instead of an ASSIGNMENT statement

(A = 5.) to initialize program data. A program can run more than one case without re-compiling

the source code when it uses a READ statement to initialize data.

At the onset of the CCFM.VENTS project it was anticipated that a series of CCFM.VENTS soft-

ware products would be produced over a period of time. Since the functionality of the INPUT

module would remain the same it was decided to use essentially the same INPUT module in each

CCFM.VENTS product. The differences would then be stored in a data file known as the Menu

Definition File (MDF). The MDF performs the following function:

• defines spelling of a command

• defines arrangement of the menus, i.e. what row and column a command will occur

• specifies help information available to the user through the HELP command

• defines parameter descriptions used with the SCREEN mode version of a command

The listing of the MDF used for CCFM.VENTS is given in Appendix C. The help text and
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parameter description information is identical to information given in the command glossary section

of the Users Guide.

The subroutine RDMENU reads in this file interpreting the parameters, .NM, .NC, .C, .HB,

HE, .PDB, .PDE and .DF as defined in Algorithm 2.2.1. The order that the .NC (new column)

and .C (new command) parameters are placed in the MDF is the same as the arrangement of

commands in the printed menu's. The following commands placed in the MDF

.NM TEST MENU

.NC INPUT

.C COM1

. C COM2

.NC OUTPUT

.C COMA

. C COMB

will result in the following menu:

TEST MENU

COM1 COMA
COM2 COMB

The .DF command is used to load default data into CCFM. By changing this portion of the MDF,

you can change the default fire scenario from a one-room, 1 vent, 250,000 watt fire to a five

room, 10 vent, 1,000,000 watt fire. To change CCFM.VENTS's default fire scenario, use

CCFM.VENTS to input the scenario you want. Then use the DUMP command described in the

User’s Guide to create an ASCII text file of CCFM.VENTS commands for this case. Use a text

editor to place this scenario in the MDF in place of the former one.

All help information about a command is stored in a temporary data file which is discarded when

CCFM.VENTS begins the modeling step. An abbreviated listing of the MDF, MENU989 is given

in Appendix F.

2.2.2 Parsing Input

The workhorse of the INPUT module is a set of routines that parse or split a character string into a

series of tokens. Each token is a contiguous set of non-blank characters or characters enclosed by

quotes as illustrated by Figure 2.2.2. 1. By performing this operation the user is not required to
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enter information in certain specified columns or fields. The input requirements of CCFM.VENTS

are completely free-format

Consider the following character string named CARD.

COM 1 1.2 , ’ABC'.

As Figure 2.2. 1.1 illustrates, the above command line has 5 fields. The fourth field is empty.

This could correspond to an option that the user did not select or did not wish to change.

L£[0 [m] I 1

l

l 0 E 0 B
l£

1

column

Token

4 4
B E
i i

2 4

1

44
BE

4 4
B E
i i

10 12

3

empty
token

4 4
B E
i i

20 22

5

CCFM data

structure

SB(1) = 2

SE(1) = 4

SB(2) = 7

SE(2) = 7

SB(3) = 10

SE(3) = 12

SB(4) = 0

SE(4) =
undefined

SB(5) = 20

SE(5) = 22

SB(i) = column number of start of i’th token

SE(i) = column number of end of i’th token

Figure 2.2.2. 1 Parsing a CCFM.VENTS command

The subroutine PARSE is passed a character string named CARD. This string could have been

entered by the user or constructed in some other part of CCFM.VENTS. PARSE returns values

in two arrays SB and SE which denote the beginning and finding of each sub-string in CARD. In

addition the number of tokens or sub-strings is found. This information is used by other portions

of the INPUT module to

• interpret CCFM.VENTS commands

• convert character data to floating point, integer or logical data types
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2.2.3 Handling a CCFM.VENTS Command

There are three ways that a CCFM.VENTS command may be initiated

• a command may be typed in at a computer terminal

• a command may be read in from a data file. CCFM.VENTS executes commands
given in a file that were specified with a LOAD command.

• A command may be constructed from input that a user gave while in screen mode.

The last two cases for handling CCFM.VENTS commands are really a special case of the first.

The LOAD command is implemented simply by re-directing the input from the terminal screen to

the file specified by the user, i.e. the I/O unit number for INPUTS read statement is changed to

point to the LOAD file instead of the terminal screen. Screen mode is implemented by constructing

a command-line equivalent to the screen inputs the user gave.

The operations performed while handling a CCFM.VENTS command are given in step 4.0 of

Algorithm 2.2.1. Parsing a CCFM.VENTS command was discussed in section 2.1.

The subroutine GETTTM attempts to interpret the first token of a command line as a

CCFM.VENTS menu command. This routine has an alphabetical list of legal CCFM.VENTS

commands as specified with the menu definition file. GETITM uses a binary search to try and

match the first token with a valid CCFM.VENTS command. If GETITM is unable to find a

match then it prints a message asking the user to enter the command again.

All of the work performed so far in the INPUT module is independent of CCFM.VENTS. Once a

command has been identified the routine MENU1 is called to implement that command. This

routine uses utility routines described in section 2.5 to transfer data from the card image entered by

the user to data in internal CCFM.VENTS data structures.

2 . 3 Output Module

The output module diagrammed in Figure 2.1.1 is responsible for displaying results to the user.

This display should be readable to one familiar with fire science though not necessarily familiar

with the inner workings of CCFM.VENTS.
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CCFM.VENTS calculates more values than can be displayed effectively in one report Further,

some numbers that are calculated may not be of interest to every one. The obvious solution is to

have several reports that can be selected by the user at the beginning of the run. The user then

selects only those reports of interest.

The routine OUTPUT is called at the end of each solver time step. OUTPUT calls FBUILD to

initialize global data for the current solution vector. It then calls the report routines: OUTUSR,

OUTNUM, OUTGEN, OUTPLT, OUTFLW depending on what report options were selected

by the user. These calculations and a clarification of the terminology used to name the above

subroutines are detailed in Algorithm 2.3.1. The key data structures used in the output module are

given in Table 2.3.1.

To investigate the numerical properties a routine, EIGF, was written to calculate the Jacobian and

its eigenvalues of the rhs of the ODE. The eigenvalues measure the stiffness and stability of the

particular fire scenario being solved. Eigenvalues with positive real parts indicate instability. If all

their real parts are negative and their magnitudes range over several orders of magnitude then the

ODE problem is usually thought of as stiff. The procedure for calculating the Jacobian's eigen-

values is the same for any differential equation. First, the Jacobian is approximated using differ-

ence quotients by calling the routine (FBUILD in the case of CCFM.VENTS) that computes the

right hand side of the differential equation NDES + 1 times where NDES is the number of

differential equations. Then standard software, for example a routine from Eispack, is called to

compute the Jacobian's eigenvalues

Table 2.3.1 Key Output Module Data Structures

variable usage

RPTS Integer array of size MXRPT-6. If RPTS(I) - 1 then output for report I was
requested. Reports 1 through 6 are 1 - OUTGEN, 2 - OUTPRD, 3 - OUTFLW,
4 - OUTPLT, 5 - OUTNUM, 6 - OUTUSR

INSTEP Number of solver steps since the last printed output

IPSTEP Number of printed steps so far

CPP Cumulative CPU time in seconds since the beginning of the run

CPST CPU time for this step

PRT1M Flag set to 1 if OUTPUT should print reports
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While the Model is running, all output is printed to a temporary report file. It will typically look

like

A An Entry for Report 1

B An Entry for Report 2

C An Entry for Report 3

A Another Entry for Report 1

B Another Entry for Report 2

C Another Entry for Report 3

Notice that the above listing is displayed in the same order that it was produced. It is not in the

order that you would want to read it. So a special code is placed in column 1; A for report 1, B for

report 2, C for report 3, etc. At the end of the model run these codes are used to un-scramble the

temporary report file to produce an output listing that is in order as in

An Entry for Report 1

Another Entry for Report 1

An Entry for Report 2

Another Entry for Report 2

An Entry for Report 3

Another Entry for Report 3

This scheme is easily extended. If the user of CCFM.VENTS wishes to add a report for quantities

calculated by CCEM.VENTS but not presently printed she/he simply calls her/his new report

routine within OUTPUT, e.g. after entry 3.2.5 in Algorithm 2.3.1. This new output routine

must output a unique code in column 1. The column 1 codes presently used in CCFM.VENTS are

: A - OUTGEN, B - OUTPRD, C - OUTFLW, D - OUTNUM, E - OUTUSR. Note that the

subroutine OUTUSR is not presently used and could be used to implement a user defined output

report.

18



Algorithm 2.3. 1 Output Module Calculations

1 .0 Update timing variables, step numbers

2.0 Call FBUILO to update ODE information

3.0 If appropriate flags are set:

3.1 Call EIGF to calculate ODE Jacobian and its eigenvalues

3.2 Produce entries in temporary output file. Each of the following subroutines precedes the text to

appear in the report with a code. The code is the character A for OUTGEN, B for OUTPRD, C for

OUTFLW, D for OUTNUM and E for OUTUSR. These codes are used by OUTWRP (output

wrapup) to unscramble the temporary report file.

3.2.1 Call OUTGEN to produce general report entry

3.2.2 Call OUTPRD to produce product of combustion report entry

3.2.3 Call OUTFLW to produce flow report entry

3.2.4 Call OUTNUM to produce numeric report entry

3.2.5 Call OUTUSR to produce user defined report entry

4.0 Call OUTWRP at the end of the simulation to sort the temporary output file by report type

CCFM.VENTS will automatically split out this new report along with all the others at the end of

the model run as long as the column 1 code is chosen uniquely (not A, B, ...,or E). This splitting

is done at the end of the simulation by the subroutine OUTWRP (output wrapup).

2.4 Model Module - The Governing Equations and Their Solution

The model module implements the physical equations described in volumes I and III of this report.

These equations are required to compute the right hand side (rhs) of the ordinary differential

equation (ODE)

dU/dt sU' = f(t,U) (2.4.1)

U(to) = U0

where t is the independent variable, time; U and U* are both real-valued vectors of length

NIRM*(4+2*NPROD); where NIRM is the number of inside rooms in the simulation; and

NPROD is the number of products of combustion including oxygen. The format for both U and

U' for the first room is given in Figure 2.4. 1.2. The ODE of Eq. (2.4.1) corresponds to Eqs.

(2.3.2), (2.3.3), (2.3.4') and (2.3.6)-(2.3.8) of Part I [10]. The solution variables stored in U are:
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relative pressure at the floor, layer interface elevation, upper/lower layer total mass and

lower/upper layer total product mass for each room. The ODE of Eq. (2.4.1) is discussed in

section 2.4.2 and derived in Part I of this report. The data structures used by the Model Module

are given in Table 2.4.1.

Table 2.4.1 Key Model Module Data Structures

PRINTF Contains name of temporary output file

PRINTG Contains name of final output file

PLOTF Contains name of plot file

DUMPF Contains name of dump file

Y Contains ODE solution

TSTART Initial time of simulation

TCUR Current time of simulation

TSTOP Final time of simulation

The routine FBUILD calculates the rhs, f(t,U), of Eq. (2.4.1). The ODE solver then is

responsible for stepping the solution of Eq. (2.4.1) forward in time.

The pressure in each room adjusts rapidly to changes in the room environment compared to other

quantities such as layer height or temperature. It is this property of Eq. (2.4. 1) that makes its solu-

tion difficult. For some, but not all, fire scenarios the CCFM.VENTS ODE's are stiff. Stiff

ODE’s require special solution methods. Standard explicit ODE algorithms such as Runge-Kutta

or Predictor-Corrector methods such as Adams-Bashforth are well known to be unsuitable for the

solution of stiff ODE's. This is because the transient component of the ODE, in this case the

pressure, causes these types of ODE methods to have small regions of stability. As a result these

methods required small step sizes. Stability of an algorithm refers to how error propagates; the

error that occurs at each step. A stable algorithm damps error while an unstable algorithm allows it

to grow.

Stiffness is well explained in the survey articles by Shampine [3] and Byrne [4]. It is also

discussed in terms of a fire model in section 2.4.4. The CCFM.VENTS ODE equation solver uses

a backward difference formula first proposed by Gear [5] and implemented by Gear [6], Watts and

Shampine [7], and others. These algorithms have a large stability region for stiff problems. The
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trade off is that a system of linear equations needs to be solved at each step. While this requires

more work per time step than standard methods for non-stiff problems, use of these algorithms can

pay off as a result of the larger step sizes that can be taken. The calculations performed by the

Model module are given in Algorithm 2.4. 1

.

Algorithm 2.4. 1 Model Module Calculations

1 .0 Open files for INPUT, OUTPUT and plot data

2.0 Initialize solver flags, timing variables, error tolerances

3.0 Save ODE solution from last time step

4.0 get elapsed CPU time from the beginning of the run

5.0 Call the ODE solver, DEBDF, to get the solution at next time step

6.0 if there are solver errors then handle them and try again

7.0 Call OUTPUT to produce entries in the output file

8.0 Call DUMP to produce an entry in the dump file

2.4.1 FBUILD

The routine FBUILD diagrammed in Figure 2.1.1 is called by CCFM.VENTS's ODE solver in

order to compute the ODE rhs given by Eq. (2.4.1). The routine FBUILD then calls the physical

interface routines, FVENT, FPLUME, UVENT, in order to compute mass/enthalpy/product of

combustion flows. These flows are then used by FROOM to compute the ODE rhs. The ODE

rhs is returned to the solver so that it can estimate the solution at the next time step.

Densities were used as solution variables in the original ODE formulation. Moss [8] proposed that

mass would be better numerically since the mass equation did not have a re-movable singularity

(layer volume going to zero) in the denominator. An interface between the ODE data structure

illustrated by Figure 2.4. 1.1 and the variables used by the physical interface routines was instituted

in order to reduce the impact of any future change of the ODE formulation . The physical interface

routine's do not access the ODE variables directly. The routine SETDE implements this interface

by copying the information stored in the ODE data structure into variables used by the physical

interface routine. If the ODE formulation changes in the future, only the routine SETDE has to be

changed.

The data in the solver solution array, y, is organized by room. Each room requires 4 + 2*NPROD
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locations in the solver array. The definition of each memory location is identified by Figure

2.4.1. 1.

Room 1

ODE Solver array

Total Mass

Oxygen Mass

Product 2 Mass

Pressure

Layer Height

Upper Layer

Lower Layer

Lower Layer

Upper Layer

Lower Layer

Upper Layer

Amount of Product 0 ^wer Layer

NPROD mass
|| Upper Layer

anay index

1

2

3

4

3+2*NPROD

4+2*NPROD

optional

Figure 2.4.1.2 ODE Solver Array Structure For One Room

Each physical interface routine routine, (FVENT, UVENT and FPLUME) calculates flow due to:

mass, enthalpy and product of combustion. Rather than using six variables ( (2 layers ) x (3 flow

types) ) it was decided to organize the flow results into one 3-dimensional array data structure.

This structure is given in Figure 2.4. 1.3. The arrays FLWP, FLWF, FLWU and FLWTOT are

declared in the common block /FLOWS/. Each of these arrays has the structure as defined in

Figure 2.4. 1.3. Further, FORTRAN parameter statements are used define the integer symbols, L,

U, M, Q, P to: L=l, U=2, M=l, Q=2 and P=3 to increase the program's readibility. So

FLWF(3,QL) refers to the forced enthalpy flow to the lower layer of the third room.

The calculations performed by FBUILD are listed in Algorithm 2.4. 1.3.
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Flow Type:

Mass

Enthalpy

Oxygen
(Product 1)

Product 2

Product NPROD

Room n

Figure 2.4. 1.3 Data Structure for Storing Flows

Algorithm 2.4. 1 . 1 FBUILD Calculations

1 .0 Call SETDE to convert from ODE to CCFM.VENTS.VENT style data structures

2.0 Calculate mass, enthalpy, product of combustion flows

2.1 Call UVENT to compute flows for natural vents, return flow in FLWU
2.2 Call FVENT to compute flows for forced vents, return flow in FLWF
2.3 Call FPLUME to compute flows for fire plumes, return flow in FLWP

3.0 Sum flows from sub-models listed in 2.1 -2.3, sum corresponding components of FLWU, FLWF, FLWP and

place total into FLWTOT
4.0 Call FROOM to calculate derivatives of pressure, layer height, upper/lower layer mass and upper/lower

layer product equations for each room
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2.4.2 FROOM - Calculating the ODE rhs for an Arbitrary Room of the the Facility

Figure 2.4.2. 1 illustrates the basic features simulated by CCFM.VENTS for one one room. A
generic fire environment in a room of a modeled facility consists of a fire and its associated plume,

natural and forced vents, and an upper and lower layer of elevated temperature, product-of-com-

bustion contaminated layers separated by a layer interface.

entering or leaving a zone

Figure 2.4.2. 1 Zone Model Features

The flow through a natural vent is computed using UVENT. The flow is computed by using the

cross-vent hydrostatic pressure-difference profile and implementing Bernoulli’s equation. The

pressure-difference profile is computed from the densities of the two layers and the pressures at the
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floors of the two rooms, on either side of the vent. The flows due to a forced vents is computed

using FVENT, and flow due to a fire plume is computed using FPLUME.

The subroutine FROOM is responsible for calculating the rhs of the (4 + 2*NPROD) components

of the ODE of Eq. (2.4.1) associated with (4 + 2*NPROD) solution variables which describe the

two-layer fire environment in an arbitrary room of the modeled facility. For a given time step in

the calculation, FROOM is called for each inside room of the modeled facility from room 1 to

room NIRM.

The solution variables for arbitrary room i are: SpflooRj pressure at the floor above the datum

pressure, Pdatum; ylayers »
elevation of the layer interface; My.i and Mlj ,the total mass in the

upper and lower layer, respectively; and P^u.i and Pk,L,i , k = 1 to NPROD, the total amount of

product k in the upper and lower layer, respectively. The ODE’s for the solution variables of room

i are reproduced here from Section 2.3 of Part I [10].

perturbation pressure at the floor

layer interface elevation;

dyLAYER,i _ (Y- i)((y

dt

mass in upper and lower layer:
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amount of product k in upper and lower layer:

dPk.u.i

dt
Pk.U.i

dPk.L.i

dt
Pk.L.i

In the above, Mu,i [ Ml,i ] and Pk,u.i[ Pk.L.i] are the net rates of mass and product-of-combustion

k flowing to the upper [lower] layer of room i, respectively. Also, Qu.i [ Qu ] is the net rate of en-

thalpy plus heat transfer plus energy release flowing to the upper [lower] layer of room i. Finally,

Vi is the volume of the room.

The above equations are general in that the above net flow rates represent the sum of transfers to

the layers from all plumes, jets, near-boundary flows, combustion zones, and other isolated or

distributed sources considered and taken into account in any particular CCFM.VENTS application.

The reader is referred to Part I [10] of this work for the details of the physical basis of these

transfers for CCFM.VENTS.

The rhs of the above equations are computed and stored in the array UPRIME. The elements of

this array corresponds to the components of U' of Eq. (2.4.1) for an arbitrary room. Thus,

UPRIME is of length NRMDE; the first four positions of UPRIME are d5pFLOOR,i/dt

,

dyLAYER.i/dt , dMu,i/dt , dM^i/dt ; and each subsequent position pair, up to the NPROD pair of

products being simulated, is dPk,u,i/dt and dPk,L,i/dt

.

The structure of U of Eq. (2.4.1) corresponds exactly to the structure of UPRIME. If an entry of

U contains a given variable, then the corresponding entry in UPRIME will contain the derivative of

that variable with respect to time. U is a real array of length NEQN = NRMDE. Corresponding to

the above equation set, the structure of U is given by:
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• U(l) = SppLOOR.i »
perturbation pressure

• U(2) = yLAYER,i» layer height

• U(3) = My,i, upper-layer mass

• U(4) = Mm, lower-layer mass

• U(3+2*k+l) = P^u.i’ amount of upper-layer product k

• U(3+2*k+2) = Pk,L,i. amount of lower-layer product k

The calculations performed by FROOM are detailed in Algorithm 2.4.2. 1.

Algorithm 2.4.2. 1 FROOM Calculations

1 .0 Convert from CCFM.VENTS style to local FROOM data structures

2.0 Calculate rhs of:

2.1 Pressure equation

2.2 Layer height equation

2.2.1 if layer is below floor and is descending reset derivative to zero

2.2.2 if layer is above ceiling and is rising reset derivative to zero

2.3 Upper layer mass • if layer is at or above ceiling and layer is not filling then reset this derivative to

zero

2.4 Lower layer mass - if layer is at or below floor and layer is not filling then reset this derivative to zero

2.3 Upper layer product of combustion - if layer is at or above ceiling and layer is not filling then reset

this derivative to zero

2.4 Lower layer product of combustion - if layer is at or below floor and layer is not filling then reset this

derivative to zero

This structure ofU is illustrated in Figure 2.4. 1.2.

2.4.3 Physical Interface Routines

The Physical Interface Routines presently consist of the subroutines FVENT, UVENT and

FPLUME. These routines are the drivers that implement the physics described in volume I by
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calling the appropriate sub-modeling algorithms described in Part in [1 1]. For example; UVENT
calls COMWL1, VENTHP, FL0G02; FVENT calls VENTF and FL0G02

; and

FPLUME calls PLUGO. The physical interface routine's are distinguished from the sub-

modeling algorithms by the data that they can access. The physical interface routine's access

CCFM.VENTS's global data; passing required values obtained from CCFM.VENTS's common

blocks to the sub-modeling algorithms. All physical interface routine's return flow information in

a data structure that is discussed in Section 2.4.1 and illustrated in Figure 2.4. 1.3.

To extend CCFM.VENTS to include other Physical phenomena one simply adds another physical

interface routine to FBUILD. There must be one physical interface routine for each phenomena

modeled. The new routine would be called right after entry 2.3 in Algorithm 2.4. 1.1.

2.4.3. 1 FPLUME

FPLUME calculates flows caused by fire plumes. Presently the fire plume model is based on the

point-source plume model described in section 3.2 of Part I [10] and in the PLUGO entry of Part

III [11]. The plume model can be modified by replacing the call to PLUGO with some other

plume algorithm. The calculations performed by FPLUME are described in Algorithm 2.4.3. 1. 1.

CCFM.VENTS presently stores a table of fire sizes and associated times using memory

management routines. Memory management routines are discussed in section 2.5.2. FPLUME

uses INTERP to interpolate this table to obtain the fire size (energy release rate) at arbitrary times

between table entries. FPLUME then passes the fire size along with other needed data, such as

the height of the fire above the floor and room of fire origin to PLUGO. PLUGO in turn

calculates mass, enthalpy and product of combustion flows due to the fire to the layers of the room

of fire origin.
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Algorithm 2.4.3. 1 . 1 FPLUME Calculations

1.0 Initialize outputs to zero

2.0 For each fire (presently 1 ):

2.1 Call INTERP to calculate the energy release rate of the fire at the given time

2.2 Record properties such as layer density, heights, fire heights

2.3 Call PLUGO to calculate mass, enthalpy, product of combustion flow due to the fire plume

2.4 Accumulate results in the data structures FLWP to be returned to calling routine (FBUILD)

2. 4.3. 2 FVENT

FVENT calculates flow through forced vents. The details of the FVENT calculations are pre-

sented in section 3.4 of Part I [10] and in the VENTF, FL0G02 and FANRES entries of Part

III [11]. CCFM.VENTS models forced ventilation systems made up of a fan, with an associated

fan curve, and a duct connecting two rooms. One of these rooms may be an outside environment.

A fan curve defines the relationship between the volume flow rate (and direction) through the fan

and the pressure rise across the fan. CCFM.VENTS 's memory management routines are used to

store the fan curve. The number of forced vents plus the number of natural vents must not exceed

the parameter MXVNTS which is defined in Table 2.1.1. This is a parameter that can be set at

compile time. The calculations performed by FVENT are detailed in Algorithm 2.4.3.2.I.

Algorithm 2.4.3.2.1 FVENT Calculations

1 .0 Convert from CCFM.VENTS to VENTF style data structures

2.0 Call VENTF to calculate mass, enthalpy and product of combustion flows

3.0 Call FLOG02 to debit flows from "from" room

4.0 Call FLOG02 to deposit flows into "to" room. Note: two different calls to FLOG02 are necessary since inlet

and outlet fan duct system elevations may be different in general.

5.0 Accumulate results for each forced vent into data structures that will be passed back to the calling routine

FBUILO
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2.4.3.

3

UVENT

UVENT calculates flow in a natural vents. As mentioned earlier, the flow is calculated using

Bernoulli's equation and is based upon the cross-vent pressure profile that exists between the two

rooms that are connected. The details of the UVENT calculation are presented in section 3.3 of

Pan I [10] and in the COMWL1, VENTHP, and FL0G02 entries of Pan III [11]. As in the

forced vent case the number of forced vents plus the number of natural vents must not exceed the

parameter MXVNTS which is defined in Table 2.1.1. This is a parameter that can be set at

compile time. The calculations performed by UVENT are detailed in Algorithm 2.4.3.3.I.

Algorithm 2.4.3. 3.1 UVENT Calculations

1.0 Convert data structures from CCFM.VENTS to C0MWL1/VENTHP/FL0G02 style

2.0 For each pair of rooms (i,j) that have a natural vent connection:

2.1 Call COMWL1 to compute set up information required by VENTHP
2.2 For each vent connection in room (i,j):

2.2.1 Call VENTHP to calculate slab flows

2.2.2 Call FL0G02 to determine where the flows should be deposited (which room, which

layer)

2.4.4 Solving The ODEs In CCFM.VENTS

Stiff ordinary differential equations (ODE) are an important class of problems that occur when

several phenomena being modeled have characteristic time-scales that vary by several orders of

magnitude. The system of ODE's used in zone fire modeling are stiff because the pressure adjusts

to changing conditions in a fire much faster than other quantities being modeled such as upper,

lower layer temperatures or layer heights.

The curious aspect of stiff ODE’s is that the solution appears to be in equilibrium yet the computa-

tional costs for computing this solution is enormous when using standard algorithms such as

Runge-Kutta or Predictor-Corrector algorithms such as Adams-Bashforth. The question then is

why does it cost so much to solve a problem whose answers change slowly.

To analyze the numerical character of the ODE's in CCFM.VENTS we have used DEPAC which is

a set of three ODE solvers DERKF, DEABM, and DEBDF designed by Shampine and Watts.
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DERKF is a fifth order variable step size Runge-Kutta code. It can be used for nonstiff and mildly

stiff ODE's when derivative evaluations are not expensive. It should not be used for high

accuracy, nor for answers at a great many points. DEABM is a variable order, variable step size

Adams code. It can be used for nonstiff and mildly stiff ODE’s when high accuracy is required.

DEBDF is a variable order, variable step size backward differentiation formula code which can be

used on stiff ODE's when moderate accuracy is required. DERKF and DEABM attempt to

determine when their use is not suitable by performing diagnostics for stiffness.

When used in CCFM.VENTS both DERKF and DEABM reported that the problem might be stiff.

This occurred for a wide range of fire scenarios. In order to get a more quantitative indication of

stiffness, we examined the Jacobian of the right hand side of the system of ODE's. A subroutine,

EIGF, was written to approximate this Jacobian and its eigenvalues. The characteristic time scales

of the solution variables and the solution behavior was determined from the eigenvalues. It was

found that the characteristic time scale for the pressure variable was much smaller than other

solution variables. This difference was found for some problems to be over five orders of

magnitude. As a result of this analysis, the stiff ODE solver, DEBDF , was chosen.

2.4.4. 1 Theoretical Background

Consider the following initial value problem:

y’(t) = f(y,t) (2.4.2)

y(to) = yo

where y(t), y'(t) are real valued N-vectors and f is a real-valued N-vector function. A numerical

algorithm for solving Eq. (2.4.2) generates estimates, yi, to the solution at q, y(q). The global

error at q is defined by ec(q) := y(q) - yi- As Figure 2.4.4. 1.1 illustrates, the global error

consists of two terms, local error and propagation error. The local and propagation errors at

q are defined in terms of an ODE related to Eq. (2.4.2). This "local" ODE has the same right hand

side as Eq. (2.4.2) but has different initial conditions as in

z'(t) = f(z,t)

z(ti-i) = yt-i-
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to ti t2 t

Figure 2.4.4.1.1 ODE Error Terms

The local error is defined by eL(ti) := z(ti) - yi and the propagation error is defined by ep(ti) := y(ti) -

z(ti). An ODE algorithm whose propagation error term grows at each step is said to be unstable.

ODE algorithms can be divided into two classes, explicit and implicit. Explicit algorithms, such as

DERKF, are not suitable for solving stiff ODE's because of the prohibitively small step size

required to maintain stability (keep the propagation error terms small). What distinguishes stiff

ODE's from other "hard" ODE's is that for explicit methods the step size required to maintain

stability is much smaller than that needed to maintain accuracy. The routines in DEPAC estimate

the global error at each step. Local error and propagation errors are not separately estimated, so

there is no direct check for instability. Global error is estimated by comparing two estimates

having different orders of accuracy. If the global error estimate is too large, step size is decreased.

On the other hand, if the global error estimate is too small,step size is increased. Routines

DEABM and DEBDF aiso have the option of changing the order of the method. Roughly

speaking, smooth solutions are more efficiently approximated by higher order methods.

Implicit algorithms are used to solve stiff ODE's. After n steps of such an algorithm,

approximation yn at time t = tn is obtained. The step size At for step n+1 is chosen based on the
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global error estimate from the step n. We illustrate step n for the backward Euler method. If

Eq. (2.4.2) is discretized using a divided difference approximation to y' and a trapezoidal rule

approximation for f, we arrive at

yn+i - yn _ f(yn . tn) + f(yn+i. Wi)

At 2 (2.4.3)

where yn+i is the unknown approximation to y(tn+i) and tn+ i
= tn + At. Functional iteration or

successive substitution and Newton's method are the two standard techniques for solving

the nonlinear equation Eq. (2.4.3) for yn+ i< These methods are iterative and their rates of

convergence depend on At. The usual approach is to iterate a few times and, if convergence has

not occurred, decrease At and start over. For stiff problems, Newton's method is used because

functional iteration will not converge unless At is extremely small as we show next.

To apply functional iteration, Eq. (2.4.3) is re-cast into the fixed point equation2;

y?,/’ = T(ySi) = yn + f(y«• '-) + %®. wo)

.

(2.4.4)

(k) (k+1)
The k'th iterate, y^+i , is updated using the iteration function T to obtain a new iterate, y„+1 . The

iteration process is complete if two successive guesses, y„+1 , y„+1 are sufficiently close. Now

consider the simple model problem, y' = f(y) = Ay, y(to) = yo where A is an N by N matrix. This

is a linear ODE with solution e^ 1 * The iteration function, T, and its Jacobian T' for this

model problem are given by:

ify®) = yn + yn+ y®,)

Eq. (2.4.4) is called a fixed point equation because a solution, y*, of Eq. (2.4.3)

satisfies y* = T(y*). This y* is called a fixed point.
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The Jacobian, T', is an N by N matrix whose i-k'th element is given by 3Ti/3yk where yk is the

k'th component of the vector y and Tj is the i'th component of the vector valued function T. In

general, functional iteration will converge linearly to the desired solution if the initial guess, y ,

is sufficiently close and if the Jacobian, T', exists, is continuous, and has a 2-norm less than 1.

This result is based on the fixed point theorems presented in Chapter 5 of [9]. For the above

model problem, the 2-norm of T' satisfies

II r ll2 = II At A/2 ll2 = I At I /2 < 1

only when

At < 2/1 Xmax I

where A^ax is the eigenvalue of A with largest magnitude. Functional iteration will have

convergence problems when the eigenvalues of A are large which is the case for stiff ODE's.

Stiffness occurs when the eigenvalues of f, the Jacobian of the right hand side of the system of

ODE's, have widely varying magnitudes and have all negative real parts. Using functional

iteration techniques for solving stiff ODE's therefore results in extremely small time steps.

Newton's method, on the other hand, is not so severely restricted. To use Newton's method,

Eq. (2.4.3) is re-cast into the fixed point equation3

(2.4.6)

where F and its Jacobian F’ are defined by

F(yn+i) := yn+i * yn - ^-(f(yn> hi) + f(yn+ i, tn+i)) (2.4.7)

Again Eq. (2.4.6) is called a fixed point equation because a solution, y*, for Eq.

(2.4.2) satisfies y* = T(y*)

34



F'(yn+l) = 1 - y f(yn+ l. tn+i).

Here I denotes the identity matrix and f is the Jacobian of the right hand side of the system of

ODE's. In general, Newton’s method will converge quadratically to the desired solution if the

initial guess y^ is sufficiently close and if the Jacobian, F', exists, is continuous, and is

(oo)

nonsingular at the solution yn+1 . If all the eigenvalues of f have real parts less than or equal to 0,

then for any positive At all the eigenvalues of F will have real parts greater than or equal to 1 , and

hence F will be nonsingular. The functional iteration method, Eq. (2.4.4), on the other hand,

only guarantees convergence for step sizes smaller than 2/1 IAII2 which can be small for stiff

problems. For the model problem y' = Ay, we find the iteration function T for Newton's method

to be

v<
k >

J n+l
I . AtA

2
v (k >

yn+l yn -^ Yn+1 + yn)} (2.4.8)

For linear ODE's Newton's method converges in one step provided that I - AtA/2 is nonsingular.

A disadvantage of Newton's method is that a set of linear equations needs to be solved at each

step. An offsetting advantage is that large steps can be taken without running into problems with

stability. So even though there is more work per time step (compared to functional iteration), less

steps are required which usually means less work to solve the ODE's. A second related

disadvantage of Newton's method is that the linear system that must be solved requires 0(N2)

storage spaces where

N = number of ordinary differential equations = (4 + 2*NPROD)*NIRM,

NPROD is the number products of combustion including oxygen, and NTRM is the number of

inside rooms.
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The Jacobian related to the CCFM.VENTS differential equations for a sample problem with three

products of combustion has the structure illustrated in Fig 2.4.4. 1.2. By structure, it is meant

which Jacobian entries are zero or neglible. The presence of many zeros in the Jacobian can be

exploited to produce algorithms that are more efficient than those presently used to solve the

CCFM.VENTS differential equations.

The terms , ’O' or '?' in the Jacobian represents a matrix of size NIRM x NIRM where NIRM

is the number of rooms in the simulation. A indicates entries that in general will not be zero. A
'?' indicate entries that in general are not zero but seem to be small relative to the diagonal entry for

that row and can perhaps be ignored. The 'O' indicates entries that are always zero, since products

do not interact with each other. The terms Pr yiay, mi, mu represent relative pressure, layer height

and lower/upper mass. The terms Pil, P;u for i=l, 2, 3 represent the i'th product of combustion

for the lower/upper layer. The i-j'th entry in the Jacobian illustrated in Figure 2.4.4. 1.2

d i'th equation

represents the d j'th variable where the equations and variable are re-ordered by type (pressure,

layer height, mass etc.) rather than by room.

variables

Pr Yiay mi my Pli Plu P2i P2U P3i P3U

Pr * * * * 0 0 0 0 0 0

yiay
* * * * 0 0 0 0 0 0

mi * * * * 0 0 0 0 0 0

mu * * * * 0 0 0 0 0 0

equations pli 7 ? ? ? * * 0 0 0 0

plu 7 ? 7 ? * * 0 0 0 0

p2i ? 7 7 ? 0 0 * * 0 0

p2u 7 ? 7 7 0 0 * * 0 0

p3i ? 7 ? ? 0 0 0 0 * *

p3u ? 7 ? ? 0 0 0 0 * *

Figure 2.4.4.1.2 CCFM.VENTS Jacobian Structure

Making no assumptions about the Jacobian's structure for a 10 room, 10 product case will result in

a matrix with
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(NIRM*(4+2*NPROD))2 = 57600

entries, most of which are zero. If the '?' terms can in fact be ignored then the Jacobian for the

same case using the structure given in Figure 2.4.4. 1.2 will have

(4*NIRM)2 + NPR0D*(2*N1RM)2 = 5600

entries. Computation using fewer elements of the Jacobian will result in an ODE algorithm that is

more efficient, i.e. faster, requires less storage and yet be just as accurate as the one presently used

in CCFM.VENTS.

2. 4. 4. 2 Implemention Of An ODE Solver In CCFM.VENTS

CCFM.VENTS uses the ODE solver DEBDF, which stands for differential equation backward

difference formula. An alternate stiff solver using backward difference formulas is SDRIV3.

The calling sequences of both solvers are similar. They both require the same kinds of information

such as error tolerances, starting ending times etc., but the format for the information is slightly

different Each solver is passed the name of a routine, FBUILD. This routine calculates the right

hand side of the ODE's. DEBDF requires that FBUILD have the following form:

SUBROUTINE FBUILD (TSEC, X, XPRIME, RPAR, IPAR)

where TSEC is the independent variable and x is the dependent variable of the ODE. XPRIME is

the rhs of the ODE or equivalendy the derivative ofX with respect to TSEC. RPAR and IPAR are

floating point and integer parameter arrays to be passed through to any routines that FBUILD

calls. Another solver such as SDRTV3 has different requirements for the rhs calculation routine

FBUILD. Each place in CCFM.VENTS that calls FBUILD would also have to be modified.

The routines that call FBUILD are listed in Appendix A under called by entry for FBUILD. To

use SDRIV3 the form of FBUILD would have to be changed to:

FBUILD (NEQNS, TSEC, X, XPRIME)

where NEQNS are the number differential equations and TSEC, X and XPRIME are the same as
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before.

2.5 Utility Routines

Utility routines are those subroutines/functions in CCFM.VENTS that support some computational

aspect of the various software modules. For the most part they can exist outside of

CCFM.VENTS. Some examples of utility routines present in CCFM.VENTS are:

• MACH routines - Standard subroutines: I1MACH, R1MACH, D1MACH,
originally developed at Bell Laboratories for recording the floating point characteris-

tics of a computer

• Memory management routines - A collection of subroutines written in

standard Fortran used for allocating and de-allocating memory.

• Character handling - A collection of subroutines for converting character data to

floating point, integer or logical data types.

• Message printing - A subroutine for printing messages and various levels of

error messages

• Numerical Routines - routines for sorting, solving ODE's, etc.

The sorting routines were modified for use with the vent routines and so are not useful outside of

CCFM.

2.5.1 Computer Floating Point Characteristics

The computer floating point characteristic of most interest is the unit rounding or machine unit or

commonly referred to as machine epsilon which is defined to be the smallest positive floating point

number which can be added to one to produce a machine number different from one. This machine

dependent parameter depends on the length of the fractional portion (mantissa) of the machine

representation for a real number.

A standard approach to obtain the correct floating point parameters is to put the parameters for all

commercial machines into data statements in function subprograms with the names I1MACH, for

integer parameters, R1MACH, for real parameters, and D1MACH, for double precision

parameters. When a code such as CCFM.VENTS is installed on a new machine, the installer
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must go into these three routines and activate the data statements corresponding to his machine.

This involves changing a few comment statements into lines of code.

Four key floating point characteristics of a computer are: the base of the floating point representa-

tion, (3; the number of digits in the mantissa, t; the smallest exponent, e^; and the largest expon-

ent, emax- A set of numbers can be generated from these four parameters using the following float-

ing point representation.

( pi x (3° + P2 x (3-i + ... + (3 t
x pi-t

) x (3
e (2.5.1)

where

1 <(3i <(3 - 1

0 < pi < (3 - 1; i = 2, ... or t

Smm — Q — Cmax*

The numbers: Pi, ..., pt form the mantissa and e forms the exponent of the floating point number

used on the computer. The set of numbers defined by Eq. (2.5.1) is called the Wilkinson Floating

Point Model. One particular parameter of interest, machine epsilon, can be derived from P and t.

Consider the number 1 written in the format of Eq. (2.5.1), i.e. pi = 1, P2 = ... = Pt = 0 and e =

0. The smallest number that can added to 1 is a number where the exponent and the first t- 1 digits

of the mantissa are zero and the t'th digit is 1. This number is P 1 -1 or machine epsilon. The

significance of machine epsilon is that it indicates how close two machine numbers may be before

catastrophic cancellation (loss of all leading significant digits) can occur. Floating point parameters

for a few computers of interest are given Table 2.5.1.
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Table 2.5.1 Floating Point Characteristics for Various Computers

Computer P t ®min ®max Em * P
1_t

Univac 1 100 2 27 -128 127 1.49 x 10-8

PDP-11 A/ax 11/780 2 24 -127 127 1.19 x 10-7

Cray -

1

2 47 -8189 8190 1.42 x 10- 14

Apple Macintosh/

IBM PC 2 24 -125 127 1.19 x 10-7

IBM 360/370/

Concurrent 7/32 16 6 -64 63 9.54 x 10-7

CDC 200 (Cyber 205) 2 47 -28625 28718 1.42 x 10-14

[} > base, t - number of digits in mantissa

emjn 3 smallest exponent, emax * largest exponent

Erp - machine epsilon; smallest floating point number such that 1 + em > 1

2.5.2 Memory Management Routines

Memory management routines are a collection of routines written in standard Fortran that provide a

means for allocating and de-allocating memory. These allocation/de-allocation routines are similar

to the capabilities provided with C and Pascal. CCFM.VENTS's allocation process is not truly

dynamic, for all memory assigned by the memory management routines comes from the common

block /MEMRY/. This block of memory can only be re-sized at compile time. The present

version of CCFM.VENTS allocates 2000 floating point words to this common block.

The fundamental unit of allocated memory is called a block. The structure of a memory block is

given in Figure 2.5.2. 1. There is a storage overhead of 5 integer units per block. This extra mem-

ory is used to store pointers to the next block, the previous block, the size of the block, the type of

block (integer or floating point) and an error detection code. The error detection code is a heuristic

for determining whether a pointer passed to a memory management routine represents a valid

block of memory. So the 5'th unit of overhead is chosen so that all overhead units for a given

block sum to 10. So whenever a memory management routine is called it sums the overhead

block. If the sum is not 10 it assumes that it was called with an invalid memory pointer and returns

an error code.
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Memory
Block

Overhead

Figure 2.5.2. 1 Memory Block Data Format

The operations presently supported by with the memory management routines are:

• GETPTR - allocate a block of memory

• DELPTR - de-allocate a block of memory

• CPYPTR - make a copy of a block of memory

• RESIZ - change the space allocated to a memory block

• SIZE - return the size of a memory type. The size is in terms of the memory type,

integer or floating point, of the allocated block.
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First Memory
Block

Last Memory
Block

Figure 2. 5.2.2 Deleting a Memory Block

Memory blocks are connected to each other with doubly-linked lists. The forward links are shown

in Figure 2.5.2.2. To allocate a block of memory, GETPTR, simply walks down the links as

illustrated by the arrows until the free space after a block is sufficient to contain a block of the

requested size. GETPTR then installs this block in the chain by re-establishing the links.

Likewise to delete a memory block DELPTR simply cuts the links referenced by the deleted

block. The solid arrows represent forward links before a deletion, shaded arrows represent links

after a deletion. A similar operation must be performed for the backward links.

2.5.3 Character Handling Routines

There are three routines for converting character data to "value" data where "value" refers to

floating point numbers, integers or logicals. These routines are RVAL/DVAL, INTVAL and

LVAL.

2.5.4 Error/Message Printing

The error message/printing routines provide a central location within CCFM.VENTS for

communicating with the user. There are times when it is desirable to turn off the routines display

of user messages. For example, when the user is LOADING a data set it is not necessary to see all
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the messages generated by each command in the file. By having all of the output occur in one

subroutine it is convenient to turn it off as in the previous example. This message level displayed

can then be controlled by the user.

The user/developer uses this routine by passing it a character string containing the message or error

to be printed and the level of the message. The message will be printed as long as its level exceeds

the minimum message priority as defined by the variable IOLEVL. The message priority levels

are

• informative - A level 0 message, just communicates information to the user by

displaying model results, for example. There is no connotation of an error or

problem with this type of message.

• warning - A level 1 message, indicates a possible problem that may or may not

require corrective action.

• error - A level 2 message, indicates a situation requiring some action to remedy.

Further results are suspect unless the problem is corrected. Example - an input

command is entered incorrectly

• fatal error - A level 3 message indicates a problem has been encountered where

no conceivable action can be taken to remedy the situation. Example - division by
0 .
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3. Developing CCFM

3. 1 Adding New Physical Routines

The place in CCFM.VENTS where it is logical to install additional physical algorithms is within

the subroutine FBUILD. FBUILD is responsible for calculating the ODE rhs. The ODE rhs

depends upon contributions to layer mass, enthalpy and product of combustion flows due to each

phenomena being modeled. After calculating these contributions FBUILD totals them, and then

calculates the ODE rhs. The following code segment from FBUILD shows where a new routine,

XPHEN, describing a new phenomenon would be called and how the totaling code would be

modified

FBUILD first calculates the mass, enthalpy and product of combustion flows for each physical

phenomenon. Presently these phenomenon are natural vents - UVENT, forced vents - FVENT

and fire plumes - FPLUME. These routines return the flows in the data structures FLWU,

FLWF and FLWP respectively. These structures are each organized as illustrated in Figure

2.4. 1.3. After the flows are calculated they are summed. This sum is stored in FLWTOT which

again is organized in the same way as FLWU, FLWF and FLWP. Finally, FROOM is called

to calculate the ODE rhs. The changes necessary to implement the new fire phenomenon XPHEN

are highlighed in bold.

c

C*** CALCULATE FLOW'S DUE TO NATURAL VENTS

C

CALL UVENT (TSEC, X, FLWU)

C

C*** CALCULATE FLOW'S DUE TO FORCED VENTS

C

CALL FVENT (TSEC, X, FLWF)

C

C*»* CALCULATE FLOW'S DUE TO PLUMES

C

CALL FPLUME (TSEC,X, FLWP, QLPQUP)

C

C*** CALCULATE TLOW TOR NEW PHENOMENA
C

CALL XPHEN (TSEC, X, TLWX)

C

C**» SUM ALL FLOW'S

C

DO 20 JROOM= 1, NIRM

QLPQUR ( JROOM) = FLWU ( JROOM, Q, L) +FLWU ( JROOM, Q, U) + QLPQUP (JROOM)
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* + FLWF (JROOM, Q, L) +FLWF (JROOM, Q, U)

* + rLWX (JROOM, Q, L) +rLWX (JROOM, Q, O)

DO 21 I LAY = 1, 2

DO 22 IPROD = 1, NPROD+2

FLWTOT (JROOM, IPROD, ILAY) = FLWU ( JROOM, IPROD , I LAY ) +

* FLWP (JROOM, IPROD, ILAY) + FLWF (JROOM, IPROD, ILAY)
* + FLWX (JROOM, IPROD, ILAY)

22 CONTINUE

21 CONTINUE

20 CONTINUE

C

C*** CALCULATE RHS OF ODE'S FOR EACH ROOM

C

DO 10 I = 1, NIRM

JROOM = I

II = 1 + (JROOM-1) *NRMDE

CALL FROOM

(

I TSEC, X ( I I )

,

FLWTOT, QLPQUR, JROOM,

0 XPRIME (II)

+ )

10 CONTINUE

3.2 Adding or Changing Menu commands

As illustrated in the previous code segment it is relatively easy to install additional physical algo-

rithms to CCFM.VENTS. The hard part then is to write the routines in the first place and to make

the necessary changes in CCFM.VENTS to solicit any additional inputs from the user required by

the new algorithm. The new input requirements will more than likely require changes in the

subroutine MENU1 and additions or modifications to CCFM.VENTS 's global data structures

(Common Blocks). Algorithm 3.2.1 gives a brief synopsis of the work performed by MENU1

when executing a menu command.

Algorithm 3.2.1 MENU1 Calculations

1 . Branch to the section of MENU1 for handling the entered CCFM.VENTS command as indicated by the

argument IPROG. This argument is known as the command reference number (CRN) . A list of CRN's is

given in Table 3.2.1. These values are read in by CCFM.VENTS from the menu definition file.

2. Handle the command. A typical CCFM.VENTS command, COM1, is handled in the following way.

2.1 Determine whether data is being entered using screen mode. If screen mode is desired then

construct a command line of the current data for COM1. Pass this command line to the routine

screen handling routine SCRNIN.
2.2 If screen mode was used then use value of COM1 passed back by SCRNIN in the following

steps, otherwise use the value of COM1 originally entered by the user.

2.3 Convert the tokens on COM1 from character data to the appropriate type and check whether the

converted data falls within the required bounds. This work is done with the routines: IBNCHK for
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integer conversions; RBNCHK for floating point conversions; LBNCHK for logical conversions;

and FBNCHK for file checking.

2.4 Transfer numerical data from tokens to CCFM.VENTS global data structures.

2.5 Call the routine MSGPRT to print out data that was entered. Note: this message display can be
turned off by setting the flag IOLEVL to 1

.

A command reference number (CRN) is the index of a COMPUTED GOTO statement in

MENU1 or MENUO that corresponds to the command being executed. The CRN's for

CCFM.VENTS are given in Table 3.2.1. These values are given in the menu definition file that

CCFM.VENTS reads in to define the menu's. The command AMB has a CRN of 5. Inside the

the menu definition file there is the following statement:

.C AMB 5

Whenever the AMB command is executed a value of 5 is passed to MENU1 in the variable

IPROG. The COMPUTED GOTO statement within MENU1 then branches to the statement

170 CONTINUE

By placing the COMPUTED GOTO index in a data file for each command the commands may be

rearranged arbitrarily without changing or re-compiling any subroutines. A new CCFM.VENTS

command may be installed by following the procedure outlined in Algorithm 3.2.2.
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Table 3.2.1 Command Reference Numbers (CRN)4

Command CRN Command CRN

AMB 5 AUTO 18

BEGIN 16 CONS 1

CONV 14 DUMP 30

FACTOR 8 FILES 22

FIRE 7 FVENT 9

HELP -7 INIT 17

INITP 6 LOAD 29

NUM 4 NUMINF 12

OPTIONS -6 PARMS 13

PATH 2 QUIT -5

REPORT 27 RERUN 28

ROOM 11 TIME 15

TITLE 25 VALUES 31

VENT 10

Commands corresponding to negative CRN's are generic commands and are

executed by the subroutine MENUO.
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Algorithm 3.2.2 Installing a New Menu Command

1 . Suppose the new command is named NEWC.
2. Pick a unique command reference number for NEWC. CRN's already taken are given in Table 3.3.1. CRN's

of 3 and 9 are available so let NEWC's CRN be 3.

3. Add the following text to the menu definition file. Place this text immediately after the command you wish

NEWC to follow in CCFM.VENTS's menu.

.C NEWC 3

4. Place any help text or parameter description text after the entry above.

.H Any help text for the new command NEWC
,H Some more help text for the new command NEWC
.PD description of NEWC's first parameter

.PD description of NEWC's second parameter, etc.

5. Modify MENU1. Examine the computed goto statement in MENU 1. The label that will be executed when
IPROG-3 is

150 CONTINUE
5.1 Place code to implement the command NEWC after the statement, 150 CONTINUE.
5.2 Use Algorithm 3.2.2 as a model for executing the command NEWC. Use the routines RBNCHK,

IBNCHK, LBNCHK and/or FBNCHK to copy information from the character string CARD that was
entered by the user to the global data structures that are associated with this command.

6. Add an entry to the subroutine DUMP. Each CCFM.VENTS command has a corresponding entry in the

subroutine DUMP. DUMP simply does the opposite of MENU1. MENU1 transfers data found on the

command line to the appropriate global data structures. DUMP takes data from the global data structures

and constructs a command line.

3.3 Installing CCFM.VENTS on an EBM-PC Compatible Computer

CCFM.VENTS is designed to run on any IBM-PC compatible computer with 640k of memory that

has a floating point chip installed- This chip is necessary in order to run CCFM.VENTS in a

timely manner, since CCFM.VENTS is floating point intensive. CCFM.VENTS should be

installed in its own directory. Copy all files on the distribution floppy disk to a directory on the

hard disk. To test if CCFM.VENTS was installed correctly change to that directory and type:

CCFM
followed by

BEGIN.

Results similar to

of this report, the

those printed on your terminal screen should appear in section 2 of Part IV [12]

user's reference guide.
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The installation is complete.

3.4 Porting CCFM.VENTS to a non-IBM-PC Computer

The CCFM.VENTS code which is accessible from the CFR computer bulletin board, will run on

an IBM-PC or compatible or an Apple Macintosh. The following notes indicate what parts of

CCFM.VENTS's source code may need to be changed in order to install it on another computer.

The only critical step in installing CCFM.VENTS onto another computer is setting up the Fortran

I/O unit numbers correctly and installing the correct MACH routine machine parameters. The two

other steps: accessing the CPU clock and defining the file checking routine LEGAL can be ignored

if you do not wish to use the features that they provide.

Setting Fortran I/O units The unit numbers and file names used for reading and writing data to the

terminal screen are defined in the main program. In general the unit numbers and file names used

to refer the "terminal screen" are different for each computer.

The following code segment was taken from the main routine of CCFM.VENTS. The variables

containing the unit numbers for input and output are INI and IOUT1 respectively. Most

FORTRAN'S assign 5 for terminal input and 6 for terminal output This is not universal,

however. Again, the values used for FORTRAN unit numbers for screen I/O are not defined by

the standard.

I0UT2 = 9

IOUTER = 9

IF (COMPTR.EQ. NOS) THEN

ITERMI = 5 ; CYBER/NOS
ITERMO = 6

ISCRAT = 9

OPEN (UNIT=ITERMI, FILE= ' INPUT '

)

OPEN (UNIT=ITERMO, FILE= ' OUTPUT '
)

ELSE IF (COMPTR.EQ. MAC) THEN

ITERMI =9 ; Macintosh
ITERMO = 9

ISCRAT = 12

ELSE IFtCOMPTR.EQ. CON) THEN

ITERMI =5 ; Concurrent 3252

ITERMO = 6

ISCRAT = 9
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OPEN ( UN I T= ITERM I , FILE= ' C :

')

OPEN (UNIT=ITERMO, FI LE= 1 C :
'

)

ELSE IF (COMPTR.EQ. IBMPC . OR . COMPTR . EQ . COMPAQ) THEN
ITERMI =5 ; IBMPC Compatible
ITERMO = 6

ISCRAT = 9

ELSE IF(COMPTR.EQ. UNIX) THEN

ITERMI = 5 ; UNIX Work Station

ITERMO = 6

ISCRAT = 9

ELSE

ITERMI = 5

ITERMO = 6

ISCRAT = 9

OPEN (UNIT=ITERMI, FILE= ' INPUT '

)

OPEN (UNIT= ITERMO, FI LE= ' OUTPUT '

)

ENDIF

Setting the MACH routines The MACH routines, RIMACH, D1MACH and IIMACH were

originally written at Bell Laboratories as a part of their PORT library. They are in the public

domain. These routines are used to specify the floating point environment upon which the

computer program that is using them is running. The source for these routines contains

commented examples for a large number of commonly used computers, ranging from a Cray 1 to

an IBM PC or Macintosh. To change from the IBM-PC to another computer say a VAX-1 1/780

you simply remove a 'C' from column 1 of the data statements for the VAX- 1 1/780 and place a 'C

in column 1 for each data statement referring to the IBM-PC. This needs to be done for IIMACH.

It is also required for R1MACH if you are going to use single precision and D1MACH otherwise.

A portion of IIMACH is given below for the IBM PC Family and the Vax 1 1-780.

C MACHINE CONSTANTS FOR THE IBM PC FAMILY (D. KAHANER NBS)

C

C DATA IMACH/ 5 , 6 , 0, 6 , 32, 4 , 2 , 31, 2147483647, 2 , 24,

C * -125,127,53,-1021,1023/

C NOTE! I1MACH (3) IS NOT WELL DEFINED AND IS SET TO ZERO.

C MACHINE CONSTANTS FOR THE VAX 11/780

c DATA IMACH (1) / 5 /

c DATA IMACH (2) / 6 /

c DATA IMACH (3) / 5 /

c DATA IMACH (4) / 6 /

c DATA IMACH (5) / 32 /

c DATA IMACH (6) / 4 /

c DATA IMACH (7) / 2 /

c DATA IMACH (8) / 31 /

c DATA IMACH (9) /2147483647 /
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c DATA IMACH (10) / 2 /

c DATA IMACH(ll) / 24 /

r DATA IMACH (12) / -127 /

c DATA IMACH (13) / 127 /

c DATA IMACH (14) / 56 /

c DATA IMACH (15) / -127 /

c DATA IMACH (16) / 127 /

c

Accessing the CPU clock CCFM.VENTS calls a routine named CPTIME any time it wants the

elapsed CPU time in seconds since the beginning of the run. CCFM.VENTS uses this information

to calculate solver times so that the user can know how hard the program is working to solve a

problem. The code segment listed below gives the way that three different computers calculate

elapsed CPU time. If you do not desire this feature then simply set CPUTIM to 0. The

information on how to access the CPU clock is usually given in your computer system FORTRAN

manual. Access of the CPU clock is not a feature of FORTRAN 77.

The fundamental unit of time on a Macintosh is called a tick and is about l/60th of a second. The

value in ticks since the Macintosh was turned on is located at memory location: 16A hex or 362

decimal. In order to return a value in seconds the number of ticks must be scaled by 60. The PC

has a routine named TIMER that returns the number of ticks. This is similar to a Mac except that 1

tick on a PC is 1/100'th of a second rather than 1/60'th.

SUBROUTINE CPTIME (CPUTIM)

C

C*** CYBER/NOS

C

C CPUTIM = SECOND (

)

C

C*** MACINTOSH/ABSOFT FORTRAN

C

C CPUTIM = LONG (Z'16A')/60.0D0

C

C*** IBM-PC COMPATIBLE, MS-DOS - LAHEY FORTRAN

C

CALL TIMER (ITICK)

CPUTIM = ITICK/100 . 0D0

C

C*** SET CPUTIM TO 0. IF YOU DON'T KNOW TO GET CPU TIME
C CPUTIM = 0.0D0

RETURN

END
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Defining the File Checking Routine A function subroutine named LEGAL has been written to

check the validity of file names. Since file naming conventions are functions of the computers

operating system it is necessary to have a different version of LEGAL for each computer where

CCFM.VENTS is installed. LEGAL is passed a character string that contains the name of a file.

LEGAL then passes back to the calling routine a true value if the file name was legal and a false

value otherwise. This routine is called by any CCEM.VENTS command that uses file names such

as FILES, DUMP and LOAD. To quickly install CCEM.VENTS on a new computer you may

simply always return true. The following code segment from the function subroutine LEGAL

shows how file error checking was implemented on the Cyber. The Cyber requires file names

have length no longer that 7 characters. The additional requirement was added that the first

character had to be alphabetic and each subsequent character had to be a digit or alphabetic.

IF (COMPTR . EQ . NOS ) THEN

LEGAL = .FALSE.

N1 = LENGTH (FILE)

IF (N1 . LE . 0 ) THEN

CALL MSGPRT

(

1 FILE NAME TO SHORT', 2)

RETURN

ENDIF

IF ( N1 . GT . 7 ) THEN

CALL MSGPRT ('FILE NAME TO LONG
' , 2

)

RETURN

ENDIF

IF (.NOT. ALPHA (FILE (1:1) ) (THEN

WRITE (MSSG, 11) FILE (1:1)

CALL MSGPRT (MSSG, 2)

RETURN

ENDIF

M = 7

IF (N1 . LT . 7 ) M = N1

DO 10 I = 2, M

C = FILE (I : I)

IF (ALPHA (C) ) GO TO 10

IF (NUM (C) ) GO TO 10

IF (C.EQ. '
' ) GO TO 10

WRITE (MSSG, 11)

C

11 FORMAT (

' ILLEGAL CHARACTER: ' ,A1, ':'

)

CALL MSGPRT (MSSG, 1, 1,2)

RETURN

10 CONTINUE

LEGAL = .TRUE.

ELSE

LEGAL = .TRUE.

ENDIF

52



REFERENCES

[1] ANSI X3.9-1978, American National Standard Programming Language FORTRAN,
American National Standards Institute, 1430 Broadway, New York, New York 10018

[2] Numerical Recipes, The Art of Scientific Computing, Editors: William H. Press, Brian P.

Flannery, Saul A. Teukolsky and William T. Vetterling, Camebridge University Press

[3] Shampine, L. F. and Gear, C. W., A User's View of Solving Stiff Ordinary Differential

Equations, SIAM Review V21, p. 1-17. (1979)

[4] Byrne, George D. and Hindmarsh, Alan C., Stiff ODE Solvers: A Review of Current and

Coming Attractions, Journal of Computational Physics V70, p. 1-62. (1987)

[5] Gear, C.W., The Automatic Integration of Stiff Ordinary Differential Equations,

Information Processing p. 187-193. (1969)

[6] Gear, C.W., Algorithm 407: DIFSUB for solution of ordinary differential equations [D2],

Comm. ACM V14, p. 185-190. (1971)

[7] Watts, H. A. and Shampine, L. F., BIT V12, p.252- (1972)

[8] William F. Moss, private communication

[9] Introductory Functional Analysis With Applications, Erwin Kreyszig, John Wiley & Sons,

New York (1978)

[10] Cooper, L.Y. and Forney, G.P., The Consolidated Compartment Fire Model (CCFM)
Computer Code Application CCFM.VENTS - Part I: Physical Basis, NISTIR 90-4342,

National Institute of Standards and Technology, Gaithersburg MD, 1990.

[11] Forney, G.P. and Cooper, L.Y., Eds., The Consolidated Compartment Fire Model
(CCFM) Computer Code Application CCFM.VENTS - Part HI: Catalog of Algorithms and

Subroutines, NISTIR 90-4344, National Institute of Standards and Technology,

Gaithersburg MD, 1990.

[12] Forney, G.P., Cooper, L.Y. and Moss, W.F., The Consolidated Compartment Fire Model
(CCFM) Computer Code Application CCFM.VENTS - Part IV: User Reference Guide,

NISTIR 90-4345, National Institute of Standards and Technology, Gaithersburg MD,
1990.

53





A. Glossary of CCFM.VENT Subroutines

This appendix contains a brief description of the the routines found in CCFM.VENT arranged by
functional type. Each routine description begins with the term generic or specific. Routines that

can be used "as is" in other computer programs are denoted generic. These routines do not use or
depend upon data structures specific to CCFM.VENTS. All others routines are denoted specific.

This appendix also contains information on how each subroutine and common block in

CCFM.VENTS are related to each other. This information is essential to the person who wishes to

modify CCFM.VENTS. For example, if one wishes to change the number of arguments in the

calling list of a subroutine one would need to know what subroutines call it.

The main heading, NAME, is given in bold text. Each entry has a description and up to four

sub-headings: CALLS, LEB,COMMONS and CALLED BY. The subheadings CALLS and LIB
are similar. They both list external references to NAME., i.e. what routines NAME calls. The
source code for the routines that are listed under CALLS appear in the same computer file as

NAME. On the other hand, the routines listed by the LIB sub-heading do not Some examples of

routines that would appear under LIB are FORTRAN supplied functions such as ABS, SQRT,
MOD, etc. The names listed next to COMMONS are the COMMON blocks that appear in the

routine NAME. The routines that are listed next to CALLED BY are those routine that call

NAME.

NAME ... description of NAME ...

CALLS: SUB1, SUB2, ...

LIB: SUBA, SUBB, ...

COMMONS: COM1, COM2, ...

CALLED BY: SUBa, SUBb, ...

A.l INPUT Module Routines

ARAYIN generic - The driver routine for the array input package. It provides a facility for

inputing data that is organized as vectors or arrays. The vector data is stored using

the memory manager (see utility routines). So the only limit on array size is the

memory available.

CALLS: ARFRSH COLAPS CPYPTR DCODE DELPTR DELVAL
GETHLP GETITM GETPTR GETSIZ IBNCHK INCLST
INTVAL MSGPRT PARSE RESIZ RVAL SORT

LIB: LABS MAX MIN
COMMONS: FIO MEMRY MEMRY2 MENU2 MENU4 MENUS MFLAGS

MIO TOKEN 1 TOKEN2
CALLED BY: ARYTOK

ARYTOK generic - Identify the itok'th token on a command line as either a floating point or an

array/vector flag. An array/vector flag is indicated by a string of characters

beginning with 'V'. The subroutine arguments, ixptr, iyptr, xlabl, ylabl, are the
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INCLST

DELVAL

COLAPS

SCRCMD

ARFRSH

DUMP

FBNCHK

same as defined in the routine ARAYIN.

CALLS: MSGPRT
CALLED BY: ARAYIN

generic - This routine is part of the array input package. This package will display

up to 10 elements of an array. This routine determines which element should be the

last one displayed.

CALLED BY: ARAYIN

generic - A subroutine used in the array input package. This routine marks data as

deleted that lie between a given lower (xmin) and upper (xmax) bound. Delval then

sets the corresponding elements in the array ISET to 0; to indicate that these

elements have been deleted.

CALLED BY: ARAYIN

generic - A subroutine used in the array input package. While in the array input

mode the user can delete array data values that lie between a given lower and upper

bound. Internally the data is marked as deleted using the array ISET. This routine

recovers the un-used space by collapsing the arrays containing the deleted data.

CALLED BY: ARAYIN

generic - A subroutine used in the array input package and the screen input package.

It is used to convert character strings, 'h', 'o’, 'c', etc to integers. These characters

refer to the screen and array input commands: help, ok and cancel.

generic - A subroutine used in the array input package. It refreshes the screen in the

array input mode. The user can modify and/or delete data by field. To see the

results of data editing, the user types a null return or d for display. This routine is

then called to print out an updated screen of data.

CALLS: MSGPRT
CALLED BY: ARAYIN

specific - Writes the CCFM.VENTS commands that specify the current case being

modeled to an output file. The output file has a unit number, iodump. If

IWHICH=1 then all CCFM.VENTS commands are dumped. If IWHICH=0 then

only those commands that have changed since the last time step are dumped.

CALLS: GENCHK GETSIZ LENGTH RMVBLK
COMMONS: CHECK CONST ERCOM ERRCHR FILES FIRE FLAGS

MEMRY MEMRY2 MFLAGS COMMONS: MODCOM OUTS
PRODS ROOM SIZES TITLS VARMAP VENTS

CALLED BY: MENU1 MODEL

generic - Checks whether a token on an input line can be opened as a file for either

input or output.

56



GENCHK

GETHLP

GETITM

GETVCT

IBNCHK

CALLS: LEGAL MSGPRT
COMMONS: TOKEN 1 TOKEN2
CALLED BY: MENU1

specific - This routine checks for certain types of generic input errors, two types of

errors that are checked are: defining a product of combustion but not defining a

factor or defining a vent (either natural or forced) that references a room but not

defining that room.

CALLS: NUMINF
COMMONS: CHECK SIZES
CALLED BY: DUMP MENU1

generic - Displays help information about a command. The routine GETITM
associates an identification number, inum, with each command. This routine uses

inum as an index to retrieve help information about a command.

CALLS: MSGPRT
LIB: MOD
COMMONS: COMTYP FIO MENU2 MENU4 MENUS MIO

generic - This routine determines whether a given token is a valid command and if

so returns an identification number. This information is used by the routines

MENUO or MENU 1 to execute the command and by GETHLP to display help

information about the command.

CALLS: UPPER
COMMONS: MENU2 MENU4 MENUS
CALLED BY: ARAYIN INPUT MENUO SCRNIN

generic - A low-level routine in the array-input module. It is used to store a

message into a character string depending on the size of a given dynamic array

defined by the memory manager. A blank is stored if the array is of size 0, the

array's value is stored if it is of size 1 and the character string 'vector' is stored if

the array is of size greater than one.

CALLS: GETSIZ
COMMONS: MEMRY MEMRY2
CALLED BY: MENU1

generic - Checks whether a given input token is a valid integer. If it is, it further

checks whether the integer is within specified bounds. The following parameter

statement is used to determine the type of bounds desired

PARAMETER (LE=1JLT=2,GE=1,GT=2,NIL=0)
where LE, LT, GE and GT have the standard FORTRAN meaning
and NIL means that no bound check is desired

CALLS: INTVAL MSGPRT
COMMONS: TOKEN 1 TOKEN2

57



CALLED BY: ARAYIN MENUO MENU1 SCRNIN

INPUT

LBNCHK

MENUO

MENU1

PARSE

generic - Driver routine for the INPUT package; it reads in a command line, and
causes the line to be interpreted and executed.

CALLS; GETITM MENUO MENU1 MSGPRT PARSE PRTMEN
RDMENU

COMMONS: ERCOM ERRCHR FIO MENU2 MENU4 MENUS MFLAGS
MIO TOKEN1TOKEN2

CALLED BY: MAIN

generic - Checks whether a given input token is a valid boolean flag (yes, on, true

or no, off, false). This routine uses arrays defined by the routine CPYVAL.

CALLS: LVAL MSGPRT
COMMONS: TOKEN 1 TOKEN2
CALLED BY: MENUO MENU1

generic Implements the generic commands: BATCH, BRIEF, HELP, LEVEL,
STOP and TTY. Any generic commands that are implemented in the future should

be handled by this routine.

CALLS: GETHLP GETITM IBNCHK LBNCHK MSGPRT SCRNIN
LIB: LABS
COMMONS: ERCOM ERRCHR FIO MFLAGS MIO TOKEN 1 TOKEN2
CALLED BY: INPUT

specificThis routine interprets and acts on the commands entered by the user and are

specific to the program CCFM.VENT. This routine and the routine DUMP are the

only routines in the INPUT package that need be modified when the input require-

ments change, i.e a new command is added to the menu.

CALLS: ARYTOK DUMP FBNCHK GENCHK GETVCT IBNCHK
INITMD LBNCHK LENGTH MSGPRT NUMINF OPENFL
OUTPUT OUTWRP RBNCHK RMVBLK SCRNIN SETDE
STATE 1 UPPER

COMMONS: CHECK CONST ERCOM ERRCHR FILES HO FIRE
FLAGS EMITS IO MEMRY MEMRY2 MFLAGS MIO
MODCOMOUTS PRODS ROOM SIZES TITLS TOKEN 1

TOKEN2 VENTS
CALLED BY: INPUT

generic - Given a line of text, this routine determines the beginning and ending of

each contiguous set of non-blank characters. Other routines in the INPUT module

use this information to determine the location and value of parameters found on a

command line.

CALLS: GTFCHR INITLV LSTCHR NXTQTE
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PRTMEN

RBNCHK

RDMENU

RFRSH

SCRNIN

LIB: LEN
CALLED BY: ARAYIN INPUT RDMENU SCRNIN

generic - Prints out the menu as specified by the file MENUMLT.

CALLS: MSGPRT
COMMONS: MENU2 MENU4 MENUS
CALLED BY: INPUT

generic - Checks whether a given input token is a valid floating point number, if it

is, it further checks whether the floating point number is within specified bounds.

The following parameter statement is used to determine the type of bounds desired

PARAMETER (LE=1,LT=2,GE=1,GT=2,NIL=0)

where LE, LT, GE and GT have the standard FORTRAN meaning and nil means
that no bound check is desired

CALLS: MSGPRT RVAL
COMMONS: TOKEN 1 TOKEN2
CALLED BY: MENU1

generic - This routine reads in a text file that describes the structure of the menu.
Changes made to individual menu items can be made without re-compiling the

program. RDMENU also loads CCFM.VENT with a default data values.

CALLS: INDEXX INTVAL MSGPRT PARSE
LIB: INDEX
COMMONS: FIO MENU2 MENU4 MENUS MFLAGS MIO TOKEN 1

TOKEN2
CALLED BY: INPUT

generic - A routine used while in the screen input mode. Used with the routine

SCRNIN to refresh the screen of input values and descriptions.

CALLS: MSGPRT
COMMONS: FIO 10 MENU2 MENU4 MENUS MIO
CALLED BY: SCRNIN

generic - The driver routine for the screen-input module. The routines implements

the screen input mode by soliciting input from the user using a pseudo-screen

mode. A list of input descriptions with their corresponding values are printed along

with available options. The user can change any input field by typing the field

number along with the new value.

CALLS: CRDMRG GETHLP GETITM IBNCHK MSGPRT PARSE
RFRSH

LIB: LABS

59



COMMONS: HO MENU2 MENU4 MENUS MFLAGS MIO TOKEN 1

TOKEN2
CALLED BY: MENUO MENU1

A. 2 MODEL/PHYSICS Module Routines

COMWL1 generic - setup for calculation of the flow through vents in the wall segment
common to two rooms, this routine calculates room pressures and room-to-room
pressure differences at certain elevations along common walls of adjacent rooms,

these elevations are:

1
.

ymin - maximum of two rooms floor elevations

2. ymax - minimum of two rooms ceiling elevations

3. layer elevations between ymin and ymax
4. neutral planes elevations between ymin and ymax

There can be up to 7 elevations of interest ( 1 floor, 1 ceiling, 2 layer and 3 neutral

plane elevations).

CALLS: DELP HSORT RMVDUP
LIB: MAX MIN
CALLED BY: UVENT

DELP generic - Calculation of the absolute hydrostatic pressures at a specified elevation in

each of two adjacent rooms and the pressure difference. The basic calculation

involves a determination and differencing of hydrostatic pressures above a specified

datum pressure.

CALLED BY: COMWL1 VENTHP

FANRES generic - Find the mass that a fan will deliver under given conditions in the inlet and

outlet rooms.

CALLS: FANFOR FANREV INTERP MRES RTSAF2
CALLED BY: VENTF

FANFOR generic - This routine is called by a zero finder to locate a pressure difference

accross the fan, DPFAN, that will cause this function to be zero when the flow is in

the forward or normal direction.

CALLS: INTERP MRES
CALLED BY: FANRES

FANREV generic - This routine is called by a zero finder to locate a pressure difference

accross the fan, DPFAN, that will cause this function to be zero when the flow is in

the reverse direction.
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FBUILD

FL0G02

FPLUME

FROOM

FVENT

GETVAR

INIT

CALLS: INTERP MRES
CALLED BY: FANRES

specific - Calculates the right hand side of the ODE being solved. The calling

sequence of FBUILD is determined by the specific ode solver that is used.

CALLS: CPTIME FPLUME FROOM FVENT SETDE UVENT
COMMONS: FLAGS FLOWS IO MODCOM SIZES
CALLED BY: EIGF MODEL OUTPUT

generic - Deposition of mass, enthalpy, oxygen, and other product-of-combustion

flows passing between two rooms through a vertical, constant-width vent or

through a simple fan-resistance ventilation system.

CALLED BY: FVENT UVENT

specific - Driver routine to calculate mass, enthalpy and product flows due to all

plumes in the scenario being modeled, this routine is an interface between the

catalog physics routines and ccfm.vent.

CALLS: GETSIZ INTERP MSGPRT PLUGO
COMMONS: CONST FIRE FLAGS MEMRY MEMRY2 PRODS ROOM

SIZES VARMAP
CALLED BY: FBUILD

specific - This routine computes the rhs of the CCFM.VENTS ODE"S for the

room, jroom. This routine is called by FBUILD once for each room in the

simulation.

COMMONS: CONST FLAGS IO ROOM SIZES VARMAP
CALLED BY: FBUILD

specific - Driver routine to calculate mass, enthalpy and product flows due to all

forced vents in the scenario being modeled, this routine is an interface between the

catalog physics routines and CCFM.VENTS.

CALLS: FL0G02 GETSIZ GETVAR VENTF
COMMONS: CONST FLAGS MEMRY MEMRY2 PRODS ROOM SIZES

VENTS VNTSLB
CALLED BY: FBUILD

specific - Routine to interface between CCFM.VENTS global data structures and

vent (both natural and forced) data structures.

COMMONS: CONST SIZES VARMAP
CALLED BY: FVENT UVENT

specific - Initialization routine.

CALLS: ERINIT GETPTR
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INITMD

MAIN

MODEL

MRES

PLUGO

RMVDUP

SETDE

COMMONS: CHECK COMTYP CONST FIRE INTI'S MFLAGS OUTS
PRODS ROOM SIZES TTTLS TOKEN 1 TOKEN2 VENTS

CALLED BY: MAIN

specific - Initialize values required by the Model module.

CALLS: CPTIME NUMINF
LIB: MAX
COMMONS: CHECK CONST FIRE INITS IO MEMRY MEMRY2

MODCOMOUTS PRODS ROOM SIZES VENTS
CALLED BY: MAIN MENU1

specific - Main routine of the CCFM package.

CALLS: CPTIME INIT INITMD ENITMM INPUT MODEL OUTWRP
COMMONS: COMTYP IO MFLAGS

specific - Driver routine for MODEL package.

CALLS: CPTIME DUMP FBUILD JACB MSGPRT OPENFL OUTPUT
SETDE STATE 1

LIB: DEBDF MIN
COMMONS: CONST FILES FIO FIRE FLAGS IO MIO MODCOM

ROOM SIZES TTTLS
CALLED BY: MAIN

generic - This routine computes the mass flow in a fan system for a given resitance

and pressure.

LIB: ABS SQRT
CALLED BY: FANFOR FANRES FANREV

generic - Routine to calculate the mass, enthalpy and product flows due to one parti-

cular plume.

CALLED BY: FPLUME

specific - This routine removes duplicate entries from the sorted data quad-ruples

(x(i),y(i),z(i),w(i) i=l ... n). The parameter n is then adjusted to the new number
of entries. Two entries i and i+1 are duplicates if x(i)=x(i+l).

CALLED BY: COMWL1 VENTHP

specific - This routine copies information stored in the solver data structure, y, into

CCFM.VENTS global variables contained in the common block fWARMAP/ if the

ODE formulation is changed, then only this routine needs to be modified to reflect

the new structure of y.
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COMMONS: CHECK CONST PRODS ROOM SIZES VARMAP
CAT ,1 ED BY: FBUTLD MENU1 MODEL

STATE1 specific - Print out the state of the simulation.

CALLS: GETSIZ NUMINF
COMMONS: CONST ERCOM ERRCHR FILES FIO FIRE FLAGS INITS

IO MEMRY
COMMONS: MEMRY2 MFLAGS MIO MODCOM OUTS PRODS ROOM

SIZES TITLS TOKEN 1 TOKEN2 VENTS
CALLED BY: MENU1 MODEL

UVENT specific - Driver routine to calculate mass, enthalpy and product flows due to all un-

forced vents in the scenario being modeled This routine is an interface between the

catalog physics routines and CCFM.VENT.

CALLS: COMWL1 FL0G02 GETVAR VENTHP
COMMONS: CONST FLAGS PRODS ROOM SIZES VARMAP VENTS

VNTSLB
CALLED BY: FBUILD

VENTF generic - This routine calculates the flows (mass, enthalpy and product of

combustion) through a fan duct system.

CALLS: FANRES MSGPRT
LIB: ABS SQRT
CALLED BY: FVENT

VENTHP generic - Calculation of the flow of mass, enthalpy, oxygen and other products of

combustion through a vertical, constant-width vent in a wall segment common to

two rooms. The subroutine uses input data describing the two-laye environment in

each of the two rooms and other input data calculated in subroutine COMWL1.

CALLS: DELP HSORT MSGPRT RMVDUP
LIB: ABS EXP MAX MIN SQRT
CALLED BY: UVENT
CHECK: DUMP GENCHK INIT INITMD MENU1 NUMINF SETDE

A. 3 OUTPUT Module Routines

OUTFLW specific - Print out a report containing various flows due to vents, plumes, etc.

CALLS: OUTWRN
COMMONS: FLAGS FLOWS IO MODCOM OUTS SIZES TITLS
CALLED BY: OUTPUT

OUTGEN specific - Print out a report containing relative pressure, layer height, temperatures
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and oxygen if modeled for each room.

CALLS: OUTWRN
COMMONS: CONST IO MFLAGS MODCOM OUTS SIZES TITLS

VARMAP
CALLED BY: OUTPUT

OUTNUM specific - Print out a report containing numeric information such as number of itera-

tions and CPU required for each time step.

CALLS: OUTWRN
COMMONS: IO MODCOM OUTS SIZES TITLS
CALLED BY: OUTPUT

OUTPLT specific - Print out a table of numbers used by an external plotting routine.

COMMONS: CONST FLOWS IO MODCOM SIZES VARMAP
CALLED BY: OUTPUT

OUTPRD specific - Print out a report containing all products being simulated for each time

step

CALLS: OUTWRN
COMMONS: FLAGS IO MODCOM OUTS SIZES TITLS VARMAP
CALLED BY: OUTPUT

OUTPUT specific - Driver routine that determines whether printing should occur at the current

time.

CALLS: EIGF FBUHJD OUTFLW OUTGEN OUTNUM OUTPLT
OUTPRD OUTUSR

COMMONS: HO FLAGS MFLAGS MIO MODCOM OUTS SIZES
CALLED BY: MENU1 MODEL

OUTUSR specific - A sample routine that may customized by the user to fit her/his own
needs.

COMMONS: IO MODCOM SIZES
CALLED BY: OUTPUT

OUTWRP generic The reports written by OUTFLW, OUTGEN, OUTNUM, OUTPRD and

OUTDEB are written to one file. The routine OUTWRP sorts the information in

this file by report type and copies the result to another file.

CALLS: LENGTH
LIB: CHAR ICHAR MAX
CALLED BY: MAIN MENU1

A. 4 CHARACTER Manipulation/Conversion Routines
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ALPHA

INTVAL

LENGTH

LVAL

NOBLNK

NORMAL

NUM

generic - This logical function returns .true, if the input character, c is an alphabetic

character (between 'A' and Z' or 'a' and 'z') and .false, otherwise.

CALLS: UPPER
CALLED BY: LEGAL

generic - This routine converts a character string to an integer value

CALLS: LENGTH NUM
LIB: IIMACH ICHAR
CALLED BY: ARAYIN EBNCHK RDMENU RVAL

generic - This function returns the position of the last non-blank character in a

character string. This is different than the FORTRAN function, LEN. LEN returns

the length of the space allocated to a character string. So if the following two
statements appear in a FORTRAN program

CHARACTER* 80 CARD
CARD='ABC’

then len(card) = 80 while length(card) = 3.

LIB: LEN
CALLED BY: DUMP INTVAL LEGAL LVAL MENUl MSGPRT OPENFL

OUTWRP RVAL UPPER

generic - This routine converts character string to a logical value.

CALLS: LENGTH UPPER
LIB: MIN
CALLED BY: LBNCHK

generic - This integer function returns the column of a character string containing

the first nonblank character and a zero if the character string is completely blank.

LIB: LEN

generic - This routine takes a mantissa of a floating point number defined and

normalizes it so that the decimal is in the first column.

LIB: IIMACH INDEX LOG 10 MIN
CALLED BY: RVAL

generic - This is a logical function which returns true if a character string is a

number between 0 and 9 and returns false otherwise.

LIB: ICHAR
CALLED BY: INTVAL LEGAL
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UPPER generic - This routine converts any characters in a character string that are in lower
case to upper case.

CALLS: LENGTH MSGPRT
LIB: CHAR ICHAR LEN
CALLED BY: ALPHA GETITM LVAL MENU1 RVAL

A. 5 MEMORY Management Routines

CPYPTR generic - A routine in the memory manager package. Given a pointer to a block of

memory, this routine copies that block to another portion of memory and returns a

pointer to the new block.

CALLS: GETPTR
COMMONS: MEMRY MEMRY2
CALLED BY: ARAYIN RESIZ

DCODE generic - A routine in the memory manager package. Given a pointer to a block

memory, this routine determines whether that pointer is valid.

CALLED BY: ARAYIN DELPTR RESIZ

DELPTR generic - A routine in the memory manager package. Given a pointer to a block of

memory, this routine deletes that block.

CALLS: DCODE NCODE
COMMONS: MEMRY MEMRY2
CALLED BY: ARAYIN RESIZ

GETPTR generic - A routine in the memory manager package. This routine allocates a block

of memory of a given size and type. The valid types are integer, floating point or

character.

CALLS: NCODE
LIB: MOD
COMMONS: MEMRY MEMRY2
CALLED BY: ARAYIN CPYPTR INIT RESIZ

GETSIZ generic - This routine determines the size of a block of memory. This routine

requires a pointer to the block and its type (integer, real or double precision). The
initialization routine INITMM specifies how many integers correspond to a unit of

both single and double precision memory.

COMMONS: MEMRY MEMRY2
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INITMM

CALLED BY: ARAYIN ARYTOK DUMP FPLUME FVENT GETVCT
STATE 1

generic - The initialization routine of the memory manager package. This routine

initializes the memory manager by defining a first and last block which are used
internally by the memory manager and cannot be deleted

CALLS: NCODE
COMMONS: MEMRY MEMRY2
CALLED BY: MAIN

NCODE generic - A routine in the memory manager package. It encodes the information

portion of a block of memory so that the block can be checked later for validity i.e.

when deleting a block of memory we make sure that the block is valid, the

descriptor or information portion of a memory block contains pointers to the next

and previous block, the block size and the block type. A fifth memory location

contains an encoded piece of data defined by this routine. This is done as an error

detection strategy to ensure that pointers to memory blocks are valid. See the

memory manager section of this manual for a description of how memory blocks

are organized.

CALLED BY: DELPTR GETPTR INITMM RESIZ

RESIZ generic - Resize a block of memory. The subroutine RESIZ resizes a block of

memory. If there is not enough room where the block is located it will allocatr

another block and copying the old block to the newly allocated block.

CALLS: CPYPTR DCODE DELPTR GETPTR NCODE
COMMONS: MEMRY MEMRY2
CALLED BY: ARAYIN ARYTOK

A. 6 MISCELLANEOUS Routines

BRACK specific - This routine brackets the root of a function, so that the root lies in the

interval [xa,xb]. The root contained in this interval is then refined using the routine

RTSAF2. This subroutine is used in the forced vent calculation procedure.

CPTIME specific - Routine to calculate amount of computer time (cputim) in seconds used so

far in a run. This routine will generally be different for each computer.

LIB: SECOND
CALLED BY: FBUILD INITMD MAIN MODEL

EIGF generic - Calculates the jacobian and its eigenvalues of the ODE being modeled.

This routine is not required to simulate a fire scenario. It is used to examine the
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ERINIT

HSORT

INDEXC

INDEXI

INTERP

INTV

LEGAL

MSGPRT

numerical properties of the problem being solved.

CALLS: FBUELD MAXMIN
LIB: F02AFF
COMMONS: FLAGS 10 SIZES
CALLED BY: OUTPUT

generic - Initializes the error reporting module.

COMMONS: ERCOM ERRCHR
CALLED BY: INIT

generic - This routine sorts the array, ra, in ascending order using a heap sort.

Corresponding changes are made in the associated arrays rb, rc and rd.

CALLED BY: C0MWL1 VENTHP

generic - Constructs an index array, i(j), so that the array of character strings a(i(j))

is in ascending order for j=l, ..., n.

generic - Constructs an index array, i(j), so that the array of integers a(i(j)) is in

ascending order for j=l, ..., n.

generic - This routine interpolates a table of numbers found in the arrays, x and y.

CALLED BY: FANFOR FANRES FANREV FPLUME

generic For a specified real number this routine determines the interval of an array

(in ascending order) where the number occurs.

generic - this logical function returns .true, if file is a legal file name false other-

wise.

CALLS: ALPHA LENGTH MSGPRT NUM
COMMONS: COMTYP
CALLED BY: FBNCHK OPENFL

generic - Prints out a message and the messages error level: informative, warning,

error or fatal error.

CALLS: LENGTH
LIB: LABS MIN
COMMONS: ERCOM ERRCHR
CALLED BY: ARAYIN ARFRSH CRDMRG FBNCHK FPLUME GETHLP

IBNCHK INPUT LBNCHK LEGAL MENUO MENU1 MODEL
OPENFL PRTMEN RBNCHK RDMENU RFRSH RMVBLK
RTSAF2 SCRNIN UPPER VENTF VENTHP
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NUMINF

OPENFL

RTSAF2

specific - This routine determines the number of inside rooms, outside rooms,
products, vents and fires.

LIB: MAX
COMMONS: CHECK SIZES
CALLED BY: GENCHK ENTTMD MENU1 STATE 1

generic - This routine opens a file for input or output depending on the input

parameter values.

CALLS: LEGAL LENGTH MSGPRT RMVBLK
LIB: LEN MIN
CALLED BY: MENU1 MODEL

specific - This routine finds a zero of a function using a modification of newton's

method.

CALLS: MSGPRT
LIB: ABS FUNCD
CALLED BY: FANRES
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B . CCFM Global Data Structures Definitions

This appendix contains a listing of CCFM.VENTS global data structures or equivalently THE
CCFM.VENTS common blocks. Each common block entry contains a listing of FORTRAN
declarations and a short description of each variable in the common block. Each common block
description also contains a listing of subroutines that reference the common block. This informa-
tion is useful to the person who wishes to modify a common block and wants to know which
routines access it.

CHECK

A variable in the common block CHECK is set whenever a room, vent, fire or product are defmed
or referenced by a CCFM.VENTS command. The ROOM, VENT, FIRE and INITP
commands define rooms, vents, fires and products respectively. The VENT and FVENT
commands also specify two rooms that are to be connected by a vent or fan-duct system. The
purpose of the CHECK common block then is to provide information to the generic error checking

subroutine GENCHK so that the user may be warned if a room was not defined but was
referenced by another CCFM.VENTS command.

INTEGER CHKFIR (MXFIRE) , CHKRM (-MXORM : MXIRM) , CHKVNT (MXVNTS)

INTEGER CHKPRD (MXPRD)

COMMON /CHECK /CHKFIR, CHKRM, CHKVNT, CHKPRD
SAVE /CHECK/

Each variable in CHECK is defined in the same way. A value of 0 for a CHECK variable means
that the item was never defined, a value of 1 means that the item is defined while a value of -1

means that the item was referenced by a CCFM.VENTS command but is not defined.

CHKFIR
CHKRM
CHKVNT
CHKPRD

Definition status for fires

Definition status for rooms
Definition status for vents

Definition status for products of combustion

COMTYP

This common block indicates what computer is running CCFM.VENTS. Various possibilities are

defined in parameter statements. Most routines in CCFM.VENTS do not require this information.

Any routine that does depend on the type of computer that is executing CCFM.VENTS would use

this common block. One example of where this common block is needed is the main routine since

it opens the terminal screen for both input and output In general the exact method for opening

"terminal" input and output files will vary from one computer to the next.

INTEGER MAC, IBMPC, NOS, NOSVE, CYB205, COMPAQ, OTHER, CON

PARAMETER (MAC- 1 , IBMPC-2 , NOS-3 , NOSVE=4 , CYB2 05 = 5 , COMPAQ=6 , CON=7

)

PARAMETER (OTHER-O

)

INTEGER COMPTR

COMMON /COMTYP /COMPTR

SAVE /COMTYP/

COMPTR Type of computer that is running CCFM.VENTS
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USED BY: GETHLP INTT LEGAL MAIN

CONST

The common block /CONST/ contains the values of various constants.

DIMENSION ATOL (5) , RT0L(5)

COMMON /CONST/ ALAMR, ALAMT

1

2

3

SAVE /CONST/

R, CV, CP, G,

PDATM, DDATM,

ATOL, RTOL

ALAMW,

GAM,

TDATM,

ALAMR

ALAMT

ALAMW

R
CV
CP
G
GAM
PDATM

DDATM
TDATM
ATOL
RTOL

Fraction of the total energy release rate of the fire radiated by the combus-
tion zone and plume (default 0.35).

Fraction of the total energy release rate of the fire lost to the bounding

surfaces of the room of fire origin by all modes of heat transfer (default

0 . 8 ).

Define the "enthalpy of buoyancy" of a uniform temperature vent flow as

the enthalpy of the flow computed relative to the temperature in the receiving

room local to flow penetration. Then lamw is the fraction of the enthalpy of

buoyancy lost to the bounding surfaces of the receiving room (default 0.6).

ideal gas law constant

specific heat at constant volume
Specific heat of air at constant pressure (default 1000.). [W*s/(kg*K)]

acceleration of gravity

The ratio of CV and CP; 1.4

datum pressure, the absolute hydrostatic pressure at the datum elevation

(default 101325.). [p] = [N/m*] = [kg/(m*s)2]

datum density (default 1.2). [kg/m3 ]

datum temperature - not currently used in this version of CCFM.VENTS
absolute error tolerances - used by ODE solver

relative error tolerances - used by ODE solver

USED BY: DUMP FPLUME FROOM FVENT GETVAR INIT INITMD MENU1
MODEL OUTGEN OUTPUT SETDE STATE 1 UVENT

ERCOM - ERRCHR

The common blocks /ERCOM/ and /ERRCHR/ are used by the printing subroutines

MSGPRT

CHARACTER*20 CLEVEL(4)

COMMON /ERCOM/ IOERR1, IOERR2, IOLEVL, IOLVSV
COMMON /ERRCHR/CLEVEL
SAVE /ERCOM/
SAVE /ERRCHR/
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I0ERR1 A FORTRAN i/o unit number used to print out messages by the subroutine
ERPRt

IOERR2 Not used at present.

IOLEVL messages with a level greater than or equal to IOLEVL will be printed.

example When loading a file with the LOAD command IOLEVL is set to 1

so routine confirmation messages will not be printed but warnings, errors

and fatal errors will be. The user may set this value with the LEVEL
command.

IOLVSV When the LOAD command is executed a copy of IOLEVL into this variable.

Then the value of IOLEVL is increased to 1. This keeps routine messages
from being printed out while loading an input data file. After the load is

completed IOLVSV is copied back into IOLEVL.
CLEVEL The character string array containing the name of the message levels, e.g.

message, warning, error, fatal error.

USED BY: DUMP ERINIT INPUT MENUO MENU1 MSGPRT STATE 1

FILES

This common block contains the name of various files used by CCFM.

CHARACTER *20 PRINTF, PRINTG, PLOTF, DUMPF, LOADF

CHARACTER*64 PATH

CHARACTER*84 FTEMP

COMMON /FILES/ PATH, PRINTF, PRINTG, PLOTF, DUMPF, LOADF

SAVE /FILES/

PATH This is not a file name but a path name that is used whenever a file is opened fo

rinput or output.

PRINTF Scratch output file

PRINTG Final output file

PLOTF Plot file

DUMPF Dump file

LOADF Load file

USED BY: DUMP MENU1 MODEL STATE 1

FIRE

This common block contains information describing a fire. Entries in the common block

define a height, room location and pointers to arrays that define the size of the fire at

various times.

INTEGER VRMFO, VQFIRE

COMMON /FIRE/ VHFIRE (MXFIRE) , VRMFO (MXFIRE) , VQFIRE (MXFIRE, 2

)

SAVE /FIRE/

VHFIRE(i) The height of the i'th fire above the floor

VRMFO(i) The room that the i’th fire is in, valid entries are 1 to MXFIRE.
VQFIRE VQFIRE(i,l) is a pointer to a time array for the i’th fire, VQFIRE(i,2) is a pointer to a an

array that contains the energy release rates of the i’th fire. The units for fire size are

watts.
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USED BY: DUMP FPLUME INIT ENTTMD MENU1 MODEL STATE 1

FLAGS

Various flags used by CCFM. Note: yes = 1, no = 0.

COMMON /FLAGS/ IP RIAL, IPLOT, IDISC, IEIG, IFLOGO

SAVE /FLAGS/

IPRTAL
IPLOT
IDISC

IEIG

IFLOGO

Printing to occur at every internal solver step

Plotting flag

If set to 1 then a heuristic (coded in the routine DISC) will be used to predict

and step over non-analytic solution behavior

Flag to determine whether eigenvalues of jacobean of rhs of ode are to be

calculated, (note: this option is not implemented at the present time)

not a flag, if IFLOGO = i then use the i'th algorithm for determining where
flow's go . The only valid value in the present version of CCFM.VENTS is

IFLOGO=2. This flag can be used whenever any upgrade to the FLOGO
algorithm is implemented

USED BY: DUMP EIGF FBUILD FPLUME FROOM FVENT MENU1 MODEL
OUTFLW OUTPRD OUTPUT PLUGO STATE 1 UVENT

FLOWS

This common block records flow due to forced vents, un-forced vents, fire plumes and the

total for both the upper and lower layers in each room . The type of flow recorded is mass,

enthalpy, and products of combustion.

DIMENSION FLWF (MXTRM, MXPRD + 2 , 2) , FLWU (MXTRM, MXPRD+2 , 2

)

DIMENSION FLWP (MXTRM, MXPRD+2, 2) , FLWTOT (MXTRM, MXPRD+2 , 2

)

COMMON /FLOWS/FLWF, FLWU, FLWP, FLWTOT

SAVE /FLOWS/

FLWF
FLWU
FLWP
FLWTOT

Flows due to forced vents

Flows due to unforced vents

Flows due to plumes
Total flows

USED BY: FBUILD OUTFLW OUTPUT

FLWPTRS

This is not a common block but a collection of parameters used to access the flow arrays

used in the common block, /FLOWS/.

INTEGER L,U,M,Q,0,P

PARAMETER ( L=1 , U=2 , M=1 , Q=2 , 0=3 , P=3

)

L Lower Layer
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U Upper Layer
M Mass

Q Enthalpy

O Oxygen
P Products of Combustion

INITS

A collection of arrays used to record the initial conditions of solution variables.

DIMENSION PFLORO (MXIRM) , YLAYO (MXIRM)

DIMENSION TEMPO (MXIRM) , RHOLO (MXIRM) , RHOUO (MXIRM)

COMMON /INITS/ PFLORO, YLAYO , RHOLO, RHOUO, TEMPO

SAVE /INITS/

PFLORO
YLAYO
RHOLO
RHOUO

initial pressure in pascals

initial layer height

initial lower layer density

initial upper layer density

USED BY: FBUILD OUTFLW OUTPUT
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IO

FORTRAN I/O unit numbers used by CCFM.

COMMON /IO/ INI , IN2, IOUT1, IOUT2, IOUT3, IOUT4 , IOUTER

SAVE /IO/

INI
IN2
IOUT1
IOUT2
IOUT3
IOUT4
IOUTER

unit number for input from the keyboard
unit number for input from the menu definition file (MENU989)
unit number for output to the terminal screen

unit number for output to the scratch file

unit number for output to the plot data file

unit number for final output file

unit number for output to the error file - not used

USED BY: EIGF FBUILD FROOM INITMD MAIN MENU1 MODEL OUTFLW
OUTGEN OUTNUM OUTPUT OUTPRD OUTUSR OUTWRN RFRSH
STATE

1

MEMPRM

Parameters used internally by the memory manager. Each block of memory allocated by
GETPTR has an over head of BLKSIZ integers. This extra space is used to record informa-

tion such as the location of the next block, location of the previous block, size of this block

and type of block (integer, floating point) and a checksum. The parameters defined below
provide a convenient way to access this information. For example if IXPTR is a pointer to

an integer array allocated by GETPTR then MEMORY(IXPTR-BLKSIZ + NXT) is a point-

er to the next block of memory, MEMORY(IXPTR-BLKSIZ-i-SIZ) is the size of this block.

The parameters defined here are used internally by the memory manager.

INTEGER NXT, PRV, SIZ, TYP, COD, BLKSIZ, PAD

PARAMETER (NXT=0, PRV=1 , SIZ=2 , TYP=3 , C0D=4 , PAD=5 , BLKSIZ=6)

NXT offset that contains location of pointer to next memory block

PRV offset that contains location of pointer previous memory block

SIZ offset to location that contains of size of block

TYP offset that contains location of type of block

COD offset to locatoin of en information for memory block

PAD not used
BLKSIZ size of over head block

MEMRY

All memory allocations are made from this common block. Any routine that uses a pointer

to a block of memory defined by GETPTR must include this common block within it

FLTINT has a value of 1 (2) for single (double) precision versions of CCFM.VENTS.
The present version of the memory manager used by CCFM.VENTS does not support

allocation of character arrays. The hooks are included however for a future implemen-
tation.
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INTEGER FLTINT
C

C*** FLTINT=1 FOR SINGLE PRECISION

C FLTINT=2 FOR DOUBLE PRECISION

C

PARAMETER (FLTINT=2

)

C PARAMETER (FLTINT=1)

PARAMETER (MXI=2000, MXF=MXI /FLTINT, MXC=1)

DIMENSION MEMORY (MXI), FLTMEM (MXF)

CHARACTER* 1 CHRMEM (MXC)

EQUIVALENCE ( MEMORY , FLTMEM)

COMMON /MEMRY/ MEMORY
COMMON /MEMRY2 / CHRMEM

SAVE /MEMRY/

SAVE /MEMRY2

/

MEMORY integer array used for integer memory allocation

FLTMEM floating point array (equivalenced to MEMORY) used for floating point

memory allocation

CHRMEM character array used for character memory allocation - not used in present

version of CCFM.VENTS

USED BY: ARAYIN ARYTOK CPYPTR DELPTR DUMP FPLUME FVENT GETPTR
GETSIZ GETVCT INITMD rNITMM MENU 1 RESIZ STATE 1

MENSTF

The variables in MENSTF are used to process CCFM.VENTS commands. The are used in the

following way:

1 . The command line is read into the character variable CARD.
2. CARD is then parsed by subroutine PARSE, i.e. the beginning and ending of each

set of contiguous non-blank characters is recorded in the integer arrays, SB and SE
(string begin and string end). The number of tokens found is saved in NTOK.

3 . The first token found on CARD is passed to the subroutine GETTTM to determine

what command (if any) was entered. If the command was legal then GETTTM
returns the commands i.d. number otherwise an appropriate error message is

printed and the user is given another chance.

4. If the command number found by GElTTM in step 3. is negative then the command
was generic and control is passed to MENUO. If the command number is positive

then it is a CCFM command and control is passed to MENU1.
5. Now proceed with step 1. unless MENU1 signals that processing should be

terminated. MENU 1 signals that the CCFM simulation should begin by returning a

value of NTOK=0.

CHARACTER* 120 CARD

CHARACTER* 10 PROMPT

INTEGER IN, OUT, LE, LT, GE, GT, NIL
PARAMETER ( IN=1 , OUT=2 , LE=1 , LT=2 , GE=1 , GT=2 , NIL=0)

PARAMETER (MXTOK=40)

INTEGER SB (MXTOK) , SE(MXTOK)

C
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COMMON /TOKEN1/SB, SE, NTOK, LPRMPT, IOVER

COMMON /TOKEN2/CARD, PROMPT

SAVE /TOKEN1

/

SAVE /TOKEN2/

SB(i)

SE(i)

NTOK
CARD

column number in CARD of beginning of i’th token. If SB(i)=0 then the i'th token is

not present

column number in CARD of end of i’th token. If SB(i)=0 then SE(i) is un-defined.

number of tokens

character variable containing command line that was entered.

USED BY: ARAYIN ARYTOK FBNCHK IBNCHK INIT INPUT LBNCHK MENUO
MENU1 RBNCHK RDMENU SCRNIN STATE 1

MENUS

This common block is used by the INPUT package of CCFM.VENTS to define menus.
Each time a CCFM.VENT command is entered the following events occur:

INTEGER MENMAX, COLMAX, ROWMAX, SIZSTK, STKPTR

PARAMETER ( ITMMAX=50, COLMAX=7, MENMAX=1 , ROWMAX=10 , SIZSTK=1

)

C

INTEGER NBEG (MENMAX, COLMAX) , NCOL (MENMAX) , MENSTK ( SIZSTK)

INTEGER DESPTR ( ITMMAX, 2 ) , HLPPTR ( ITMMAX, 2

)

COMMON /MENUS/NBEG, NCOL, NMENU, IMENU, STKPTR, MENSTK, HLPPTR, DESPTR

C

CHARACTER* 40 DESPAR ( ITMMAX*4

)

CHARACTER* 20 MENLST ( ITMMAX, 2) , TITLE (MENMAX) , MENLS2 ( ITMMAX)

COMMON /MENU2 /MENLST, MENLS2 , TITLE, DESPAR

SAVE /MENUS/

SAVE /MENU2

/

C

INTEGER SRTLST ( ITMMAX) , ROWNUM ( ITMMAX) , COLNUM ( ITMMAX) , N2CNT

INTEGER COMP RG ( ITMMAX ) ,COMLST( ITMMAX)

COMMON /MENU4 /SRTLST, COMLST, ROWNUM, COLNUM, N2CNT, COMPRG
SAVE /MENU4

/

MENLST
TTTLE(I)

NBEG(IJ)

NCOL(I)

NMENU
IMENU
MNSTRT(I)

LINEAR LIST OF MENU CHOICES
TITLE OF ITH MENU
INDEX OF FIRST ITEM IN ITH MENU IN IN JTH COLUMN
NUMBER OF COLUMNS IN ITH MENU
NUMBER OF MENUS
MENU NOW BEING PROCESSED
INDEX OF FIRST ITEM OF MENU I IN MENLST

Routines that affect data structures found in this common block are: PRTMEN, GETTIM,
RDMENU

MFLAGS
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Generic flags used by the input package. If flag is set then variable is 1 otherwise the

variable is 0.

COMMON /MFLAGS/ IBRIEF, IBRFSV, ITRACE, ITTY, IBATCH,

I EOF, I LOAD, TLOAD

SAVE /MFLAGS/

IBRIEF
IBRF2
ITRACE
ITTY
IBATCH

Are menus printed out after an entered command
not used

Trace option - not used

are results displayed to the terminal screen

This flag indicates whether the program is running in the foreground or in

the background. The main difference in how CCFM.VENTS runs in these

two modes is how it treats an end of File. If IBATCH is off then it is

assumed that the program is being run interactively. So when an end of file

occurs the input file is rewound and more input is solicited. If an end of file

is encountered while in IBATCH is on CCFM.VENTS starts executing the

fire scenario as if the command BEGIN had been entered.

USED BY: ARAYIN GETHLP GETITM INPUT PRTMEN RDMENU RFRSH SCRNIN

MIO

Fortran I/O unit number used by the input package

CHARACTER* 32 FMENU

COMMON /MIO/MIN1 , MMENU, MHELP , MSAVE, MLOAD, MDUMP

COMMON /FIO/FMENU

SAVE /MIO/

SAVE /FIO/

MINI unit number used for inputting data

MMENU unit number for reading in menu definition file (MENU989)
MHELP unit number used to access help information

MSAVE storage used to save copy of input unit number during LOAD command
MLOAD unit number used load data files into memory
MDUMP unit number used to dump CCFM.VENTS fire scenarios to data files

USED BY: ARAYIN GETHLP INPUT MENUO MENU1 MODEL OUTPUT RDMENU
RFRSH SCRNIN STATE 1

MODCOM

Common block used to store information related to the solution of CCFM's ODE's.

DIMENSION Y(MAXDE)

DIMENSION YPRIME (MAXDE)

INTEGER PRTTIM, DMPTIM
COMMON /MODCOM/ TSTART, TCUR, TSTOP, TOUT,

1 Y, YPRIME,

2 DPRINT, DDUMP, TPRINT, TDUMP

,
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3

5

4

SAVE /MODCOM/

CPST, CPCUM, CPOVST, CPOVCM, CPP, CPOVP,

PRTTIM, DMPTIM,

TBEF, TAFT, TVNTCM, TVNTST

TSTART
TCUR
TSTOP
TOUT
Y
YPRIME
DPRINT
DDUMP
CPST
CPCUM
CPOVST

starting simulation time in seconds

current time in seconds

stopping time in seconds

next time in seconds for which printed output will occur

solution of ODE
derivative of solution of ODE, calculated by the subroutine FBUILD
print interval time in seconds

dump interval time in seconds

CPU time for the last printing step

CPU time since the beginning of the simulation (cumulative time)

Overhead CPU time during the last print interval. Overhead is the work

CPOVCM
CPP
CPOVP
PRTTIM
DMPTIM
TBEF
TAFT
TVNTCM
TVNTST

performed in printing solutions.

Cumulative overhead CPU time.

time for last printing interval

overhead time for last printing step

time interval between printed output in seconds

time interval between dump output in seconds

time since beginning of run before call to solver

time since beginning of run before call to solver

cumulative time in vent routines

time in vent routines for last print interval

USED BY: DUMP FBUILD INITMD MENU1 MODEL OUTFLW OUTGEN OUTNUM
OUTPLT OUTPRD OUTPUT OUTUSR STATE 1

OUTS

Contains flags to determine which reports to print out, information on how hard the solver

is working.

INTEGER RPTS (MXRPT) , ILINE (MXRPT) , PAGELN

PARAMETER (PAGELN=60)

COMMON /OUTS/ INSTEP, IPSTEP, RPTS, ILINE

SAVE /OUTS/

INSTEP
IPSTEP
RPTS
ILINE

number of internal steps,

number of printing steps

an array of indicator values, if RPTS(i)=l then the i'th report will be printed

the line number of the report that was last printed, used for pagination

purposes

USED BY: DUMP IN1T INITMD MENU1 OUTFLW OUTGEN OUTNUM OUTPRD
OUTPUT STATE 1

PRODS
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Contains initial product concentrations for each room, layer and product.

DIMENSION ACON (MXORM, MXPRD)

DIMENSION PFACTS (MXPRD) , PRDSO (MXIRM, MXPRD, 2

)

COMMON /PRODS/ PFACTS, PRDSO, ACON

SAVE /PRODS/

PFACTS

PRDS0(i,j,k)

ACON(iJ)

For the i'th product, PFACTS(i)*Q determines how much of the i'th

product will be given off in a fire of size Q. In the case of oxygen this term
gives the amount absorbed by the fire.

Initial j'th product concentration in the i'th room in the both the upper (k=2)

and lower layers (k=l).

Initial j'th product concentration in the i'th outside room.

USED BY: DUMP FPLUME FVENT INIT INITMD MENU1 SETDE STATE 1 UYENT

ROOM

Contains a description of room properties.

COMMON /ROOM/ VAROOM ( MXIRM) , VHCEIL (MXIRM) , VYFLOR ( -MXORM : MXIRM) ,

2 VYCEIL (MXIRM) , ADEN (MXORM), APRESS (MXORM)

SAVE /ROOM/

VAROOM(i)
VHCEIL(i)

VYFLOR(i)

VYCEIL(i)

ADEN(i)

APRESS (i)

area of the i'th room

height of ceiling above floor in i'th room

height of floor above datum height in i’th room

height of ceiling above datum height in i’th room, note: VYCEIL(i) = VYFLOR(i) +

VHCEEL(i).

density of i'th outside environment

pressure above datum pressure of i’th outside environment

USED BY: DUMP FPLUME FROOM FVENT INIT INITMD MENU1 MODEL SETDE
STATE 1 UVENT

SIZES

Contains the maximum sizes allowed and the actual number for quantities such as number
of fires, number of rooms, number of products, etc.

PARAMETER <MXIRM=9, MXORM=4 , MXTRM=MXIRM+MXORM)

PARAMETER (MXPRD=5, MXRMDE=4 +2*MXPRD, MAXDE=MXIRM*MXRMDE)

PARAMETER (MXQ=100, MXFIRE=1)

PARAMETER (MXDUMP=10,MXVNTS=20)

PARAMETER (MXELEV=10 , MXSLAB=MXELEV-1 , MXFLOW=2

)

PARAMETER (MXRPT=6)

PARAMETER (MXDISC=4*MXIRM+4*MXVNTS+100)

INTEGER YES, NO

PARAMETER (YES=1,NO=0)

COMMON /SIZES/NRMDE, NDES, NORM, NIRM, NTRM, NPROD, NFIRE,
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1 NVENTS, NORMO , NIRMO, NPRODO , NFIREO , NVNTSO

SAVE /SIZES/

MXIRM, [NIRM] Maximum [actual] number of inside rooms
MXORM, [NORM] Maximum [actual] number of outside environments
MXPRD, [NPROD] Maximum [actual] number of products of combustion
MXTRM, [NTRM] Maximum [actual] room total, the sum of inside and outside rooms
MXRMDE, [NRMDE] Maximum [actual] number of ODE's per room, 4 plus 2

times the number of products

MAXDE, [NDES] Maximum [actual] number of ODE's being solved, the maximum
number of inside rooms times the maximum number of ODE's per

room
MXQ obsolete, no longer used

MXFIRE, [NFIRE] maximum [actual] number of fires

MXDUMP
MXVNTS, [NVENTS] maximum [acatual] number of vents

MXELEV maximum number of elevations, need be only seven, (top and
bottom of vent, two layers and three neutral planes)

MXSLAB maximum number of slabs, one less than the number of elevations

MXRPT maximum number of output reports

MXDISC maximum number of discontinuities

USED BY: DUMP EIGF FBUELD FPLUME FROOM FVENT GENCHK GETVAR INTT
INTTMD MENU1 MODEL NUMINF OUTFLW OUTGEN OUTNUM OUTPLT
OUTPRD OUTPUT OUTUSR SETDE STATE 1 UVENT

TITLS

This common block contains titles that can optionally be printed out to Dump, Output

and/or plot files.

CHARACTER* 80 TITLES

CHARACTER*6 TTYPE

DIMENSION TITLES ( 3 ) , TTYPE ( 3

)

INTEGER DMPTTL, OUTTTL, PLTTTL
PARAMETER (DMPTTL=1 , OUTTTL=2 , PLTTTL=3

)

COMMON /TITLS/TITLES, TTYPE

SAVE /TITLS/

TITLES text of titles

TTYPE type of title

USED BY: DUMP INTT MENU1 MODEL OUTFLW OUTGEN OUTNUM OUTPRD
STATE

1

VARMAP

Current values of CCFM.VENTS variables. This common block contains values that describe the

geometric and physical properties of a given fire scenario. This common block is filled in by the

subroutine SETDE. Some of the same information such as layer heights and relative pressure are

contained in arrays used by the ODE solver. All physical routines should obtain this information

from these variables, since the ODE formulation may change.
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c

c

c

DIMENSION ZDP ( -MXORM : MXIRM)

,

DIMENSION ZDRHO ( -MXORM : MXI RM, 2)

,

DIMENSION ZDM ( -MXORM : MXIRM, 2 )

,

DIMENSION ZDTM (-MXORM : MXIRM, 2)

,

ZP (-MXORM :MXIRM)

ZRHO ( -MXORM : MXIRM, 2

)

ZM ( -MXORM : MXIRM, 2

)

ZTM (-MXORM: MXIRM, 2)

DIMENSION
DIMENSION
DIMENSION

DIMENSION

ZVOL (-MXORM: MXIRM, 2) ,

ZHLAY (-MXORM: MXIRM)

ZYFLOR (-MXORM: MXIRM)

,

ZAREA (-MXORM:MXIRM)

,

ZYLAY (-MXORM: MXIRM)

ZYCEIL (-MXORM: MXIRM)

ZHCEIL( -MXORM: MXIRM)

DIMENSION ZCON ( -MXORM : MXIRM, 2 , MXPRD)

COMMON /VARMAP/ ZDP, ZP, ZYLAY, ZHLAY,

ZDRHO,

ZDM,

ZRHO,

ZM,

ZDTM, ZTM,

SAVE /VARMAP/

ZVOL,

ZCON

ZYFLOR, ZHCEIL, ZYCEIL, ZAREA

ZDP, [ZP]

ZDRHO, ZRHO
ZDTM, ZTM
ZM
ZDM

ZVOL
ZAREA
ZYFLOR
ZYLAY, [ZHLAY]
ZYCEIL, [ZHCEIL]

Floor pressure relative to PDATUM [0]

Layer density relative to DDATUM [0]

Layer temperature relative to DDATUM [0]

Layer mass
Layer mass relative to some datum mass. This value is not calculated in the

version of CCFM.VENTS
Layer volume
Floor area

Height of floor above datum elevation

Height of layer above datum [floor] elevation

Height of ceiling above datum [floor] elevation

USED BY: DUMP FPLUME FROOM GETVAR OUTGEN OUTPUT OUTPRD SETDE
UVENT

VNTSLB

Record information about flow between a pair of rooms through an un-forced vent.

DIMENSION YVELEV ( 10) , DPV1M2(10)

INTEGER DIRS12 (10) , NVELEV

COMMON /VNTSLB/YVELEV, DPV1M2, DIRS12, NVELEV, IOUTF

SAVE /VNTSLB/

YVELV

DPV1M2

DIRS 12

NVELEV

A list of heights sorted in increasing order of the elevations of interest, (top

and bottom of vents, layer heights and neutral planes if any). Note: layer

and neutral plane heights will appear in this list only if the occur between the

top and bottom of the vent.

An array of pressure differences, DPVlM(i) is the difference in pressure at

the height specified by YVELV(i).
An integer array indicating the direction of flow.

The number of observations contained in each of the arrays: YVELV,
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IOUTF
DPV1M2 and DIRS 12.

USED BY: FVENT UVENT

VENTS

Contains information describing the vents in CCFM.

DIMENSION VNTSTF (MXVNTS, 6) , IVNTS (MXVNTS, 6)

DIMENSION IVCASE (MXVNTS)

COMMON /VENTS/VNTSTF, IVNTS, IVCASE

SAVE /

VNTSTF(i,j) If vent i is an unforced vent then

VNTSTF(i,l) height of the bottom of the i’th vent above the floor

with respect to the from room
VNTSTF(i,2) height of the top of the i’th vent above the floor with

respect to the from room
VNTSTF(i,3) area of the vent

If vent i is a forced vent then

VNTSTF(i,l) height of the fan system above the floor in the from
room

VNTSTF(i,2) height of the fan system above the floor in the to

room
VNTSTF(i,3) resistance of the fan system

IVNTS(i,j) IVNTS(i,l) is the from room for the i'th vent

IVNTS (i,2) is the to room for the i'th vent

IVNTS(i,3) is the type of vent; IVNTS(i,3) = 1 then the vent is un-forced,

IVNTS (i,3) = 2 then the vent is forced

IVNTS(i,4) for forced fan systems this variable contains a pointer to the

pressure array defining the fan curve

IVNTS (i,5) for forced fan systems this variable contains a pointer to the

volume flow array defining the fan curve.

USED BY: DUMP FVENT EMIT EMITMD MENU1 STATE 1 UVENT
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c CCFM Menu Definition File

The Menu Definition File (MDF) for CCFM.VENTS is listed following this paragraph. It

provides a means for defining the menus used by CCFM.VENTS. The MDF defines the spelling

of each command, its position in the menu and any help or parameter description data to be printed

out by CCFM.VENTS. This file is abbreviated by only including parameter descriptions help

information for the command CONS. This information is the same as that given in section 5 of

the User's Reference Guide.

; THE INPUT MODULE READS IN THIS FILE AND USES IT TO CONSTRUCT

; THE MENU FOR THE CONSOLIDATED MODEL. THE MENU CONSISTS OF COMMANDS

; ARRANGED IN ROWS AND COLUMNS. EACH COMMAND IS A SEQUENCE OF ONE

; OR MORE NON-BLANK CHARACTERS. THE SPELLING OF A COMMAND MAT BE

; CHANGED WITHOUT RE-COMPILING THE CONSOLIDATED MODEL. IF TWO

; COMMANDS ARE REARRANGED THEN A CORRESPONDING CHANGE MUST BE MADE

; IN THE SUBROUTINE MENU1 IN THE INPUT MODULE.

; SUMMARY OF MENU DESCRIPTION COMMANDS (MDC)

; MDC DESCRIPTION

; .NM TITLE START A NEW MENU. TITLE MAY BE A CHARACTER STRING

UP TO 74 CHARACTERS LONG. IMBEDDED BLANKS ARE ALLOWED.

; .NM CTITLE

t

START A NEW COLUMN OF MENU COMMANDS. CTITLE IS A

CHARACTER STRING UP TO 10 CHARACTERS LONG. IMBEDDED

BLANKS ARE NOT ALLOWED

; .C COM1 NUM

t

A MENU COMMAND. COM1 IS A CHARACTER STRING UP TO 10

CHARACTERS LONG WITH NO IMBEDDED BLANKS. NUM IS AN INTEGER

INDICATING WHAT ELEMENT OF A COMPUTED GO TO STATEMENT WILL

BE EXECUTED WHEN THE COMMAND COM1 IS TYPED

; . PDB BEGINNING OF PARAMETER DESCRIPTIONS

; . PDE END OF PARAMETER DESCRIPTIONS

TEXT APPEARING BETWEEN .PDB AND .PDE WILL APPEAR IN CCFM. VENT'S

SCREEN INPUT MODE

; .HB BEGINNING OF HELP TEXT

; .HE

f

END OF HELP TEXT

THE PURPOSE OF COMMAND HELP TEXT IS TO PROVIDE A

MORE EXTENSIVE DESCRIPTION OF THE COMMAND GIVEN

BY THE PREVIOUS .C COMMAND.

t

; .DF

t

/

INDICATES THAT THE REST OF THE TEXT IN THIS FILE

WILL CONSIST OF CCFM MENU COMMANDS DEFINING A

DEFAULT CASE.

A SEMI -COLEN INDICATES A COMMENT. TEXT AFTER

A IS IGNORED BY THE INPUT MODULE.

.NM CCFM. VENT ; NEW MENU WITH ITS TITLE

; YOU CAN HAVE BLANK LINES FOR SPACING
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•NC CONSTANTS

.C CONS 1

. PDB

FRACTION OF QFIRE RADIATED FROM FIRE AND PLUME

TOTAL FRACTION OF QFIRE TO SURFACES IN FIRE ROOM

FRACTION OF VENT-INFLOW ENTHALPY TO SURFACES

CP - SPECIFIC HEAT OF AIR [W*S/(KG*T)]

DATUM ABSOLUTE PRESSURE [PASCAL]

DATUM DENSITY [KG/M**3]

. PDE

.HB

CONS lamr, lamt, lamw, cp, pdatm, ddatm

This command is used to specify various constants used by

CCFM. VENTS.

lamr Fraction of the total energy release rate of the fire

radiated by the combustion zone and plume (default

0.35) .

lamt Fraction of the total energy release rate of the fire

lost to the bounding surfaces of the room of fire

origin by all modes of heat transfer (default 0.8).

lamw Define the "enthalpy of buoyancy" of a uniform

temperature vent flow as the enthalpy of the flow

computed relative to the temperature in the receiving

room local to flow penetration. Then lamw is the

fraction of the enthalpy of buoyancy lost to the

bounding surfaces of the receiving room (default 0.6)

cp Specific heat of air at constant pressure (default

1000.) . [W*s/ (kg*K>

]

pdatm datum pressure, the absolute hydrostatic pressure at

the datum elevation (default 101325.) . [p] = [N/m2]

[kg/ (m» s) 2

]

ddatm datum density (default 1.2). [kg/m3]

.HE

.C NUM 4

.C CHECK 12

.C CONV 14

.C PARMS 13

.C FACTOR 8

.C AMB 5

.PDB

.NC MODEL

.C ROOM 11

.C FIRE 7

.C VENT 10

.C FVENT 9

.C INITP 6

•C INIT 17
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.C AUTO 18

. NC OUTPUT

.C PATH 2

.0 FILES 22

.0 TIME 15

.0 REPORT 27

.C TITLE 25

.C VALUES 31

.NC MISC

.0 OPTIONS -6

.C BEGIN 16

.0 QUIT -5

.C LOAD 29

.C RERUN 28

.0 DUMP 30

.0 HELP -7

.DF

; PROPERTIES INDEPENDENT OF TIME

TIME,.. .1000E+01 .1000E+01 N
NUM -1 -1 -1 -1 -1

CONS .3500E+00 .8000E+00 .6000E+00 .10000E+04 .1013250E+06

CONVABS .1000E-05 .1000E-05 .1000E-05 .1000E-02 .1000E-02

CONVREL .1000E-05 .1000E-05 .1000E-05 .1000E-02 .I000E-02

PARMS 2NN
PATH
FILES.OUT1.OUTFULL.PL0TF
REPORT YNNYYN
OPTIONS N.,Y„ N
TITLE DUMP DUMPTTTLE
TITLE OUTPUT OUTPUT TITLE
TITLE PLOT PLOT TITLE

; FIRE PROPERTIES

FIRE 1 1 .OOOOOOE+OO .250000E+06

; ROOM DIMENSIONS

ROOM 1 .OOOOE+OO .3000E+01 .2000E+02

AMB 1 .OOOOE+OO .OOOOE+OO .1200E+01

AMB 1 ....

;
VENT DIMENSIONS

VENT 1 1 -1 .20000E+01 .00000E+00 .20000E+01
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