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ABSTRACT

Let 5 be a set of n sites chosen independently from a uniform distribution

in a cube in 3— dimensional Euclidean space. In this paper, work by Bentley,

Weide and Yao is extended to show that the Voronoi diagram for 5 has an

expected 0{n) number of faces. A consequence of the proof of this result is

that the Voronoi diagram for 5 can be constructed in expected 0[n) time.

1. INTRODUCTION

Consider a set 5 = {pi,.-.,Pn} of sites in d— dimensional Euclidean space

E^. The Voronoi diagram for 5 is a sequence V{pi), ... , V(pn) of convex

polyhedra covering where for each i, i = l,...,n, V[pi) is the Voronoi

polyhedron of pi relative to 5, i. e. the set of all points x in the space such that

Pi is as close to x as is any other site in S.

The Voronoi diagram is an important geometrical concept that is used for

solving a large number of problems in many areas. Accordingly, several al-

gorithms have been devised and implemented for constructing it in two and

higher dimensions (see Bentley, Weide and Yao (1980), Bowyer (1981), Bros-

tow, Dussault and Fox (1978), Brown (1979), Finney (1979), Green and Sibson

(1978), Lee and Schachter (1980), Maus (1984), Ohya, Iri and Murota (1984),

Seidel (1986), Shamos (1978), Shamos and Hoey (1975), Tanemura, Ogawaand
Ogita (1983), Watson (1981), Witzgall (1973b)), and many of its statistical

and geometrical properties have been derived (see Bentley, et al. (1980), Klee

(1980), Lawson (1977), Lee and Schachter (1980), Miles (1970), Paschinger

(1982), Preparata (1977), Seidel (1982), Shamos (1978), Shamos and Hoey

(1975), Witzgall (1973a)).
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In this paper, we further develop the work by Bentley, Weide and Yao

(1980) that relates to the expected complexity of Voronoi diagrams. Given

a set 5 of n sites chosen independently from a uniform distribution in a

d— dimensional hypercube, Bentley, et al. show that with the exception of

at most an expected -logn) number of polyhedra, each polyhedron

in the Voronoi diagram for 5 has an expected constant number of faces. With

m defined as the largest integer less than or equal to i. e. the floor of

Bentley, et al. first divide the hypercube into equal-sized cells. Given

c > 0 and defining LG(n) as the floor of c • log n, where log denotes the natu-

ral logarithm, Bentley, et aJ. then show that for each site p in 5 the expected

number of faces of V[p) is constant if p is not constained in any of the out-

ermost LG(n) layers of cells of the hypercube. However, Bentley, et al. leave

unclear how to compute the expected complexity of the Voronoi diagram for

5 due to the Voronoi polyhedra of the sites in the outermost LG(n) layers of

cells of the hypercube.

In what follows, we extend the work by Bentley, et al. to show that in

3— dimensional Euclidean space, • (c • log n)^) is an upper bound for

the expected number of faces of the Voronoi diagram for 5 that are also faces

of Voronoi polyhedra of sites in the outermost LG(n) layers of cells of the

cube. This result and those in Bentley, et al. (1980) then imply that the

expected number of faces of the Voronoi diagram for the n sites is 0{n).

Accordingly, we conjecture that in for fixed d > 3, similar results hold for

(d — 1)—dimensional faces or facets, i. e. • (c • logn)'^'*'^) is an upper

bound for the expected number of facets of the Voronoi diagram for 5 that are

also facets of Voronoi polyhedra of sites in the outermost LG(n) layers of cells

of the hypercube, and 0{n) is the expected number of facets of the Voronoi

diagram for the n sites.

2. TERMINOLOGY

Let 5 = {pi, . .
. ,pn} be a set of n points in chosen independently from a

uniform distribution in a cube R. In what follows, a point in will be called

a site if and only if it belongs to S. With m defined as the floor of assume

as in Bentley, et al. (1980) that R has been divided into equal-sized cells.

Given a site q, define the 1'‘ layer of cells that surrounds q as the collection

of cells that contain q. Inductively, given k > 1, assume that the layer of

cells that surrounds q has been defined. Define the {k + 1)‘^ layer of cells that

surrounds q as the collection, possibly empty, of cells that have one or more

points in common with cells in the k^^ layer, and that do not belong to the

first k layers.

Let Icell and vcell represent, respectively, the length and volume of each

cell.
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Given numbers c, c', c", 0 < c < c', c" > 1, define LG(n) and LG'(n) as the

floors of c • log n and c' • log n, respectively, and assume n is large enough so

that LG(n) > 2 and 2^^^ • c" • LG'(n) < 2“^ •

Let k denote the largest integer k for which

2^'/'
• c" • LG'(n) < 2-'

•

It follows from the assumptions on n that fc > 3.

Set LGo(n) equal to LG(n), and LGfc(n) equal to LG'(n) for each k,

k = 1, . .
. ,

— 2.

Let fi, i = 1, . .
.

,

6, represent the facets of R, and let 11 denote i. e.

the boundary of R.

Given a point x in and a subset W of define dist(x,H^) as the

minimum value of ||x — id|| for w in W, where H-H represents the 3— dimensional

Euclidean norm.

From the assumptions on n, several nonempty subsets of R can be defined

as follows:

R_i = {x E R : dist(x, n) > /ce//

•

LG(n)}.

Ro = {x £ R : /ce//

•

2 < dist(x, n) < /ce//

•

LG(n)}.

R‘^ = {x G /?: dist(x,n) < Zee// -2-^+2}.

For each k, k = I, . .
.
,k — 1,

Rk = {x € : /ce//-2-''+' < dist(x,n) < /ce//-2-*+2}.

For each i, i = 1, . .
. , 6, = 0, . .

.

,

A: — 2,

Rl = {x e Rk dist(x,/j) > /ce//

•

2*^^
• c" • LGfc(n), j = 1, . .

.

,6, j / i}.

It follows from these definitions that the sets R^, k = — 1, . .
.

,

/e, are pair-wise

disjoint nested regions of the cube R, and

R =

Finally, define i2_2, a possibly empty subset of R, as follows:

R^2 = {x ^ R : dist(x,n) > Icell • (1 -t- c”) • LG(n)}.

3



The significance of these regions as it relates to our purposes can be sum-

marized as follows. R-i is essentially that region of the cube R obtained by

subtracting the outermost LG(n) layers of cells of R from R. From Bentley,

et al. (1980), the Voronoi polyhedron of a site in i2_i is of expected con-

stant complexity. Rq is essentially that region of R obtained by subtracting

from the outermost LG(n) layers of cells of R the outermost two layers. R^,

k = 1, . .
.

,

fc, are regions of R whose union is essentially that region of R com-

posed of the outermost two layers of cells of R, and whose thicknesses corre-

spond to the terms of the geometric series expanded to the first k - 1 terms

together with the remainder. 72^, i == 1, . .
. , 6, A: = 0, . .

.

,

A: — 2, are subsets

of Rk, A; = 0, . .
.

,

A: — 2, respectively, defined in such a way that due to their

positions relative to the boundary of R and the geometric series aspect of Rk,

k = 1, . .
.

,

— 2, for a properly selected value of c" the expected complexity

of the Voronoi diagram for 5 due to the Voronoi polyhedra of sites in these

regions is linear. They are also defined in such a way that due to the defini-

tions of k, Rk^i and R^, and the geometric series aspect of Rk, k = 1, . .
.

,

fc,

the expected number of sites in Ut=oRk \ ul, uizl R^, is small enough that it

does not affect the linearity of the overall expected complexity of the diagram

even under the worst possible circumstances (see Section 3). Finally, /2_2 is a

subset of R-i defined in such a way that sites in this region are highly unlikely

to have Voronoi neighbors in the outermost LG(7z) layers of cells of R while

R-i \ R-2 is a region of R essentially composed of 0(LG(n)) contiguous layers

of cells of R.

For each facet / of i2, let H{f) represent the plane that contzuns /, and

for each site g, let T^{q) represent the point in / that is the perpendicular

projection of q onto /.

Given i, fc, 1 < z < 6, 0 < A: < — 2, and a site g in let r, v' and v" be

vertices of R in fi for which v' — v is perpendicular to v" — v, and for each j,

j = 0, . .
.

,

8, define a point tj in H{fi) by

tj = T^'{q) (v' — v) • cos(j7r/4) + (v" — v) • sin(ji7r/4).

In addition, for each j, j = 1, . .
.

,

8, let Oj be the octant in H{fi) that is the

convex hull of the rays T^'{q)tj-i and T^*{q)tj, and say that Oj, j 1, . .
.

,

8,

are the octants associated with q. Finally, if within the first
2^1"^

• LGfc(n) layers

of cells that surround g, for each j, j = 1, . .
.

,

8, there exists a site gj such that

dist(gj, /i) < Icell •
2“^ and the ray ggj intersects Oj, say that g is octant-closed

and that gj, j = 1, . .
.

,

8, render q octant-closed.

Given i, k, q, v, v', v" as above, let v'" be a vertex of R for which v'" — u is

perpendicular io v' — v and v" — v, and for each j, j = 0, ... ,8, and each m.
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m = 0, . .
. , 3, define a point rjm by

Tjm = q + {{v' — v) • cos{jrr/i) [v" — v) • s\n{jTT/i)) • sin{rmr/A)

+ {v"' — v) • cos(mx/4).

In addition, for each j = 1, . .
. , 8, and each m, m = 1, 2, 3, let Ujm be the

cone that is the convex hull of the rays qf^rn-ii qrj-i,mi and qf^m,

and say that Ujm-, j = m = 1,2,3, are the cones associated vrith q.

Finally, if within the first 2^^^
• LGa.( n) layers of cells that surround g, for each

j, j = 1, . .
. , 8, and each m, m = 1,2,3, there exists a site Sjm^ Sjrn ^ q, such

that Sjrn belongs to I/jm, say that q is cone-closed and that Sjm, j = 1, ... ,8,

m = 1,2,3, render q cone-closed.

Given q as above, say that q is closed if it is octant-closed and cone-closed.

As it will be shown in Section 3, Voronoi polyhedra of closed sites are of

expected complexity acceptable for our purposes.

Given i, fc, q as above, define C^'{q) and C{q) as the closed half-spaces

that contain T^'{q) and q, respectively, and that are determined by the plane

parallel to H{fi) that contains {T^'{q) -f q)/2. Define S^'{q) as the subset of 5

for which a site p S S^'{q) if and only if V{p) H V(q) fl C^'{q) / 0, and S{q) as

the subset of S for which a site p E S(q) if and only if V(p) n V’(g) ft C(q) / 0.

Finally, given sites p and q, say that p is a Voronoi neighbor relative to S

of q if V[p) and V{q) have a facet in common,

3. RESULTS

In this section, based on the terminology developed in Section 2, we prove the

following theorem which is the main result of this paper.

Theorem. • (c-logn)^) is an upper bound for the expected number of

faces of the Voronoi diagram for 5 that are also faces of Voronoi polyhedra of

sites in i2 \ i2_i.

The proof of this theorem consists of partitioning the cube into the regions

defined in Section 2 and then computing where necessary the expected number

of Voronoi neighbor pairs within and between these regions. It requires some

preliminary results which we present in the form of propositions. In the first

two propositions it is essentially shown that Voronoi polyhedra of closed sites

are of expected complexity acceptable for our purposes.
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Proposition 1 . Given i, A:, l<i<6, 0<fc<fc — 2, a site q in R\^ and

octants and sites Oj, qj, j = such that Oj, j = are the oc-

tants associated with q, and qj, j — 1, ... ,8, render q octant-closed, if q' is a

site such that for each j, j = 1, ... ,8, H?' — ||q' - q\\, where q'- is the

intersection of qqj and Oj, then q' ^ S^‘{q).

Proof. Let q' be one such site, and define J' as the plane that perpendicularly

bisects the line segment [q',q], and C as the open half-space determined by J'

that contains q. We show that C contains V[q) H cHih SO that q' ^ S^'{q).

Assume, without any loss of generality, that q' is in fi, T^'{q) ^ g', for each

2, j = 1,2, T^'{q)qi

'

/ T^'{q)q2
'

,

and q' is in the convex hull of T^'{q)qi

'

and

TH9)Q2’.

Let J[ and J
2
be the planes that are the perpendicular bisectors of the line

segments [q'l^q] and [q2 ,q], respectively. Let B be the region that is the in-

tersection of C^'{q) and the closed half-spaces determined by J[ and

contain q. We show B is the convex hull of a region K' and a ray u', both of

which lie in C

.

Since C is convex, and B contains V[q) n C^'{q), the result

then follows.

To this end, let H' be the plane that contains {T^'{q) -I- q)/2 and is parallel to

H{fi)-, let H" be the plane that contains q and is parallel to Lf(/i); let q", q",

^2 be the perpendicular projections onto H" of q', q[, q2 ,
respectively; let h\

h\, h '2 be the lines that are the intersections of H' with J'
,
J[, Jj, respectively;

and let h", h'{, h'^ be the lines in H" that perpendicularly bisect [q",q],

[q2 iq], respectively.

Let q be the perpendicular projection of q onto Define K' as the inter-

section of the half-planes in H' determined by h'^ and that contain q, and

K" as the intersection of the half-planes in H" determined by h" and h'^ that

contain q.

In order to show that C D K', we first prove that Hg" ~ 9 II > Wq'j — q\ \

for

each j, j = 1,2. To this end, for each j, j = 1,2, we have

\\q"-q\\^+\W-qT = \W - q\\^

> 2||g'-9ll^

= 2{\\q';-q\\^ + H-q';\n

\\qj
- q\\ + 2

\\qj
- qjW .

But \\q' — ^"11 equals H^' — q'JW
for each j, j = 1,2, so that

ii9"-9ir>2iig;-9ir + iig'-g;ir,

for each j, j = 1,2, and the inequalities follow.

Since q[ and belong to the contiguous octants Oi and O 2 ,
respectively, it
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follows that h" does not intersect K". But by similar triangles, h", h’{, h'^ are

the perpendicular projections onto H" of h\ h[, hj, respectively. Thus, K" is

the perpendicular projection of K' onto H"

,

and therefore, h' can not intersect

K\ which shows C contedns K'

.

In order to obtain u', let H* be the plane that contains q, and q'^] let

C* be the closed half-space determined by H* that contains T^'{q)-^ let w' be

the line that is the intersection of the planes J[ and Jj? plane

that contains q and q\ and that is perpendicular to H*] and let w" be the

perpendicular projection onto J* of w'

.

Since w' is perpendicular to H*

,

so is w"

,

and since from the definition of g',

q' is not in C*, we must have that w" contains a ray u" that lies completely in

C' n C* n C^'{q). Therefore, from the definition of w", it follows that w' must

contain a ray u' that is also contained in C H C* H C^'{q).

Since B is clearly the convex hull of K' and u', the proof is now complete.

Proposition 2. Given i, fc, 1 < i < 6, 0 < fc < fc — 2, and a site q in R\^

if q is closed then for some constant Af > 0 independent of g, i, k and n, the

smallest number of contiguous layers of cells that surround g and contain each

Voronoi neighbor of g is bounded above by M •
2*^^

• LGfc(n).

Proof. Let Oj, y = 1, . .
. , 8, be octants associated with g, let g^, j = 1, . .

. , 8,

be sites that render g octant-closed, and let Sjm, j = 1, . .
. , 8, m = 1,2,3, be

sites that render g cone-closed.

Using arguments similar to those developed in Bentley, et al. (1980), it can be

shown that the existence of the sites Sjm, j = 1, . .
. , 8, m = 1,2,3, implies that

for some constant Mi > 0 independent of g, i, fc and n, the smallest number of

contiguous layers of cells that surround g and contain 5(g) is bounded above

by M, •
2*/^ LG,(n).

We show a similar result for S^'{q).

For each j, j = 1,. .
. ,8, dist(gj,/i) < Icell •

2'*'. Thus, by similar triangles,

since g is contained in Rk so that dist(g,/i) > Icell •
2“*'^^, we must have that

for each j, j = 1, . .
. , 8, ||g'- — g|| < 2 ||gj — g||, where

g^
is the intersection of

qqj and Oj.

Thus, if g' is a site such that for each j, j = 1, ... ,8, ||g' — gjl > 2-^2 ||gj — g||

then for each j, j = 1, . .
. ,8, ||g' — g|| > \/2 ||g' — g||, and by Proposition 1,

q' ^ Sf'[q).

Therefore, since for each j, j = 1, ... ,8, qj is also contained in the first 2*''^ •

LGfc(7i) layers of cells that surround g, it follows that for some constant M2 > 0

independent of g, i, k and n, the smallest number of contiguous layers of cells

that surround g and contain S^'{q) is bounded above by M2 •
2*^^

• LGfc(7i).

The proof of the proposition is now complete since the union of 5(g) and S^'{q)

contains each Voronoi neighbor of g.
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In the next proposition it is shown that the probability that a site is not

closed is very small and uniform for all sites to which the definition of a closed

site applies.

Proposition 3. Given i, fc, 1 < z < 6, 0 < fc < jfe — 2, and a site

q in Rl, there exist positive constants Mi and M2 independent of g, z, k

and n, such that the probability that q is not closed is bounded above by

Ml exp( —

M

2 • (LGa.(7z))^), where exp is the exponential function.

Proof. Let Oj, j = 1,...,8, be the octants associated with q, and let f/jm,

j = 1, . .
.

,

8, m = 1,2,3, be the cones associated with q.

For each j, j = 1 ,..., 8
,
define O' as the subset of R for which a point

p € O' if and only if p is within the first 2*^^
• LGfc( n) layers of cells that sur-

round q, dist(p, /i) < Icell • 2“*, and gp intersects Oj. In addition, for each j,

j = 1, ... ,8, and each m, m = 1,2,3, define as the subset of R for which

a point p G if and only if p is within the first 2*^^ • LGjfe(7i) layers of cells

that surround q, and p is in Ujm.

From the definition of R\ and since c" > 1, the volume of U®_jO' is then

approximately equal to

(2-2^/2-LGfc(n))2-(2-*)-rce// = (4 •
2*

• (LGfc(n))2) (2-*) • uce/I

= 4 • (LGfc(n))^ • vcell,

so that for each j, j = 1, . .
.

,

8, the volume of O' is approximately equal to

(1/8) • 4 . {LGk{n)Y • vcell - (1/2) • {LGk{n)Y • vcelL

Thus, a positive constant M2 exists, independent of q, z, k and n, such that

for each j, j = 1, . .
.

,

8, M2 • (LGfc(7z))^ • vcell is a lower bound for the volume

of O'.

Therefore, since for each j, j = 1,...,8, each m, m = 1,2,3, and each /z,

h = 1 ,..., 8
,
the volume of is larger than the volume of 0}^, it follows,

using arguments developed in Bentley, et al. (1980), that

(8 -f 8 • 3) ' exp(-M2 • (LGfc(n))^) = 32 • exp(-M2 • (LGfc(n))^)

is an upper bound for the probability that at least one of O^, j = 1 ,..., 8
,

U'-^^ j = 1, . .
.

,

8, m = 1, 2, 3, does not contain a site.

Thus, by setting Mi equal to 32, the proof of the proposition is then complete.

In the next four propositions it is shown that due to the positions of R\^

i = 1, . .
.

, 6, k = 0, . .
.
,k — 2, relative to the boundary of R and the geomet-

ric series aspect of R^, k = l,...,fc — 2, for a properly selected v2Llue of c"
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the Voronoi polyhedra of sites in R\, i = 1, . .
. , 6, k = 0, . .

.

,

— 2, are of ac-

ceptable expected complexity. It is also shown that due to the geometric

series aspect of Rk, k = 1, . .

.

and the definitions of k, Rf^_ii Rj^, and R\,

i = 1, . .
. , 6, fc = 0, . .

.

,

fc — 2, in U^^qRic \ U^“q R\ the expected number

of sites is small enough to be also acceptable for our purposes.

Proposition 4. Given a site q in R = let N{q) be the number

of Voronoi neighbors in iZ \ R -2 of q. The expected value of is

bounded above by

0(n2/".(LG(n))^).

Proof. Let m be the floor of • (LG(n))~^ and assume R has been divided

into equal-sized cubes. Let B be one such cube and assume B has nonempty

intersection with R.

Let M be as in Proposition 2, and let B' be the region in R which is the

union of B and the cells in the first M • LG(n) contiguous layers of cells that

surround B.

Given q inB let N\q) be the number of Voronoi neighbors in B' of q.

Let F denote the event that all sites in B are closed.

We define several probabilities and random variables relating to B as follows:

P\ = Probability that F occurs.

P2 = Probability that F does not occur.

T = Value of YqeB ^{q)-

Ti = Value of YqeB -^( 9 )
given that F occurs.

T2 = Value of YqsB -^( 9 )
given that F does not occur.

T = Value of N’{q).

T[ = Value of YqeB given that F occurs.

Tj = Value of YqeB given that F does not occur.

W = Number of sites in B.

W' = Number of sites in B'.

In what follows, given a random variable X, E{X) and VAR{X) denote the

expected value and variance of X, respectively.

We note that since W is binomially distributed then VAR{W') < E{W').

Thus,

E{r) < E{W -W) < E{{W'Y) = {E{W')y + VAR{W)

< {E{W)Y + E{W') = 0(((LG(n)f)=') + 0((LG(n)f

)

= 0((LG(t.))»).

From Proposition 3, there exist positive constants Mi and M2 independent of

n, such that P2 < Mi • exp( —

M

2 • (LG(n))^) • n. Thus, Pi approaches 1 as n

increases, and since E{T') = Pi • E{T{) + P2 • ^'(Tj), we must have that

E{T[) - {E{r)-P2-E{T'))/Pi

9



< E{r)IP, = 0((LG(n))«)/A

0((LG(n)r).

But, from Proposition 2, Ti < Tj, so that

£(r,) < E(T[) < 0((LG(n))').

Thus,

E{T) = P,-E{T,) + P2-E{T2)

< 0((LG(n))®) + P2 -n"

= 0((LG(n))»).

Finally, since the number of cubes such as B is • (LG(7i))“^), it follows

that the expected value of ZlggA bounded above by

• (LG(n))-2) • 0((LG(n))®) =
• (LG(n))"),

which completes the proof of the proposition.

Proposition 5. Given i, fc, 1 < i < 6, 1 < k < k — 2, and a site q in i?^,

let N{q) be the number of Voronoi neighbors in uf_oi2/ \ of q. For

constants M, M' > 0 independent of i, k and n, if P' >{2 + y/2) • M then the

expected value of ^( 9 )
bounded above by

M' 2-'^ -{LG'[n))\

Proof. Define R\^ a nonempty subset of R that contains i?^, as follows:

R\ = {x ^ R : Icell • < dist(i,/i) < Icell •
2~*‘''^}.

Let m be the floor of •
(2*^^ • LG'(n))“^ and assume R\ has been divided

into equal-sized slabs of thickness 2~*'''^. Let B be one such slab and

assume B = B O is not empty.

Let M be as in Proposition 2, let B be the union of the cells in the first

M 2'^^^ • LG'(n) contiguous layers of cells that surround B, and let B* be the

region in R which is the union of B and B H {Llf_QRi \ U^^qR]).

We compute the expected number of sites in B'

.

c" > (2 -f \/2) • M and P > c imply that

c" .
2*/^

. LG'(n) - M •
2^'^ • LG'(n) > P' • • LGfc_i(n),

so that B' is contained in uf^^Ri and therefore, for some constant M" > 0

independent of i, k and n, has a volume bounded above by

(M" •
2''/2

. LG'(n))^ • ((Efjfc
2-'+^) + 2-'^^^)

- vcell

= [My •
2^'

. (LG'(n))' •
(2-*+2) • vcell

= 4-(M")2.(LG'(n))2.vce//.

10



Thus, 4 • {M"y • (LG'(n))^ is an upper bound for the expected number of sites

in B'.

Using arguments similar to those employed in the proof of Proposition 4, we

can now show that for some constant M' > 0 independent of t, fc and n, the

expected value of XlqgB bounded above by M' • (LG'(n))‘*. Therefore,

since • (2*^^ • LG'(n))“^ is an upper bound for the number of slabs such

as 5, it follows that the expected value of is bounded above by

ti
2/3

.
(2^/2 . LG'(n))“^ • M' • (LG'(n))'‘ = M' •

2"* •
• (LG'(Ti)f,

which completes the proof of the proposition.

Proposition 6. The expected number of sites in u|' is bounded above

by

384 • (c" • LG'(n))^-

Proof. Since k is the largest integer k' for which

2*'/2
. c" . LG'(n) < 2-'

• v}l\

we must have that the volume of is bounded above by

6 . (2 • • c" • LG'(n))2 •
(2-*+2 + 2

-*+ 2
) . ycell

= 6 . (4 .

2*+i
• {c" • LG'(n))2) • (2 • 2

-*+2
)

. ycell

= 384 • {c" • LG'(n))^ • vcell,

which completes the proof of the proposition.

Proposition 7. The expected number of sites m Ro\ is bounded

above by

12 •
. (c" . LG(n))^

and in \ by

(1 + V^)-48-n^/^-c"-LG'(n).

Proof. From the definitions, the volume of ^ \ is bounded above by

12 •
• {c" • LG(n))^ • vcell,

and that of U^~iRi \ by

2 . 12 • ti
1/3

.
2//2

. c'' . LG'(n) *
2“'+^

• vcell

= 48 • ni/3

.

2-'/2
. c" . LG'(n) • vcell

<
( 1 + v/2) • 48

.

71^/3 • c" • LG'(n) • vcell.

11



The proposition now follows.

Proof of the theorem. It suffices to prove the theorem for the 2— dimensional

faces or facets, since from Klee (1966) and the Euler formula the number of ver-

tices and edges of a 3-dimensional polyhedron is bounded above by a constant

times the number of facets of the polyhedron. As mentioned above, the proof

consists of computing where necessary the expected number of Voronoi neigh-

bor pairs within and between the regions R)^, i = 1, . .
.

,

6, = 0 , . .
. ,
^ — 2

,

\ -^-1 \ ^-2 R-2-

To this end, let p be a site in i2_i.

Since for each site q in dist(g,il_i) > Icell • (LG(n) — 2), from Bent-

ley, et al. (1980) we must have that constants M[ and > 0 exist independent

of n and p, such that the probability that p has Voronoi neighbors in u'^^^Rk

is bounded above by

.exp(-M^(LG(7i))^).

Therefore, the expected number of facets of the Voronoi diagram for 5 that

are shared by Voronoi polyhedra of sites in i2_i with Voronoi polyhedra of

sites in U^-iRk is bounded above by

n • n • M[ • exp(—
•
(LG(n))^).

Similarly, positive constants M" and exist independent of n, such that

the expected number of facets of the Voronoi diagram for 5 that are shared

by Voronoi polyhedra of sites in R-2 with Voronoi polyhedra of sites in Rq is

bounded above by

n • n • M" . exp(-M'' • (LG(n))^).

For each i, i = 1, . .
.

,

6, let jRij denote the possibly empty subset of R-i \ R-2

{xeR-i\R-2 dist(x,/j) > /ce//

•

(1 + c") • LG(n), j = 1, . .

.

,6, j t}.

Given i, 1 < t < 6, let p be a site in R^-i-

Since for each site qm Ro\ U®_ii2o, dist( 9 , R^-i) > Icell • LG(n), from Bentley,

et aJ. (1980) we must have again that constants M[" and M"' > 0 exist inde-

pendent of i, n and p, such that the probability that p has Voronoi neighbors

in Ro\ is bounded above by

M;"-exp(-M"'-(LG(n))^).

Also, as in the proof of Proposition 7, it follows that the expected number

of sites in {R-i \ R- 2 ) \ is bounded above by 12 • (c" • LG(n))^.

Thus, since the number of sites in {Rq \ Ll^-iR^) U {{R-i \ R- 2 ) \ Gj=ii2ii) is

12



binomially distributed so that its variance is less than its expected value,

it must follow from Proposition 7 that the expected number of facets of

the Voronoi diagram for 5 that are shared by Voronoi polyhedra of sites in

R~i \ R—2 with Voronoi polyhedra of sites in Rq \ UU^o is bounded above

by

n • n • • exp(-Mf • (LG(n))^) +

(24 •
• (c" • LG(n))2)2 + 24 •

• (c" • LG(n))^

Therefore, since the number of sites in uf^^Ri \ Ui:o is also binomially

distributed so that its variance is also less than its expected value, it must

follow from Propositions 4, 5, 6 and 7 that constants M' and c" > 0 exist

independent of n such that the expected number of facets of the Voronoi

diagram for 5 that are also facets of Voronoi polyhedra of sites in i? \ R^i is

bounded above by

k-2

• (LG(ti))^) + 6 • M' •
2-*'

• 71^/3
. (LG'(n)f +

fc=i

(384 . (c" LG'(n))2 + 12 •
• (c" • LG(7i))2 +

(1 + V^) • 48 • v}'^ • c" • LG'(n))2 +

384 . (c" . LG'(7i))2 + 12 . v}'^ • (c" • LG(n))2 +

(1 + v/2)-48-n^/^-c"-LG'(n) +

n^.M[ • exp( —
•
(LG(n))^) +

v} M" • exp(-M'' • (LG(n)f ) +

n' • M"' • exp(-Mf • (LG(n))^) +

(24 .
• (c" . LG(n))2)2 ^ 34 v}'^ • (c" • LG(n))='

= M.n2/3.(LG(n))"

= M •
• (c • log 7i)^,

where M is a function of n, c and d that decreases for fixed c and c', 0 < c < c'.

This completes the proof of the theorem.

The folloAving corollary is a direct consequence of results in Bentley, et cd.

(1980) and the theorem.

Corollary. 0(n) is the expected number of faces of the Voronoi diagram

for S.

Proof. From Bentley, et al. (1980) there exist positive constants M[ and

independent of n such that

0(1) + n • • exp(- (LG(7i))^)

13



Is the expected number of faces of the Voronoi diagram for 5 that are cdso faces

of the Voronoi polyhedron of any given site in i2_i. Thus, from the theorem,

the expected number of faces of the Voronoi diagram for 5 is

n (0(1) + n M[ • exp( —
•

(c • log n)^) + • (c • log n)^) = M
where M is a function of n, c and c' that decreases for fixed c and o', 0 < c < c'.

The geometrical nature of the proofs of the theorem and the corollary, and

the fact that O(n^) is the maximum number of facets that the Voronoi diagram

for a set of n sites in d > 3, can have (see Klee (1980), Paschinger (1982),

Preparata (1977), Seidel (1982)), suggest the following conjecture. Here, it is

assumed that 5 is a set of n sites in d > 3, chosen independently from a

uniform distribution in a d— dimensional hypercube R, and that R has been

divided into equal-sized cells, where m is the floor of

Conjecture. For fixed d, • (c logn)'^'*'^) is an upper bound for the

expected number of facets or (d — 1) — dimensional faces of the Voronoi diagram

for 5 that are also facets of Voronoi polyhedra of sites in the outermost LG(n)

layers of cells of R. Consequently, 0[n) is the expected number of facets of

the Voronoi diagram for 5.

The following remark relates to the expected number of faces of the convex

hull of 5.

Remark. From Bentley, et al. (1980) there exist positive constants M[ and

independent of n such that the probability that the Voronoi polyhedron

of any site in i2_i is unbounded is bounded above by

M;-exp(-M;-(LG(n)f).

From Proposition 3 and the definition of a closed site there exist positive

constants Mi and M2 independent of n such that the probability that the

Voronoi polyhedron of any site in is unbounded is bounded above

by

Mi.exp(-M2-(LG(n))2).

Thus, from Propositions 6 and 7, Klee (1966) and the Euler formula, the

expected number of faces of the convex hull of S is bounded above by

n M[ exp( —
•
(LG(ti))^) + n • Mi • exp( —

M

2 • (LG(n))^) +

384 • (c" • LG'(n))' + 12 •
• (c" • LG{n)y +

(1 + v^) • 48 • • c" • LG'(n)

= 0(n^^^ • (log n)^).

14



4. SUMMARY

Let 5 be a set of n sites chosen independently from a uniform distribution

in a d— dimensional hypercube R, and assume R has been divided into m'^

equal-sized cells, where m is the floor of In addition, let c and d be

positive numbers, and define LG(n) as the floor of c • logn, where log denotes

the natural logarithm. Influenced by Bentley, Weide and Yao’s work (1980),

we have shown that if d equals 3 then M • • (c • logn)'^'^^ is an upper

bound for the expected number of facets of the Voronoi diagram for S that are

also facets of Voronoi polyhedra of sites in the outermost LG(n) layers of cells

of R, where M is a function of n, c and d that decreases for fixed c and c',

0 < c < cL Subsequently, from this result and results in Bentley, et al. (1980),

we have shown that 0{n) is an upper bound for the expected number of facets

of the Voronoi diagram for 5. Accordingly, we have conjectured that similar

results hold for fixed d > 3, and from Klee (1966) and the Euler formula have

concluded that for d = 3, the same results hold for the 0— and 1— dimensional

faces of the Voronoi diagram for 5.

Actually, without explicitly stating it, we have established the existence

of an expected 0(7i) algorithm for constructing Voronoi diagrams in three

dimensions. To see this, we note that for each site in the outermost LG(ti)

layers of cells of R, we have implicitly shown the feasibility of obtaining a

subset of 5 that contains all of the Voronoi neighbors of the site. This is done

in such a way that the expected time involved in obtaining all such subsets for

all such sites is bounded above by M •
• (c • log n)^, where Af is a function

of n, c and c' that decreases for fixed c and o', 0 < c < c'. Thus, since the

intersection of k half-spaces in 3— dimensional space can be found in time

0{k • log fc) (see Preparata and Muller (1979)), a computation can be carried

out to show that the Voronoi polyhedra of the sites in the outermost LG(n)

layers of R can be found in at most

• (c • log n)^) • log n = M' •
• (c • log n)* • log n

expected time, where M' is a function of n, c and d that decreases for fixed

c and 0 < c < c'. This observation, together with results in Bentley, et al.

(1980), then shows the existence of the algorithm. We note that an implemen-

tation of this algorithm is currently being tested at the National Institute of

Standards and Technology, and computational results obtained from our tests

will be presented in a forthcoming paper. It should also be noted that the

techniques employed in this algorithm are quite different from those used in

an expected 0(7i) algorithm recently presented in Dwyer (1988) for construct-

ing Voronoi diagrams for point sets chosen uniformly from the d— dimensional
ball.
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