
NISTIR 4340Applied and

Computational

Mathematics

Division

Center for Computing and Applied Mathematics

An Expected Linear

3-Dimensional Voronoi Diagram

Algorithm

J. Bernal

June 1990

IICirr States Department of Commerce

I I National Institute of Standards and Technology





NISTIR 4340

AN EXPECTED LINEAR
3-DIIVIENSIONAL
VORONOI DIAGRAM
ALGORITHM

J. Bernal

U.S. DEPARTMENT OF COMMERCE
National Institute of Standards

and Technology

Center for Computing and Applied

Mathematics
Applied and Computational Mathematics

Division

Gaithersburg, MD 20899

June 1990

/ ¥%
V- .

U.S. DEPARTMENT OF COMMERCE
Robert A. Mosbacher, Secretary

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
Dr. John W. Lyons, DIroctor



1
r

•

n

:

rtf

'V, •

‘<
:

• I

I

^1* v r t
-

'•
•

-Vt^ -' «? J



AN EXPECTED LINEAR 3-DIMENSIONAL VORONOI DIAGRAM
ALGORITHM

Javier BernaJ

Applied and Computational Mathematics Division

National Institute of Standards and Technology

Gaithersburg, MD 20899

Key Words and Phrases: algorithm; computational geometry; expected com-

plexity; expected linear; expected time analysis; Voronoi diagram.

ABSTRACT

Let 5 be a set of n sites chosen independently from a uniform distribution in

a cube in 3 — dimensional Euclidean space. In this paper, an expected 0{n)

algorithm for constructing the Voronoi diagram for 5 together with numerical

results obtained from an implementation of the algorithm are presented.

1. INTRODUCTION

Consider a set 5 = {pi, . .
. ,pn} of n points (to be called sites in the following)

in the Euclidean space and let d(-,-) denote the Euclidean distance. The

Voronoi diagram for 5 is a sequence V(pi), ...
, V{pn) of convex polyhedra

covering E^, where for each z, i = 1, . .
.
,n, V(pj), the Voronoi polyhedron of

Pi relative to 5, is defined by

U(pi) = G E^ : d(p,p.) < d{p,pj)}.

The Voronoi diagram has played an important role in computational geometry

for a long time, and several algorithms have been devised and implemented

for constructing it in two and higher dimensions (see Bentley, Weide and Yao

(1980), Bowyer (1981), Brostow, Dussault and Fox (1978), Brown (1979),

Dwyer (1988), Finney (1979), Green and Sibson (1978), Lee and Schachter

(1980), Mans (1984), Ohya, Iri and Murota (1984), Seidel (1986), Shamos

(1978), Shamos and Hoey (1975), Tanemura, Ogawa and Ogita (1983), Watson

(1981), Witzgall (1973)).

Assume the sites in 5 have been chosen independently from a uniform dis-

tribution in a 3 — dimensional cube. In this paper we present an expected 0{n)

1



algorithm for constructing the Voronoi diagram for 5 that is a consequence of

proofs and results in the companion paper Bernal (1990). Numerical results

obtained from a Fortran implementation of the algorithm are also presented.

2. TERMINOLOGY

Let 5 = {pi,...,pn} be a set of n sites in chosen independently from a

uniform distribution in a cube R. With m defined as the floor of i. e. the

largest integer less than or equal to assume as in Bentley, et al. (1980)

that R has been divided into equal-sized cells. Given a site g, define the

1'^ layer of cells that surrounds q as the collection of cells that contain q.

Inductively, given fc > 1, assume that the layer of cells that surrounds q

has been defined. Define the (fc + 1)‘^ layer of cells that surrounds q as the

collection, possibly empty, of cells that have one or more points in common
with cells in the layer, and that do not belong to the first k layers.

Let Icell and vcell represent, respectively, the length and volume of each

cell.

Given numbers c, c', c", 0 < c < c', c" > 1, define LG(n) and LG'(n) as the

floors of c • logn and c' • logn, respectively, and assume n is large enough so

that LG(7i) > 2 and 2^^^ • c” • LG'(n) < 2“^ •

Let k denote the largest integer k for which

2*/2.c".LG'(n)<2~^-n^/^

It follows from the assumptions on n that /c > 3.

Set LGo(n) equal to LG(n), and LGfc(n) equal to LG'(n) for each fc,

k = 1, . .
. ,

fc — 2.

Let /,, i — 1, . .
.

,

6, represent the facets of /?, and let 11 denote /i, i. e.

the boundary of R.

Given a point x in and a closed subset W of E^, define dist(i, W) as the

minimum value of
|

|x — tuj

!

for tn in VF, where
j |

•
[

represents the 3— dimensional

Euclidean norm.
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From the assumptions on n, several nonempty subsets of R can be defined

as follows:

R., = {x E R : dist(x,n) > Icell LG(n)}.

Ro = {xER . Icell • 2 < dist(i, 11) < Icell • LG(n)}

Rk ^ {xER . dist(x, n) < Icell 2“*^^}.

For each k. k = 1,

Rk = {x e R : Icell-

<

dist{x, U) < Icell- 2-'^^^}.

For each i, k, i — 1, . .
. , 6, A: = 0, . .

. ,
A: — 2,

R\ = {x e Rk dist(z,/j) > •c"-LGfc(n), j = j ^ z}.

It follows from these definitions that the sets Rk, k = — 1, . .
.

,

fc, are pair- wise

disjoint nested regions of the cube R, and

R =

The significance of these regions for our purposes can be summarized as fol-

lows. R-i is essentially that region of the cube R obtained by subtracting the

outermost LG(n) layers of ceUs of R from R. From Bentley, et al. (1980), the

Voronoi polyhedron of a site in R^i can be constructed in expected constant

time. Rq is essentially that region of R obtained by subtracting from the outer-

most LG(n) layers of cells of R the outermost two layers. Rk,k — 1, . .
.

,

fc, are

regions of R whose union is essentially that region of R composed of the out-

ermost two layers of cells of R, and whose thicknesses correspond to the terms

of the geometric series expanded to the first A: — 1 terms together with the re-

mainder. R\, i = 1, . .
. , 6, A: = 0, . .

.

,

A: — 2, are subsets of Rk, k = 0, . .
. ,

k — 2,

respectively, defined in such a way that as intimated in Bernal (1990), due to

their positions relative to the boundary of R and the geometric series aspect of

Rk, k = 1, . .
.

,

A; — 2, for a properly selected value of c" the Voronoi polyhedra

of sites in these regions can be constructed in expected linear time. They are

also defined in such a way that due to the definitions of k, and Rj^, and

the geometric series aspect of Rk, k = I, . .
. ,

k, the expected number of sites

in ^'l^QRk \ '^k=o ^k is small enough that the Voronoi polyhedra of these

sites can also be constructed in expected linear time even under the worst

possible circumstances.

Given a site q in R-i, let v, v'
,
v" and v'" be vertices of R for which

v' — V, v" — V and v'" — v are all perpendicular to one another, and for each j,

j = 0, ... ,S, and each m, m = 0, . .
.
,i, define a point r^rn by

Xjrn = g -h ((v'

-

n) • cos(j7r/4) + (r" — u) • sin(j7r/4)) • sin(m7r/4)

+ {v'" — u) • cos(m7r/4).
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In addition, for each j, j = 1, . .
.

,

8 , and each m, m = 1, . .
.

,

4, let Ujm be

the cone that is the convex hull of the rays qTj.\^rni ^^nd

qvjrn-: and if within the first LG(n) layers of cells that surround q, for each

j, j
= 1, . .

. ,
8

,
and each m, m = 1, . .

.

,

4, there exists a site Sjm, 7^ 9 ,

such that Sjm belongs to f/jm? say that q is c/osed and that Sjm, j = 1 ,..., 8
,

m = 1 , ... ,4, render q closed. As shown in Bentley, et al. (1980), the Voronoi

polyhedron of a closed site can be constructed in expected constant time.
«

For each facet / of i2, let H{f) represent the plane that contains /, and

for each site 9 ,
let T^{q) represent the point in / that is the perpendicular

projection of q onto /.

Given i, fc, 1 < f < 6
,
0 < A: < A: — 2

,
and a site 9 in let u, v' and v" be

vertices of R in /, for which v' — v is perpendicular to v" — u, and for each j,

j = 0 , . .
.

,

8
,
define a point tj in H{fi) by

tj = T^'[q) + (v' - u) • cos(j 7r/4
) + [v" — v) sin(j 7r/ 4 ).

In addition, for each j, j = 1 ,,.., 8
,

let be the octant in H{fi) that is

the convex hull of the rays T^'{q)tj-\ and T^'{q)tj, and if within the first

2 *'/'
• LGfc( n) layers of cells that surround 9 ,

for each j, j = 1 ,..., 8
,
there

exists a site q^ such that dist( 9j,/i) < Icell • and the ray qq^ intersects Oj,

say that 9 is octant-closed and that 9j, j = 1 , ... ,
8

,
render 9 octant- closed.

Given i. A:, 9 ,
u, v', v" as above, let v'" be a vertex of R for which v"' — u is

perpendicular to v' — v and v" — u, and for each j, j = 0 , . .
.

,

8
,
and each m,

m = 2,3, define a point Vj^ by

Cjrn = 9 + — y) • cos(j 7r/4
) + {v” — v) • sin(ji 7r/4 ))

• sin(m 7r/4
)

+ {v'" — v) • cos(Tn 7r/ 4 ).

In addition, for each j, j = 1 , ... ,
8

,
let Uj be the cone that is the convex hull

of the rays 97v,_i, 2 , 9Fj 2 , qf^-i^z, and qfj^, and if within the first
2*^^^

• LGfc(n)

layers of cells that surround 9 ,
for each j, j = 1 , ... ,

8
,
there exists a site Sj,

Sj 9 ,
such that Sj belongs to Uj, say that 9 is cone-semiclosed and that Sj,

j = 1, . .
.

,

8
,
Tender 9 cone-semiclosed.

Given 9 as above, say that 9 is semiclosed if it is octant-closed and cone-

semiclosed. As intimated in Bernal (1990), for a properly selected value of

c" the construction of Voronoi polyhedra of semiclosed sites is of expected

complexity acceptable for our purposes.
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Finally, given sites p and g, say that p is a Voronoi neighbor of q relative

to S if V[p) and V{q) have a facet in common.

3. THE ALGORITHM

In this section we present the algorithm in the form of a procedure called

VORNOI. The algorithm and its expected complexity follow from proofs and

results in the companion paper Bernal (1990).

Essentially, the algorithm consists of three steps. Let n, 5, R, R_i,

i = 1, . .
.

,

6, k = 0, . .
. ,

k — 2, be as defined in the previous section. In the

first step, the Voronoi polyhedra of sites in R_i are constructed as suggested

in Bentley, et al. (1980). Given a site in R-i, a geometrical procedure is

available for constructing in expected constant time the Voronoi polyhedron

of the site. Thus, the first step of the algorithm has expected linear com-

plexity. In the second step, the Voronoi polyhedra of sites in R\, i = 1, . .

.

,6,

k = 0,...,k — 2, are constructed as intimated in Bernal (1990). Given a site

in Lie'll R\., a geometrical procedure that generalizes the one used in the

first step is available for obtaining a subset of 5 that contains all of the Voronoi

neighbors relative to S of the site. This is done in such a way that as implied in

Bernal (1990), the expected time involved in obtaining all such subsets for all

such sites is bounded above by • (logn)"*)). Thus, since an 0{k log A:)

procedure is also available for computing the intersection of k half-spaces in

3 — dimensional space (see Preparata and Muller (1979)), a computation can

be carried out that shows that the second step of the algorithm has at most

expected • (logn)^) complexity. Finally, in the third step, the Voronoi

polyhedra of sites in R \ (( U R_i) are constructed. As shown in

Bernal (1990), a procedure is available for obtaining for each site in this region

a subset of 5 that contains all of the Voronoi neighbors relative to S of the

site. This is done in such a way that as implied in Berned (1990), the expected

time involved in obtaining all such subsets for all such sites is bounded above

by 0(n^/^ • (logn)"*). Thus, since the 0{k log A:) procedure used in the second

step for computing the intersection of k half-spaces is also available in this

step, it can be shown in a manner similar to the one used for the second step

that the third step of the algorithm has also at most expected • (log n)^)

complexity. Therefore, the entire algorithm has expected linear complexity.

In the following we list and describe, in the order of their first appearance

in procedure VORNOI, functions and procedures used as primitives in that

procedure.

FLOOR(x): For a positive real number x computes the largest integer less

than or equal to x.
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PRTI0N(i2, /?', m, P): Creates a partition of a cube R into equal-sized

cells, and then reduces it to those cells that intersect a region R’ of R. P will

contain the data structure that describes the reduced partition.

CEASGN(5, P, ^): Using data structure in P obtained from PRTION proce-

dure, assigns each site in a set S to a cell that contains the site in the partition

associated with P, and for each cell in the partition creates a list of those sites

assigned to the cell. The corresponding data structure will be contained in A.

RG.A.SGN(5, P', 5', n', P'): Locates and orders those sites in a set S that are

contained in a region R'. S' will be the set of ordered sites, n' will be the

number of sites in S', and for each h, h = l,...,7i', B'[h) will be the site

in 5'.

CLTEST(P, A, g, LG(n), //a^, Q): Using data structures in P and A obtained

from procedures PRTION and CEASGN, tests whether a site q (assumed to

be in R-\) is closed. The test consists of searching at most the first LG(n)

layers of cells that surround q in the partition associated with P and A for sites

’Sjm? i = U • • • , 8, m = 1, . .
.

,

4, assigned to cells in these layers that render q

closed. As soon as q is found to be closed flag is set equal to 1 and sites Sjm,

j = 1 ,..., 8
,
m = 1,...,4, that render q closed are placed in Q. Otherwise

after LG(ti) layers have been searched and q has not been found to be closed

flag is set equal to zero.

P0LYHD(9, Q, U): Given a set Q of sites and a site q, constructs the Voronoi

polyhedron U of g relative to Q U {q} through an 0{k • log A:) worst-case al-

gorithm for constructing the intersection of k half-spaces (see e. g. Preparata

and Muller (1979)).

BNDIST(g, U, d): Computes the maximum distance d, possibly infinite, from

a site q to the boundary of a polyhedron V.

SEARCH(P, A, g, d, Q): Using data structures in P and A obtained from

PRTION and CEASGN procedures, given a site q searches layers of cells that

surround q in the partition associated with P and A for sites assigned to cells

in these layers within a distance d from q. Q will contain the sites found during

this search.

VNEISV(4', g, 5, jV): Given a site g in a set 5 and a polyhedron V such that

V is the Voronoi polyhedron of g relative to 5, identifies from V those sites
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in 5 that are V'oronoi neighbors relative to 5 of q. On input N will contain

for each site in 5 a list, possibly empty, of known Voronoi neighbors relative

to S of the site obtained from previous executions of VNEISV. During the

execution of VNEISV, N will be updated so that on output for each site that

is a \'oronoi neighbor relative to S oi q, q will appear in the list of known
Voronoi neighbors relative to 5 of the site.

\''NEIGT((7, S, A^, (5'): Givei\ a site g in a set 5, and N as described for

VNEISV^ produces from N a set Q' that will contain the known Voronoi

neighbors relative to 5 of q, if any, since the last execution of VNEISV'.

SCTEST(P, A, q, LGifc(n), H{fi), flag, 0", Q'"): Using data structures in P and

A obtained from procedures PRTION and CEASGN, tests whether a site q

(assumed to be in R\) is semiclosed. The test consists of searching at most the

first LGfc(n) layers of cells that surround q in the partition associated with P
and A for sites qj, Sj, j = 1, ... ,8, assigned to cells in these layers that render

q octant-closed and cone-semiclosed, respectively. As soon as q is found to

be semiclosed flag is set equal to 1, sites Sj, j = 1, ... ,8, that render q cone-

semiclosed are placed in Q", and points g', j = 1,...,8, are placed in Q'",

where for each j, j = 1, ... ,8, g' is the intersection of gg^ and H{fi), where

gj, j = 1, ... ,8, are sites that render g octant-closed. Otherwise after LGfc(n)

layers have been searched and g has not been found to be semiclosed flag is

set equal to zero.

HALFSP(g, P, C): For a site g and a plane H, q ^ H, computes the closed

half-space C that contains g and that is determined by the plane parallel to

H that contains (T(g) 4- g)/2, where T(g) is the point in H that is the per-

pendicular projection of g onto H.

MAXDST(g, Q'", d"): Given a site g, and a finite set of points Q'", computes

the maximum distance d" between g and the points in Q"'.

MAXVAL(d', d"): Computes the maximum of two numbers d' and d"

.

The outline of VORNOI follows. Here T is the output variable. For each

h, /i = l,...,n, if in some ordering of 5, qh is the site in 5 then T[qh)

will be the Voronoi polyhedron of qh relative to 5. All other arguments act as

input variables and are as defined in the previous section.

procedure VORNOI(5, R,n,k, LG(n), LGo(n), . .
.

,

R,u H(h ), . .
. , H(h), Rl ^, . .

. ,
T)

begin

7



m FL00R(n'/3);

PRTI0N(i2,;?,m,P);

CEASGN(S,P,A);

RGASGN(5,i2_i,5_i,n_i,B_i);

for h := 1 until n_i do

begin

Qh :=

CLTEST(P, A, g;„-LG(n), flag,Q);

if {flag = 1) then

begin

POLYHD(?h,(?,V);

BNDIST(9fc,Y,<i);

d := 2 • d]

SEARCE{P, A, qh,d,Q)

end

else Q := S \ {qh}

P0LYHD(9h,Q,T^);

VNEISV(V,g,,5,7V);

7(9.) V
end

5' :-5\5_i;
R' := R\R.u
for k := 0 until — 2 do

begin

m := FL00R(2-*/2 .^ 1 /3 ).

PRTION(i2,i2',m,P);

CEASGN(S',P,A);

for i := 1 until 6 do

begin

RGASGN(5’,fl;,Si,ni,BJ);

for h := 1 until do

begin

qh = Bl{h)-

VNEIGT(9,,5, Y,Q');

SCTEST(P, A, 9,, LGfc(n), H{f,), flag, Q", Q'")

if {flag =1) then

begin

Q:=Q'U Q"-

P0LYHD(9/.,Q,V);

HALFSP((?,,if(/.),C);

V :=VnC-,
BNDIST(9,,F,d');
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2 d';

MAXDST(9/„Q'",,f");

d" := ^/2 • d"]

d:= MAXVAL((f',(i");

SEARCH(P,A,g,„rf,Q);

Q := Q'JQ'
end

elseQ:=(5'.^Q')\{94
POLYHD(g,,Q,V);
VNEISV(V4;„5,;V);

T{qK) := V
end

end

S>:=S^\UUSI
end

i?' = \ uf^. Ri,

RGASGN(S',fl',S',n',S'):

for /i := 1 until n' do

begin

B'ihy,

VNEIGT(g,„5,iV,Q');

Q:=(5'uQ')\{94;
P0LYHD(9;„Q,V);

VNEISV(V,gH,5,iV);

Tiqk) := V
end

end

4. NUMERICAL RESULTS

A Fortran implementation of the algorithm has been developed on a Con-

trol Data Cyber 205 at the National Institute of Standards and Technology.

Table 1 shows the computing time per site in CPU seconds for the imple-

mentation when applied to eight randomly generated sets in a cube for 30

values of n. Table 2 shows the number of 0— dimensional faces per site of the

Voronoi diagrams that were obtained with the implementation for the same

sets and values of n. We note that the numerical results in Table 1 and Ta-

ble 2 seem to confirm our theoretical results. We note with interest from

the results in Table 2 that the expected number of 0— dimensional faces per

site of a 3— dimensional Voronoi diagram seems to be increasing very slowly

as n increases but appears to be bounded above by the expected number of

0 — dimensional faces per site of a 3 — dimensional Poisson- Voronoi tessellation
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(approximately 6.768) (see Miles (1970)). Finally, we note that in the im-

plementation of the algorithm the constants c, c', c" used in the definitions

of Section 2 were edl set equal to 1. However, the implementation has been

written so that it functions essentially as if they had been set equal to those

values that render the implementation the most efficient. For example, the

implementation has been written so that procedure CLTEST is also executed

for sites in R\ R-i during the construction of their Voronoi polyhedra. Doing

this is essentially equivalent to enlarging i2_i to a region that renders the im-

plementation the most efficient which in turn is equivalent to setting c equal

to that value that produces the same effect.
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n
t

set 1 set 2

8
^ 0.2303 0.2452

9
^ 0.2750 0.2770

10^ 0.3057 0.3175

11^ 0.3147 0.3243

12^ 0.3331 0.3347

13^ 0.3540 0.3393

143 0.3505 0.3543

15^ 0.3464 0.3569

163 0.3483 0.3550

173 0.3477 0.3523

183 0.3649 0.3569

193 0.3462 0.3521

203 0.3555 0.3437

213 0.3555 0.3544

223 0.3601 0.3553

233 0.3601 0.3526

243 0.3523 0.3466

' 253 0.3470 0.3391

263 0.3431 0.3430

‘ 273 0.3359 0.3428
' 283 0.3316 0.3377

293 0.3263 0.3339

303 0.3304 0.3224

313 0.3082 0.3243

323 0.3148 0.3139

1

333
i
0.2988 0.3300

!

363 0.3060 0.3040

393
1 0.2856 0.2871

423
; 0.2863 0.2813

Ii 483 0.2740 0.2664

set 3 set \ set 5

0.2285 0.2457 0.2271

0.2702 0.2835 0.2691

0.2835 0.3177 0.3011

0.2953 0.3158 0.3099

0.3230 0.3347 0.3624

0.3554 0.3558 0.3447

0.3537 0.3739 0.3614

0.3651 0.3622 0.3523

0.3769 0.3636 0.3359

0.3787 0.3608 0.3485

0.3596 0.3711 0.3530

0.3558 0.3586 0.3483

0.3524 0.3623 0.3491

0.3548 0.3531 0.3540

0.3523 0.3447 0.3591

0.3560 0.3438 0.3517

0.3561 0.3409 0.3425

0.3467 0.3346 0.3379

0.3447 0.3270 0.3394

0.3322 0.3306 0.3361

0.3366 0.3225 0.3291

0.3179 0.3173 0.3276

0.3273 0.3184 0.3235

0.3264 0.3153 0.3191

0.3079 0.3030 0.3151

0.3000 0.3096 0.2982

0.3003 0.3102 0.2941

0.2904 0.2953 0.2939

0.2822 0.2891 0.2842

0.2676 0.2759 0.2686

set 6 set 7 set 8

0.2275 0.2275 0.2049

0.2751 0.2599 0.2524

0.3034 0.2973 0.2876

0.3098 0.3219 0.3218

0.3028 0.3027 0.3262

0.3663 0.3243 0.3324

0.3904 0.3342 0.3481

0.3773 0.3467 0.3592

0.3760 0.3479 0.3650

0.3736 0.3429 0.3654

0.3528 0.3415 0.3650

0.3447 0.3509 0.3473

0.3378 0.3408 0.3481

0.3430 0.3464 0.3480

0.3388 0.3456 0.3432

0.3297 0.3346 0.3432

0.3290 0.3353 0.3442

0.3206 0.3282 0.3368

0.3105 0.3321 0.3308

0.3189 0.3270 0.3263

0.3150 0.3210 0.3272

0.3116 0.3202 0.3208

0.3107 0.3208 0.3220

0.3156 0.3177 0.3188

0.3259 0.3064 0.3226

0.3036 0.3064 0.3065

0.3037 0.2981 0.3072

0.2908 0.2920 0.2957

0.2866 0.2901 0.2774

0.2654 0.2667 0.2648

Table 1: Computing time per site.
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n set 1 set 2 set 3 set 4 set 5 set 6 set 7 set 8

6.4043 6.3301 6.3496 6.3398 6.3789 6.4141 6.4141 6.3555

!

6.4595 6.3937 6.4033 6.4719 6.4225 6.4170 6.4115 6.4472

i

10^ 6.4710 6.4430 6.4610 6.4830 6.4610 6.4810 6.4440 6.5030

11^ 6.4936 6.5177 6.5297 6.5229 6.5289 6.5289 6.5177 6.5177

12^ 6.5758 6.5336 6.5706 6.5336 6.5156 6.5538 6.5538 6.5752

13^ 6.5772 6.5576 6.5544 6.5603 6.5872 6.5284 6.5690 6.5899

14^ 6.6148 6.5911 6.5652 6.6020 6.6148 6.6017 6.5860 6.6323

15^ 6.6216 6.6071 6.5609 6.6406 6.6308 6.6139 6.5961 6.6394

16^ 6.6394 6.5989 6.5972 6.6492 6.6316 6.6265 6.6445 6.6316

17^ 6.6585 6.6237 6.6076 6.6304 6.6381 6.6507 6.6640 6.6332

18^ 6.6408 6.6502 6.6487 6.6476 6.6626 6.6619 6.6493 6.6408

19^ 6.6553 6.6615 6.6545 6.6673 6.6602 6.6620 6.6606 6.6434

20^ 6.6583 6.6700 6.6524 6.6546 6.6621 6.6640 6.6610 6.6574

21^ 6.6622 6.6656 6.6628 6.6754 6.6758 6.6553 6.6634 6.6589

22^ 6.6767 6.6697 6.6595 6.6657 6.6802 6.6828 6.6665 6.6686

23^ 6.6869 6.6815 6.6615 6.6667 6.6763 6.6822 6.6694 6.6734

24^ 6.6811 6.6736 6.6748 6.6763 6.6778 6.6768 6.6782 6.6823

25^ 6.6797 6.6807 6.6799 6.6768 6.6733 6.6825 6.6845 6.6798

26^ 6.6758 6.6912 6.6880 6.6804 6.6912 6.6925 6.6907 6.6838

27^ 6.6815 6.6925 6.6803 6.6843 6.6888 6.6964 6.6901 6.6827

28^ 6.6824 6.6959 6.6893 6.6879 6.6969 6.7047 6.6959 6.6795

29^ 6.6953 6.6996 6.6899 6.6907 6.6975 6.7084 6.6962 6.6835

30^ 6.6991 6.7053 6.6976 6.6893 6.7071 6.7116 6.6984 6.6986

31^ 6.7004 6.7010 6.6961 6.7050 6.7007 6.7160 6.7073 6.6960

32^ 6.6978 6.7031 6.7079 6.7088 6.7041 6.7028 6.7031 6.7047

33^ 6.6955 6.7014 6.7113 6.7142 6.7017 6.7125 6.7148 6.7062

36^ 6.7185 6.7140 6.7090 6.7092 6.7166 6.7114 6.7128 6.7194

39^ 6.7193 6.7171 6.7188 6.7162 6.7144 6.7172 6.7164 6.7165

42^
!
6.7160 6.7264 6.7205 6.7218 6.7226 6.7232 6.7219 6.7191

48^ ! 6.7262 6.7301 6.7221 6.7289 6.7303 6.7274 6.7244 6.7290

Table 2: Number of 0— dimensional faces per site.
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