
U.S. DEPARTMENT OF COMMERCE
National Institute of Standards and Technology

I

NISTIR4341

NationalPDES Testbed

Report Series

Translating

Express to SQL: A
User's Guide

NATIONAL

TESTBED

U.S. DEPARTMENT OF COMMERCE
National Institute of Standards and Technology

NISTIR 4341

NationalPDFS Testbed

HA

1

.TONAL

» i'
Translating

Express to SQL: Ai
Us0r s Guide
Katherine C. Morris

U.S. DEPARTMENT OF

COMMERCE

Robert A. Mosbacher,

Secretary of Commerce

National Institute of

Standards and Technology

John W. Lyons, Director

May 8, 1990

m -kiT

*

%
' .

*

t

I

Translating Express to SQL: A
User’s Guide

1.0 Overview 1

2.0 Mapping Express Constructs into Relational Database Tables 2

2.1 Entity Tables 2

2.1.1 Table Name 3

Table name for a NULL subtype 3

2.1.2 Entity-DD Column 3

2.1.3 Sharable Column 4

2. 1 .4 Inherited Attributes 4

2.1.5 Explicit Entity Attributes 4

2.2 Attributes 5

2.2.1 Attribute Columns 6

Data Types 6

Optional attributes 7

Unique attributes 7

2.2.2 Attribute tables 8

Table Name 8

ED Column 8

Value Column 8

Aggregate Positioning Columns 8

Nested Aggregate Objects 9

Optional and Uniqueness Concepts 9

2.3 Entity Views 9

3.0 Dictionary 10

3.1 Entity descriptions 10

3.2 Attribute descriptions 10

3.2. 1 Aggregate attribute descriptions 1

1

3.3 Description of defined types 12

4.0 The program: fedex sql 13

4. 1 Running the program 13

4.1.1 Generating the SQL schema definition statements 13

Output files 13

4.1.2 Creating the database tables 14

Output files 14

4.2 Different versions of the program 14

Express to SQL: User’s Guide III May 1990

«•/

--

1

- • • • •• frt ***-»^'

'f? :iPi:
';'•

<.f 'i^oi ssi^KjprH

«f^jdj;T fiijinS Ui

...... oldv^T'lviX 5?-

. JUH’K 0 '5<ri]SL<» alclrtl

,;..

'ildjsTjstf8 i I :^' .,

. A : '^r T'' ?

|»f M t 1 »•<

> *' .xv- • * T >f f- 1 «jir« -1 V'«»r’ (*»l(^f-l' <ajijdjnd»A T.t

rtitfdlsdAIXS
n . 1 I' ‘ .t«(r I,

li^ftodqO
'^;

»• ff I iiimjdrtdfl 3iypi/lU
J

'.. ' ,;,«nj«K4i«i^aT
',

..- .,.v.,U,- „
' *

.

. ^•^
... toJst'iVI '

'

''::"'S

.--ro,.,,- q.: hf3ij» .•.
,'

.• . ' -VTAi*'' * 4- ' ' l-#AT»« •<***

» !• •*••4

. . *4 !<«... ft**

’fiJi,-

w.™

- •••»• t»w>*«**

, til •

^TOTcstoiaM; ' Vfe:

..

-...- ..N, ^lydl-diA ^C -

- .,. .'^ wqhotjicr ,;'
'•

.. tt''

i'» srfj, jgnkuid Jt 1

A
'

•:

... . . ,

.,-4. '. fmjpO .

,

.. 54' tmimv
' - , ttSi

-.i,f T'l. .vj. is

1 .0 Overview
This document describes the procedure used by the fedex_sql software to translate

an Express schema into the SQL statements which generate a relational database

schema for storing STEP data. The program which loads a STEP physical file into

the database is stepwfjsql and is describe in a separate document [Nickerson90].

The program uses FED-X, an Express parser, which is documented in [Clark90].

The software has been developed as part of the National PDES Testbed effon and

is funded by the Computer Aided Logistics Support (CALS) project.

Three types of issues are involved in translating Express into a relational database

schema: translation of the semantic constructs of Express into the data definition

language of SQL, resolution of limitiation imposed by the database management

system, and development of a data dictionary. The first two are discussed in section

2. First, the constructs of the Express language are translated into relational con-

cepts. The application of this mapping to a particular Express schema, generates

the SQL data definition language which is the basis for the database.

Secondly issues involving the particular database management system (DBMS) are

resolved. In this case Oracle’s SQL*Plus is being used, but the translation also con-

forms to the SQL standard specification as described in [ANSI86] unless otherwise

noted. The basic data types defined in Express are mapped into the data types of

the SQL*Plus. The names used by the Express schema need to be modified to be

acceptable to the DBMS. For example, they could be too long or the same as key

words in the SQL*Plus.

Section 3 discusses the data dictionary. The dictionary holds information from the

conceptual specification which is not explicitly captured in the SQL schema. The

dictionary captures some of the constraints specified in the conceptual schema

which are not directly mapped into the database management system’s facilities.

For instance, the Uniqueness Rule as defined by the Express language can often be

handled directly by the database management system; however, constraints such as

the minimum or maximum number of elements in a set are not handled by most da-

tabase management systems.

The dictionary captures descriptive information provided by the conceptual schema

which is also not directly represented in the SQL definitions. For example. Express

schemas contain type definitions. Through these definitions semantic information

describing attributes is relayed. For instance, the data type “weight_in_pounds” can

be defined in an Express schema; a user is then able to associate more meaning with

an attribute described as having this data type, than if the type “real” had been as-

signed to that attribute. However, SQL has no expression available which would

allow one to store the depth of this meaning. Therefore, the information is stored

in a dictionary.

Section 4 describes how to run the programfedex_sql and how to use its output.

Express to SQL: User’s Guide Paget May 1990

2.0 Mapping Express Constructs into

Relational Database Tables

This section describes how the Express entity definitions are represented in rela-

tional tables. The translation of the entities is summarized as follows: (1) Every

entity defined in the Express schema is translated into a table or view in the rela-

tional database. (2) An entity without subtypes is represented as a table. (3) An
entity which has subtypes is represented as a view of the tables which represent its

subtypes. Data can be retrieved from these views, but not inserted into them. (4) If

an entity has a "XOR NULL” specified in the Express “Supertype of’ statement, it

has both a table and a view associated with it. Data inserted into the table associ-

ated with the instances of the NULL subtype entity appears in the view along with

the data from the other subtypes’ tables.

The attributes of an entity are represented either as columns in the entity’s table or

as another table. Aggregate attributes are represented as separate tables. The dic-

tionary table EXPRESSYSSATTRIBUTEDESC indicates how the attribute is rep-

resented.

2.1 Entity Tables

A primary table, called an entity table, is associated with each entity with no sub-

types and with each entity which has ’NULL’ as one of its subtypes. The following

template shows the structure of the entity tables. It is described in the sections

which follow.

Table Name = Entity's abbreviated Name

ID SHARABLE INHERITED EXPLICIT
ATTRIBUTE ATTRIBUTE
COLUMNS COLUMNS

This mapping is based on the mapping used by the STEP physical file representa-

tion of an Express schema [AltemuellerSS]. Specifically, the decision to represent

only entities with no subtypes in tables is based primarily on the fact that these are

the only entities which can be populated in a physical file. Furthermore, the order

of the columns is based on the ordering of attributes in the physical file and the in-

heritance rules for attributes are applied in the same way. The use of ’AND’ and

’OR’ in the supertype declarations is also unaccounted for just as in the current

STEP physical file mapping.

Express to SQL: User’s Guide Page 2 May 1990

2 . 1.1 Table Name
The table representing an entity is named after the entity. When the entity’s name
is too long, it is abbreviated. This mapping of the entity names and table names is

found in the EXPRESSYS$NAMES table and also in a file generated by the

fedex_sql program. The name of this file is TABLE_NAMES . txt by default. The
algorithm for generating the new names is given below.

1. If the name is one of the key words reserved by the DBMS, the last character

is changed to “#”.

2. If name is less than 20 characters, no abbreviation is needed.

3. Otherwise, the last vowel or repeated character is removed from the name until

the name is less than 20 characters or all these characters have been removed.

4. If the name is still not less than 20 characters, the last character of the longest

subword is dropped until the shortened name is less than 20 characters. A sub-

word is a portion of the word which is separated by underscores or pound signs.

5. If the name is still not less than 20 characters, the character is used as the

name abbreviation. (Thus a numeric name is generated for the table in the fol-

lowing step.)

6. Append a unique three digit number on the end of the abbreviation to guarantee

that the name is unique.

2.1 .1 .1 Table name for a NULL subtype

The name of the table representing an entity with NULL as one of its subtypes is

formed as follows; (1) The entity is abbreviated as described above, (2) The string

“_NULL” is appended to the end of the abbreviated entity name. This table is in-

cluded in the view of that entity, which is described in section 2.3.

2.1 .2 Entity-ID Column

The fu’st column of every entity table is ID. It contains a unique identifier for every

instance of an entity. This identifier is used as the primary key of the entity table;

and it is likely to be referenced in two situations outside of this table. An entity

referenced by another entity as an attribute is represented by this identifier in that

attribute’s column of the entity table. The EXPRESSYS$FRNKEYREFERENCES
table can be used to find out which tables reference other tables or, conversely, to

fmd out where a table is referenced. For an entity with aggregate attributes

(attributes whose type is array, bag, list or set), the same entity identifier is also used

in the tables which contain the data for these attributes. Detail about aggregate

attribute tables is given below in section 2.2.2.

The identifiers generated from the program stepwf_sql, which loads data into the ta-

bles, take the following form:

table_name\00000000

Tablejiame is the name of the entity table, and 00000000 is a unique integer.

Express to SQL: User’s Guide Pages May 1990

2.1.3 Sharable Column

Every entity table contains a column called SHARABLE. This column is currently

used as an indicator of whether or not the entity instance can be used by more than

one other entity instance. This is currently interpreted to mean whether the instance

is embedded in another instance in the input STEP physical file.

In future versions of the database this could be used in checking uniqueness and

equality of entity instances. For example, the question of whether two points with

the same coordinates are the same point or two distinct instances of a point is un-

clear. If the SHARABLE column is FALSE, the points are definitively not the

same; however, if the column is TRUE, the two points may be considered the same.

Furthermore, the field could be used as a reference counter to ascertain whether a

shared instance is to be deleted when a referencing instance is deleted.

2.1 .4 Inherited Attributes

The next group ofcolumns to appear in an entity’s table represent the non-aggregate

attributes inherited from the entity’s supertype(s). The columns are specified in the

order of inheritance defined by the STEP physical file structure. The origin of the

attribute, the name of the entity in which the attribute is specified in the Express

schema, is found in the EXPRESSYSSSRC table.

2.1 .5 Explicit Entity Attributes

Finally the non-aggregate attributes declared directly in the Express definition of

the entity are columns the table.

In the example that follows the portion of the Express schema shown produces the

SQL statement to create a table.

EXPRESS:

ENTITY geometry (* GEOM-1 *)

SUPERTYPE OF (point XOR
vector XOR
curve XOR
surface XOR
coord inate_system XOR
transformation XOR
axisjDlacement);

local_coordinate_system : OPTIONAL coordinate_system:

axis : OPTIONAL transformation:

END_ENTITY:

ENTITY vector {* GEOM-3 *)

SUPERTYPE OF (direction XOR
vector_with_magnitude)

SUBTYPE OF (geometry);

END_ENTITY:

ENTITY direction (* GEOM-14 *)

SUBTYPE OF (vector):

X : REAL:

Express to SQL: User’s Guide Page 4 May 1990

y : REAL;
z : OPTIONAL REAL;
END_ENTITY;

SQL:

CREATE TABLE DIRECTION
(

ID CHAR(40) PRIMARY KEY,
SHARABLE INTEGER NOT NULL,
LOCAL_COORDINATE_SYSTEM CHAR(40) /* FOREIGN KEY */,

AXIS CHAR(40)/* FOREIGN KEY V,

X FLOAT NOT NULL,

Y FLOAT NOT NULL,

Z FLOAT

TABLE:

DIRECTION

SYSTEM ATTRIBUTES INHERITED ATTRIBUTES EXPLICIT ATTRIBUTES

ID SHARABLE
local_coordinate

_system
axis

X y z

2.2 Attributes

The attributes ofan entity are represented as either a column in the entity table or

as a table of their own. If the attribute is aggregate (an array, bag, list, or set), it

has its own table; otherwise, the attribute is represented as a column.

The EXPRESSYS$DEFINEDTYPES dictionary table describes the attributes of

the entity tables. It includes a short name for the attribute and infonnation about the

type of the attribute as it is given in the Express schema. The short name is used in

assigning a name for the attribute in the database. The column EXPRESS_TYPE
contains a code which can be used to determine whether the attribute is represented

as a column in the entity table or as an aggregate table. The valid values for this

field are AGGREGATE, ENTITY, SELECT, ENUMERATION, INTEGER,
REAL, BOOLEAN, LOGICAL, STRING, and NUMBER.

When the type is AGGREGATE or ENTITY, the value of the attribute is represent-

ed in another table. In the case of ENTITY the owning entity table has a column

for the attribute. The column contains a key (an entity identifier) into an entity ta-

ble. In the case of the type AGGREGATE the owning entity table does not contain

Express to SQL: User’s Guide Pages May 1990

a column for this attribute. The entity identifier from the owning entity table is used
to identify the aggregate data items in the aggregate table as belonging to that entity.

2.2.1 Attribute Columns

Non-aggregate attributes are represented as columns in the entity tables. The col-

umns have the same name as the attribute when this name is less than 30 characters

(the maximum length allowed by SQL); otherwise, the name is abbreviated by trun-

cating the attribute name to 27 characters and appending a unique 2 digit integer to

the end. The same abbreviated name is used for attributes with the same name in

different tables.

2.2.1. 1 Data Types

Oracle data types are assigned to the Express base types as follows for the purpose

of representing attributes as columns in the database. The table shows all the base

types of Express as described in [Schenck90]. Note that the default length of an at-

tribute with type string is 240.

EXPRESS ORACLE

Integer INTEGER
Integer(n) NUMBER(n)
Real DECIMAL
Real(n) NUMBER(n)
Number NUMBER
String CHAR(240)
String(n) CHAR(n) for n <= 240, LONG for strings up to 64 K
Boolean INTEGER
Logical INTEGER

The last two base types above, boolean and logical, are treated as special cases of

enumerated types which are described below.

Attributes with the following complex Express types are also represented as col-

umns in the database. Below is a mapping of these Express types to Oracle data

types.

Entity CHAR(40) FOREIGN KEY
Select CHAR(40)
Enumeration INTEGER

Enumerarion type

Both enumeration and select types imply the specification of a domain for

attributes. An enumerated type specifies the possible values for the domain

explicitly; a select type specifies the possible values indirectly. The values of an

enumeration are stored in the dictionary table EXPRESSYS$ENUMERATION.
This table assigns integer values to the values of an enumeration. The integer

values are what is then stored in the attribute columns. The dictionary table is

consulted to see what the integer values represent. The reason for storing the

integer values, rather than the string values that they represent, is the fact that an

enumeration type implies an ordering on its possible values. In order to enforce the

ordering the integer values are used.

Express to SQL: User’s Guide Pages May 1990

TYPE
b_spline_curve_form = ENUMERATION OF
(line_segment,

circular_arc,

elliptic_arc,

parabolic_arc,

hypeft)Olic_arc):

END_TYPE;

After this type is entered into the EXPRESSYSSENUMERATTON table,

the table looks as follows:

TYPE NAME ORDER ID VALUE

B_SPLINE_CURVE_FORM 0

B_SPLINE_CURVE_FORM 1

B_SPLINE_CURVE_FORM 2

B_SPLINE_CURVE_FORM 3

B_SPLINE CURVE_FORM 4

LINE_SEGMENT
CIRCULAR_ARC
ELLIPTIC_ARC
PARABOLIC_ARC
HYPERBOLIC ARC

Select type

With a select type the possible values of an attribute come from the group of the

possible values of several other types. When these types are entities, the values are

entity identifiers, as if the attribute’s type had been an entity. From the entity iden-

tifiers generated by the database loader it is possible to tell which table contains the

entity instance information for a given entry. The first part of the entity identifier

is the name of the entity table.

On the other hand, when the types are not entities, then the values must be of the

same base type as these defined types. In Express it is possible to create an object

which does not have a single base type through the use of a select type', fedex_sql,

which implements this design, does not deal with this situation. We assume that in

the majority of instances of select types the selection is amongst entity types; there-

fore, a select type attribute maps to the SQL type CHAR(40) just as do entity type

attributes. When the values of the selection are not entity identifiers, the field rep-

resenting these type attributes is still confined to CHAR(40). The choices of the se-

lection for a select type are stored in the dictionary table EXPRESSYSSSELECT.

2.2.1 .2 Optional attributes

Each attribute column in the entity tables is specified to be NOT NULL unless the

key word OPTIONAL is specified for that attribute in the Express definitions. The

DBMS then only allows rows which contain values for all non-optional attributes

to be inserted in the database.

2.2.1 .3 Unique attributes

When an attribute is characterized as being unique in the Express definition, a

unique index is created on the column which represents that attribute in the entity

table. The indices are named after the table to which they apply. An integer is ap-

pended to the end of the table name to create a unique name for the index. Every

Express to SQL: User’s Guide Page? May 1990

2.2.2

2.2.2.1

2.2.2.2

2.2.2.3

2.2.2.4

table has at least one index on the ED column. In this way the Express uniqueness
construct is directly supported by the DBMS for non-aggregate attributes.

Attribute tables

Attributes with aggregate data types are represented as tables, called asgregate ta -

bles, in the database. The valid Express aggregate data types for attributes are ar-

ray, bag, list, and set. Each item of the aggregate object is represented by a row in

the aggregate table.

Table Name

Aggregate tables’ names are created by combining the abbreviated name of the

owning entity (which is the name of the entity table) with the name of the attribute,

which it represents. The two names are separated by a pound sign (#), and then the

new string is abbreviated using the same algorithm described above for naming en-

tity tables. The unabbreviated and abbreviated string pair are entered into the dic-

tionary table EXPRESSYSSNAMES.

ID Column

The first column in every aggregate table is called ED. The values in this column

correspond to the values in the ED column of the owning entity’s table. Whereas,

in the entity table there is only one entry for each unique entity identifier, in this ta-

ble there are multiple rows for a given entity identifier. The value of the ED column

is the same for all the items contained in a a single aggregate attribute.

Value Column

The last column in all aggregate tables is called VALUE. This column contains the

data for the individual data items of the aggregate object. For example, if the ag-

gregate is a “list of integer”, this column contains integers; if the aggregate is a “set

of cartesian points”, this column contains entity identifiers from the cartesian point

entity table.

Aggregate Positioning Columns

The second column in an aggregate table indicates the position of the individual

data item in the aggregate object. The name of this column is determined by the

type of the aggregate object. For example, if the object is an array, this column is

called SUBSCRIPT_1. The column name can be determined from the following ta-

ble:

AGGREGATE TYPE COLUMN NAME

Array SUBSCRIPT_n
Bag ELEMENT_ID_n
List POSITION_ID_n
Set ELEMENT_ID_n

The n in the column name is an integer, which is always 1 for a simple, not nested,

aggregate attribute.

When the aggregate is a list, the following column is PR£VIOUS_ED_n.

Express to SQL: User’s Guide Pages May 1990

2.2.2.5 Nested Aggregate Objects

If the aggregate attribute is nested, or muld-dimensional, more positioning columns

follow the initial one. These columns are named in the same way as the initial po-

sitioning column, as described above. The integer n in the column name indicates

the nesting level that this column represents. For example, for a two-dimensional

array there are two positioning columns SUBSCRIPT_1 and SUBSCRIPT_2. The
first column contains the value of the first subscript of the array and the second col-

umn contains the values for the second subscript of the array. The data for the item

at position [1,2] of the array would have a row in the table which contains the fol-

lowing entry:

ID SUBSCRIPTJ SUBSCRIPT_2

entity-id 1 2

2.2.2.6 Optional and Uniqueness Concepts

The Express concepts, optional and unique, are not directly supportable for

aggregate attributes by a relational database system under this mapping. The

information is stored in the dictionary tables EXPRESSYS$ARRAY,
EXPRESSYS$BAG, EXPRESSYS$LIST, and EXPRESSYSSSET.

With non-aggregate objects the Express key word UNIQUE is represented in SQL
by creating a unique index on an attribute. However, the translation of UNIQUE
with complex objects involves comparing the objects element by element. Further-

more, equality is not defined for aggregate objects; therefore, uniqueness for nested

aggregate objects is not enforceable.

In Express the key word OPTIONAL within aggregate attributes indicates that not

all the data elements of the attribute must be specified. This is different than desig-

nating that the object is an optional attribute of the entity, which is modeled by the

non-use of the NOT NULL clause in the entity table definition.

2.3 Entity Views
Entities which have subtypes are represented as views of the entity tables in the da-

tabase. Views serve as tables for the purpose of retrieving data from the database,

but data can not be insened in or deleted from the views directly. Entity views are

named using the algorithm given earlier for naming entity tables. Also as with en-

tity tables the original and abbreviated name are entered into the EXPRESSY-
SSNAMES table. The entity views contain an ID column and columns for aU the

non-aggregate, explicit and inherited attributes which belong to the entity being

viewed. There are no views for the aggregate attributes.

The dictionary table EXPRESSYS$QLASSES shows the class hierarchy and can be

used to see which entity tables are included in a view.

VALUE

data item

Express to SQL: User’s Guide Pages May 1990

3.0 Dictionary

Fourteen dictionary tables are used to store semantic information found in Express
schemas. Identical tables are established for each and every schema. The SQL
statements for creating these tables are found in the beginning of the main output

file offedex_sql. The dictionary tables summarized below are described in detail

in the in the document Translation ofan Express Schema into SQL. In the database

the names of these tables are prefixed by "EXPRESSYSS" to indicate that they are

dictionary tables.

Four of the tables involve the handling of aggregate data types. One table maintains

information pertaining to subtype and supertype relations. Another table stores the

logical names of tables. Finally there are tables for representing the Express type

definitions and another for recording descriptions of entity attributes in the terms of

these definitions.

3.1 Entity descriptions

• NAMES: maps Express names to the

NAME

BCUNDAR'ir_LOCATION_SHAPE_ASPECT

BNDRY_LCTN_SHP_SPCT_494#REPRESENTATIONS
BOUNDED_CURVE
BOUNDED_SURFACE
B_SPLINE_CURVE
B_SPLINE_CURVE#CONTROL_POINTS
b_spline_curve#knot_multipl:cities
B_SPLINE_CURVE#KNOTS
B SPLINE CURVEtfWEIGHTS

names used by the database system

SHORT_NAME

BNDRY_LCTN_SHP_SPCT_494
BND_LCT_SHP_SP_49#RP_509
BOUNDED_CURVE

J BOUNDED_SURFACE
B_SPLINE_CURVE
B_SPLN_CRV#CNTR_PNTS_5 12

B_SPLN_CRV#KNT_MLTPL_513
B_SPLINE_CURVE#KNOTS
B SPLINE CURVE#WEIGHTS

• CLASSES: captures the class structure of the Express schema

SUBTYPE

BNDRY_LCTN_SHP_SPCT_4 94

BOUNDED_CURVE
BOUNDED_3URFACE
B_SPLINE_CURVE
B_3PLINE_SURFACE
CURVE

SUPERTYPE

DMNSNLTY_0_SHP_SPCT_4 95

CURVE
SURFACE
BOUNDED_CURVE
BOUNDED_SURFACE
GEOMETRY

3.2 Attribute descriptions

The tables used to describe attributes are the following:

• ATTRIBUTEDESC: contains Express type information, whether the attribute

is optional, unique, or sharable, and the name used to represent the attribute in

the database (See the attached table.)

Express to SQL: User’s Guide Page 10 May 1990

FRNKEYREFERENCES: maps attributes to the table which would represent

them

BASE TABLE NAME REFERENCING_TABLE_NAME REFERENCING_TABLE_COLUMN

3_S?LINE_C'JRVE
a_S?LINE_CURVE
3_S?LINE_CURVE
B_SPLINE_CURVE
3_5PLINE_CURVE
3_SPLINE_CURVE
B_3PLINE_CURVE
b_s?l:ne_curve
3_spl:ne_curve
3_SPLINE_CURVE
3_SPLINE_CURVE
B_S?LINE_CURVE
3_SPLINE_CURVE
B_SPLINE_CURVE
B_3PLINE_CURVE
3_SPLINE_CURVE
B SPLINE CURVE

UNSTRCT_GMTRY_SM_RP_5 3 6

UNSTR_GMTRY_PRMTR_RP_92

1

UNSTR_GMTR_DM_0_S_RP_5 10

UNSTRUC':_GMTRY_R_RP_5 5 8

TRIMM£D_C'JRVE

3WP_PRFL_NL)#CRV_PRFL_94 9

SURFACE_CURVE

SIZ_CHRCTRSTC_DMNSN_943
RCTNGL_PRFL#CRV_PRFL_936
RCTRCK_PRFL#CRV_PRFL_935
POINT_CN_CURVE
PCORVE
OTHER_SWEEP_PATH
OTHER_3WEEP_PATH
N_GCN_PRFLitCRV_PRFL_915
OTHR_CL3_PRF #CRV_PRF_9 1

6

INTERSECTION CURVE

DEFINITION
DEFINITION
DEFINITION
DEFINITION
3ASIS_CURVE
VALUE
CURVE_1

CENTER_OF_SYMMETRY
VALUE
VALUE

3A3I3_CURVE
BA5IS_CURVE
PATH

PROFILE
VALUE
VALUE

BASIS CURVE

ATTRSRC: indicates the entity from which an attribute originated in the inher-

itance hierarchy

ENTITY_SHORT_NAME ATTRIBUTE_NAME COLUMN NAME

GEOMETRY
GEOMETRY
B_SPLINE_CURVE
3_SPLINE_CURVE
B_SPLINE_CURVE
B_SPLINE_CURVE
B_SPLINE_CUR'/E

CURVE

AXIS

LOCAL_COORDINATE_SYSTEM
DEGREE
UPPER_INDEX_ON_CONTROL_POINTS
KNOT_MULTIPLICITIES
KNOTS
SELF_INTERSECT
BASIS SURFACE

AXIS

LOCAL_COORDINATE_SYSTEM
DEGREE
UPPER_INDEX_ON_CONTROL_POINTS
KN0T_MULTIPLICITIE3
KNOTS
3ELF_INTERSECT
BASIS SURFACE

3.2.1 Aggregate attribute descriptions

The following tables apply to aggregate attributes:

• ATTRBEXPRESSTYPE: holds information for reconstructing type informa-

tion for nested aggregate (i.e. multi-dimensional) attributes

• ARRAY:

OBJECT_TABLE SEQUENCE_NUMBER LOW_BOUND HIGH_BOUND OPTIONAL UNIQUE_ELEMENTS

B_SPLINE_CURVE#KNOTS
B_SPLINE_CURVE#WEIGHTS
B_SPLINE_SURFACE#U_KNOTS
B_SPLINE_SURFACE#V_KNOTS
B_SPLINE_SURFACE#WEIGHTS
3_SPLINE_SURFACE#WEIGHTS
3_SPLN_CRV#CNTR_PNTS_5 12

B_SP LN_CRV#KNT_MLTP L_5 1

3

B_SPLN_SRFC #CNTR_?NT_5 1

4

B_SPLN_SRFC #CNTR_PNT_5 1

4

B_SP LN_SRFC #V_MLTP LC_5 1

6

B SPLN SRFC# MLTPLCT 515

1

2

1

1

1

2

1

1

1

0

1

1

0

0

0

1

0

0

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

• BAG, LIST, and SET are very similar to the array table and are described in de-

tail in [Metz89].

Express to SQL: User’s Guide Page 11 May 1990

3.3 Description of defined types

The following tables contain information about schema-defined types:

• DEFINEDTYPES: records definition of type defined within the Express sche-

ma

This table contains two columns which map a type name to a data type as declared

in the TYPE block of the Express schema. The value of the DEFINITION column

of this table is either the name of an Express base type, the name of an aggregate

type, the key word “ENUMERATION,” the key word “SELECT,” the key word
“AGGREGATE”, an Express entity name, or the value of the NAME column from

another row in the table.

TYPE DEFINITION

INFINITY NUMBER

INTERSECT ION_ENUMERAT ION ENUMERATION
LIST_OF_EDGE LIST

SET_OF_VERTEX SET

SKAPE_OR_DERIVED SELECT
SURF_FORM ENUMERATION
SURF_TYPE ENUMERATION
TOL_IBO ENUMERATION
TOL_MLSN ENUMERATION
TRUE FALSE OR UNDEFINED BOOLEAN

• ENUMERATION: records the possible values of a type which is an enumera-

tion

TYPE_NAME ORDERJD VALUE

SURF_FORM 0 BOUNDED_PLANAR

SURF_FORM 1 BOUNDED_RULE
SURF_FORM 2 BOUNDED_COMPLEX
SURF_FORM 3 UNBOUNDED_PLANAR
SURF_FORM 4 UNBOUNDED_RULE
SURF_FORM 5 UNBOUNDED_COMPLEX
SURF_TYPE 0 CIRCULAR
SURF_TYPE 1 FLAT

SURF TYPE 2 GENERAL

• SELECT: records the types of a selection

TYPE_NAME CHOICE

SELECT_FACE_OR_SUBFACE FACE

SHAPE_OR_DERIVED DT_SHAPE_ASPECT

SHAPE OR DERIVED GEOMETRIC DERIVATION

The following table is used by the program stepwf_sql which loads a STEP file into

the database:

• INSTANTIATEDTABLES: keeps track of which tables are actually populated.

Express to SQL: User’s Guide Page 12 May 1990

4.0 The program: fedex_sql

The programfedex_sql is part of the NIST/PDES Fed-x toolkit. This module trans-

lates an Express schema into a relational database schema using the methodology

described in this document. The Fed-x toolkit is described in detail in the docu-

ments [Clark90].

4.1 Running the program
Two steps are needed to use the software for translating an Express schema into a

relational database schema. First the SQL statements for creating the database

schema are generated. Then these statements are loaded into the database. The doc-

ument [StrouseQO] describes this process for the NIST/PDES Testbed environment.

To run the program on your own follow the instructions given here.

4.1 .1 Generating the SQL schema definition statements

1) The command line iorfedex_sql is the following:

fedex_sqi -e express-schema-fHe

The express-schema-file is the file where an Express schema is stored. The program

may then print out some warning messages regarding the schema.

2) Next the program prompts for the name of an output file. The SQL statements

to create the database schema are stored in this file, so it should probably end in the

. sql extension.

3) The program then prompts for a file containing a list of entity and table names.

The default the file is TABLE_NAMES . txt . If the file name provided is not

found, no file will be used and the program will generate unique abbreviations for

the entity names.

4) Finally the program prompts for the name of a file in which to store the list of

entity table names. If no file name is provided, the names are stored in the file TA-

BLE_NAMES .txt in the working directory.

4.1.1 .1 Output files

When this program is finished, six files will have been created. The names of two

of these are supplied by the user in the steps above: the names supplied when

prompted for an output file (step 2) and a file for the table names (step 4), TABLE_-
NAMES . txt by default. The others are DICT_DATA. sql, DICT_INDI-
CES . sql, SUPERTYPES . sql, and INDICES . sql and are found in the

working directory. Warning: if any of thesefiles existed in the working directory

before the program was run, they would have been replaced by the new files.

The main output file contains the statements for creating all the tables. The begin-

ning of this file creates the dictionary tables; the remainder creates the entity and

aggregate tables.

Express to SQL; User’s Guide Page 13 May 1990

Each line of the file of table names contains two words. The first is the abbreviated

entity name to be used in generating table names, and the second is the entity name
used in the Express schema. The line following the list of names contains "***

***" which signifies the end of the list. The next and last line contains an integer

which is the first number the program will use in generating unique abbreviations,

if they are needed.

The file DICT_DATA. sql contains the SQL statements that populate the Express

data dictionary, the other dictionary file DICT_INDICES . sql contains the state-

ments for generating indices on the data dictionary.

The file SUPERTYPES . sql contains the SQL statements to generated views for

the supertype entities defined in the Express schema.

The file INDICES . sql contains SQL statements to create indices on the entity

and aggregate attribute tables.

4.1 .2 Creating the database tables

To load the database schema do the following:

5) Log into the database management system.

6) At the SQL> prompt type run sql-schema- file, 'whQiQ sql-schema-file is

the name the user provided in step 3 above. This file takes some time to load de-

pending on the size of the schema. Over 30 minutes in the PDES Testbed environ-

ment is not unusual.

The process loads the files DICT_DATA. sql, DICT_INDICES . sql, and SU-
PERTYPES . sql automatically if they are in the working directory.

At this point the database is ready to be populated. After the database has been

completely populated, the indices on the tables should be created. This is done by

typing run INDICES . sql at the SQL> prompt.

4.1.2.1 Output files

The creation of the tables generates a file called errors . 1st. This file is a listing

of what appeared on the screen during the process. It should not contain anything

of significance, but if there were any problems the error message will be in this file.

4.2 Different versions of the program
The data definition produced byfedex_sql is designed to work with an Oracle data-

base. Due to physical design considerations two tablespaces are used. In the cur-

rent configuration these are named t s 0 and t s 1 . Entity tables are assigned to these

tablespaces alternately. The indices for an entity table and any tables that represent

aggregate attributes of that entity are created on the opposite tablespace.

An alternate version offedex_sql is available which does not include designations

for tablespaces. The output of this program is therefore easier to port to other rela-

tional database systems which have different configurations. This version is stored

as fedex_standardsql.

Express to SQL: User’s Guide Page 14 May 1990

Another version offedex_sql,fedex_oracle, also exists. This version outputs the

Express dictionary data in a flat file format rather than as SQL INSERT statements.

One file is created for each dictionary table, and each file is named for the table that

it represents. A specialized tool, such as Oracle’s SQL*Loader can be used to load

the dictionary tables from this output.

Express to SQL: User’s Guide Page 15 May 1990

I 1

..A. ;. ,•<€ . >•'
^ f ; M,.

,:. . N'jt ^V-
®

,
> rt

'

• • ’ *
. r'i -;j

, •..anUiiliLS

i'. I •: /

.

' ' M-
- r

•
't . •;*. 'iu.'^uYi.T^K f:

- uu'Ucw; t.?-,
,

'''''<
XA-'l

''/** "C:- ; >

'.,
"

- ! /..I
' lV: '"(f

*'

^•-
. -.iSt • .•. iTi

SC/‘-• '.f-' "S

•
>) ‘O’ .:, % t > L U-i T. > '.(/.•rju.- Mtoi' ro foad

'./ <::
'^''

-•

i2-l»?;v f7> Pl.lES

1'. -

.

.
'.:r |r ,'

-('•If •>•' IA*‘
7 _ .ivjj,. •

• nji ' fty.

‘-a: -i
’ u' 'i-^tnUiiC hA^ bc<^ ,

‘
• ^ ,i

rM Y^

''t, This.iA'ikiri
pjrt

,
lli>

- •'?r7 . £75 ;:,-. .

h 'I.

, 'O^^v^'i:

. 1,' .A ' 0 ’u w*rL ''vtth w 0
1,' ‘ t''-v- (.»!,' j i ,V'.> i„, L'i

*
'I'iS

. . .1 a ''J n c i . r.ri' ''fy

.

.'

.,
•.’ ;- ':AJr..\ ‘,vt' Hi- .'.tMc »*f>d 'JfXiiV

,;. *S.' -n'''V'W. vTfl.e.'J •h iPv

h 7. Af :• '2 j^jt « i i tSjjfl\»tC Whu.'>-, <k^:<^
}’.

,

. ‘..ph, v-*^ U'lj?

f ^^C*j f

r'.^uh Jiftvc dtKifcAt Tilis vtiCA^f. Js

..,.fe ^isr '

ftibSi I ^ciM ;4C0 0^'

ac
UJ
CO

s3 «—

*

CNJ m uo cc 00 o l-H <M

Z
Uj'

00
e-<o zz

UJ o
3 X
o z

aj
1X

UJ e- o
CO c/) X CO

>* 6- CO

00 z o X
1 O z -H

cu u X
&-4

1 I

< z CO z u t-

UJ z o o l-H u
s hH

t
z 1

X X
Q X l-H X X X CO

u
c/5

Qi X o X rH X X
2, o d X a X X

1 o z 1 z X z e-

z u 1—

t

X Z rH 3 00 3 z
z 1

J
CQ
Cl)

1 o
X X

X
o

1

X 1

E-^

X
Z

1

h-l

1

Q < (0 X X X X CO CJ z X
u M o X z 1—

1

X o £-• M X X
o o X X X o z X z o X o X
u rJ < a 3 u 3 3 X z 3 X CO

H
UJ

CQ
Q
o
o
a'

H X og CnJ <N Osl <N CNI CN Csl CN CN CM CM

H <rtE<
C/)

UJ
z

o

Q
X
z

> UJE
z
X

X
X

c/5 S
Ci3

o
X

t

Q
z

C/5

u
>• £- 3
t- 00 z X 1

>-' O > XQ
UJ

00
1

X
X

X
3
o

1

z w
£-• X

>
X X X X

CJ X
1
CO

X IX> < X &-•
1

E- E-* H X X
UJ z o X X < z X < < < z <Q J-r(Clu X X Cj) X X CJ CJ CJ 1—

1

X
1

CO
Q CO o o X o CJ} X X X X 1

a: z X X X X X X X X X X
• • CO o < 6-^ CJ h-(0-^ (J (J CJ CO 3

UJ o 2 z Z o z z a a CJ 1 X
E o l-H 1—

i

< 3 t-H < < < XZ a
X

E-
UJ X

X
e UJ

E>
CJ
X
6-* z z

•"l
j-t X

oM X X X
o
HH

Qi CO 6- E-* E-* E-i £-^

CO
UJ

X 00 < < X < < < < Z
*u 5^ X CJ X X CJ CJ CJ X <

&-• o X X CJ X X X X XE M X z X z X X X X z X
VS E &-•

£-• e- CJ 3 e- (J CJ CJ 3 o
9J X z

u
z
LlI

Z z o
X

1

X

c:) Z z CJ CJ CJ Z o
Q UJ X *—

*

< X HH < < < X X

0)
E-
00

o
X CO

>- £-• (0

3 CO z o X

UJ

1

CiJ

O
u

z
X

M
£h

•i e- 1 1
l-Hu 2 < z CO z u E-*

-<^ z o o)—

1

CJ
1—

1

z X
< 2 a X l-H X X X CO

UJ
(X X o X HH X X
O Q X Q £-• fTj XH o Z

1
z X z £-•

3 u hH X ' X hH 3 CO 3 Z
CD 1

X 1 O X 1 X z M
J X X X o X w X

11 1E < CO X X e-* X X &-• e- CJ z X
h u 1—

1

o X z M X o o M X X
o X X X o z X z z X o X< rJ < Q 3 u 3 3 X X 2 X CO

UJ

Z
<
z

1

Cl) X X X X X X X X X X
‘ > > > > > > > > > > > >

nr (X X X X X X X X X X X X3 3 3 3 3 3 3 3 3 3 3 3OX
CO

u O
1

U
1

U
1

u
1

u
1

u
1

u
1

u
1

U
1

o
1

CJ
1 1

Ci3

1

Cl)

1

X 1

X
1

X 1

X
1

X
1

X 1

X
1

X
1 X

1 1

X
1
2 Z z z Z z z z z z z z

> M 1—

t

1—

(

l-H w M w M M M IH H
J nJ X X X X X X X X X X
CU X X X X X X X X X X X

h"z (A CO
1

CO
1

CO
1

CO
1

CO
1

CO
I

CO CO CO CO CO

u CQ
1

CQ
1

X
1

m
1

X
1

X
1

X
1

X
1

X
1

X
1

X
!

X

A References

[Altemueller88a] Altemueller, J., The STEP File Structure . ISO TC184/SC4AVG1
Document N279, September, 1988

[Altemeuller88b] Altemeuller, J., Mapping from Express to Physical File Structure .

[ANSI86]

ISO TC184/SC4AVG1 Document N280, September, 1988

American National Standards Institute. Database Language SOL.
Document ANSI X3.I35-I986

[Clark90a] Clark. S. N.. An Introduction to The NIST PDES Toolkit. NISTIR

4336, National Institute of Standards and Technology, Gaithersburg,

MD, May 1990

[Clark90b] Clark, S.N., Fed-X: The NIST Express Translator, NISTIR.

National Institute of Standards and Technology, Gaithersburg, MD,
forthcoming

[Clark90c] Clark. S.N.. The NIST Working Form for STEP. NISTIR 4351.

National Institute of Standards and Technology, Gaithersburg, MD,
June 1990

[Clark90d] Clark. S.N.. The NIST PDES Toolkit: Technical Fundamentals,

NISTIR 4335, National Institute of Standards and Technology,

Gaithersburg, MD, May 1990

[Clark90e] Clark, S.N., NIST Express Working Form Programmer’s Reference,

NISTIR, National Institute of Standards and Technology,

Gaithersburg, MD, forthcoming

[Metz89] Metz, W.P., and K.C. Morris, Translation of an Express Schema into

SQL, PDES Inc. internal document, November 1989

[Nickerson90] Nickerson, D., The NIST Database Loader: STEP Working Form to

SOL. NISTIR 4337, National Institute of Standards and

Technology, Gaithersburg, MD, May 1990

[Schenck89] Schenck, D., ed.. Information Modeling Language Express:

Language Reference Manual. ISO TC184/SC4AVG1 Document

N362, May 1989

[Schenck90] Schenck, D., ed.. Information Modeling Language Express:

Language Reference Manual, ISO TC184/SC4AVG1 Document

N466, March 1990

[Strouse90] Strouse, Kathleen and M. Mclav, PDES Testbed User’s Guide,

NISTIR, National Institute of Standards and Technology,

Gaithersburg, MD, forthcoming

Oracle is a registered trademark of Oracle Corporation

No approval or endorsement of any commercial product by the National Institute of Standards and Technology is

intended or implied

The work described was funded by the United States Government, and is not subject to copyright.

''7 ' . '

7!"i 'I fisiiStalliHirnitfAj
c!

8'-^* 1 *<f. j/CVc! *i’'

i.-
'
Li* f i V' ' ;h -

{n.''‘J<T

'J "•' .-s: Vt ''V" 7f 7’

.

•''*. '

‘ »

6

'/. A 1 f«J WJ' -xaJ

iJ*

\' • .” *.' T ** • if
'

... k.;, </ .:
'

.

''
' f

.!* '. 1 .1'

' ''i .• ll---:. ' ;1L.^
lU'*.'

L. l v tf>nUuK/i .dlip

ui>9i

:
^ K.^ JuO

'I.'
^

'

.ui , .
I -b“^»sbRMr jio vin A,ini ;t»£wn>ii»K

CK^f .'yfu^i.

'" <'
uy:,:j>

'

•>

'5ru)ii>-.l i.noone^l ,/(AWZIK
('''?* y‘«.i'- '-O'.-

L.
'

;! i:*., '-.?/ v; a. 'tfi. •/ji'tU! .HTi’?Jy'

'<noj'' ,

• ,u<.. *

-
v.'i 3 u\:-

j/:’7 C
.' ' joc
JXi : j V ; ; :

'
. ciO •,•'

t

I.

,_*"..r3.. x...

^‘3^

#a

/ .

‘iiJfc'L „ Vi ^ ' ^ y
Ji O'ii

;!Kw / j'lr-t'Tiyiril h'j

.

i.* .:(ion9rt'3»’

"
'
^

' vviniiiyL;?-

djnM

' ".J'lj h-:

,<iM - ... j

.

"
': $ S

t< .
t-'j" f 'ii toft/kUiVI aril t'J fTWtJWQ VMlO ;t«Wtoif!06/&» hi ^V»;

\o

• '. r

’^S

ji^i M

tAHieKAj ;

{.‘jO<:'ii6Di. ii

)

fC'-yxi.csMl

iiiuf.

V <,,)c,i n tm \'>^)tsmZ bwrtfiiU >«> rxi twitiuHi •jer^ iyo'*f^

ORDER and INFORMATION FORM

MAIL TO:

NATIONAL

TESTBED
-

National Institute of Standards and Technology

Gaithersburg MD., 20899

Metrology Building, Rm-A127

Attn: Secretary National PDES Testbed

(301) 975-3508

Please send the following documents
and/or software:

I [

Clark. S An Introduction to The NIST PDES Toolkit

I I

Clark. SNl.. The NIST PDES Toolkit: Technical Fundamentals

I I

Clark. SNl.. Fed-X: The NIST Express Translator

[I

Clark. S J9.. The NIST Working Form for STEP

I [

Clark, S .N., NIST Express Working Form Programmer’s Reference

I I

Clark, S.N., NIST STEP Working Form Programmer’s Reference .

I I

Clark, S.N., ODES User’s Guide

I I

Clark. S J^.. ODES Administrative Guide

I I

Morris, K.C., Transladng Express to SOL: A User’s Guide

I I

Nickerson, D., The NIST SOL Database Loader: STEP Working Form to

SQL

[I

Strouse, K., McLay, M., The PDES Testbed User Guide

OTHER (PLEASE SPECIFY)

These documents and corresponding software will be
available from NTIS in the future, '^en available, the

NTIS ordering information will be forthcoming.

iMisr

‘
\

I

'

li I'

‘

I
f''(

1

1

•

• >

. I

'
• k t,

‘

•li,* ^-:ii

;:i '•' .*

-'• ll/\

::. 2V<

r. 4

:A

K :rf5i

'

4)

.- i.;oiWvi{o" js^rltbiiabs'

'T:'‘ J

^

T;

: ;^.r- ^wiO p

y.>x Jii^'x

,l«^J
/>

I
.,•

iW'J

(' (J
.?> -V.

-'"1 --•iTi:*';'

i ‘ '•li'

f) impin' ”;

. :v?. .‘i^rfW oJ ixiofi ctkfi^tUvj

fe-i

NIST-1 1AA U.S. DEPARTMENT OF COMMERCE
(REV. 3-W) NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY

BIBLIOGRAPHIC DATA SHEET

1. PUWJCA-nON OR REPORT NUMBER
NISTIR 4341

2. PERFORMING ORGANIZATION REPORT NUMBER

3. PUBUCATION DATE
AUGUST 1990

4 TITLE AND SUBTITLE

Translating Edcpress to SQL: A User's Guide

5 AUTHOR(S)

6. PERFORMING ORGANIZATION (IF JOINT OR OTHER THAN NIST, SEE INSTRUCTIONS)

U S DEPARTMENT OF COMMERCE
NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY
GAITHERSBURG. MO 20899

7. CONTRACT/GRANT NUMBER

8. TYPE OF REPORT AND PERIOD COVERED

9 SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (STREET. aTY, STATE, ZIR)

10 SUPPLEMENTARY NOTES

lEO
j

DOCUMENT DESCRIBES A COMPUTER PROGRAM: SF-185. FIPS SOFTWARE SUMMARY, IS ATTACP

IV ABSTRACT (A 200-WORD OR LESS FACTUAL SUMMARY OF MOST SIONIFICANT INFORMATION. IF DOCUMENT INCLUDES A SIONIFICANT BIBUOORAPHY OR
UTERATURE SURVEY. MENTION IT HERE.)

This document describes the procedure used by the fedex_sql software to translate

an. Exoress schema into the SQL statements shich aenerate a relational database

scnama for storeing STEP data.

12 KEY WORDS (6 TO 12 ENTRIES: ALPHABETICAL ORDER: CAPITAUZE ONLY PROPER NAMES; AND SEPARATE KEY WORDS BY SEMICOLONS)

ELiPFLSS, Lancuage Translation, PDES, PDFS Dictionary, PDFS Test Tool, STEP

13 availabiuty 14 NUMBER OF PRINTED PAGES

X UNUMITED 21

FOR OFFICIAL DISTRIBUTION DO NOT RELEASE TO NATIONAL TECHNICAL INFORMATION SERVICE (NTIS)

ORDER FROM SUPERINTENDENT OF DOCUMENTS. U S GOVERNMENT PRINTING OFFICE,
15. PRICE

WASHINGTON. DC 20402.

A ORDER FROM NATIONAL TECHNICAL INFORMATION SERVICE (NTIS), SPRINGFIELD. VA 22161

ELECTRONIC FORM

'I*"

• -1 -

10 ti«ilrft«A*»3KI .»4-U r ' :

‘^
•

' „ _j YA>*)JC1«K>5T .»A fcCRAOHATl 10 ITUTIWI
,i* »*M'*-*HV*' •• ^ ' ‘^

'ga

rsaHS atao oiH^JAf^oouafii
X:i'3^»r?S35R'^ ‘

£

A J

u . #*^iyn*TTr»
•• •. ij**/; (Jl Yf

‘o7i>rr~o’''5frrfY-''ir - ^ •> '•v*
‘

'3'
,

':... :.4St •' ;‘^»s

mSTTK??\v-

'

'

-Si;"’.

t */ ^- -» Wf^-tyrrw? ..„

nF(i . . n,4„ ,i»f» i-''i<:*;J33oii''V Hr5VTg|,i*qi£»j»v,v'

' ••' 'V
' " ,‘'\v

' -'V.^ .,-• >'>LTr". 3''- vci

•-jp.if.-i'i'j- •r.i,;^ e77lr«r?ifc.-}:65u '0311^^^74/13*1^'

-C^ wilsiKtfeja
^

«:'

I e '
.

.
' ^ u ' yri ''iW T' ~V iw« ‘'5Zf’cE5 . • /tM**

* .« 4 ,
• lliSil • * TfT

£»

-TTJ

5?:»* 4 !

. ,

‘
•,. ir ..

_ mf<m ' *» T«w*M»iy«wft ,«,u wvi# ••; v .i 4-

V a-

f.'

'i

%

4

