METROLOGY FOR ELECTROMAGNETIC TECHNOLOGY: A BIBLIOGRAPHY OF NIST PUBLICATIONS

Edited by
Mary E. DeWeese
METROLOGY FOR ELECTROMAGNETIC TECHNOLOGY: A BIBLIOGRAPHY OF NIST PUBLICATIONS

Edited by
Mary E. DeWeese

Electromagnetic Technology Division
Electronics and Electrical Engineering Laboratory
National Institute of Standards and Technology
Boulder, Colorado 80303-3328

August 1991

(Supersedes NISTIR 89-3946)
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>A Note on Abbreviations</td>
<td>2</td>
</tr>
<tr>
<td>Purchase Procedures and Document Availability</td>
<td>2</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>2</td>
</tr>
<tr>
<td>OPTICAL ELECTRONIC METROLOGY</td>
<td>3</td>
</tr>
<tr>
<td>CRYOELECTRONIC METROLOGY</td>
<td>23</td>
</tr>
<tr>
<td>SUPERCONDUCTOR AND MAGNETIC MEASUREMENT</td>
<td>41</td>
</tr>
<tr>
<td>AUTHOR INDEX</td>
<td>61</td>
</tr>
</tbody>
</table>
METROLOGY FOR ELECTROMAGNETIC TECHNOLOGY: A BIBLIOGRAPHY OF NIST PUBLICATIONS

Mary E. DeWeese, Editor

This bibliography lists the publications of the personnel of the Electromagnetic Technology Division of NIST during the period from January 1970 through publication of this report. A few earlier references that are directly related to the present work of the Division are also included.

Key words: cryoelectronics; electromagnetic metrology; lasers; optical fibers; superconducting materials

INTRODUCTION

R. A. Kamper

The Electromagnetic Technology Division was formed during the reorganization of the National Bureau of Standards (now the National Institute of Standards and Technology) in April 1978 by combining parts of the former Electromagnetics and Cryogenics Divisions. It develops measurement methods and standards and provides metrological support for laser systems, optical communication equipment, cryoelectronics, magnetics, superconductors, and other unusual electrical engineering materials. For the individual staff members of the division, the reorganization brought a realignment of long-term goals but little immediate discontinuity in their work. It therefore makes good sense that this bibliography should cover a period beginning some time before the reorganization, so as to include at least the more recent origins of the present work of the division. The editor has attempted to include all work published by staff members of the division, while they were employees of NIST, in the period from January 1970 through publication of this report. There are a few exceptions, where work that is totally unrelated to the present program has been excluded or where work by authors now in other parts of NIST has been included because of its special significance. A few papers on various topics published before 1970 have also been included because of their direct relationship to the present program.

Several other sources may be useful to the reader who is interested in activities at NIST connected with electromagnetic metrology. A companion bibliography to this one lists the publications of the Electromagnetic Fields Division: NISTIR 3973. Its topics include metrology for antennas, satellite communications equipment, microwave metrology, electromagnetic waveform metrology, electromagnetic interference, and hazard. An excellent summary of the whole field of electromagnetic metrology as it stood in 1967 was published as a special issue of the Proceedings of IEEE (vol. 55, June 1967). Advances in the following decade were described in two other special issues of the same journal (vol. 66, April 1978, and vol. 74, January 1986).
A Note on Abbreviations

NOTE: On August 23, 1988, the National Bureau of Standards (NBS) became the National Institute of Standards and Technology (NIST); therefore, documents with either prefix are considered NIST publications.

Most readers are familiar with the commonly used abbreviations for the names of the professional journals that appear in this bibliography. Some publication series are peculiar to NIST and may call for explanation. They are:

- NISTIR - NIST Interagency/Internal Report
- NIST TN - NIST Technical Note
- NIST SP - NIST Special Publication
- NIST HB - NIST Handbook
- NIST JRES - NIST Journal of Research
- NIST MN - NIST Monograph
- NBSIR - NBS Interagency/Internal Report
- NBS TN - NBS Technical Note
- NBS SP - NBS Special Publication
- NBS HB - NBS Handbook
- NBS JRES - NBS Journal of Research
- NBS MN - NBS Monograph

Purchase Procedures and Document Availability

NIST (NBS) Technical Notes, Special Publications, Handbooks, Journals of Research, and Monographs may be purchased from the Superintendent of Documents, U.S. Government Printing Office, Washington, DC 20402. Orders must be accompanied by postal money order, express money order, or check made out to the Superintendent of Documents.

NIST (NBS) Interagency/Internal Reports (NISTIRs, NBSIRs) may be purchased from the National Technical Information Service, Springfield, VA 22161. Orders must be accompanied by postal money order, express money order, or check made out to NTIS.

Reprints of papers published in non-NIST media may be available in limited quantities from the authors.

Acknowledgments

A large part of the labor of preparing a bibliography is spent on collecting and arranging the material; Sheila Aaker, Frances Brown, Kit Kline, and Jessie Page assisted with these chores. The main sources of material were the NIST Boulder Editorial Review Board database, the National Technical Information Service, and information supplied by individual authors.
OPTICAL ELECTRONIC METROLOGY

Low Coherence Optical Reflectometry of Laser Diode Waveguides;
Boisrobert, C.Y.; Franzen, D.L.; Danielson, B.L.; Christensen, D.H.
Proc., SPIE 1474; 91.

Annealing of Linear Birefringence in Single-Mode Fiber Coils: Application to Optical Fiber Current Sensors;
Tang, D.; Rose, A.H.; Day, G.W.; Etzel, S.M.
J. Lightwave Tech. 9(8): 1031-1037; Aug 91.

An Approximate Solution to the Wave Equation - Revisited;
Goyal, I.C.; Gallawa, R.L.; Ghatak, A.K.

Optical Waveguide Modes: An Approximate Solution Using Galerkin’s Method with Hermite-Gauss Basis Functions;
Gallawa, R.L.; Goyal, I.C.; Tu, Y.; Ghatak, A.K.

Methods of Analyzing Planar Optical Waveguides;
Goyal, I.C.; Gallawa, R.L.; Ghatak, A.K.

A Low Temperature Electrically Calibrated SOS Bolometer for Power and Energy Measurements;
Craig, R.M.; Phelan, R.J.;

High Speed Magnetic Field Sensors Based on Iron Garnets, Proc.;
Deeter, M.N.; Rose, A.H.; Day, G.W.

Measurement Standards to Support Photonics Technology;
Franzen, D.L.

Integrated-Optic Laser Fabricated by Field-Assisted Ion-Exchange in Neodymium Doped Soda-Lime-Silicate Glass;
Sanford, N.A.; Malone, K.J.; Larson, D.R.

Photorefractive Instabilities in Proton-Exchanged Waveguides: Two-Wave Coupling and Chaos;
Sanford, N.A.; Hickernell, R.K.; Craig, R.M.

Recirculating Pulse Erbium-Fiber Ring Amplifier;
Schlager, J.B.; Yamabayashi, Y.; Franzen, D.L.

Practical Considerations in the Design of Optical Fiber Current Sensors;
Tang, D.; Rose, A.H.; Day, G.W.

Analyzing Integrated Optical Waveguides: A Comparison of Two New Methods;
Tu, Y.; Goyal, I.C.; Gallawa, R.L.
Fast, Sensitive Magnetic Field Sensors Based on the Faraday Effect in YIG;
Deeter, M.N.; Rose, A.H.; Day, G.W.
J. Lightwave Tech. 8(12): 1838-1842; Dec 90.

Laser Induced Damage in Optical Materials: 1989;
Bennett, H.E.; Chase, L.L.; Guenther, A.H.; Newnam, B.E.; Soileau, M.J.
NIST SP 811, 670 p; Oct 12, 90.

In-Situ Optimization of Coupling between Semiconductor Claddings and Dielectric Waveguides;
Veasey, D.L.; Larson, D.R.; Batchman, T.E.
J. Appl. Phys. 68(7): 3753-3755; Oct 1, 90.

Performance and Limitations of Faraday Effect Sensors;

Metrology for Electromagnetic Technology: A Bibliography of NIST Publications;
DeWeese, M.E.
NISTIR 3946, 68 p; Aug 90.

Subpicosecond Pulse Compression and Raman Generation Using a Mode-Locked Erbium-Doped Laser Amplifier;
Schlager, J.B.; Hale, P.D.; Franzen, D.L.

Bent Planar Waveguides and Whispering Gallery Modes: A New Method of Analysis;
Goyal, I.C.; Gallawa, R.L.; Ghatak, A.K.;

Hydrogenated Amorphous Germanium Detectors Deposited onto Channel Waveguides;
Phelan, R.J., Jr.; Larson, D.R.

Scanning System for Measuring Uniformity of Laser Detector Response and Laser Beam Dimensions;
Rasmussen, A.L.; Case, W.E.; Sanders, A.A.
NISTIR 90-3937, 100 p; Apr 90.

Integrated-Optic Laser Fabricated by Field-Assisted Ion Exchange in Neodymium Doped Soda-Lime-Silicate Glass;
Sanford, N.A.; Malone, K.J.; Larson, D.R.

Laser Induced Damage in Optical Materials: 1988;
Bennett, H.E.; Guenther, A.H.; Newnam, B.E.; Soileau, M.J.
NIST SP 775, 576 p; Feb 1, 90.

Mean Lifetime Calculations of Quantum Well Structures: A Rigorous Analysis;
Ghatak, A.K.; Goyal, I.C.; Gallawa, R.L.

Wavelength Measurement System for Optical Fiber Communications;
Obarski, G.E.
NIST TN 1336, 44 p; Feb 90.

Faraday Effect Sensors: The State of the Art;
Day, G.W.; Rose, A.H.
Proc., SPIE 985: 138-150; 89.

Recent Advances in Faraday Effect Sensors;
Day, G.W.
Polarimetric Magnetic Field Sensors Based on Yttrium Iron Garnet;
Deeter, M.N.; Rose, A.H.; Day, G.W.

Analysis of Bends in Planar Optical Waveguides;
Gallawa, R.L.; Tu, Y.
Fiber and Integrated Optics, 8: 87-97; 89.

Soliton-Like Compression of Pulses from Erbium-Fiber Lasers;
Schlager, J.B.; Yamabayashi, Y.; Franzen, D.L.
Proc., European Conf. on Optical Communications, ECOC'89, Sep 10-14, 89, pp 62-65; 89.

NIST Optical Power Measurements;
Scott, T.R.
Proc., 89 Measurement Science Conf., Jan 26-27, 1989, pp 3C-19 to 3C-29; 89.

Spatial Light Modulator for Texture Classification;
Haggerty, J.; Young, M.
Appl. Opt. 28(23): 4992-4995; Dec 1, 89.

The Pinhole Camera;
Young, M.
The Physics Teacher, pp 648-655; Dec 89.

Metrology for Electromagnetic Technology: A Bibliography of NIST Publications;
DeWeese, M.E.
NISTIR 89-3921, 56 p; Sep 89.

Mode-Locked, Long-Cavity Erbium Fiber Lasers with Subsequent Soliton-Like Compression;
Schlager, J.B.; Yamabayashi, Y.; Franzen, D.L.; Juneau, R.I.
IEEE Photonics Technol. Lett. 1(9): 264-266; Sep 89.

A Comparison of Far-Field Methods for Determining Mode Field Diameter of Single-Mode Fibers Using Both Gaussian and Petermann Definitions;
Drapela, T.J.; Franzen, D.L.; Cherin, A.H.; Smith, R.J.

Improved Low-Level Silicon Avalanche Photodiode Transfer Standards at 1064 Micrometers;
Rasmussen, A.L.; Sanders, A.A.; Simpson, P.A.
NISTIR 89-3917, 39 p; Aug 22, 89.

Optical Waveguide Attenuation Measured by Photothermal Displacement;
Hickernell, R.K.; Aust, J.A.; Larson, D.R.

Numerical Aperture of Multimode Fibers by Several Methods: Resolving Differences;
Franzen, D.; Young, M.; Cherin, A.; Head, E.; Hackert, M.; Raine, K.; Baines, J.

New Compensation Method for Bulk Optical Sensors with Multiple Birefringences
Lee, K.S.

A Standard Reference Fiber for Calibration of Optical Time Domain Reflectometers;
Danielson, B.L.; Whittenberg, C.; Drapela, T.
Laser Induced Damage in Optical Materials—87;
Bennett, H.E.; Guenther, A.H.; Milam, D.; Newnam, B.E.
NIST SP 756, 650 p; Apr 17, 89.

Spatial Filtering Microscope for Linewidth Measurements;
Young, M.
Appl. Opt. 28(8): 1467-1473; Apr 15, 89.

Profile Inhomogeneity in Multimode Graded-Index Fibers;
Oates, C.W., Young, M.
IEEE J. Lightwave Tech. LT-7(3): 530-532; Mar 89.

Optical Fiber Sensors for Electromagnetic Quantities;

Measurement Standards for Single-Mode Fibers;
Franzen, D.L.
88 Conf. on Precision Electromagnetic Measurements, pp 121-122; 88.

Optical Fiber Measurements: Results of Interlaboratory Evaluations;
Franzen, D.L.
Proc., SPIE 992: 242-244; 88.

Potential Errors in the Use of Optical Fiber Power Meters;
Li, X.; Gallawa, R.L.

An Electrically Calibrated Silicon Bolometer for Low Level Optical Power and Energy Measurements
Phelan, R.J.; Craig, R.M.

Review of NBS Laser Power and Energy Measurements;
Scott, T.R.
Proc., SPIE 888: 48-54; 88.

Fast-Pulse Generators and Detectors for Characterizing Laser Receivers at 1.06 μm;
Simpson, P.A.

Stability of Birefringent Linear Retarders (Waveplates);
Hale, P.D.; Day, G.W.

Analysis of Circular Bends in Planar Optical Waveguides;
Gallawa, R.L.; Tu, Y.
Fiber & Integrated Optics 8: 87-97; Nov 21, 88.

Progress in the Development of Miniature Optical Fiber Current Sensors;
Tang, Dingding; Day, G.W.

Effect of Multiple Internal Reflections on the Stability of Electrooptic and Magnetooptic Sensors;
Lee, K.S.; Day, G.W.
System for Measuring Optical Waveguide Intensity Profiles;
Larson, L.E.; Larson, D.R.; Phelan, R.J., Jr.

Fresnel Lenses Display Inherent Vignetting;
Young, M.
Appl. Opt. 27(17): 3593-3594; Sep 1, 88.

Laser Induced Damage in Optical Materials: 1986;
Bennett, H.E.; Guenther, A.H.; Milam, D.; Newnam, B.E.
NBS SP 752, 724 p; Sep 88.

Technical Digest, Symposium on Optical Fiber Measurements, 1988;
NBS SP 748, 202 p; Sep 88.

Interlaboratory Comparison of Far-Field Methods for Determining Mode Field Diameter Using Both Gaussian and Petermann Definitions;
Drapela, T.J.
in NBS SP 748, pp 179-182; Sep 88.

Electrically Calibrated Photothermal Deflection Measurement for Separating Channel Waveguide Loss Mechanisms;
Hickernell, R.K.; Larson, D.R.; Phelan, R.J., Jr.
in NBS SP 748, pp 65-68; Sep 88.

Optical Fiber Sensors for the Measurement of Electromagnetic Quantities;

Metrology for Electromagnetic Technology: A Bibliography of NBS Publications;
DeWeese, M.E.
NBSIR 88-3097, 64 p; Aug 88.

Waveguide Loss Measurement Using Photothermal Deflection;
Hickernell, R.K.; Larson, D.R.; Phelan, R.J., Jr.; Larson, L.E.

Laser Induced Damage in Optical Materials: 1985;
Bennett, H.E.; Guenther, A.H.; Milam, D.; Newnam, B.E.
NBS SP 746, 576 p; Jul 88.

Group Index and Time Delay Measurements of a Standard Reference Fiber;
Danielson, B.L.; Whittenberg, C.D.
NBSIR 88-3091, 20 p; Jul 88.

Fast Optical Detector Deposited on Dielectric Channel Waveguides;
Larson, D.R.; Phelan, R.J.

Interferometric Dispersion Measurements on Small Guided-Wave Structures;
Danielson, B.; Whittenberg, C.
88 CLEO Tech. Digest, pages unnumbered, Apr 88.
Cool It!!
Lehman, J.
Science Teacher, pp 29-32; Mar 88.

Conference Report: Symposium on Optical Fiber Measurements;
Day, G.W.; Franzen, D.L.
NBS J. Res. 92: 69-70; 87.

Optical Fiber Metrology at the National Bureau of Standards;
Franzen, D.L.

Picosecond Pulse Response from Hydrogenated Amorphous Silicon (a-Si:H) Optical Detectors on Channel Waveguides;
Larson, D.R.; Phelan, R.J., Jr.

NBS Standards for Optical Power Meter Calibration;
Scott, T.R.
Proc., DOD/ANSI/EIA Fiber Optics Standardization Symp., pp 224-238; 87.

Fiber Optic Faraday Rotation Current Sensor;
Veeser, L.; Day, G.W.
Proc., 4th Intl. Conf. on Megagauss Field Generation and Related Topics; 87.

Calibration and Standardization Issues for the Optical Time-Domain Reflectometer;
Danielson, B.L.
NBSIR 87-3078, 16 p; Dec 87.

Guided-Wave Reflectometry with Micrometer Resolution;
Danielson, B.L.; Whittenberg, C.D.

Microscope Objectives, Cover Slips, and Spherical Aberration;
Oates, C.W.; Young, M.

Metrology for Electromagnetic Technology: A Bibliography of NBS Publications;
Kline, K.E.; DeWeese-Bishop, M.E.
NBSIR 87-3074, 62 p; Jun 87.

On the Calibration of Optical Fiber Power Meters: The Effect of Connectors;
Gallawa, R.L.; Li, X.

Image Processing Software for Optimal Engineering;
Weppner, M.B.; Young, M.
NBSIR 87-3065; Apr 87.

Limits to the Precision of Electro-optic and Magneto-optic Sensors;
Electric Power Research Institute (EPRI) EL-5431, Vol. 1; Mar 87.

Optical Sampling with Gain-Switched Pulse Compressed Distributed-Feedback Laser Diodes;
Franzen, D.L.; Yamabayashi, Y.; Kanada, T.
Progress in the Design of Optical Fiber Sensors for the Measurement of Pulsed Electric Currents;
Day, G.W.; Veeser, L.R.; Chandler, G.I.; Cernosek, R.W.
Proc., Workshop on Measurements of Elect. Quan. in Pulsed Power Systems, Mar 1986, Gaithersburg, MD, pp 58-63; 86.

Attenuation Measurements on Deformed Optical Fibers;
Engelsrath, A.; Danielson, B.L.; Franzen, D.L.
NBSIR 86-3052, 28 p; 86.

Fiber Optic Sensing of Pulsed Currents;
Veeser, L.; Chandler, G.I.; Day, G.W.
Proc., SPIE 648: 197-212; 86.

Hybrid Computer-Optical Processing with Inexpensive Liquid Crystal Television;
Young, Matt; Weppner, Matthew
Proc., SPIE 700: 146-153; 86.

Compact Fiber Sensors for the Measurement of Low Level Electric Currents;
Day, G.W.
Proc., 4th Intl. Conf. on Optical Fiber Sensors; Tokyo, Japan; pp 81-84; Oct 86.

Laser Induced Damage in Optical Materials: 1984;
Proc., Sixteenth Annual Symp. on Optical Materials for High Power Lasers; Oct 15-17, 1984; Boulder, CO; NBS SP 727; Oct 86.

Direct Measurement of the Spatial Modes of a Laser Pulse—Theory;
Johnson, E.G.;
Appl. Opt. 25(17): 2967-2975; Sep 86.

Technical Digest, Symposium on Optical Fiber Measurements, 1986;
Day, G.W.; Franzen, D.L.
NBS SP 720, 149 p; Sep 86.

Measurement Procedures for Optical Fiber and Related Components;
Danielson, B.L.; Day, G.W.; Franzen, D.L.; Gallawa, R.L.; Kim, E.; Phelan, R.J.; Young, Matt
Rome AFB, NY; RADC-TR-86-81; Aug 86.

Metrology for Electromagnetic Technology: A Bibliography of NBS Publications;
Kline, K.E.; DeWeese, M.E., eds.
NBSIR 86-3048, 52 p; Jun 86.

Scratch-and-Dig Standard Revisited;
Young, Matt;

Single Mode Fiber Dispersion Measurements using Optical Sampling with a Modelocked Laser Diode;
Kanada, T.; Franzen, D.L.

Fiber Bandwidth Measurement Using Pulse Spectrum Analysis;
Shao, Y.; Gallawa, R.L.
Appl. Opt. 25(7): 1069-1070; Apr 86.

Low-Cost LCD Video Display for Optical Processing;
Young, Matt
Appl. Opt. 25(7): 1024-1026; Apr 86.
Optical Power Meters: A Round Robin Test of Uncertainty;
Gallawa, R.L.; Shao, Y.
Appl. Opt. 25(7): 1066-1068; Apr 86.

Standard Measurement Procedures for Characterizing Single-Mode Fiber;
Franzen, D.L.
Conf. Digest, Test & Measurement World Expo.; San Jose, CA; Apr 86.

Transfer Standards for Energy and Power of Low-Level 1.064 \mu m Laser Pulses and cw;
Rasmussen, A.L.; Sanders, A.A.

A Comparison of Three Bandwidth Measurements Techniques for Optical Fibers;
Shao, Y.; Gallawa, R.L.

Optical Waveform Measurement by Optical Sampling/Crosscorrelation with a Mode Locked Laser Diode;
Kanada, T.; Franzen, D.L.

Uncertainty Charts for RF and Microwave Measurements;
Kamper, R.A.

A Calorimeter for Measuring 1-15 kJ Laser Pulses;
Simpson, P.; Johnson, E.G.

Annealing of Bend-Induced Birefringence in Fiber Current Sensors;
Day, G.W.; Etzel, S.M.
IOOC-ECOC Tech. Digest, Vol. 1; Proc., European Conf. on Optical Communication; Oct 1-4, 1985; Venice, Italy; pp 871-874; 85.

A Sensitive, High Frequency, Electromagnetic Field Probe Using a Semiconductor Laser in a Small Loop Antenna;
Phelan, R.I.; Larson, D.; Simpson, P.

Interlaboratory Measurement Comparison Among Fiber Manufacturers to Determine the Effective Cutoff Wavelength and Mode-Field Diameter of Single-Mode Fiber;
Franzen, D.L.

Introduction to Fiber Optics: Short-Haul and Long-Haul Measurements and Applications, III;
Gallawa, R.L.
Proc., SPIE 599: vi; 85.

Laser Power and Energy Measurements and the NBS Laser Measurement Assurance Program (MAP);
Case, W.E.; Sanders, A.A.

Optical Fiber Sensors for the Measurement of Pulsed Electric Currents;
Day, G.W.; McFadden, J.D.O.; Veeser, L.R.; Chandler, G.I.; Cernosek, R.W.

Pulse Spectrum Analysis Method of Measuring Fiber Bandwidth;
Shao, Y.; Alvarez, R.; Weimer, C.; Gallawa, R.L.
Proc., SPIE 559: 207-210; 85.
Scratch Standards Should Not be Used to Predict Damage Threshold;
Young, M.
in NBS SP 669; pp 151-156; 85.

Some Issues in Optical Fiber Bandwidth Measurement;
Yang, S.; Gallawa, R.L.

The Scratch Standard is Not a Performance Standard;
Young, M.
Digest, Workshop on Optical Fabrication and Testing, Jun 12-13, 1985, Cherry Hill, NJ, pp ThAA4-1&2; 85.

Tunable Scratch Standards;
Young, M.; Johnson, E.G., Jr.; Goldgraben, R.
Proc., SPIE 525: 70-77; 85.

Use of Mode Transfer Matrices in L.A.N. Loss Evaluation;
Maisonneuve, J.M.; Churoux, P.; Gallawa, R.L.

Documentation of the NBS APD and PIN Calibration Systems for Measuring
Peak Power and Energy of Low-Level 1.064 µm Laser Pulses;
Rasmussen, A.; Sanders, A.
NBSIR 85-3032, 67 p; Dec 85.

Low-Level Germanium Detector Transfer Standard at 1.064 µm;
Rasmussen, A.; Sanders, A.
NBSIR 85-3041, 10 p; Dec 85.

Laser Induced Damage in Optical Materials: 1983;
Bennett, H.E.; Milam, D.; Guenther, A.; Newnam, B.E.
NBS SP 688, 581 p; Nov 85.

The Scratch Standard is Only a Cosmetic Standard;
Young, M.
Laser Focus/Electro-Optics, 138-140; Nov 85.

Determining the Mode-Field Diameter of Single-Mode Optical Fiber:
An Interlaboratory Comparison;
Franzen, D.L.; Srivastava, R.

Direct Measurement of the Electric Field of a Laser Pulse-Theory;
Johnson, E.G.
NBS TN 1084, 52 p; Aug 85.

Optical Time-Domain Reflectometer Specifications and Performance Testing;
Danielson, B.L.

Metrology for Electromagnetic Technology: A Bibliography of NBS Publications
Kline, K.E.; DeWeese, M.E.
NBSIR 85-3029, 72 p; Jul 85.

Pattern Recognition Using Incoherent OTF Synthesis and Edge Enhancement;
Katzir, Y.; Young, M.; Glaser, I.
Determining the Effective Cutoff Wavelength of Single-Mode Fibers: An Interlaboratory Comparison;
Franzen, D.L.

Intramodal Part of the Transfer Function for an Optical Fiber;
Rodhe, P.

The Bandwidth of a Multimode Fiber Chain;
Rodhe, P.;

Redefining the Scratch Standards;
Young, M.; Johnson, E.G., Jr.
NBS TN-1080, 20 p; Feb 85.

Conference Report: Fiber Optics Emphasis on Single Mode;
Franzen, D.L.; Day, G.W.

Fast Detectors and Modulators;
Phelan, R.J.
Chap. in Semiconductors and Semimetals, Academic Press, 21(D): 249-259; 84.

A Calorimeter for Measuring High-Energy Optical Pulses;
NBSIR 84-3008, 162 p; Oct 84.

Technical Digest, Symposium on Optical Fiber Measurements;
Day, G.W.; Franzen, D.L.
NBS SP-683; Oct 84.

A Calorimeter for Measuring 1-15 kJ Laser Pulses;
Simpson, P.A.; Johnson, E.G.
Proc., SPIE 499: 34-37; Aug 84.

Attenuation of Multimode Fused Silica Optical Fibers Cooled to Liquid Helium Temperatures;
Engelsrath, A.; Larson, D.R.; Phelan, R.J.; Franzen, D.L.
Proc., SPIE 499: 124-130; Aug 84.

Detectors for Picosecond Optical Power Measurements;
Phelan, R.J., Jr.; Larson, D.R.; Frederick, N.V.; Franzen, D.L.
Proc., SPIE 499: 34-37; Aug 84.

Equivalent Step-Index Parameters in Single-Mode Fibers: Measurement and Applications;
Srivastava, R.
Proc., SPIE 500: 27-36; Aug 84.

The Use of Power Transfer Matrices in Predicting System Loss: Theory and Experiment;
Maisonneuve, J.M.; Gallawa, R.L.

Using Optical Processing to Find the Beam Profile of a Laser Pulse (Theory);
Johnson, E.G., Jr.
Proc., SPIE 499: 75-88; Aug 84.
Metrology for Electromagnetic Technology: A Bibliography of NBS Publications;
Kamper, R.A.
NBSIR 84-3014, 65 p; Jul 84.

Measurement of Multimode Optical Fiber Attenuation: An NBS Special Test Service;
Gallawa, R.L.; Chamberlain, G.E.; Day, G.W.; Franzen, D.L.; Young, M.
NBSIR 83-1691; Feb 84.

Some Trends in Optical Electronic Metrology;
Sanders, A.A.
Proc., 1984 Measurement Science Conf., Los Angeles, CA; Jan 84.

A Computer Controlled System for Calibrating Detectors of TEA Laser Pulses;
Simpson, P.A.

Birefringence Measurements in Single Mode Optical Fiber;
Day, G.W.
Proc., SPIE 425: 72-79; 83.

Fiber Optics: Short-Haul and Long-Haul Measurements and Applications;
Gallawa, R.L., ed.
Proc., SPIE 355; 83.

Submicrometer Interdigital Silicon Detectors for the Measurement of Picosecond Optical Pulses;
Phelan, R.J.; Larson, D.; Frederick, N.V.; Franzen, D.L.
Proc., SPIE 425: 207-211; 83.

Objective Measurements and Characteristics of Scratch Standards;
Young, M.
Proc., SPIE 3526: 86-92; Spring 83.

Estimating Index Profiles of 1.3 μm Single Mode Fibers by Near-Field Measurements at Blue Wavelengths;
Kim, E.M.; Franzen, D.L.; Young, M.; Rodhe, P.M.

Simulating the Scratch Standards for Optical Surfaces—Theory;
Johnson, E.

Optical Fiber Characterization Attenuation, Frequency Domain Bandwidth, and Radiation Patterns;
NBS SP 637, Vol. II; Oct 83.

Linewidth Measurement by High-Pass Filtering—A New Look;
Young, M.

Laser Measurements;
Sanders, A.A.

Measurement of Multimode Optical Fiber Attenuation: An NBS Special Test Service;
Gallawa, R.L.; Chamberlain, G.E.; Day, G.W.; Franzen, D.L.; Young, M.
NBS TN 1060; Jun 83.
Optical Time-Domain Reflectometer Performance and Calibration Studies;
Danielson, B.L.
NBS TN 1064; Jun 83.

Two-Dimensional Near-Field Contouring of Optical Fiber Cores;
Kim, E.M.; Franzen, D.L.
Proc., SPIE; Jun 83.

EIA Fiber Performance Measurement Standards;
Gallawa, R.; Franzen, D.L.
Photonics Spectra, pp 55-68; Apr 83.

Questions Students Ask;
Young, M.
Physics Teacher, pp 194-195; Mar 83.

An Inter-Laboratory Measurement Comparison of Core Diameter on Graded-Index Optical Fibers;
Kim, E.M.; Franzen, D.L.
NBS SP 641; Oct 82.

A System for Measuring Energy and Peak Power of Low-Level 1.064 μm Laser Pulses;
Sanders, A.A.; Rasmussen, A.L.
NBS TN 1058; Oct 82.

Measurement of the Core Diameter of Graded-Index Optical Fibers: An Interlaboratory Comparison;
Kim, E.M.; Franzen, D.L.

Technical Digest - Symposium on Optical Fiber Measurements, 1982;
NBS SP 641; Oct 82.

Beam-Profile Measurement of Pulses Using a Spatial Filter to Sample the Hermite Modes for a String of Pulses;
Johnson, E.G.
NBS TN 1057; Sep 82.

Documentation of the NBS C, K, and Q Laser Calibration Systems;
Case, W.E.
NBSIR 82-1676; Sep 82.

Optical Fiber Characterization;
Day, G.W.; Danielson, B.L.; Franzen, D.L.; Kim, E.; Young, M., eds.
NBS SP 637, Vol. 1; Jul 82.

Calibration Reticle for Optical Fiber Near-Field Core Diameter Measurements;
Kim, E.M.; Franzen, D.L.
Digest, Conf. on Precision Electromagnetic Measurements; May 82.

Characterization of a Concentric-Core Fiber;
Danielson, B.L.; Franzen, D.L.; Gallawa, R.L.; Kim, E.M.; Young, M.
NBSIR 82-1661; Apr 82.

On the Definition of Fiber Numerical Aperture;
Gallawa, R.L.
Electro-Optical Systems Design, p 47; Apr 82.

Quantum Noise Limits the Pinspeck Camera to Simple Objects;
Young, M.
Optical Waveguide Communications Glossary;
NBS HB 140; Jan 82.

Book Review: Principles of Optical Fiber Measurements by D. Marcuse;
Young, M.
Laser Focus, pp 118-119; Jan 82.

Long Optical Fiber Fabry Perot Interferometers;
Franzen, D.L.; Kim, E.

A Measurement Method for Determining the Optical and Electro-Optical Properties of a Thin Film;
Larson, D.
NBSIR 81-1652; Dec 81.

An Optical Waveguide Communications Glossary, Revised;
Hanson, A.G.; Bloom, L.R.; Day, G.W.; Young, M.; Gray, E.M.; Gallawa, R.L.
NBS HB 140; Dec 81.

Backscatter Signature Simulations;
Danielson, B.L.
NBS TN 1050; Dec 81.

Book Review: Optical Fibre Communication (invited review);
Gallawa, R.
IEEE Spectrum, p 1; Nov 81.

The Use of LEDs as YAG Laser Simulators;
Young, M.

Optical Fiber Index Profiles by Refracted-Ray Scanning;
Young, M.

Measurement of Optical Fiber Bandwidth in the Frequency Domain;
Day, G.W.
NBS TN 1046; Sep 81.

Standard Measurement Conditions and Test Results on Multimode Fibers;
Franzen, D.L.
Laser Focus, pp 103-105; Aug 81.

The Use of LEDs to Simulate Weak YAG-laser Beams;
Young, M.
NBS TN 1031; revised Aug 81.

Interlaboratory Measurement Comparison to Determine the Attenuation and Bandwidth of Graded-Index Fibers;
Franzen, D.L.; Day, G.W.; Danielson, B.L.; Chamberlain, G.E.; Kim, E.

Day, G.W.
NBS TN 1043; Jun 81.

Refracted-Ray Scanning (Refracted Near-Field Scanning) for Measuring Index Profiles of Optical Fibers;
Young, M.
NBS TN 1038; May 81.
Present NBS Capability in Optical Fiber Measurements;
Day, G.W.; Franzen, D.L.

Results of an Interlaboratory Measurement Comparison Among Fiber Manufacturers to Determine Attenuation, Bandwidth, and Numerical Aperture of Graded Index Optical Fibers;
Franzen, D.L.; Day, G.W.; Danielson, B.L.; Kim, E.

Results of an Inter-Laboratory Measurement Comparison to Determine the Radiation Angle (NA) of Graded Index Optical Fibers;
Franzen, D.L.; Kim, E.

Sub-Nanosecond Electrical Modulation of Light with Hydrogenated Amorphous Silicon;
Phelan, R.J.; Larson, D.R.; Werner, P.E.
Appl. Phys. Lett. 38(8); Apr 15, 81.

Backscatter Measurements in Optical Fibers;
Danielson, B.L.
NBS TN 1034; Feb 81.

Measurement of Far-Field and Near-Field Radiation Patterns from Optical Fibers;
Kim, E.; Franzen, D.L.
NBS TN 1032; Feb 81.

Progress in Fiber Measurements;
Day, G.W.; Franzen, D.L.
Laser Focus, pp 52-56; Feb 81.

A System for Characterizing Detectors for the Measurement of Power of CO₂ TEA Laser Pulses;
Simpson, P.A.

The Role of Backscatter Signatures in Optical Fiber Characterization;
Danielson, B.L.

Linearity and Resolution of Refracted Near-Field Scanning Techniques;
Young, M.
in Tech. Digest, Symposium on Optical Fiber Measurements, NBS SP 597; Oct 80.

Technical Digest, Symposium on Optical Fiber Measurements, 1980;
NBS SP 597; Oct 80.

A System for Measuring the Characteristics of High Peak Power Detectors of Pulsed CO₂ Laser Radiation;
Simpson, P.A.
NBS TN 1023; Sep 80.

Calibration Technique for Refracted Near-Field Scanning of Optical Fibers;
Young, M.

Measuring Features of the Fluence at the Far Field of a CO₂ Pulsed Laser—An Issue Study With Suggestions on How To Do It;
Johnson, E.G., Jr.
NBSIR 80-1628; Apr 80.
An Assessment of the Backscatter Technique as a Means for Estimating Loss in Optical Waveguides;
Danielson, B.L.
NBS TN 1018; Feb 80.

Measurement of Optical Fiber Bandwidth in the Time Domain;
Franzen, D.L.; Day, G.W.
NBS TN 1019; Feb 80.

Book review: Linear Systems, Fourier Transforms and Optics by J.D. Gaskill;
Young, M.

LED Source for Determining Optical Detector Time Response at 1.06 Micrometers;
Franzen, D.L.; Day, G.W.

Measurement of Low Level Laser Pulses at 1.064 μm;
Rasmussen, A.L.; Sanders, A.A.
Proc., SPIE 196: 96-103; 79.

Measurement of Propagation Constants Related to Material Properties in High Bandwidth Optical Fibers;
Franzen, D.L.; Day, G.W.
IEEE J. Quantum Electron. QE-15(12); Dec 79.

Continuous-Wave (Mode-Locked) Dye Laser with Unfolded Cavity;
Young, M.

Limitations Imposed by Material Dispersion on the Measurement of Optical Fiber Bandwidth with Laser Diode Source
Franzen, D.L.; Day, G.W.
J. Opt. Soc. Amer. 69(10); Oct 79.

Optical Waveguide Communications Glossary;
Hanson, A.G.; Bloom, L.R.; Day, G.W.; Gallawa, R.L.; Gray, E.M.; Young, M.
NTIA SP 79-4; Sep 79.

Time Domain Pulse Measurements and Computed Frequency Response of Optical Communications Components;
Andrews, J.R.; Young, M.
NBSIR 79-1620; Sep 79.

National Standards of a Powerful Sort;
Sanders, A.A.

Quality Assurance Program for the NBS, C, K, and Q Laser Calibration Systems;
Case, W.E.
NBSIR 79-1619; Aug 79.

Design of a Reflection Apparatus for Laser Beam Profile Measurements;
Johnson, E.G., Jr.
NBS TN 1015; Jul 79.

Fiber Measurements: Quality and Cost;
Day, G.W.

Attenuation Measurements on Optical Fiber Waveguides: An Interlaboratory Comparison Among Manufacturers;
Day, G.W.; Chamberlain, G.E.
NBSIR 79-1608; May 79.
Conference on Optical Scattering Standards;
Young, M.
Proc., SPIE 181: 133-134; Apr 79.

Laser Beam Profile Measurements Using Spatial Sampling, Fourier Optics, and Holography;
Johnson, Eric G., Jr.
NBS TN 1009; Jan 79.

A Simple First Positive System Nitrogen Laser for Use in Optical Fiber Measurements;
Franzen, D.L.; Danielson, B.L.; Day, G.W.

Measurement Problems in Multimode Optical Waveguides;
Day, G.W.

Optical Fiber Phase Discriminator;
Danielson, B.L.

Improvements in a Calorimeter for High-Power CW Lasers;
Chamberlain, G.E.; Simpson, P.A.; Smith, R.L.

Laser Far-Field Beam-Profile Measurements by the Focal Plane Technique;
Day, G.W.; Stubenrauch, C.F.
NBS TN 1001; Mar 78.

Fiber Optics Metrology at NBS;
Danielson, B.; Day, G.; Franzen, D.

Evaluating the Inequivalence and a Computational Simplification for the NBS Laser Energy Standards;
Johnson, Eric G., Jr.

Measurement Procedures for the Optical Beam Splitter Attenuation Device BA-1;
Danielson, B.L.
NBSIR 77-858; May 77.

Proposed Standards for Ladar Signatures;
Danielson, B.L.
NBSIR 77-856; Apr 77.

An NBS Laser Measurement Assurance Program (MAP);
Sanders, A.A.; Cook, A.R.

Laser Action in Sputtered Metal Vapors;
9th Intl. Conf. on Quantum Electronics, Jun 14-16, 1976, Amsterdam, The Netherlands, pp 162-163; 76.

Performance and Characteristics of Polyvinylidene Fluoride Pyroelectric Detectors;
Day, G.W.; Hamilton, C.A.; Gruzensky, P.M.; Phelan, R.J., Jr.
Absolute Reference Calorimeter for Measuring High Power Laser Pulses;
Franzen, D.L.; Schmidt, L.B.
Appl. Opt. 15: 3115-3122; Dec 76.

Spectral Reference Detector for the Visible to 12 Micrometer Region; Convenient, Spectrally Flat;
Day, G.W.; Hamilton, C.A.; Pyatt, K.W.

An Electrically Calibrated Pyroelectric Radiometer System;
Hamilton, C.A.; Day, G.W.; Phelan, R.J., Jr.
NBS TN 678; Mar 76.

Ultraviolet Laser Action from Cu II in the 2500-A Region;
McNeil, J.R.; Collins, G.J.; Persson, K.B.; Franzen, D.L.
Appl. Phys. Lett. 28: 207-209; Feb 76.

Laser Attenuators for the Production of Low Power Beams in the Visible and 1.06 Micron Regions;
Danielson, B.L.; Beers, Y.
NBS TN 677; Jan 76.

Radiometry without Standard Sources/Electrically Calibrated Pyroelectrics;
Phelan, Robert J., Jr.; Hamilton, Clark A.; Day, Gordon W.
Proc., SPIE 62: 159-165; 75.

Pyroelectric Radiometers Get Off the Drawing Board;
Hamilton, C.A.; Phelan, R.J., Jr.; Day, G.W.

Improving Beam Measurement;
Smith, R.L.; Sanders, A.A.
Laser Focus, 70-71; Apr 75.

Precision Beam Splitters for CO₂ Lasers;
Franzen, D.L.

A Pyroelectric Power Meter for the Measurement of Low Level Laser Radiation;
Hamilton, C.A.; Day, G.W.
NBS TN 665; Feb 75.

The Polarization of PVF and PVP2 Pyroelectrics;
Ferroelectrics 7: 375-377; 74.

Current Status of NBS Low-Power Laser Energy Measurement;
West, E.D.; Case, W.E.

Analysis of Response of Pyroelectric Optical Detectors;
Peterson, R.L.; Day, G.W.; Gruzensky, P.M.; Phelan, R.J.

Effects of Poling Conditions on Responsivity and Uniformity of Polarization of PVP2 Pyroelectric Detectors;
Day, G.W.; Hamilton, C.A.; Peterson, R.L.; Phelan, R.J., Jr.; Mullen, L.O.
Absolute, Pyroelectric Radiometers and Two Dimensional Arrays;

Comparison of the Laser Power and Total Irradiance Scales Maintained by the National Bureau of Standards;
Geist, J.; Schmidt, L.B.; Case, W.E.

Electrically Calibrated Pyroelectric Optical-Radiation Detector;
Phelan, R.J., Jr.; Cook, A.R.

Continuous Laser-Sustained Plasmas;
Franzen, D.L.
J. Appl. Phys. 44: 1727-1732; Apr 73.

Limitations of the Use of Vacuum Photodiodes in Instruments for the Measurement of Laser Power and Energy;
Smith, R.L.; Phelan, R.J., Jr.

Accurate Frequencies of Molecular Transitions Used in Laser Stabilization: The 3.39-Micrometer Transition in CH4 and the 9.33- and 10.18-Micrometer Transitions in CO2;
Evenson, K.M.; Wells, J.S.; Petersen, F.R.; Danielson, B.L.; Day, G.W.

A Calorimeter for High Power CW Lasers;
Smith, R.L.; Case, W.E.; Rasmussen, A.L.; Russell, T.W.; West, E.D.

High D*, Fast, Lead Zirconate Titanate Pyroelectric Detectors;
Mahler, R.J.; Phelan, R.J., Jr.; Cook, A.R.

A Calorimeter for High-Power CW Lasers;
Smith, R.L.; Russell, T.W.; Case, W.E.; Rasmussen, A.L.

Speed of Light from Direct Frequency and Wavelength Measurements of the Methane-Stabilized Laser;
Evenson, K.M.; Wells, J.S.; Petersen, F.R.; Danielson, B.L.; Day, G.W.

CW Gas Breakdown in Argon Using 10.6 Micrometer Laser Radiation;
Franzen, D.L.

Role of Infrared Frequency Synthesis in Metrology;
Wells, J.S.; Evenson, K.M.; Day, G.W.; Halford, D.

Gain Saturation Measurements in CO2, TEA Amplifiers;
Franzen, D.L.; Jennings, D.A.
J. Appl. Phys. 43: 729-730; Feb 72.

Double Plate Calorimeter for Measuring the Reflectivity of the Plates and the Energy in a Beam of Radiation;
Rasmussen, A.L.
PATENT-3 622 245; patented 23 Nov 71.
High D* Pyroelectric Polyvinylfluoride Detectors;
Phelan, R.J., Jr.; Mahler, R.J.; Cook, A.R.

Measurement of Laser Energy of Linear Components of Polarization at 1.060 Micron;
Rasmussen, A.L.

Linear and Nonlinear Optical Properties of Trigonal Selenium;
Day, G.W.

Extension of Absolute Frequency Measurements to the cw He-Ne Laser at 88 THz (3.39 μm);
Evenson, K.M.; Day, G.W.; Wells, J.S.; Mullen, L.O.
Appl. Phys. Lett. 20: 133-134; Feb 71.

Some Optical Properties of Cesium Cupric Chloride;
Day, G.W.; Gruzensky, P.M.

Laser Power and Energy Measurements;
Jennings, D.A.; West, E.D.; Evenson, K.M.; Rasmussen, A.L.; Simmons, W.R.
NBS TN 382; Oct 69.

InSb-GaAsP Infrared to Visible Light Converter;
Phelan, Robert J., Jr.

InSb MOS Infrared Detector;
Phelan, R.J., Jr.; Dimmock, J.O.

Incoherent Source Optical Pumping of Visible and Infrared Semiconductor Lasers;
Phelan, R.J., Jr.

Laser Emission by Optical Pumping of Semiconductors;
Phelan, R.J., Jr.
CRYOELECTRONIC METROLOGY

Analysis of the Yb$_{2}$Cu$_{3}$O$_{7}$/SiTiO$_{3}$ Interface as a Function of Post-Deposition Annealing Temperature; Asher, S.E.; Nelson, A.J.; Mason, A.R.; Swartzlander, A.B.; Dhree, R.; Kasmerski, L.L.; Halbritter, J.; Harvey, T.E.; Beall, J.A.; Ono, R.H.

Correlation of Flux States Generated by Optical Switching of a Superconducting Circuit; Cunningham, C.E.; Park, G.; Cabrera, B.; Huber, M.E.
Physica B 165 & 166: 113-114; 90.

2-D Analysis of Microbolometer Arrays; Grossman, E.N.; McDonald, D.G.; Sauvageau, J.E.

CPEM Summary, Jun 11-14, 1990, Ottawa, Canada, pp 40-41; 90.

Non-dissapative Quasiparticle Tunnel Currents in Superconducting Tunnel Junctions; Hu, Q.; Mears, C.A.; Richards, P.L.; Lloyd, F.L.

Initial Characterization of Excess Low-Frequency Flux Noise in dc SQUIDs with Nb/Al-Oxide/Nb Josephson Junctions; Huber, M.E.; Cromar, M.W.
Physica B, North-Holland, ch. 165-166, 77-78; 90.

Magnetization of Anisotropic Superconducting Grains; Peterson, R.L.
J. Appl. Phys. 67: 6930-6933; 90.

A Superconducting Tunnel Junction Receiver for 345 GHz; Sutton, E.C.; Danchi, W.C.; Jaminet, P.A.; Ono, R.H.
J. Infrared Millimeter Waves 11(2): 133-150; 90.

Critical-Current Diffraction Patterns of Grain-Boundary Josephson Weak-Links; Peterson, R.L.; Ekin, J.W.

Fabrication of Ultra-Small Nb-AIO$_{x}$-Nb Josephson Tunnel Junctions; Martinis, J.M.; Ono, R.H.

Superconductivity and the Quantization of Energy; McDonald, D.G.
Science 247: 177-182; Jan 12, 90.

Fabrication and Operation of a High-Tc Composite Bolometer; Brasunas, J.C.; Moseley, S.H.; Lakew, B.; Ono, R.H.; McDonald, D.G.; Beall, J.A.; Sauvageau, J.
Appl. Phys. 66: 4551-4553; 89.

Standard Flaws for Eddy Current Probe Characterizations; Capobianco, T.E.; Ciciora, S.J.; Moulder, J.C.
Kim Model for Magnetization of Type-II Superconductors;
Chen, D.-X.; Goldfarb, R.B.
J. Appl. Phys. 66(6): 2489-2500; Sep 15, 89.

Granular-Aluminum Superconducting Detector for 6 keV X-rays and 2.2 MeV Beta Sources;
Gabutti, A.; Gray, K.E.; Wagner, R.G.; Ono, R.H.
Nuclear Instruments and Methods; 89.

Global Stability of the Chaotic State near an Interior Crisis;
Kautz, R.L.
in Structure, Coherence and Chaos in Dynamical Systems, Christiansen, P.L. and Parmentier, R.D, eds.,
(Manchester: Manchester Univ. Press) pp 207-226; 89.

Microlithography and Patterning of High-Tc Thin Films;
Ono, R.H.; Beall, J.A.

Superconducting Detector for Minimum Ionizing Particles;
Ono, R.H.; Gabutti, A.; Wagner, R.G.; Gray, K.E.; Kampwirth, R.T.
Nuclear Instruments and Methods; 89.

Airy Pattern, Weak-Link Modeling of Critical Currents in High-Tc Superconductors;
Peterson, R.L.; Ekin, J.W.
Physica C 1577: 325-333; 89.

Modeling of Critical Currents in Granular High-Tc Superconductors;
Peterson, R.L.; Ekin, J.W.
Proc., Magnetic Interactions of High Tc Superconductors 17: 190-195; 89.

Classical Phase Diffusion in Small Hysteretic Josephson Junctions;
Martinis, J.M.; Kautz, R.L.

Standards and High Speed Instrumentation;
Hamilton, C.A.; McDonald, D.G.; Sauvageau, J.E.; Whiteley, S.
Proc., IEEE Special Issue on Superconductivity, 77(8):1224-1232; Aug 89.

Magnetization of Imperfect Superconducting Grains;
Peterson, R.L.
Phys. Rev. B 40(4); Aug 1, 89.

A 10 V Josephson Voltage Standard;
Hamilton, C.A.; Lloyd, F.L.; Chieh, K.; Goeke, K.

Noise in DC SQUIDs with Nb/Al-Oxide/Nb Josephson Junctions;
Cromar, M.W.; Beall, J.A.; Go, D.; Masarie, K.A.; Ono, R.H.

MM Wave Quasioptical SIS Mixers;
Hu, Q.; Mears, C.A.; Richards, P.L.; Lloyd, F.L.

Chaos and Catastrophe near the Plasma Frequency in the RF-Biased Josephson Junction;
Kautz, R.L.; Monaco, R.
Switching Noise in YBa$_2$Cu$_3$O$_y$ Macrobridges;
Ono, R.H.; Beall, J.A.; Cromar, M.W.; Mankiewich, P.M.; Howard, R.E.; Skocpol, W.

NB Edge Junction Process for Submillimeter Wave SIS Mixers;
Danchi, W.C.; Sutton, E.C.; Jaminet, P.A.; Ono, R.H.

Superconducting Kinetic Inductance Bolometer;
Sauvageau, J.E.; McDonald, D.G.

Measurement of Integrated Tuning Elements for SIS Mixers with a Fourier Transform Spectrometer;
Hu, Q.; Mears, C.A.; Richards, P.L.; Lloyd, F.L.

Surface Analysis of Interfacial Properties for Thin Film and Bulk YBa$_2$Cu$_3$O$_y$;

Superconducting Inductance Bolometer with Potential Photonic-Counting Sensitivity: A Progress Report;
Sauvageau, J.E.; McDonald, D.G.

SIS Quasiparticle Mixers with Bow-Tie Antennas;
Xizhi, L.; Richards, P.L.; Lloyd, F.L.

Single-Target Magnetron Sputter-Deposition of High-Tc Superconducting Bi-Sr-Ca-Cu-O Thin Films;
Dhere, N.G.; Goral, J.P.; Mason, A.R.; Dhere, R.G.; Ono, R.H.

Thermally Induced Escape: The Principle of Minimum Available Noise Energy;
Kautz, R.L.

Josephson Junction Model of Critical Current in Granular Y$_1$Ba$_2$Cu$_3$O$_x$;
Peterson, R.L.; Ekin, J.W.

Josephson ac Voltmeter;
Peterson, R.L.; Oldham, N.M.

Superconducting Analog Track-and-Hold Circuit;
Go, D.; Hamilton, C.A.; Lloyd, F.L.; Dilorio, M.S.; Withers, R.S.

Accurate Experimental and Theoretical Comparisons Between SIS Mixers Showing Weak and Strong Quantum Effects;

Josephson-Voltage Array Development at the NBS in Boulder;
Hamilton, C.A.; Lloyd, F.L.; Burroughs, C.

A 100 GHz SIS Quasiparticle Mixer with 10 dB Coupled Gain;
Raisanen, A.V.; Crete, D.G.; Richards, P.L.; Lloyd, Frances L.;
Precision of Series-Array Josephson Voltage Standards;
Kautz, R.L.; Lloyd, F.L.

Activation Energy for Thermally Induced Escape from a Basin of Attraction;
Kautz, R.L.

A Josephson Array Voltage Standard at 10 Volts;
Lloyd, F.L.; Hamilton, C.A.; Beall, J.A.; Go, D.; Ono, R.H.; Harris, R.E.

Equivalent Flux Noise in a YBa$_2$Cu$_3$O$_y$ rf SQUID;
Zimmerman, J.E.; Beall, J.A.; Cromar, M.W.; Ono, R.H.

Operation of a YBa$_2$Cu$_3$O$_y$ rf-SQUID at 81 K;
Zimmerman, J.E.; Beall, J.A.; Cromar, M.W.; Ono, R.H.

Sinusoidal Response of dc SQUIDs for rf Power Measurements;
Peterson, R.L.

Global Stability of Phase Lock Near Chaotic Crisis in the rf-Biased Josephson Junction;
Kautz, R.L.

Numerical Study of Currents and Fields in a Semiconducting Optical Detector;
Peterson, R.L.

Phase Lock of a Long Josephson Junction to an External Microwave Source;
Cirillo, M.; Lloyd, F.L.
J. Appl. Phys. 61(7): 2581-2585; Apr 1, 87.

Performance of Arrays of SIS Junctions in Heterodyne Mixers;
Crete, D.G.; McGrath, W.R.; Richards, P.L.; Lloyd, F.L.

Series-Array Josephson Voltage Standards;

Current-Voltage Characteristics of Nanoampere Josephson Junctions;
Ono, R.H.; Cromar, M.W.; Kautz, R.L.; Soulen, R.J.; Colwell, J.H.; Fogle, W.E.

Novel Superconducting Thermometer for Bolometric Applications;
McDonald, D.G.

A Versatile Experimental Low Power 4 K Cryocooler;
Lambert, N.; Barbanera, S.; Zimmerman, J.E.
Cryogenics 28: 341-344; 86.

Low Noise SIS Mixer with Gain for 80-115 GHz;
Raisanen, A.V.; Crete, D.G.; Richards, P.L.; Lloyd, Frances L.;
Proc., European Space Agency, SP-260, p255; 86.
Wide-Band Low Noise mm-Wave SIS Mixers with a Single Tuning Element;
Raisanen, A.V.; Crete, D.G.; Richards, P.L.; Lloyd, Frances L.

Cryogenic Instrumentation for Biomagnetic Measurements;
Zimmerman, J.E.
Proc., 4th Intl. Conf. on Biomagnetism; 86.

Modeling a Voltage-Locked Josephson Junction Array Amplifier: Gain, Input, Impedance, and Bandwidth;
McDonald, D.G.
J. Appl. Phys. 60(9): 3247-3257; Nov 86.

Very Low Noise, Tightly Coupled, dc SQUID Amplifiers;
Muhlfelder, B.; Beall, J.A.; Cromar, M.W.; Ono, R.

High Accuracy in Physics;
McDonald, D.G.
Science, p 829; Aug 86.

Low Noise SIS Mixer with Gain for 80-115 GHz;
Lloyd, F.L.; Raisanen, A.V.; Crete, D.G.; Richards, P.L.
ESA Workshop on a Space Base Submillimeter Astronomy Mission; Jun 4-7, 1986; Segovia, Spain; European Space Agency, Paris, France; Intl. J. Infrared and mm Waves; pp 255-258; Aug 86.

Flux Limit of Cosmic-Ray Magnetic Monopole from a Multiply Discriminating Superconductive Detector;
Cromar, M.; Clark, A.F.; Fickett, F.

The NBS Josephson Array Voltage Standard;
1986 Digest, Conf. on Precision Electromagnetic Measurements, Jun 23-27, 1986; Gaithersburg, MD; pp 108-109; Jun 86.

Onset of Chaos in the rf-Biased Josephson Junction;
Kautz, R.L.; McFarlane, J.C.

A Josephson Series Array Voltage Standard at One Volt;
Hamilton, C.A.; Lloyd, F.L.; Kautz, R.L.

A Practical Josephson Voltage Standard at 1 V;
Hamilton, C.A.; Kautz, R.L.; Steiner, R.L.; Lloyd, F.L.

Broad-Band RF Match to a Millimeter-Wave SIS Quasi-Particle Mixer;
Raisanen, A.V.; McGrath, W.R.; Richards, P.L.; Lloyd, F.L.
IEEE Trans. Microwave Theory Tech. MTT-33(12): 1495-1500; Dec 85.

Amplification by a Voltage Locked Array of Josephson Junctions;
McDonald, D.G.; Frederick, N.V.

Chaos and Thermal Noise in the rf-Biased Josephson Junction;
Kautz, R.L.
Near-Zero Bias Arrays of Josephson Tunnel Junctions Providing Standard Voltages Up to 1V;
Niemeyer, J.; Hinken, J.H.; Kautz, R.L.

Design of Cryocoolers for Microwatt Superconducting Devices;
Zimmerman, J.E.
Proc., Third Cryocooler Conf. on Refrigeration for Cryogenic Sensors & Electronic Systems; Sep 17-18, 1984; Boulder, CO; NBS SP 698, pp 2-9; May 85.

Accurate Noise Measurements of Superconducting Quasiparticle Array Mixers;
McGrath, W.R.; Raisanen, A.V.; Richards, P.L.; Harris, R.L.; Lloyd, F.L.

Fabrication of a Miniaturized DCL Gate;
Ono, R.; Beall, J.; Harris, R.E.

Superconducting A/D Converter Using Latching Comparators;
Hamilton, C.A.; Lloyd, F.L.; Kautz, R.L.

Well Coupled, Low Noise, dc SQUIDs;
Muhlfelder, B.; Beall, J.A.; Cromar, M.; Ono, R.; Johnson, W.

Survey of Chaos in the rf-Biased Josephson Junction;
Kautz, R.L.; Monaco, R.
J. Appl. Phys. 57(3): 875-889; Feb 85.

High Speed Superconducting A/D Converter;
Hamilton, C.A.; Lloyd, F.L.; Kautz, R.L.

Recent Developments in Low-Power Self-Contained Cryocoolers for SQUIDs;
Zimmerman, J.E.

Amplification by the Phase-Locking Mechanism in a 4-Junction SQUID;
McDonald, D.G.
Appl. Phys. Lett. 45(11): 1243-1245; Dec 1, 84.

Microwave-Induced Constant-Voltage Steps at One Volt From a Series Array of Josephson Junctions;
Niemeyer, J.; Hinken, J.H.; Kautz, R.L.

Power Gain of a SQUID Amplifier;
McDonald, D.G.

Cryogenics;
Zimmerman, J.E.
Magnetic Quantities, Units, Materials, and Measurements;
Zimmerman, J.E.

A Cryocooler for Applications Requiring Low Magnetic and Mechanical Interference;
Zimmerman, J.E.; Daney, D.E.; Sullivan, D.B.
NASA Pub. 2287, pp 95-106; Dec 83.

An Approach to Optimization of Low-Power Stirling Cryocoolers;
Sullivan, D.B.
Proc., 2nd Biennial Conf. Refrigeration for Cryogenic Sensors; Dec 7-8, 1982; Greenbelt, MD; NASA Conf. Publ. 2287, pp 95-106; Dec 83.

Chaos in Josephson Circuits;
Kautz, R.L.

Double Transformer Coupling to a Very Low Noise SQUID;
Cromar, M.; Muhlfielder, B.

8-Bit Superconducting A/D Converter;
Hamilton, C.A.; Lloyd, F.L.

Microwave Mixing and Direct Detection Using SIS and SIS’ Quasiparticle Tunnel Junctions;
Harris, R.E.; et al.

100 GHZ Binary Counter Using SQUID Flip Flops;
Hamilton, C.A.

Operation of a Superconducting Analog-to-Digital Converter at Short Conversion Times;
Kautz, R.L.

Summary of the Proceedings of the 2nd Biennial Conf. Refrigeration for Cryogenic Sensors;
Zimmerman, J.E.
Cryogenics 23(5): 281-282; May 83.

Superconducting Current Injection Transistor;
VanZeghbroeck, B.J.

Voltage and Current Expressions for a Two-Junction Superconducting Interferometer;
Peterson, R.L.; McDonald, D.G.
J. Appl. Phys. 54(2): 992-996; Feb 83.

100 GHZ Binary Counter Based on DC SQUIDs;
Hamilton, C.A.

Electronically Adjustable Delay for Josephson Technology;
Harris, R.E.; Wolf, P.; Moore, D.F.
IEEE Electron Device Lett. EDL-3(9); Sep 82.
High-Speed, Low-Crosstalk Chip Holder for Josephson Integrated Circuits;
Hamilton, C.A.

Book review: Principles of Superconductive Devices and Circuits, by T. Van Duzer and C.W. Turner;
McDonald, D.G.; Clark, A.F.
Phys. Today, p 80; Feb 82.

Analog Measurement Applications for High Speed Josephson Switches;
Hamilton, C.A.; Lloyd, F.L.; Kautz, R.L.

A Study of Design Principles for Refrigerators for Low-Power Cryoelectronic Devices;
Zimmerman, J.E.; Sullivan, D.B.
NBS TN 1049; Jan 82.

A Josephson Voltage Standard Using a Series Array of 100 Junctions;
Kautz, R.L.; Costabile, G.

Magnetic Auditory Evoked Fields: Interhemispheric Asymmetry;
Reite, M.; Zimmerman, J.T.; Zimmerman, J.E.

Superconducting Electronics;
McDonald, D.G.

Mathematical Modelling of the Impedance of a Josephson Junction Noise Thermometer;
Peterson, R.L.
J. Appl. Phys. 52(12): 7321-7326; Dec 81.

Design Limitations for Superconducting A/D Converters;
Hamilton, C.A.; Lloyd, F.L.

Chaotic States of rf-Biased Josephson Junctions;
Kautz, R.L.

Low Noise Tunnel Junction dc SQUIDs;
Cromar, M.W.; Carelli, P.

Modelling the Impedance of a Josephson Junction Noise Thermometer;
Peterson, R.L.; Van Vechten, D.

Measurement of Thermal Properties of Cryocooler Materials;

Operation of a Practical SQUID Gradiometer in a Low-Power Stirling Cryocooler;
Sullivan, D.B.; Zimmerman, J.E.; Ives, J.T.

Refrigeration for Cryogenic Sensors and Electronic Systems;
Zimmerman, J.E.; Sullivan, D.B.; McCarthy, S.M., eds.
NBS SP 607; May 81.
The ac Josephson Effect in Hysteric Junctions: Range and Stability of Phase Lock;
Kautz, R.L.
J. Appl. Phys. 52(5): 3528-3541; May 81.

Analog Measurement Applications for High Speed Josephson Switches;
Hamilton, C.A.; Lloyd, F.L.; Kautz, R.L.

Behavior of the dc Impedance of an rf-Biased Resistive SQUID;
Van Vechten, D.; Soulen, R.J., Jr.; Peterson, R.L.

Cryogenics for SQUIDs;
Zimmerman, J.E.

Recent Progress in Cryoelectronics;

Space Applications of Superconductivity: Digital Electronics;
Harris, R.E.
Cryogenics 20: 115; 80.

Induced Electronic Currents in the Alaska Oil Pipeline Measured by Gradient Fluxgate and SQUID Magnetometers;
Campbell, W.H.; Zimmerman, J.E.

A Superconducting 6-bit Analog-to-Digital Converter with Operation to 2 x 10^9 Samples/Second;
Hamilton, C.A.; Lloyd, F.L.

Conversion Gain in mm-Wave Quasiparticle Heterodyne Mixers;
Shen, T.M.; Richards, P.L.; Harris, R.E.; Lloyd, F.L.
Space Applications of Superconductivity: Microwave and Infrared Detectors;
 Hamilton, C.A.
 Cryogenics, pp 235-243; May 80.

On a Proposed Josephson-Effect Voltage Standard at Zero Current Bias;
 Kautz, R.L.

Simple-Heating-Induced Josephson Effects in Quasiparticle-Injected Superconducting Weak Links;
 Kaplan, S.B.

Superconductor Insulator-Superconductor Quasiparticle Junctions as Microwave Photon Detectors;
 Richards, P.L.; Shen, T.M.; Harris, R.E.; Lloyd, F.L.

Space Applications of Superconductivity: Low Frequency Superconducting Sensors;
 Zimmerman, J.E.
 Cryogenics, pp 3-10; Jan 80.

Acoustic Matching of Superconducting Films to Substrates;
 Kaplan, S.B.

A Milliwatt Stirling Cryocooler for Temperatures below 4 K;
 Zimmerman, J.E.; Sullivan, D.B.
 Cryogenics 19: 170; 79.

Miniaturization of Normal-State and Superconducting Strip-Lines;
 Kautz, R.L.
 NBS JRES 84: 247; 79.

Quasiparticle Heterodyne Mixing in SIS Tunnel Junctions;
 Richards, P.L.; Shen, T.M.; Harris, R.E.; Lloyd, F.L.
 Appl. Phys. Lett. 34: 345; 79.

Superconducting Devices;
 Zimmerman, J.E.; Sullivan, D.B.
 Yearbook of Science and Technology, McGraw-Hill; 79.

Analysis of Threshold Curves for Superconducting Interferometers;
 Peterson, R.L.; Hamilton, C.A.
 J. Appl. Phys. 50(12): 8135-8142; Dec 79.

A Superconducting Sampler for Josephson Logic Circuits;
 Appl. Phys. Lett. 35: 718; Nov 79.

Multiple-Quantum Interference Superconducting Analog-to-Digital Converter;
 Harris, R.E.; Hamilton, C.A.; Lloyd, F.L.
 Appl. Phys. Lett. 35: 720; Nov 79.

Space Applications of Superconductivity;
 Sullivan, D.B.; Vorreiter, J.W.
 Cryogenics 19: 627-631; Nov 79.

Very Low-Power Stirling Cryocoolers Using Plastic and Composite Materials;
 Sullivan, D.B.; Zimmerman, J.E.
 Intl. J. Refrig. 2: 211-213; Nov 79.
Differential Capacitance Sensor as Position Detectors for Magnetic Suspension Densimeter;
Frederick, N.V.
Rev. Sci. Instrum. 50(9): 1154; Sep 79.

Analog to Digital Conversion with a SQUID: Conditions for a Countable Pulse Train;
Peterson, R.L.
J. Appl. Phys. 50: 4231; Jun 79.

Cryogenic Refrigeration System;
Zimmerman, J.E.
PATENT 4 143 520; patented 13 Mar 79.

Quasiparticle Heterodyne Mixing in SIS Tunnel Junctions;
Harris, R.E.; Lloyd, F.L.; Richards, P.L.; Shen, T.M.

Sampling Circuit and Method Therefor;
Hamilton, C.A.
PAT-APPL-6-020 359; Filed 14 Mar 79.

Attenuation in Superconducting Striplines;
Kautz, R.L.

High-Speed Superconducting Electronics;
Hamilton, C.A.; Harris, R.E.; Sullivan, D.B.
GOMAC Digest, Vol. 7; 78.

Human Magnetic Auditory Evoked Responses;
Reite, M.; Edrich, J.; Zimmerman, J.T.; Zimmerman, J.E.

Magnetic Phenomena of the Central Nervous System;
Reite, M.; Zimmerman, J.

Multiple Magnetic Flux Entry into SQUIDS: A General Way of Examining the Cos(\phi) Conductance;
Peterson, R.L.; Gayley, R.I.

Automatic 300-4 K Temperature Cycling Apparatus;
Hamilton, C.A.

The Role of Superconductivity in the Space Program: An Assessment of Present Capabilities and Future Potential;
Sullivan, D.B.
NBSIR 78-885; May 78.

Applications of Closed-Cycle Cryocoolers to Small Superconducting Devices;
Zimmerman, J.E.; Flynn, T.M.
Proc., Conf. held by the Office of Naval Research and the National Bureau of Standards, Oct 3-4, 1977; Boulder, CO; NBS SP 508; Apr 78.

RF Instrumentation Based on Superconducting Quantum Interference;
Sullivan, D.B.; Adair, R.T.; Frederick, N.V.
Photolithographic Fabrication of Lead Alloy Josephson Junctions;
Havemann, R.H.; Hamilton, C.A.; Harris, Richard E.;
J. Vac. Sci. Technol. 15: 392-395; Mar/Apr 78.

PicoSecond Pulses on Superconducting Striplines;
Kautz, R.L.

Possible Cryocoolers for SQUID Magnetometers;
Zimmerman, J.E.; Radebaugh, R.; Siegwarth, J.D.

Results, Potentials and Limitations of Josephson Mixer- Receivers at Millimeter and Long Submillimeter Wavelengths;
Edrich, J.; Sullivan, D.B.; McDonald, D.G.
IEEE Trans. Microwave Theory Tech. MTT-25: 476; 77.

RF Power Measurements Using Quantum Interference in Superconductors;
Sullivan, D.B.; Frederick, N.V.; Adair, R.T.

Superconducting Devices for Metrology and Standards;
Kamper, R.A.
Chap. 5 in Superconductor Applications: Squids and Machines (New York: Plenum Press), pp 189-247; 77.

Design of a Josephson-Junction PicoSecond Pulser;
McDonald, D.G.; Peterson, R.L.; Bender, B.K.
J. Appl. Phys. 48: 5366-5369; Dec 77.

Numerical Evaluation of the Response of a Josephson Tunnel Junction in an Arbitrary Circuit;
Harris, R.E.
J. Appl. Phys. 48: 5188-5190; Dec 77.

PicoSecond Pulse Generator Utilizing a Josephson Junction;
McDonald, D.G.; Peterson, R.L.
PAT-APPL-862 311; Filed 20 Dec 77.

A Sampling Circuit and Method Therefor;
Hamilton, C.A.
PAT-APPL-853 354; Filed 21 Nov 77.

High-Frequency Limitations of the Double-Junction SQUID Amplifier;
Zimmerman, J.E.; Sullivan, D.B.
Appl. Phys. Lett. 31: 360-362; Sep 77.

RF Attenuation Measurement System Using a SQUID;
Adair, R.T.; Frederick, N.V.; Sullivan, D.B.
NBSIR 77-863; Sep 77.

A Low-Noise Josephson Mixer for the 1 mm Wavelength Range;
Edrich, J.; Sullivan, D.B.; McDonald, D.G.

SQUID Instruments and Shielding for Low-Level Magnetic Measurements;
Zimmerman, J.E.
J. Appl. Phys. 48: 702-710; Feb 77.
Advances in the Use of SQUIDS for RF Attenuation Measurement;
Frederick, N.V.; Sullivan, D.B.; Adair, R.T.

Analog Computer Studies of Frequency Multiplication and Mixing with the Josephson Junction;
Risley, A.S.; Johnson, E.G., Jr.; Hamilton, C.A.

Can Superconductivity Contribute to the Determination of the Absolute Ampere?
Sullivan, D.B.; Frederick, N.V.

Picosecond Pulses from Josephson Junctions: Phenomenological and Microscopic Analyses;
Peterson, R.L.; McDonald, D.G.

Refrigeration for Small Superconducting Devices;
Zimmerman, J.E.; Radebaugh, R.; Siegwarth, J.D.
DKV Annual Meeting and Joint Meeting with the International Institute of Refrigeration; Oct 13, 1976; Munich, Germany; Rpt. No. CONF-7610104-1; 76.

The Human Magnetoencephalogram: Some EEG and Related Correlations;
Reite, M.; Zimmerman, J.E.; Edrich, J.; Zimmerman, J.T.

Strong-Coupling Correction to the Jump in the Quasiparticle Current of a Superconducting Tunnel Junction;
Harris, R.E.; Dynes, R.C.; Ginsberg, D.M.

Strong-Coupling Correction to the Low-Frequency Electrical Conductivity of Superconductors and Josephson Junctions;
Harris, R.E.; Ginsberg, D.M.; Dynes, R.C.

Intrinsic Response Time of a Josephson Tunnel Junction;
Harris, R.E.

RF Applications of the Josephson Effect;
Kamper, R.A.
Microwave J. 19: 39-41; Apr 76.

Modeling Josephson Junctions;
McDonald, D.G.; Johnson, E.G.; Harris, R.E.

Accurate Rotational Constants, Frequencies, and Wavelengths from 12C16O$_2$ Lasers Stabilized by Saturated Absorption;
Petersen, F.R.; McDonald, D.G.; Cupp, J.D.; Danielson, B.L.

Josephson Weak-Link Devices;
Silver, A.H.; Zimmerman, J.E.

Tests of Cryogenic SQUID for Geomagnetic Field Measurements;
Zimmerman, J.E.; Campbell, W.H.
Geophysics 40: 269; 75.
Cryogenic Direct Current Comparators and their Applications;
Dziuba, R.F.; Sullivan, D.B.

Phase Slip, Dissipation, Bernoulli Effect, Parametric Capacitance, and Other Curious Features of the Josephson Effect;
Zimmerman, J.E.

Review of Superconducting Electronics;
Kamper, R.A.

Magnetic Properties of Internally Oxidized Copper;
Fickett, F.R.; Sullivan, D.B.

Review of Electromagnetic Measurements Using the Josephson Effect;
Kamper, R.A.

RF Attenuation Measurements Using Quantum Interference in Superconductors;
Adair, R.T.; Hoer, C.A.; Kamper, R.A.; Simmonds, M.B.

The Relationship of Josephson Junctions to a Unified Standard of Length and Time;
McDonald, D.G.; Risley, A.S.; Cupp, J.D.

A Low-Temperature Direct-Current Comparator Bridge;
Sullivan, D.B.; Dziuba, R.F.

RF Attenuation Measurements Using Quantum Interference in Superconductors;
Adair, R.T.; Simmonds, M.B.; Kamper, R.A.; Hoer, C.A.

Advances in the Measurement of rf Power and Attenuation Using SQUIDS;
Kamper, R.A.; Simmonds, M.B.; Adair, R.T.; Hoer, C.A.
NBS TN 661; Sep 74.

Josephson Junctions as Radiation Detectors from Millihertz to Terahertz;
McDonald, D.G.

An Application of Superconducting Quantum Interference Magnetometers to Geophysical Prospecting;
Frederick, N.V.; Stanley, W.D.; Zimmerman, J.E.; Dinger, R.J.

Magnetic Studies of Oxidized Impurities in Pure Copper Using a SQUID System;
Fickett, F.R.; Sullivan, D.B.

Josephson Junctions at 45 Times the Energy-Gap Frequency;
McDonald, D.G.; Petersen, F.R.; Cupp, J.D.; Danielson, B.L.;
Johnson, E.G., Jr.
Appl. Phys. Lett. 24: 335-337; Apr 74.
Low Temperature Direct Current Comparators;
Sullivan, D.B.; Dziuba, R.F.

Superconducting Devices and Materials;
Olien, N.A.; Goree, W.S.; Kamper, R.A.; Nisenoff, M.; Wolf, S.A.
Quarterly Literature Survey, No. 74-1, NBS Cryogenic Data Center, Boulder, CO; Jan-Mar 74.

Field-Usable Sharpless Wafers for Josephson Effect Devices at Millimeter Waves;
Edrich, J.; Cupp, J.D.; McDonald, D.G.
Revue de Physique Appliquee 9: 195-197; Jan 74.

Spectral Analysis of a Phase Locked Laser at 891 GHz: An Application of Josephson Junctions in the Far Infrared;
Wells, J.S.; McDonald, D.G.; Risley, A.S.; Jarvis, S.; Cupp, J.D.
Revue de Physique Appliquee (Supplement to J. de Physique), France, 9: 285-292; Jan 74.

Measurement of rf Power and Attenuation Using Superconducting Quantum Interference Devices;
Kamper, R.A.; Simmonds, M.B.; Hoer, C.A.; Adair, R.T.
NBS TN 643; Aug 73.

Rotational Constants for $^{12}\text{C}^{16}\text{O}_2$ From Beats Between Lamb-Dip-Stabilized Lasers;
Petersen, F.R.; McDonald, D.G.; Cupp, J.D.; Danielson, B.L.

Analog-Computer Studies of Mixing and Parametric Effects in Josephson Junctions;
Hamilton, C.A.
J. Appl. Phys. 44: 2371-2377; May 73.

Flexible Laminates for Thermally Grounded Terminal Strips and Shielded Electrical Leads at Low Temperatures;
Radebaugh, R.; Frederick, N.V.; Siegwarth, J.D.
Cryogenics 13: 41-43; Jan 73.

Precise Electrical Measurements at Low Temperature;
Sullivan, D.B.
Proc., Applied Superconductivity Conf.; May 1-3, 1972; Annapolis, MD; pp 631-639; 72.

Quantum Mechanical Measurement of rf Attenuation;
Kamper, R.A.; Simmonds, M.B.; Adair, R.T.; Hoer, C.A.
Proc., Applied Superconductivity Conf.; May 1-3, 1972; Annapolis, MD; pp 696-700; 72.
Computation of Spectral Data for a Josephson Junction Circuit;
Johnson, E.G., Jr.; McDonald, D.G.
NBS TN 627; Nov 72.

Developments in Cryoelectronics;
Kamper, R.A.; Sullivan, D.B.
NBS TN 630; Nov 72.

Superconducting Quantum Interference Devices: An Operational Guide for rf-Biased Systems;
Sullivan, D.B.
NBS TN 629; Nov 72.

Analog Computer Studies of Subharmonic Steps in Superconducting Weak Links;
Hamilton, C.A.; Johnson, E.G., Jr.

Broadband Superconducting Quantum Magnetometer;
Kamper, R.A.; Simmonds, M.B.

Four-Hundredth-Order Harmonic Mixing of Microwave and Infrared Laser Radiation Using a Josephson Junction and a Maser;
McDonald, D.G.; Risley, A.S.; Cupp, J.D.; Evenson, K.M.; Ashley, J.R.

Low Temperature Voltage Divider and Null Detector;
Sullivan, D.B.

Superconducting Devices and Materials;
Goree, W.S.; Kamper, R.A.; Olien, N.A.
Quarterly Literature Survey, NBS Cryogenic Data Center; Boulder, CO; 4 issues; Mar 72.

Josephson Effect Devices and Low-Frequency Field Sensing;
Zimmerman, J.E.
Cryogenics 12: 19-31; Feb 72.

A Mechanical Superconducting Switch for Low Temperature Instrumentation;
Siegwarth, J.D.; Sullivan, D.B.

Survey of Noise Thermometry;
Kamper, R.A.

Mechanical Analogs of Time Dependent Josephson Phenomena;
Sullivan, D.B.; Zimmerman, J.E.
Amer. J. Phys. 39: 1504-1517; Dec 71.

Sensitivity Enhancement of Superconducting Quantum Interference Devices through the Use of Fractional-Turn Loops;
Zimmerman, J.E.
Observation of Noise Temperature in the Millikelvin Range;
Kamper, R.A.; Siegwarth, J.D.; Radebaugh, R.; Zimmerman, J.E.
Proc., IEEE 59: 1368-1369; Sep 71.

Miniature Ultrasensitive Superconducting Magnetic Gradiometer and Its Use in Cardiography and Other Applications;
Zimmerman, J.E.; Frederick, N.V.

Resistance of a Silicon Bronze at Low Temperatures;
Sullivan, D.B.

Harmonic Mixing of Microwave and Far-Infrared Laser Radiation Using a Josephson Junction;
McDonald, D.G.; Risley, A.S.; Cupp, J.D.; Evenson, K.M.

High-Frequency Limit of the Josephson Effect;
McDonald, D.G.; Evenson, K.M.; Wells, J.S.; Cupp, J.D.

Noise Thermometry with the Josephson Effect;
Kamper, R.A.; Zimmerman, J.E.

Recent Developments in Superconducting Devices;
Zimmerman, J.E.

Cryoelectronics;
Kamper, R.A.

Generation of Harmonics and Subharmonics of the Josephson Oscillation;
Sullivan, D.B.; Peterson, R.L.; Kose, V.E.; Zimmerman, J.E.
J. Appl. Phys. 41: 4865-4873; Nov 70.

Magnetocardiograms Taken inside a Shielded Room With a Superconducting Point-Contact Magnetometer;
Cohen, D.; Edelsack, E.A.; Zimmerman, J.E.
Appl. Phys. Lett. 16: 278-280; Apr 70.

Some Applications of the Josephson Effect;
Kamper, R.A.; Mullen, L.O.; Sullivan, D.B.
NASA-CR-1565; NBS TN 381; Mar 70.

Influence of External Noise on Microwave-Induced Josephson Steps;
Kose, V.E.; Sullivan, D.B.

The Josephson Effect;
Kamper, R.A.

Harmonic Generation and Submillimeter Wave Mixing With the Josephson Effect;
McDonald, D.G.; Kose, V.E.; Evenson, K.M.; Wells, J.S.; Cupp, J.D.

Fabrication of Tunnel Junctions on Niobium Films;
Mullen, L.O.; Sullivan, D.B.
J. Appl. Phys. 40: 2115-2117; Apr 69.
Cryoelectronics;
Kamper, R.A.
Cryogenics, 9: 20-25; Feb 69.

Contribution of Thermal Noise to the Line-Width of Josephson Radiation from Superconducting Point Contacts;
Silver, A.H.; Zimmerman, J.E.; Kamper, R.A.

Millidegree Noise Thermometry;
Kamper, R.A.
Proc., Symp. Physics of Superconducting Devices (ONR report); Charlottesville, VA; Apr 67.
SUPERCONDUCTOR AND MAGNETIC MEASUREMENT

Relationship of Coil Construction to Eddy Current Probe Sensitivity for Single-Coil Ferrite Core Probes;
Capobianco, T.E.; Splett, J.; Iyer, H.

AC Loss Measurements of Two Multifilamentary NbTi Composite Strands;
Collings, E.W.; Marken, K.R., Jr.; Sumption, M.D.; Goldfarb, R.B.; Loughran, R.J.

Ohmic Contacts to High-Tc Superconductors;
Ekin, J.W.

Fickett, F.R.; Capobianco, T.E.

Anomalous Magneto resistance in Al/Al-Alloy Composite Conductors;
Fickett, F.R.; Thompson, C.A.

Magnetic Susceptibility of Inconels 718, 625, and 600 at Cryogenic Temperatures;
Goldberg, I.B.; Mitchell, M.R.; Murphy, A.R.; Goldfarb, R.B.; Loughran, R.J.

Fundamental and Harmonic Susceptibilities of YBa$_2$Cu$_3$O$_{7+}$;
Goldfarb, R.B.; Ishida, T.

Magnetic Characteristics and Measurements of Filamentary Nb-Ti Wire for the Superconducting Super Collider;
Goldfarb, R.B.; Spomer, R.L.

Development of Standards for Superconductors;
Goodrich, L.F.; Goldfarb, R.B.; Bray, S.L.

Break Junction Tunneling Spectroscopy of Single-Crystal Bismuth-Based High-Temperature Superconductors;
Moreland, J.; Chiang, C.K.; Swartzendruber, L.J.

Possible Proximity Matrix Route to High Current Conductors;
Moreland, J.; Li, Y.; Ekin, J.W.; Goodrich, L.F.

Origin of Grain Boundary Weak Links in BaPb$_x$Bi$_2$O$_y$ Superconductors;
Takagi, T.; Chiang, Y.-M.; Roshko, A.

Magneto resistance of Multifilament Al/Al-Alloy Conductors;
Thompson, C.A.; Fickett, F.R.
Transport Critical Current of Aligned Sintered $\text{Y}_2\text{Ba}_2\text{Cu}_3\text{O}_{7-\delta}$ and Evidence for a Nonweak-Linked Component of Intergranular Current Conduction;
Ekin, J.W.; Hart, H.R., Jr.; Gaddipati, A.R.
J. Appl. Phys. 68(5): 2285-2295; Sep 1, 90.

High-Tc Superconductors and the Critical-Current Measurement;
Goodrich, L.F.; Bray, S.L.
Cryogenics 30: 667-677; Aug 90.

High-Resolution, Tunneling-Stabilized Magnetic Imaging and Recording;
Moreland, J.; Rice, P.

Current Supply for High-Tc Superconductor Testing;
Bray, S.L.; Goodrich, L.F.;

VAMAS Interlaboratory Comparisons of Critical Current vs. Strain in Nb_3Sn Superconductors;
Ekin, J.W.;
Proc., 6th Japan-U.S. Workshop on High Field Superconductors, pp 94-98; 89.

Transverse Stress Effect on the Critical Current of Internal Tin and Bronze Process Nb_3Sn Superconductors;
Ekin, J.W.; Bray, S.L.; Danielson, P.; Smathers, D.; Sabatini, R.L.; Suenaga, M.
Proc., 6th Japan-U.S. Workshop on High Field Superconductors, pp 50-52; 89.

Dependence of the Critical Current on Angle between Magnetic Field and Current in Y-
Ekin, J.W.; Larson, T.M.
Proc., 6th Japan-U.S. Workshop on High Field Superconductors, pp 61-63; 89.

Double-Step Behavior of Critical Current vs. Magnetic Field in Y-
Physica C 160: 489-496; 89.

Critical Currents of High-Tc Superconductors: Pinning, Weak Links, Conduction Anisotropy, and Contact Resistivities;
Ekin, J.W.; Peterson, R.L.; Bray, S.L.

Eddy Current Probe Characterization Using an Impedance Plane Display Instrument;
Capobianco, T.E.

Bi-, and TI-Based High-Tc Superconductors;
Ekin, J.W.; Larson, T.M.
Proc., 6th Japan-U.S. Workshop on High Field Superconductors, pp 61-63; 89.

Integrity Tests for High-Tc and Conventional Critical-Current Measurements Systems;
Goodrich, L.F.; Bray, S.L.

Proposed Study on the Effect of Sample Binding Techniques on the Measured Critical Current of Nb_3Sn Superconductors;
Goodrich, L.F.; Bray, S.L.
Proc., 6th Japan-US Workshop on High-Field Superconductors; 89.

Thermal Contraction of Fiberglass-Epoxy Sample Holders Used for Nb_3Sn Critical-Current Measurements;
Goodrich, L.F.; Bray, S.L.; Stauffer, T.C.;
Thermal Contraction of Fiberglass-Epoxy Sample Mandrels and its Effect on Critical-Current Measurements;
Goodrich, L.F.; Bray, S.L.; Stauffer, T.C.
Proc., 6th Japan-U.S. Workshop on High Field Superconductors, pp 91-93; 89.

S-N-S Behavior of Grain Boundaries in Polycrystalline La1.8Sr0.15CuO4+;
Roshko, A.; Moodera, J.S.; Chiang, Y.H.

Electromechanical Properties of Superconductors for High-Energy Physics Applications;
Ekin, J.W.; Goodrich, L.F.; Bray, S.L.; Bergren, N.F.; Goldfarb, R.B.
NISTIR 89-3912, 154 p; Nov 9, 89.

Break Junction Measurement of the Tunneling Gap of a Thallium-Based High-Temperature Superconductor Crystal;
Moreland, J.; Ginley, D.S.; Venturini, E.L.; Morosin, B.

Offset Criterion for Determining Superconductor Critical Current;
Ekin, J.W.

Critical-Current Measurements of Nb3Sn Superconductors: NBS Contribution to the VAMAS Round Robin;
Goodrich, L.F.; Bray, S.L.
Cryogenics 29: 699-709; Jul 89.

Evidence for the Superconducting Proximity Effect in Junctions between the Surfaces of YBa2Cu3Ox Thin Films;
Moreland, J.; Ono, R.H.; Beall, J.A.; Madden, M.; Nelson, A.J.
Appl. Phys. Lett. 54(15): 1477-1479; Apr 10, 89.

Flux Creep and Activation Energies at the Grain Boundaries of Y-Ba-Cu-O Superconductors;
Nikolo, M.; Goldfarb, R.B.

Current Capacity Degradation in Superconducting Cable Strands;
Goodrich, L.F.; Bray, S.L.

Magnetic Evaluation of Cu-Mn Material for Fine-Filament Nb-Ti Superconductors;
Goldfarb, R.B.; Ried, D.L.; Kreilick, T.S.; Gregory, E.

Nb3Sn Critical Current Measurements on Tubular Fiberglass-Epoxy Mandrels;
Goodrich, L.F.; Bray, S.L.; Stauffer, T.C.

Ag Screen Contacts to Sintered YBa2Cu3Ox Powder for Rapid Superconductor Characterization;
Moreland, J.; Goodrich, L.F.

Resistance Measurements of High Tc Superconductors Using a Novel Bathysphere Cryostat;
Moreland, J.; Li, Y.; Folsom, R.M.; Capobianco, T.E.

VAMAS Intercomparison of Critical Current Measurement in Nb3Sn Wires;

Battery-Powered Current Supply for Superconductor Measurements;
Bray, S.L.; Goodrich, L.F.; Dube, W.P.
Effect of Room Temperature Stress on the Critical Current of NbTi;
Bray, S.L.; Ekin, J.W.

Characterization of Eddy Current Probes: Results of an Interlaboratory Intercomparison;
Capobianco, T.E.; Dulcie, L.L.

Coil Parameter Influence on Eddy Current Probe Sensitivity;
Capobianco, T.E.; Vecchia, D.P.

Transverse Stress Effect on Multifilamentary Nb$_3$Sn Superconductor;
Ekin, J.W.

Effect of Oxygen Annealing on Low-Resistivity Contacts for High-Tc Superconductors;
Ekin, J.W.; Panson, A.J.; Blankenship, B.A.

Current Ripple Effect on Superconductive dc Critical Current Measurements;
Goodrich, L.F.; Bray, S.L.; Clark, A.F.

Current-Ripple Effect on Superconductive dc Critical Current Measurements;
Goodrich, L.F.; Bray, S.L.
Cryogenics 28: 737-743; 88.

Oxygen Isotope Effect in the Superconducting Bi-Sr-Ca-O System;
Mascarenhas, A.J.; Pankove, J.I.; Ciszek, T.; Deb, S.K.; Goldfarb, R.; Li, Y.

High Temperature Semiconductors - Materials & Mechanisms of Superconductivity;
Moreland, J.; Clark, A.F.; Damento, M.A.; Gschneider, K.A.

Recent Tunneling Measurements of 90 K Superconductors at NBS;
Moreland, J.; Beall, J.A.; Ono, R.H.; Clark, A.F.

Single Crystal HoBa$_2$Cu$_3$O, Break Junctions;
Moreland, J.; Clark, A.F.; Damento, M.A.; Gschneider, K.A.
pp 1383-1384; 88.

Anomalous Behavior of Tunneling Contacts in Superconducting Perovskite Structures;
Moreland, J.; Goodrich, L.F.; Ekin, J.W.; Capobianco, T.E.; Clark, A.F.

Cryogenic Bathysphere for Rapid-Variable-Temperature Characterization of High-T$_c$ Superconductors;
Moreland, J.; Li, Y.K.; Folsom, R.; Capobianco, T.E.

18th International Conference on Low Temperature Physics (LT-18);
Moreland, J.; Hirabayashi, H.
Cryogenics 28: 543-544; Aug 88.
High Tc Superconductor/Noble-Metal Contacts with Surface Resistivities in the 10^{-10} Ω cm² Range;
Ekin, J.W.; Larson, T.; Bergren, N.; Nelson, A.J.; Swartzlander, A.B.; Kazmerski, L.L.; Panson, A.; Blankenship, B.

Break Junctions I;
Moreland, J.; Goodrich, L.F.; Ekin, J.W.; Capobianco, T.E.; Clark, A.F.
NBSIR 88-3090; May 88.

Transverse Magneto resistance of Oxygen-Free Copper;
Fickett, F.R.

Development of Standards for Superconductors, Interim Report, Jan 1986-Dec 1987;
Goodrich, L.F.
NBSIR 88-3088, 88 p; Feb 88.

Magnetic Susceptibility of Sintered and Powdered Y-Ba-Cu-O;
Chen, D.-X.; Goldfarb, R.B.; Nogues, J.; Rao, K.V.

Method for Making Low Resistivity Contact to High-Tc Ceramic Superconductors at Ambient Temperatures;
Ekin, J.W.; Panson, A.J.; Blankenship, B.

Field Mapping and Performance Characterization of Commercial Eddy Current Probes;
Capobianco, T.E.

Pickup Coil Spacing Effects on Eddy Current Reflection Probe Sensitivity;
Capobianco, T.E.; Yu, K.

Transport Critical-Current Characteristics of Y$_1$Ba$_2$Cu$_3$O$_y$;
Ekin, J.W.; Panson, A.J.; Braginski, A.I.; Janocko, M.A.; Hong, M.; Kwo, J.; Liou, S.H.; Capone, D.W., II;
Flandermeyer, B.; Clark, A.F.

Transport Critical Currents in Bulk Sintered Y$_1$Ba$_2$Cu$_3$O$_y$ and Possibilities for its Enhancement;
Ekin, J.W.

AC Susceptibility Measurements Near the Critical Temperature of a Y-Ba-Cu-O Superconductor;
Goldfarb, R.B.; Clark, A.F.

Electron Tunneling Measurements in LaSrCuO and YBaCuO;
Moreland, J.; Ekin, J.W.; Goodrich, L.F.; Capobianco, T.E.; Clark, A.F.

Effect of Transverse Compressive Stress on the Critical Current and Upper Critical Field of Nb$_3$Sn;
Ekin, J.W.

Evidence for Weak Link Anisotropy Limitations on the Transport Critical Current in Bulk Polycrystalline Y$_1$Ba$_2$Cu$_3$O$_y$;
Ekin, J.W.; Capone, D.W., II; Flandermeyer, B.; deLima, O.F.; Braginski, A.I.; Panson, A.J.; Janocko, M.A.; Hong, M.; Kwo, J.; Liou, S.H.
Superconductivity: Challenge for the Future;
Kamper, R.A.; Clark, A.F.

Effect of Irregularity in Filament Cross-sectional Area (Sausaging) on Electric-Field vs. Current Characteristics of NbTi Superconductors;
Ekin, J.W.
Cryogenics, 27: 603-607; Nov 87.

New Standard Text Method for Eddy Current Probes;
Dulcie, L.L.; Capobianco, T.E.

Conductors for Advanced Energy Systems;
Fickett, F.R.; Capobianco, T.E.
INCRRA Annual Report #321B, i-46; Oct 87.

Evidence for Two Superconducting Components in Oxygen-Annealed Single Phase Y-Ba-Cu-O;
Goldfarb, R.B.; Clark, A.F.; Panson, A.J.; Braginski, A.I.
Cryogenics 27: 475-480; Sep 87.

Josephson Effect above 77 K in a YBaCuO Break Junction;
Moreland, J.; Goodrich, L.F.; Ekin, J.W.; Capobianco, T.E.; Clark, A.F.

A Review of Eddy Current Research at the National Bureau of Standards in Boulder, Colorado;
Capobianco, T.E.
Proc., DOD Conf. on NDE, pp 164-173; Aug 87.

Electron Tunneling Measurements of High Tc Compounds Using Break Junctions;
Moreland, J.; Goodrich, L.F.; Ekin, J.W.; Capobianco, T.E.; Clark, A.F.

Break Junction Tunneling Measurements of the High Tc Superconductor Y$_1$Ba$_2$Cu$_3$O$_y$Δ;
Moreland, J.; Ekin, J.W.; Goodrich, L.F.; Capobianco, T.E.; Clark, A.F.; Kwo, J.; Hong, M.

Tunneling Spectroscopy of a La-Sr-Cu-O Break Junction: Evidence for Strong-Coupling Superconductivity;
Moreland, J.; Clark, A.F.; Goodrich, L.F.; Ku, H.C.; Shelton, R.N.

Electron Tunneling Measurement of the Energy Gap in a La-Sr-Cu-O Superconductor;
Moreland, J.; Clark, A.F.; Ku, H.C.; Shelton, R.N.
Cryogenics, 27: 227-228; May 87.

Method for Measuring Complex Permeability at Radio Frequencies;
Goldfarb, R.B.; Bussey, H.E.

Development of Standards for Superconductors, Interim Report, Jan-Dec 1985;
Goodrich, L.F.; Bray, S.L.; Pittman, E.S.; Clark, A.F.; Dube, W.P.
NBSIR 87-3066; Apr 87.

Relationships between Critical Current and Stress in NbTi;
Ekin, J.W.
Studies of NbTi Strands Extracted from Coreless Rutherford Cables;
Goodrich, L.F.; Pittman, E.S.; Ekin, J.W.

A Proposed Military Standard for Commercial Eddy Current Probes Based on Performance Characterization;
Capobianco, T.E.; Fickett, F.R.

Mapping Eddy Current Probe Fields;
Capobianco, T.E.; Fickett, F.R.; Moulder, J.C.

Flaw Detection with a Magnetic Field Gradiometer;
Capobianco, T.E.; Moulder, J.; Fickett, F.R.
Proc., NTIAC 15th Symp. on Nondestructive Evaluation; Apr 22-22, 1985; San Antonio, TX; 15-20; 86.

Losses in a Nb-Ti Superconductor as Functions of AC Field Amplitude and DC Transport Current;
Dragomirecky, M.; Minervini, J.V.; Goldfarb, R.B.; Clark, A.F.

Relationships Between Mechanical and Magnetolectric Properties of Oxygen-free Copper at 4K;
Fickett, F.R.; Capobianco, T.E.

AC Losses in Nb-Ti Measured by Magnetization and Complex Susceptibility;
Goldfarb, R.B.; Clark, A.F.
Advances in Cryogenic Engineering - Materials, Vol. 32,

Ferromagnetic Resonance at 9.55 and 23.9 GHz in the Weak Ferromagnet Ni$_3$Al;
Goldfarb, R.B.; Heinrich, B.; Cochran, J.F.; Myrtle, K.; Lonzarich, G.
J. Magnetism and Magnetic Materials 54-57: 1011-1012; 86.

New Magnetic Phase Diagram of the Amorphous Pd-Fe-Si Ferroglass Alloy System;
Goldfarb, R.B.; Rao, K.V.; Chen, H.S.
J. Magnetism and Magnetic Materials 54-57: 111-112; 86.

The Effect of Aspect Ratio on Critical Current in Multifilamentary Superconductors;
Goodrich, L.F.; Dube, W.P.; Pittman, E.S.

Electron Tunneling into Superconducting Filaments: Depth Profiling the Energy Gap of NbTi Filaments in High-Field Magnet Wires;
Moreland, John; Ekin, J.W.; Goodrich, L.F.

Electro-mechanical Properties of Superconductors for High Energy Physics Applications;
Ekin, J.W.; Goodrich, L.F.; Moreland, J.; Pittman, E.S.; Clark, A.F.
NBSIR 86-3061; Dec 86.

Squeezable Junctions for Electron Tunneling and Surface Electric Field Experiments;
Moreland, J.
The Physics Teacher, pp 405-411; Oct 86.

Hysteresis Losses in Fine-Filament Internal-Tin Superconductors;
Goldfarb, R.B.; Ekin, J.W.
Cryogenics 26: 478-481; Aug/Sep 86.
Internal Fields in Magnetic Materials and Superconductors;
Goldfarb, R.B.
Cryogenics 26: 621-622; Aug/Sep 86.

Quench Circuit for Electronic Instruments Used with Superconducting Magnets;
Benson, R.; Goldfarb, R.B.; Pittman, E.
Cryogenics 26: 482-483; Aug/Sep 86.

Electromechanical Properties of Superconductors for DoE Fusion Applications;
Ekin, J.W.; Moreland, John; Baruch, J.C.
NBSIR 86-3044, 106 p; Jun 86.

Flux Limit of Cosmic-Ray Magnetic Monopole from a Multiply Discriminating Superconductive Detector;
Cromar, M.; Clark, A.F.; Fickett, F.R.

Transient Losses in Superconductors;
Goldfarb, R.B.
NBSIR 86-3053, 57 p; Jun 86.

Cryogenic Operation of Piezoelectric Bending Elements;
Duffield, C.; Moreland, John; Fickett, F.R.

A Quench Detector Design for Superconductor Testing;
Dube, W.P.; Goodrich, L.F.

Onset of Chaos in the rf-Biased Josephson Junction;
Kautz, R.L.; MacFarlane, J.C.

Research on Practical Superconductors at NBS;
Fickett, F.R.

Differences Between Spin Glasses and Ferroglasses: Pd-Fe-Si;
Goldfarb, R.B.; Rao, K.V.; Chen, H.S.
Solid State Commun. 54(9): 799-801; 85.

High-Field Flux Pinning and the Strain Scaling Law;
Ekin, J.W.

Electron Tunneling Experiments Using Nb-Sn Break Junctions;
Moreland, J.; Ekin, J.W.

Chaos and Thermal Noise in the rf-Biased Josephson Junction;
Kautz, R.L.

Investigation of a Practical Superconductor with a Copper Matrix;
Fickett, F.R.
Magnetic Field Mapping with a SQUID Device;
Fickett, F.R.; Capobianco, T.

Precision Measurement of Eddy Current Coil Parameters;
Capobianco, T.; Fickett, F.R.

Electron Tunneling Experiments Using Nb-Sn Break Junctions;
Moreland, J.; Ekin, J.W.

Electron Tunneling Experiments into Superconducting Filaments Using Mechanically Adjustable Barriers;
Moreland, J.; Ekin, J.W.

Hysteretic Losses in NbTi Superconductors;
Goldfarb, R.; Clark, A.F.

Tenth International Cryogenic Engineering Conference - A Report;
Clark, A.F.; Heinz, W.; Rizzoto, C.; Fast, R.W.; Klipping, G.

Standards for Measurement of the Critical Fields of Superconductors;
Fickett, F.R.
NBS JRES 90(2): 95-113; Mar-Apr 85.

Effect of Uniaxial Strain on the Critical Current and Critical Field of Chevrel Phase PbMo$_3$S$_8$ Superconductors;
Ekin, J.W.

Further Investigations of the Solid-Liquid Reaction & High-Field Critical Current Density in Liquid-Infiltrated Nb-Sn Conductors;
Hong, M.; Maher, D.M.; Ellington, M.B.; Hellman, F.; Geballe, T.H.;
Ekin, J.W.; Holthuis, J.T.

Magnetic Hysteresis and Complex Susceptibility as Measures of AC Losses in a Multifilamentary NbTi Superconductor;
Goldfarb, R.; Clark, A.F.

The NBS Magnetic Monopole Detector;
Cromar, M.; Fickett, F.R.; Clark, A.F.

Units for Magnetic Properties;
Goldfarb, R.; Fickett, F.R.
NBS SP 696, 1 p; Mar 85.

Editorial;
Clark, A.F.; Heinz, W.; Nagano, H.; Gardner, J.B.
Cryogenics 25: 59; Feb 85.
Development of Standards for Superconductors;
Goodrich, L.F.; Minervini, J.V.; Clark, A.F.; Fickett, F.R.; Ekin, J.W.; Pittman, E.S.

Characterization of a Standard Reference Superconductor for Critical Current and a Summary of Other Standard Research at NBS;
Clark, A.F.; Goodrich, L.F.

Critical Parameters and Strain Effects in Liquid-Infiltrated Nb-Ta/Sn Multifilamentary Superconductor;
Ekin, J.W.; Hong, M.

Design of the NBS Magnetic Monopole Detectors;
Clark, A.F.; Cromar, M.W.; Fickett, F.R.

Monopole Detection Studies at NBS;
Fickett, F.R.; Cromar, M.; Clark, A.F.

Magnetic Measurements, Calibrations, and Standards: Report on a Survey;
Fickett, F.R.
NBSIR 84-3018, 20 p; Oct 84.

Critical Current Measurements on a NbTl Superconducting Wire Standard Reference Material;
Goodrich, L.F.; Vecchia, D.F.; Pittman, E.S.; Clark, A.F.
NBS SP 260-291, 53 p; Sep 84.

Electromechanical and Metallurgical Properties of Liquid-Infiltration Nb-Ta/Sn Multifilamentary Superconductor;
Ekin, J.W.; Hong, M.

Critical Current Measurements on a NbTl Superconducting Wire Standard Reference Material;
Goodrich, L.F.; Vecchia, D.F.; Pittman, E.S.; Clark, A.F.

Development of NbSn Cabled Conductor by External Diffusion Process and Effect of Strain on the Critical Current;
Pasztor, G.; Ekin, J.W.

Magnetic Susceptibility and Strain-Induced Martensite Formation at 4 K in Type 304 Stainless Steel;
Goldfarb, R.B.; Reed, R.P.; Ekin, J.W.; Arvidson, J.M.

Research Opportunities in Superconductivity;
Cryogenics 24(7): 378-388; Jul 84.

Strain Effects in Superconducting Compounds—An Overview and Synthesis;
Ekin, J.W.
The Effect of Mill Temper on the Mechanical and Magnetoresistive Properties of Oxygen-free Copper in Liquid Helium;
Fickett, F.R.

Training Studies of Epoxy-Impregnated Superconductor Windings, Part III: Epoxies, Conductor Insulations, and Copper Ratio;
Ekin, J.W.; Pittman, E.S.; Goldfarb, R.B.; Superczynski, M.J.;
Waltman, D.J.

Calibration of ac Susceptometer for Cylindrical Specimens;
Goldfarb, R.B.; Minervini, J.V.

Copper-TFE Friction at Cryogenic Temperatures;
Bell, R.; Jones, K.; Fickett, F.R.
Cryogenics 24: 31-35; Jan 84.

Experience in Standardizing Superconductor Measurements;
Clark, A.F.; Goodrich, L.F.; Fickett, F.R.
J. Physique, Colloque Cl, supplement au 1(45): C1-379-382; Jan 84.

Magnetic Field Effects on Tensile Behavior of Alloys 304 and 310 at 4 K;
Reed, R.P.; Arvidson, J.M.; Ekin, J.W.; Schoon, R.H.

Fickett, F.R.

Electrical Properties;
Fickett, F.R.
Chapt. 5 in Materials at Low Temperatures, R. Reed; A.F. Clark, eds., American Society for Metals, Metals Park,
OH 44073; pp 163-201; Jun 83.

Magnetic Properties;
Fickett, F.R.; Goldfarb, R.B.
Chapt. 6 in Materials at Low Temperatures, R. Reed; A.F. Clark, eds., American Society of Metals, Metals Park,
OH 44073; pp 203-235; Jun 83.

Superconductors;
Ekin, J.W.
Chapt. 13 in Materials at Low Temperatures, R. Reed; A.F. Clark, eds., American Society of Metals, Metals Park,
OH 44073, pp 465-513; Jun 83.

Thermal Expansion;
Clark, A.F.
Chapt. 3 in Materials at Low Temperatures, R. Reed; A.F. Clark, eds., American Society for Metals, Metals Park,
OH 44073, pp 75-132; Jun 83.

Effect of Stainless Steel Reinforcement on the Critical Current Versus Strain Characteristic of Multifilamentary Nb3Sn
Superconductors;
Ekin, J.W.
J. Appl. Phys. 54(5): 2869-2871; May 83.
J-B-T-ε Interaction in A15, B1, and C15 Crystal Structure Superconductors;
Ekin, J.W.

Multifilamentary Nb-Nb, Composite by Liquid Infiltration Method: Superconducting, Metallurgical, and Mechanical Properties;
Hong, M.; Hull, G.W., Jr.; Holthuis, J.T.; Hazzenzahl, W.V.; Ekin, J.W.

Oxygen-Free Copper at 4 K;
Fickett, F.R.

Properties of NbN Films Crystallized from the Amorphous State;
Gavaler, J.R.; Greggi, J.; Wilmer, R.; Ekin, J.W.

The Effect of Field Orientation on Current Transfer in Multifilamentary Superconductors;
Goodrich, L.F.

Four-Dimensional J-B-T-ε Critical Surface for Superconductivity;
Ekin, J.W.

Proceedings, International Cryogenic Materials Conference;
Clark, A.F.; Tachikawa, K., eds.
May 11-14, 1982; Kobe, Japan: Butterworth; Jan 83.

Effect of Strain on the Critical Current and Critical Field of B1 Structure NbN Superconductors;
Ekin, J.W.

Effect of Strain on the Critical Current of Sputtered NbN Films;
Ekin, J.W.; Gavaler, J.R.; Greggi, J.

Spin-Freezing below the Ferromagnetic Transition Determined by the Imaginary Component of ac Magnetic Susceptibility;
Goldfarb, R.B.; Fickett, F.R.; Rao, K.V.; Chen, H.S.

Development of Standards for Superconductors;
Clark, A.F.
NBSIR 82-1678; Jul 82.

Effect of Twist Pitch on Short-Sample V-I Characteristics of Multifilamentary Superconductors;
Goodrich, L.F.; Ekin, J.W.; Fickett, F.R.

Low Temperature Material Perspective;
Fickett, F.R.

Training Studies of Epoxy-Impregnated Superconductor Windings;
Ekin, J.W.; Piitman, E.S.; Superczynski, M.J.; Waltman, D.J.
Critical Current Measurement: A Compendium of Experimental Effects;
Goodrich, L.F.; Fickett, F.R.
Cryogenics, pp 225-242; May 82.

Effect of Strain on the Critical Parameters of V₂(Hf,Zr) Leaves Phase Composite Superconductors;
Ekin, J.W.
Appl. Phys. Lett. 40(9): 844-846; May 82.

Electrical Properties of Materials and Their Measurement at Low Temperatures;
Fickett, F.R.
NBS TN 1053; Mar 82.

Electric and Magnetic Properties of CuSn and CuNi Alloys at 4 K;
Fickett, F.R.
Cryogenics 22: 135; Mar 82.

Further Evidence for a Spin-Glass Phase Transition in Amorphous Fe-Mn-P-B-Al Alloys;
Goldfarb, R.B.; Rao, K.V.; Chen, H.S.; Patton, C.E.
J. Appl. Phys. 53: 2217; Mar 82.

Electrical and Magnetic Properties of Internally Oxidized Copper and Dilute Copper-Iron Alloys;
Fickett, F.R.

Effect of Strain on the Critical Current of Nb-Hf/Cu-Sn-Ga Multifilamentary Superconductors;
Ekin, J.W.; Sekine, H.; Tachikawa, K.
J. Appl. Phys. 52: 6252; 81.

Lap Joint Resistance and Intrinsic Critical Current Measurements on a NbTi Superconducting Wire;
Goodrich, L.F.; Ekin, J.W.
IEEE Trans. Magn. MAG-17: 69; 81.

Magnetic Susceptibility Studies of Amorphous Ni-Mn-P-B-Al Alloys;
Goldfarb, R.B.; Rao, K.V.; Fickett, F.R.; Chen, H.S.
J. Appl. Phys. 52: 1744; 81.

Mechanical Properties and Strain Effects in Superconductors;
Ekin, J.W.

Miniature Multipin Electrical Feedthrough for Vacuum Use;
Goldfarb, R.B.
Cryogenics 21: 746; 81.

Strain Scaling Law for Flux Pining in NbTi, Nb₃Sn, Nb-Hf/Cu-Sn-Ga, V₃Ga, and Nb₃Ge;
Ekin, J.W.

Structural Materials for Large Superconducting Magnets;
Fickett, F.R.; McHenry, H.I.

Superparamagnetism and Spin-Glass Freezing in Nickel-Manganese Alloys;
Goldfarb, R.B.; Patton, C.E.
NBS Superconductor Standardization Program;
Fickett, F.R.; Goodrich, L.F.

Thermal Expansion of Multifilamentary Nb_3Sn and V_3Ga Superconductive Cables and Fiberglass-Epoxy and Cotton-Phenolic Composite Materials;
Fujii, G.; Ranney, M.A.; Clark, A.F.

Thermal Expansion of Several Materials for Superconducting Magnets;
Clark, A.F.; Fujii, G.; Ranney, M.A.

Advances in Cryogenic Engineering: Materials, Vol. 26;
Clark, A.F.; Reed, R.P., eds.

Definitions of Terms for Practical Superconductors, 4. Josephson Phenomena;
Fickett, F.R.; Kaplan, S.B.; Powell, R.L.; Radebaugh, R.; Clark, A.F.
Cryogenics 20: 319-325; 80.

Development of Standards for Superconductors;
Fickett, F.R.; Clark, A.F.

Filamentary A15 Superconductors;
Suenaga, M.; Clark, A.F., eds.
(New York: Plenum Press); 80.

Processing Limits for Ultrafine Multifilament Nb_3Sn;
Ho, J.C.; Oberly, C.E.; Garrett, H.J.; Walker, M.S.; Zeitlin, B.A.; Ekin, J.W.

Strain Scaling Law and the Prediction of Uniaxial and Bending Strain Effects;
Ekin, J.W.

Strain Scaling Law for Flux Pinning in Practical Superconductors. Part I: Basic Relationship and Application to Nb_3Sn Conductors;
Ekin, J.W.
Cryogenics 20: 611; 80.

Tensile, Fracture Toughness and Magnetization Testing in Cast 316-L Stainless Steel and Its Weldment;
Genens, L.; Kim, S.H.; Wang, S.T.; Reed, R.P.; Fickett, F.R.

Thermal Expansion of Cryogenic-Grade Glass-Epoxy Laminates; Materials Studies of Magnetic Fusion Energy Applications at Low Temperatures - III;
Ranney, M.A.; Clark, A.F.
NBSIR 80-1627: 405 p; 80.

Training of Epoxy-Impregnated Superconductor Windings;
Ekin, J.W.; Schramm, R.E.; Superczynski, M.J.
Development of Standards for Superconductors;
Fickett, F.R.; Goodrich, L.F.; Clark, A.F.
NBSIR 80-1642; Dec 80.

Effect of Thermal Contraction of Sample Holder Material on Critical Current Measurement;
Fujii, G.; Ekin, J.W.; Radebaugh, R.; Clark, A.F.

Development of Standards for Practical Superconductors;
Clark, A.F.

A Convenient Standard for Low-Field Susceptibility Calibration;
Rosenbaum, J.; Larson, E.; Hoblitt, R.; Fickett, F.R.

Effect of Strain on Critical Current of Nb₃Ge;
Ekin, J.W.; Braginski, A.I.

Effect of Strain on Epoxy-Impregnated Superconducting Composites;
Ekin, J.W.; Schramm, R.E.; Clark, A.F.
Nonmetallic Materials and Composites at Low Temperatures; A. F. Clark; R. P. Reed; G. Hartwig, eds. (New York: Plenum Press), pp 301-308; 79.

Materials for Superconducting Magnet Systems;
Fickett, F.R.; Reed, R.P., eds.
(Traverse City, MI: Belfour-Stulen, Inc.); 79.

Nonmetallic Materials and Composites at Low Temperatures;
Clark, A.F.; Reed, R.P.; Hartwig, G., eds.
Proc., ICMC Symposium, Jul 1978; Munich, Germany (New York: Plenum Press); 79.

Space Applications of Superconductivity: High Field Magnets;
Fickett, F.R.
Cryogenics 19: 691-701; 79.

Standards for Superconductors;
Fickett, F.R.; Clark, A.F.

Strain Dependence of the Critical Current and Critical Field in Multifilamentary Nb₃Sn Composites;
Ekin, J.W.

Structures, Insulators, and Conductors for Large Superconducting Magnets;
Fickett, F.R.; Reed, R.P.; Dalder, E.N.C.
J. Nucl. Mat. 85 and 86: 353-360; 79.

The Development of Standards for Practical Superconductors;
Clark, A.F.; Ekin, J.W.; Radebaugh, R.; Read, D.T.

Development of Standards for Superconductors;
Fickett, F.R.; Clark, A.F.
NBSIR 80-1629; Dec 79.
Material Studies for Superconducting Machinery Coil Composites;
Ekin, J.W.; Kasen, M.B.; Read, D.T.; Schramm, R.E.; Tobler, R.L.; Clark, A.F.
NBSIR 80-1633; Nov 79.

A Standards Program for AC Losses in Superconductors;
Radebaugh, R.; Fujjii, G.; Read, D.T.; Clark, A.F.
Intl. Congress of Refrigeration, IIIR A1/2-10: 1-4; Sep 79.

Definitions of Terms for Practical Superconductors. 3. Fabrication, Stabilization, and Transient Losses;
Read, D.T.; Ekin, J.W.; Powell, R.L.; Clark, A.F.
Cryogenics 19(6): 327-332; Jun 79.

Magnetic Properties of the ‘Nonmagnetic’ Stainless Steels;
Fickett, F.R.
NBSIR 79-1609; Jun 79.

Materials for Superconducting Magnets for MHD Power Systems, a Usage Survey and a Proposed Research Program;
Reed, R.P.; McHenry, H.I.; Kasen, M.B.; Fickett, F.R.; Dalder, E.N.C.
MIT Program Report on MHD; Jun 79.

Materials Studies for Magnetic Fusion Energy Applications at Low Temperatures - II;
Fickett, F.R., ed.
NBSIR 79-1609; Jun 79.

Review of the 1978 NBS/DoE Workshop on Materials at Low Temperatures;
Fickett, F.R.; Reed, R.P.
Proc., 1st Topical Meeting on Fusion Reactor Materials; Miami Beach, FL, p 352; Jan 79.

Advances in Cryogenic Engineering, Vol. 24;
Timmerhaus, K.D.; Reed, R.P.; Clark, A.F.

Current Transfer in Multifilamentary Superconductors. 1. Theory;
Ekin, J.W.

Effects of Stress on Practical Superconductors;
Clark, A.F.

Fatigue and Stress Effects in NbTi and NbSn Multifilamentary Superconductors;
Ekin, J.W.

Low Temperature Specific Heat of Two Stainless Steels;
Ho, J.C.; King, G.B.; Fickett, F.R.
Cryogenics 18: 296; 78.

Properties of a Superconducting Coil Composite and Its Components;
Clark, A.F.; Arp, V.D.; Ekin, J.W.

Special Purpose Materials: An Assessment of Needs and the Role of these Materials in the National Program;
Gold, R.E.; Fickett, F.R.; et al.
Proc., 3rd Topical Meeting on the Technology of Controlled Nuclear Fusion, DoE Conf-780508; 78.
Magnet Materials for Fusion Energy;
Fickett, F.R.
Section of the Fusion Reactor Materials Program Plan, sect. IV, Special Purpose Materials; U.S. DoE Report
DoE/ET-0032/4; Jul 78.

Current Transfer in Multifilamentary Superconductors, II. Experimental Results;
Ekin, J.W.; Clark, A.F.; Ho, J.C.

High Field Magnets;
Fickett, F.R.
Chap. 2 in the Role of Superconductivity in the Space Program: An Assessment of Present Capabilities and Future Potential, NBSIR 78-885; May 78.

Materials Studies for Magnetic Fusion Energy Applications at Low Temperatures - I;
Fickett, F.R.; Reed, R.P.
NBSIR 78-884; Apr 78.

Definitions of Terms for Practical Superconductors, 2. Critical Parameters;
Powell, R.L.; Clark, A.F.
Cryogenics 18(3): 137-141; Mar 78.

Investigation of a Practical Superconductor with a Copper Matrix;
Fickett, F.R.
INCRA Annual Report, Project No. 255; Jan 78.

A Low Temperature Materials Research Program for Magnetic Fusion Energy;
Fickett, F.R.; Kasen, M.B.; McHenry, H.I.; Reed, R.P.

A Review of the NBS-ERDA Workshop on Materials at Low Temperatures;
Fickett, F.R.; Reed, R.P.

A Simple Method for Producing High Conductivity Copper for Low Temperature Applications;
Rosenblum, S.; Steyert, W.A.; Fickett, F.R.
Cryogenics 17: 645; 77.

Mechanisms for Critical-Current Degradation in NbTi and Nb₅Sn and NbTi Multifilamentary Wires;
Ekin, J.W.

Studies of Superconducting Wires from Niobium Precipitated in Copper-Tin-Niobium Alloys;
Fickett, F.R.; Sparks, L.L.; Kasen, M.B.

The Low Temperature Tensile Behavior of Copper-Stabilized Niobium-Titanium Superconducting Wire;
Reed, R.P.; Mikesell, R.P.; Clark, A.F.

Definition of Terms for Practical Superconductors, I. Fundamental States and Flux Phenomena;
Powell, R.L.; Clark, A.F.
Cryogenics 17(12): 697-701; Dec 77.

Magnetic Fusion Energy Low Temperature Materials Program - A Survey;
Reed, R.P.; Fickett, F.R.; Kasen, M.B.; McHenry, H.I.
Report to ERDA Division of Magnetic Fusion Energy; Mar 77.

57
Defining Critical Current;
Clark, A.F.; Ekin, J.W.

Advances in Cryogenic Engineering, Vol. 22;
Timmerhaus, K.D.; Reed, R.P.; Clark, A.F.

A Research Program on the Properties of Structural Materials at 4 K;
Reed, R.P.; Clark, A.F.; van Reuth, E.C.

Effect of Strain on the Critical Current of Nb$_3$Sn and NbTi Multifilamentary Composite Wires;
Ekin, J.W.; Clark, A.F.

Effect of Stress on the Critical Current of Nb$_3$Sn Multifilamentary Composite Wire;
Ekin, J.W.
Appl. Phys. Lett. 29: 216; 76.

Effect of Stress on the Critical Current of NbTi Multifilamentary Composite Wire;
Ekin, J.W.; Fickett, F.R.; Clark, A.F.

Effect of Stress on the Critical Current of NbTi Multifilamentary Composite Wire;
Ekin, J.W.; Fickett, F.R.; Clark, A.F.

Magnetic and Electrical Properties of Internally Oxidized FeCu Alloys;
Fickett, F.R.

On Lysozyme as a Possible High-Temperature Superconductor;
Sorenson, C.M.; Fickett, F.R.; Mockler, R.C.; O'Sullivan, W.J.; Scott, J.F.

Properties of Nonsuperconducting Technical Solids at Low Temperatures - An Update;
Fickett, F.R.

Structural Materials for Cryogenic Appications;
Fickett, F.R.

Stress Effects in Superconductors;
Clark, A.F.
Cryogenics 16(10): 632-633; Oct 76.

Controlled Thermonuclear Reactors: A Prospective Large-Scale Use of Pure Copper;
Fickett, F.R.
INCRRA Research Report; Aug 76.

Characterization of a Superconducting Coil Composite and Its Components;
Clark, A.F.; Weston, W.F.; Arp, V.D.; Hust, J.G.; Trapani, R.J.
NBSIR 76-837; Jul 76.
Low Temperature Thermal Expansion of Barium Ferrite;
 Clark, A.F.; Haynes, W.M.; Deason, V.A.; Trapani, R.J.
 Cryogenics 16(3): 267-270; May 76.

A Preliminary Investigation of the Behavior of High Purity Copper in High Magnetic Fields and a Final Summary of
 Project 186;
 Fickett, F.R.
 INCRA Annual Report, Project No. 186C; Mar 76.

A Technique for Preparing Homogeneous Bulk Samples of Concentrated Alloys;
 Ekin, J.W.; Deason, V.A.

Critical Currents in Granular Superconductors;
 Ekin, J.W.

The Magnetic Coupling Force of the Superconducting dc Transformer;
 Ekin, J.W.; Clem, J.R.

Materials Research for Superconducting Machinery - IV;
 Reed, R.P.; Clark, A.F.; van Reuth, E.C., eds.

Materials Research for Superconducting Machinery - III;
 Reed, R.P.; Clark, A.F.; van Reuth, E.C., eds.

Magnetic Properties of Internally Oxidized Copper;
 Fickett, F.R.; Sullivan, D.B.

Magnetic Studies of Oxidized Impurities in Pure Copper Using a SQUID System;
 Fickett, F.R.; Sullivan, D.B.

Magnetothermal Conductivity;
 Fickett, F.R.; Sparks, L.L.
 NBSIR 74-393; 74.

Magnetothermal Conductivity;
 Sparks, L.L.; Fickett, F.R.
 NBSIR 74-359; 74.

Oxygen Annealing of Copper: A Review;
 Fickett, F.R.

U. S. Programs on Large Scale Applications of Superconductivity;
 Powell, R.L.; Fickett, F.R.; Birmingham, B.W.
 Chap. 17 in Superconducting Machines and Devices—Large Systems Applications; Proc., NATO Advanced Study
 Inst., Sep 5-14, 1973; Entreves, Italy; S. Foner and B.B. Schwartz, eds. (New York: Plenum Press), pp 651-675; 74.
Materials Research for Superconducting Machinery - II;
Clark, A.F.; Reed, R.P.; van Reuth, E.C., eds.

A Preliminary Investigation of the Behavior of High Purity Copper in High Magnetic Fields;
Fickett, F.R.
INCRA Annual Report, Project No. 186B; Aug 74.

Materials Research for Superconducting Machinery;
Clark, A.F.; Reed, R.P.; van Reuth, E.C., eds.

Characterization of a Superconducting Coil Composite;
Fowlkes, C.W.; Angerhofer, P.E.; Newton, R.N.; Clark, A.F.
NBSIR 73-349; Dec 73.

Superconducting Levitation of High Speed Vehicles;
Arp, V.D.; Clark, A.F.; Flynn, T.M.

A Compilation and Evaluation of Mechanical, Thermal and Electrical Properties of Selected Polymers;
Schramm, R.E.; Clark, A.F.; Reed, R.P.
NBS MN 132; Sep 73.

A Preliminary Investigation of the Behavior of High Purity Copper in High Magnetic Fields;
Fickett, F.R.
INCRA Annual Report, Project No. 186A; Aug 73.

Mechanical, Thermal, and Electrical Properties of Selected Polymers;
Reed, R.P.; Schramm, R.; Clark, A.F.
Cryogenics 13: 67-82; Feb 73.

Some Applications of Cryogenics to High Speed Ground Transportation;
Arp, V.D.; Clark, A.F.; Flynn, T.M.
NBS TN 635; Feb 73.

Characterization of High Purity Metals by the Eddy Current Decay Method;
Clark, A.F.; Deason, V.A.; Powell, R.L.
Cryogenics l2: 35; 72.

Magnetoresistivity of Copper and Aluminum at Cryogenic Temperatures;
Fickett, F.R.
Proc., 4th Intl. Conf. on Magnet Technology, AEC CONF-720908: 498; Sep 72.

Material Variability as Measured by Low Temperature Electrical Resistivity;
Clark, A.F.; Tryon, P.V.
Cryogenics 12: 451-461; Dec 72.

Properties of Nonsuperconducting Technical Solids at Low Temperatures;
Fickett, F.R.
Proc., 4th Intl. Conf. on Magnet Technology, AEC CONF-720903: 539; Sep 72.

Combination of a Power Transmission Line and an Active Track for a Magnetically Suspended, High Speed Train;
Clark, A.F.
A Preliminary Investigation of the Behavior of High Purity Copper in High Magnetic Fields;
Fickett, F.R.
INCRA Annual Report, INCRA Project No. 186; Jun 72.

Clark, A.F.; Deason, V.A.; Hust, J.G.; Powell, R.L.
NBS SP 260-39; May 72.

Defect Annealing (4 to 295 K) After Martensitic Phase Transformation in an Fe-29 Ni Alloy;
Reed, R.P.; Clark, A.F.; Schramm, R.E.
Scripta Met. 5: 485; 71.

Longitudinal Magnetoresistance Anomalies;
Fickett, F.R.; Clark, A.F.

Magnetoresistance of Very Pure Polycrystalline Aluminum;
Fickett, F.R.

Martensitic Transformation Detection in Cryogenic Steels (Magnetometer Development);
Fickett, F.R.
NBS TN 613; 71.

Characterization of High Purity Metals by the Eddy Current Decay Method;
Clark, A.F.; Deason, V.A.; Powell, R.L.

Lorenz Ratio as a Tool for Predicting Thermal Conductivity of Metals and Alloys;
Hust, J.G.; Clark, A.F.

Low Temperature Electrical Resistivity of Some Engineering Alloys;
Clark, A.F.; Childs, G.E.; Wallace, G.H.

Low Temperature Specific Heat and Thermal Expansion of Alloys;
Clark, A.F.; Kropschot, R.H.

Resistivity of Polycrystalline Aluminum and Copper in High Magnetic Fields: The Effect of Temperature and Purity;
Fickett, F.R.

Low Temperature Electrical Resistivity of Some Engineering Alloys;
Clark, A.F.; Childs, G.E.; Wallace, G.H.
Cryogenics 10: 295-305; Aug 70.

61
<table>
<thead>
<tr>
<th>Author</th>
<th>Pages</th>
<th>Author</th>
<th>Pages</th>
<th>Author</th>
<th>Pages</th>
<th>Author</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adair, R.T.</td>
<td>34-37</td>
<td>Crete, D.G.</td>
<td>25-27</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alvarez, R.</td>
<td>10</td>
<td>Cromar, M.W.</td>
<td>23-30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Andrews, J.R.</td>
<td>17,32</td>
<td>Cunningham, C.E.</td>
<td>48-50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Angerofer, P.E.</td>
<td>60</td>
<td>Cupp, J.D.</td>
<td>35-39</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arp, V.D.</td>
<td>56,58,60</td>
<td>Dahler, E.N.C.</td>
<td>55,56</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arvidson, J.M.</td>
<td>50,51</td>
<td>Dimento, M.A.</td>
<td>44</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asher, S.E.</td>
<td>23</td>
<td>Danchi, W.G.</td>
<td>23,25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ashley, J.R.</td>
<td>38</td>
<td>Daney, D.E.</td>
<td>29</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aust, J.A.</td>
<td>5</td>
<td>Danielson, B.L.</td>
<td>3,5,7,9,11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avrin, W.</td>
<td>23</td>
<td>Danielsson, P.</td>
<td>42</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beanes, J.</td>
<td>5</td>
<td>Day, G.W.</td>
<td>3-10,12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barbanera, S.</td>
<td>26</td>
<td>Deason, V.A.</td>
<td>59-61</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baruch, J.C.</td>
<td>48</td>
<td>Deb, S.K.</td>
<td>44</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Batchman, T.E.</td>
<td>4</td>
<td>Deeter, M.N.</td>
<td>3-5,8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beall, J.A.</td>
<td>23-28,44</td>
<td>DeLima, O.F.</td>
<td>45</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beasley, M.R.</td>
<td>50</td>
<td>DeWeese, M.E.</td>
<td>4,5,7,9,11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beene, Y.</td>
<td>19</td>
<td>DeWeese-Bishop, M.E.</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bell, R.</td>
<td>51</td>
<td>Dhere, N.G.</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bender, B.K.</td>
<td>34</td>
<td>Dhere, R.G.</td>
<td>23,25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bennett, H.E.</td>
<td>4,6,7,11</td>
<td>Dilorio, M.S.</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benson, R.</td>
<td>48</td>
<td>Dimmock, J.O.</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bergen, N.F.</td>
<td>43,45</td>
<td>Dinger, R.J.</td>
<td>36</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Birmingham, B.W.</td>
<td>59</td>
<td>Dragonirecky, M.</td>
<td>47</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blankenship, B.A.</td>
<td>44,45</td>
<td>Drapela, T.J.</td>
<td>5,7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bloom, L.R.</td>
<td>15,17</td>
<td>Dube, W.P.</td>
<td>43,46-48</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boisrout, C.Y.</td>
<td>3</td>
<td>Dufferfield, C.</td>
<td>48</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Braginski, A.I.</td>
<td>45,46,55</td>
<td>Dulcie, L.L.</td>
<td>44,46</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brusnas, J.C.</td>
<td>4,23</td>
<td>Dynes, R.C.</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bray, S.L.</td>
<td>41-44,46</td>
<td>Dziuba, R.F.</td>
<td>36,37</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Burroughs, C.</td>
<td>25</td>
<td>Edelsohn, E.A.</td>
<td>39</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bussey, H.E.</td>
<td>46</td>
<td>Edrich, J.</td>
<td>33,35,37</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cabrera, B.</td>
<td>23</td>
<td>Elk, I.W.</td>
<td>23-25,41,59</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Campbell, W.H.</td>
<td>31,35</td>
<td>Ellington, M.B.</td>
<td>49</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capobianco, T.E.</td>
<td>23,41-47</td>
<td>Englerather, A.</td>
<td>9,12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capone, D.W.</td>
<td>45</td>
<td>Ezel, S.M.</td>
<td>3,8,10,12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carelli, P.</td>
<td>30</td>
<td>Evenson, K.M.</td>
<td>20,21,38,39</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Case, W.E.</td>
<td>4,10,14,17,19,20</td>
<td>Face, D.W.</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cernosek, R.W.</td>
<td>9,10</td>
<td>Faust, R.W.</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chamberlain, G.E.</td>
<td>13,15,17,18</td>
<td>Fickett, F.R.</td>
<td>49</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chandler, G.I.</td>
<td>9,10</td>
<td>Finneson, D.K.</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chase, L.L.</td>
<td>14</td>
<td>Flandermeyer, B.</td>
<td>45</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chen, D.-X.</td>
<td>24,45</td>
<td>Flynn, T.M.</td>
<td>33,60</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chen, H.S.</td>
<td>47,48,52,53</td>
<td>Fogle, W.E.</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cherin, A.H.</td>
<td>5</td>
<td>Fossum, R.M.</td>
<td>43,44</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chiang, C.K.</td>
<td>41</td>
<td>Fowkes, C.W.</td>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chiang, Y.-M.</td>
<td>41</td>
<td>Frazen, D.L.</td>
<td>3-20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chiang, Y.-H.</td>
<td>43</td>
<td>Frederick, N.V.</td>
<td>12,13,27,31,33,37,39</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chieh, K.</td>
<td>23,24</td>
<td>Fujii, G.</td>
<td>54-56</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Childs, G.E.</td>
<td>61</td>
<td>Gabbott, A.</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Christianson, D.H.</td>
<td>3</td>
<td>Gaddipati, A.R.</td>
<td>42</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chroux, P.</td>
<td>11</td>
<td>Gallawa, R.L.</td>
<td>3-6,8,15,17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ciciora, S.J.</td>
<td>23</td>
<td>Gardner, J.B.</td>
<td>49</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cirillo, M.</td>
<td>26</td>
<td>Garrett, H.J.</td>
<td>54</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cizek, T.</td>
<td>44</td>
<td>Gavaler, J.R.</td>
<td>52</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clark, A.F.</td>
<td>27,30,44-52,54-61</td>
<td>Gayley, R.I.</td>
<td>33</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clem, J.R.</td>
<td>59</td>
<td>Gobeil, T.H.</td>
<td>49</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cochran, J.F.</td>
<td>47</td>
<td>Geist, I.</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cohen, D.</td>
<td>39</td>
<td>Genesa, L.</td>
<td>54</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collins, E.W.</td>
<td>41</td>
<td>Ghatak, A.K.</td>
<td>3,4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collins, G.J.</td>
<td>18,19</td>
<td>Giarratano, P.J.</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colwell, J.H.</td>
<td>26</td>
<td>Ginsley, D.S.</td>
<td>43</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conrad, D.</td>
<td>8</td>
<td>Ginsburg, D.M.</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cook, A.R.</td>
<td>18,20,21</td>
<td>Glaser, I.</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Costabile, G.</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Craig, R.M.</td>
<td>3,6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Go, D. 24-26 Kampwirth, R.T. 24
Gocke, K. 24 Kanada, T. 8-10
Gold, R.E. 56 Kaplan, S.B. 32,54
Goldberg, I.B. 24,41,43-53 Kasen, M.B. 56,57
Goldfrab, R.B. 24,41,43-53 Kaznerski, L.L. 23,44
Goldgraben, R. 11 Katayama-Yoshida, H. 44
Goodrich, L.F. 41-48,50-55 Katzir, Y. 11
Goral, J.P. 25 Kautz, R.L. 23-34,48
Goree, W.S. 37,38 Kawai, T. 25,45
Goyai, I.C. 3,4 Kim, S.H. 54
Gould, D. 43 Kocpol, W. 25
Goyal, I.B. 41,43-53 Kowl, V.E. 39
Gorade, J.P. 25 Kreslick, T.S. 43
Goree, W.S. 37,38 Kropatchot, R.H. 61
Gazmerek, L.L. 25,45 Kuro, J. 45,46
Gray, E.M. 15,17
Gray, K.E. 24
Gregg, i, J. 52
Gregory, E. 43
Grossman, E.N. 23
Gruzensky, P.M. 34,19,21
Guenther, A.H. 4,6,7,11
Hackert, M. 5
Haggerty, J. 5
Hale, P.D. 4,6,8
Halford, D. 20
Hamilton, C.A. 18-20,23-35,37,38
Hanlon, A.G. 15,17
Harris, R.E. 26,28,29,31-35
Hart, H.R., Jr. 42
Hartwig, G. 55
Harvey, T.E. 23
Havens, R.H. 34
Haynes, W.M. 59
Heard, E. 5
Heinrich, B. 47
Heinz, W. 49
Hellman, F. 49
Herman, A.M. 42
Hickernell, R.K. 3,5,7
Hinkel, J.H. 28
Hirabayashi, H. 44
Hirooka, T. 44
Ho, J.C. 54,56,57
Hobbs, R.D. 30
Hoblit, R. 55
Hoer, C.A. 36,37
Holthuis, J.T. 49,52
Hong, M. 45,46,49,50,52
Howard, R.E. 25
Hu, Q. 23-25
Huber, M.E. 23
Hull, G.W., Jr. 52
Hust, J.G. 58,61
Ishida, T. 41
Istok, K. 43
Ives, J.T. 30
Iyer, H. 41
Jaminet, P.A. 23,25
Janocko, M.A. 45
Jarvis, S. 37
Jennings, D.A. 20,21
Johnson, E.G., Jr. 9-14,16-18,35,36,38
Johnson, W. 28
Johnson, W.L. 18
Jones, H. 43
Jones, K. 51
Juneau, R.I. 5
Kamper, R.A. 10,13,34-40,46
Kupchick, W. 25
Kwok, B. 23,26
Lamba, T. 23-33
Lapin, V. 42,44
Lassabatier, D.C. 3-5,7,8,10,12,13,15,16
Larsson, D.R. 55
Lee, K.S. 7-7
Lemane, J. 8
Li, Y. 6,8
Lakew, B. 41,43,44
Li, Y.K. 44
Liou, S.H. 45
Lloyd, F.L. 23-33
Lonnari, G. 47
Loughran, R.J. 41
MacFarlane, J.C. 48
Madsen, M. 44
Maher, D.M. 49
Mahler, R.J. 20,21
Maisonneuve, J.M. 11,12
Malone, K.J. 3,4
Mankiewich, P.M. 25
Marken, K.R., Jr. 41
Martinis, J.M. 23,24
Mast, K.A. 24
Mascarenhas, A.J. 44
Mason, A.R. 23,25
McCarthy, S.M. 30
McConahey, R.D. 25
McDonald, D.O. 23-31,34-39
McFadden, J.D.O. 10
McFarlane, J.C. 27
McFarlane, J.C. 25-28
McGrath, W.R. 53,56,57
McHenry, H.I. 18,19
Mears, J.D. 23-25
Mikesell, R.P. 57
Milan, D. 6,7,11
Miner, T.E. 8
Minervini, J.V. 47,50,51
Mitchell, M.R. 41
Mockler, R.C. 58
Monaco, R. 24,28
Moore, D.F. 29
Morland, J. 41-49
Morwin, B. 43

64
<table>
<thead>
<tr>
<th>Author Name</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moseley, S.H.</td>
<td>23</td>
</tr>
<tr>
<td>Moulder, J.C.</td>
<td>23, 47</td>
</tr>
<tr>
<td>Muhlfelder, B.</td>
<td>27-29</td>
</tr>
<tr>
<td>Mullen, L.G.</td>
<td>19, 21, 39</td>
</tr>
<tr>
<td>Murphy, A.R.</td>
<td>41</td>
</tr>
<tr>
<td>Myrtle, K.</td>
<td>47</td>
</tr>
<tr>
<td>Nagano, H.</td>
<td>49</td>
</tr>
<tr>
<td>Nelson, A.J.</td>
<td>23, 25, 43, 44</td>
</tr>
<tr>
<td>Newnam, B.E.</td>
<td>4, 6, 7, 11</td>
</tr>
<tr>
<td>Newton, R.N.</td>
<td>60</td>
</tr>
<tr>
<td>Niemeyer, J.</td>
<td>28</td>
</tr>
<tr>
<td>Nikol, M.</td>
<td>43</td>
</tr>
<tr>
<td>Nisenoff, M.</td>
<td>37</td>
</tr>
<tr>
<td>Nogues, J.</td>
<td>45</td>
</tr>
<tr>
<td>Oates, C.W.</td>
<td>6, 8</td>
</tr>
<tr>
<td>Obanski, G.E.</td>
<td>4</td>
</tr>
<tr>
<td>Obery, C.E.</td>
<td>54</td>
</tr>
<tr>
<td>Ochiai, A.</td>
<td>44</td>
</tr>
<tr>
<td>Okabe, T.</td>
<td>44</td>
</tr>
<tr>
<td>Oldham, N.M.</td>
<td>25</td>
</tr>
<tr>
<td>Olsen, N.A.</td>
<td>37, 38</td>
</tr>
<tr>
<td>Ono, R.H.</td>
<td>23-28, 43, 44</td>
</tr>
<tr>
<td>O'Sullivan, W.J.</td>
<td>58</td>
</tr>
<tr>
<td>Oyama, A.</td>
<td>44</td>
</tr>
<tr>
<td>Pankove, J.I.</td>
<td>44</td>
</tr>
<tr>
<td>Panson, A.J.</td>
<td>44-46</td>
</tr>
<tr>
<td>Papasheoffania, B.</td>
<td>6, 7</td>
</tr>
<tr>
<td>Park, G.</td>
<td>23</td>
</tr>
<tr>
<td>Paxtor, G.</td>
<td>50</td>
</tr>
<tr>
<td>Patton, C.E.</td>
<td>53</td>
</tr>
<tr>
<td>Persson, K.B.</td>
<td>18, 19</td>
</tr>
<tr>
<td>Petersen, F.R.</td>
<td>20, 35-37</td>
</tr>
<tr>
<td>Petersen, R.L.</td>
<td>19, 20, 23-26, 29-35, 39, 42</td>
</tr>
<tr>
<td>Phelan, R.J., Jr.</td>
<td>3, 4, 6-10, 12, 13, 16, 18-21</td>
</tr>
<tr>
<td>Pittman, E.S.</td>
<td>46-48, 50-52</td>
</tr>
<tr>
<td>Powell, R.L.</td>
<td>54, 56, 57-59, 61</td>
</tr>
<tr>
<td>Prober, D.E.</td>
<td>25</td>
</tr>
<tr>
<td>Pyatt, K.W.</td>
<td>19</td>
</tr>
<tr>
<td>Radebaugh, R.</td>
<td>34, 35, 37, 39, 54-56</td>
</tr>
<tr>
<td>Rainie, K.</td>
<td>5</td>
</tr>
<tr>
<td>Raisansen, A.V.</td>
<td>25-28</td>
</tr>
<tr>
<td>Ranney, M.A.</td>
<td>54</td>
</tr>
<tr>
<td>Rao, K.V.</td>
<td>45, 47, 48, 52, 53</td>
</tr>
<tr>
<td>Rasmussen, A.L.</td>
<td>4, 5, 10, 11, 14, 17, 20, 21</td>
</tr>
<tr>
<td>Read, D.T.</td>
<td>55, 56</td>
</tr>
<tr>
<td>Reed, R.P.</td>
<td>50, 51, 54-61</td>
</tr>
<tr>
<td>Reitz, M.</td>
<td>30, 33, 35</td>
</tr>
<tr>
<td>Rice, P.</td>
<td>42</td>
</tr>
<tr>
<td>Richards, P.L.</td>
<td>23-28, 31-33</td>
</tr>
<tr>
<td>Ried, D.L.</td>
<td>43</td>
</tr>
<tr>
<td>Raley, A.S.</td>
<td>35-39</td>
</tr>
<tr>
<td>Rizzato, C.</td>
<td>49</td>
</tr>
<tr>
<td>Rodhe, P.M.</td>
<td>12, 13</td>
</tr>
<tr>
<td>Rose, A.H.</td>
<td>3-7</td>
</tr>
<tr>
<td>Rosenbaum, J.</td>
<td>55</td>
</tr>
<tr>
<td>Rosenblum, S.</td>
<td>57</td>
</tr>
<tr>
<td>Roshiko, A.</td>
<td>41, 43</td>
</tr>
<tr>
<td>Russell, T.W.</td>
<td>20</td>
</tr>
<tr>
<td>Sabatini, R.L.</td>
<td>42</td>
</tr>
<tr>
<td>Sanders, A.A.</td>
<td>4, 5, 10, 11, 13, 14, 17-19</td>
</tr>
<tr>
<td>Sanford, N.A.</td>
<td>3-4</td>
</tr>
<tr>
<td>Sanski, T.</td>
<td>44</td>
</tr>
<tr>
<td>Sauvageau, J.E.</td>
<td>23-25</td>
</tr>
<tr>
<td>Schlegler, J.B.</td>
<td>3-5</td>
</tr>
<tr>
<td>Schmidt, L.B.</td>
<td>19, 20</td>
</tr>
<tr>
<td>Schoon, R.H.</td>
<td>51</td>
</tr>
<tr>
<td>Schramm, R.E.</td>
<td>54, 55, 60, 61</td>
</tr>
<tr>
<td>Name</td>
<td>Page(s)</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Whitesel, H.K.</td>
<td>6,7</td>
</tr>
<tr>
<td>Whitesel, H.K.</td>
<td>5,7,8</td>
</tr>
<tr>
<td>Willet, R.</td>
<td>52</td>
</tr>
<tr>
<td>Würdemann, R.S.</td>
<td>25</td>
</tr>
<tr>
<td>Wolf, P.</td>
<td>29</td>
</tr>
<tr>
<td>Wolf, S.A.</td>
<td>37</td>
</tr>
<tr>
<td>Xizhi, L.</td>
<td>25</td>
</tr>
<tr>
<td>Yang, S.</td>
<td>11</td>
</tr>
<tr>
<td>Young, M.</td>
<td>9,11-18</td>
</tr>
<tr>
<td>Yu, K.</td>
<td>45</td>
</tr>
<tr>
<td>Zeitlin, B.A.</td>
<td>54</td>
</tr>
<tr>
<td>Zimmerman, J.</td>
<td>33</td>
</tr>
<tr>
<td>Zimmerman, J.E.</td>
<td>26-40</td>
</tr>
<tr>
<td>Zimmerman, J.T.</td>
<td>30,33,35</td>
</tr>
</tbody>
</table>
Title and Subtitle

Metrology for Electromagnetic Technology: A Bibliography of NIST Publications

Author(s)

Mary E. DeWeese

This bibliography lists the publications of the personnel of the Electromagnetic Technology Division of NIST during the period from January 1970 through publication of this report. A few earlier references that are directly related to the present work of the Division are also included.

Keywords

- cryoelectronics
- electromagnetic metrology
- lasers
- optical fibers
- superconducing materials

Availability

UNLIMITED FOR OFFICIAL DISTRIBUTION. DO NOT RELEASE TO NATIONAL TECHNICAL INFORMATION SERVICE (NTIS).

ORDER FROM SUPERINTENDENT OF DOCUMENTS, U.S. GOVERNMENT PRINTING OFFICE, WASHINGTON, DC 20402.

ORDER FROM NATIONAL TECHNICAL INFORMATION SERVICE (NTIS), SPRINGFIELD, VA 22161.