
1 1
United States Department of Commerce

I XI1^3 1 National Institute of Standards and Technology

A111D3 733^7^

NISTIR 3970

PERSONAL COMPUTER CODES FOR
ANALYSIS OF PLANAR NEAR FIELDS

Lorant A. Muth

Richard L. Lewis

NISTIR 3970

PERSONAL COMPUTER CODES FOR
ANALYSIS OF PLANAR NEAR FIELDS

Lorant A. Muth

Richard L. Lewis

Electromagnetic Fields Division

Electronics and Electrical Engineering Laboratory

National Institute of Standards and Technology

Boulder, Colorado 80303-3328

June 1 991

Sponsored, in part, by

Air Force Guidance and Metrology Center

Newark Air Force Base, Ohio 43057

U.S. DEPARTMENT OF COMMERCE, Robert A. Mosbacher, Secretary

NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, John W. Lyons, Director

<3

Uj
Q

CONTENTS

Page

Abstract 1

1. Introduction 1

2. General Features 3

3. Data Management 5

4. Research Modules 7

5. Output Files 12

6. DOS Batch Files 12

7. Symbol Definitions 14

8. Subroutine Descriptors 14

9. Table of Dependencies 14

10.

Conclusion 15

References 15

Table 1 16

Table 2 18

Table 3 20

Table 4 22

Table 5 25

Table 6 28

Table 7 32

Appendix A 43

Appendix B 44

Appendix C 46

Appendix D 49

Appendix E 51

111

Personal Computer Codes for Analysis of Planar Near Fields

Lorant A. Muth and Richard L. Lewis

Electromagnetic Fields Division

National Institute of Standards and Technology

U. S. Department of Commerce
Boulder, Colorado

We have developed Fortran codes for analysis of planar near-held data.

We describe some of the inner workings of the codes, the data manage-

ment schemes, and the structure of the input/output sections to enable

scientists and programmers to use these codes effectively as a research tool

in antenna metrology. The open structure of the codes allows a user to

incorporate into the package new applications for future use with relative

ease. The subroutines currently in existence are briehy described, and a ta-

ble showing the interdependence among these subroutines is constructed.

Some basic research problems, such as transformation of a near held to

the far held and correction of probe position errors, are carried out from

start to hnish to illustrate use and effectiveness of these codes. Sample

outputs are shown. The advantage of a high degree of modularization is

demonstrated by the use of DOS batch hies to execute Fortran modules in

a desired sequence.

Key words: antenna metrology; computer codes; data management; planar

near helds; far helds; research tool; subroutines

1. Introduction

Most research problems in antenna metrology are computationally intensive, and

program development makes up a substantial part of the research effort. Hence,

isolating frequent computational themes in this research area and developing inde-

pendent modules that can perform any of these computational themes in any order

independently of any previous computational step are very desirable. Improve-

ments in both the quality and quantity of research can be a by-product of such

a computational tool. Ideally, such a tool should be an open-ended system; that

is, new modules can be added painlessly to increase the versatility of the pack-

age. It should also be easy to use and learn, and therefore adaptable to new areas

of research. With cooperative effort such a software package could evolve into a

comprehensive research tool over a short period of time.

With these thoughts in mind, we have taken the first steps to accomplish the

goal of creating a comprehensive software package suitable for conducting state-of-

the-art research on a personal computer. We have achieved a very high level of

1

modularity by creating a large number of Fortran subroutines that can be used in

many different contexts, because the subroutines emphasize structure rather than

content of small computational problems. By the same effort, we have made it

relatively simple to create higher-level subroutines, because such routines can rely

heavily on the existing low-level subroutines of general applicability. These higher-

level routines accomplish more complicated and complete computational tasks than

the low-level subroutines. In turn, they can be combined to form independent

modules, which are the selected subtasks of a particular research effort. These

subtasks will be usually subtasks in other research areas, too. Hence, the effort

expended in creating them will be saved many times over in future endeavors.

Particular attention has been given to the way information flows to and from the

modules and between modules. We have automated much of the data management
needed to provide a smooth transition as one module finishes its task and another is

executed to accomplish the next step of the research. Many small modules, playing

a supportive role in data management, have been created to allow manipulation of

datasets according to the needs of the current phase of the research project. For

example, an existing dataset merely has to be activated to make it accessible to a

module about to be executed. Thus, both the modules chosen to be executed and

the datasets to be used can be controlled interactively by the scientist. This makes

for a very flexible computational procedure, freeing one’s time and energy to think

about research procedure rather than computational detail.

Because most research problems in antenna metrology are computationally in-

tensive and usually require large amounts of memory, we recommend as a minimum
that a personal computer equipped with the fastest available CPU and floating-

point processor be used, and that a minimum of 4 megabytes of RAM be made
available.

In the next section, concentrating on the main features, we outline the structure

of the computational package named Planar Near-Field Codes (PNFC); in the sub-

sequent sections we present essential details of the main features. It is our intention

that researchers, programmers, or scientists be able to use these codes effectively

after familiarizing themselves with the contents of this report.

Revisions

This report is a revision of a previous publication on the same software package

[1]. This revision was written to improve the exposition in some sections, to update

the tables and appendices to include new modules and subroutines not in the pre-

vious publication, and to add a new appendix showing the subroutine dependencies

of the research modules.

2

2. General Features

The complete PNFC is structured into modules. To be able to determine the func-

tion of a module we merely have to decipher the acronym that was constructed to

name the module. Once the acronym is deciphered, the full function of the module

should be self-evident. In Table 1 we have compiled the symbols used to construct

module names along with the definition of each symbol. In Tables 2 and 3 we list

the modules used to conduct research, and those used to manage data access during

the course of research, respectively. A brief description of each module’s function

is also included.

All research modules listed in Table 2 manipulate some existing dataset; that

is, they either numerically transform the dataset, or perform some I/O operation

on it. Datasets created subsequent to the original dataset are stored as binary files

and are given filenames fort.xx^ where the file extension xx is a unit number that

is automatically assigned to a specific dataset. The only information a research

module needs in order to access an existing dataset is the unit number assigned to

that dataset. Each module was designed to perform a single computational task

that is an important aspect of research in antenna metrology. Some of the modules

are more specific to antenna metrology than others. For example, the module

URDNFFF (Utilit}^, ReaD a Near Field and transform it to the Far Field) is an ever-

present computational step specific to this research area, but UPRNCBD (Utility,

PRiNt a Complex Binary Dataset) is obviously of more general applicability. How
to execute these modules is demonstrated in Section 4.

The modules listed in Table 3 perform simple data management. For example,

USWTOFF (Utility, SWitch TO Far Fields) activates far-field datasets that have

been previously created and recorded within the data management part of the

system. After USWTOFF has been executed any subsequent executions of modules

that can use either far-field or near-field data will access the far-field datasets, unless

this switch is overridden by a nonzero active dataset switch. How to activate a

specific dataset to make it the dataset that any module will use will be covered in

Section 3.

The research modules are constructed from a large set of independent subrou-

tines that perform specific computational or I/O subtasks. They. are used repeatedly

in various sequences to produce the specific results of the module. These subrou-

tines are compiled into a library, which is linked to a module at compilation time.

All existing subroutines are listed in Table 7, along with a brief description of their

function.

All research modules access file DABD.IOF, which contains the filename of the

research project’s parameter file. This file gives the relevant input parameters for

the research project and the filename of the original dataset. The original datasets

are recorded as direct-access binary files, so that specific records within them can

be accessed or modified at will. How to create the original direct-access datasets

from some ASCII file that was created on some other computer or data acquisition

system is explained in Appendix A. The first seven records in these datasets contain

the essential parameters of the dataset. All modules access the original direct-access

3

dataset to input these essential parameters, although only a subset of these might

actually be needed by the specific module in use. This procedure assures that the

same parameter set will be used by all modules using a specific dataset. A list of

the essential dataset parameters is given in Appendix A.

Each module might also access a parameter (.PAR) file that is specific to it.

For example, UMAKEDZ (Utility, MAKE DZ), which creates a probe displace-

ment error function, reads the parameter file PERDZ.PAR if periodic error func-

tions are requested, and UTSZ (Utility, Taylor Series in Z) reads the parameter file

SCALE.DZ to input the amplitude of the error function requested for the current

execution. The parameter files currently in existence and the research modules that

access them are listed in Table 4. The parameter files and data management files

accessed by the data management modules are tabulated in Table 5.

All necessary I/O procedures are handled within each module, but some specific

modules prepare the data and create ASCII files that can be further processed for

graphical output. Two such modules are UCBDGRD (Utility, Complex Binary

Dataset to .GRD file) and UCBDDAT (Utility, Complex Binary Dataset to .DAT
file), which create ASCII datasets to .be used for plotting 3-D and simple linear

plots, respectively. These modules also rely on specific parameter files to perform

their function as desired.

Finally, all modules have very similar structures and differ significantly only in

their computational sections. The common structure is as follows:

a. Read all relevant switch settings and determine the unit numbers of existing

datasets. Check to see whether any new unit numbers can be allocated and

assign the new unit number.

b. Read all relevant parameters needed by the module.

c. Read all parameters describing the dataset to be used.

d. Read all datasets needed by the module.

e. Prepare for computations.

f. Perform the computations.

g. Output the results to the preassigned units.

h. Set the relevant switches and update the unit numbers of the new datasets.

i. Output a limited log file to record essential parameters and I/O activity.

j. Update the history file to show which modules were executed.

k. Stop execution of the module with ‘Successful termination’ message.

This structure seems to be very successful, in that modules that are truly indepen-

dent of each other have been constructed, which, therefore, can be executed in any

order as long as the relevant datasets have been created. Under these conditions

a research project can be implemented with relative ease, either interactively, or

with the use of DOS batch files. (The use of DOS batch files to enhance research

efficiency is discussed in Section 6.)

4

3. Data Management

In this section we present the details of unit or dataset management built into

the system as a whole. Specific modules make use of this procedure according to

their requirements. Here the terms data management and unit management have

the same meaning, because datasets generated by the PNFC reside on files with

filenames fort.xx, where xx is some integer refering to a Fortran unit number as-

signed internally by the module being executed. (The filename fort is automatically

assigned when a Fortran binary-write is executed.)

a. Initialization of the system.

The system has to be initialized before starting any research project with a

new dataset. Both the system parameters and the unit numbers where different

datasets will reside are initialized in this procedure. Here we will describe how
the unit numbers are set and manipulated at the start of the research project. In

Appendix B the output of the initialization module is shown and an explanation of

features not covered in this section is presented.

When the UINITUN (Utility, INITialize Unit Numbers) module is executed,

the initial unit numbers for the far-field and the near-field datasets are read from

a parameter file (INIT.IUN) and entered into the unit number files named FF.IUN
and NF.IUN. After initialization the modules URDFFNF or URDNFFF can be

executed to read in the existing direct-access complex binary dataset containing the

original data to be analyzed. (Subsequently, the same modules will access datasets

according to the unit management switch settings. See Section 3b below.) Both

modules output both far-field and near-field datasets to fort.xx files; the filename

extensions xx are obtained from the files FF.IUN and NF.IUN.

All far-fields datasets created after initialization will be assigned unit num-
bers one less than the previously assigned far-field unit number, and all near-field

datasets created after initiahzation will be assigned unit numbers one higher than

the previously assigned near-field unit number. Hence, the far-field and near-field

unit numbers will converge toward each other as datasets are created by executing

module after module. Before any module proceeds with execution of its task it

checks to see whether there is enough of a difference between the last far-field and

the last near-field unit numbers to allow the creation of additional datasets. If the

far-field and near-field unit numbers are adjacent to each other, no module that

creates a new dataset is allowed to proceed, and an appropriate error message to

that effect is displayed. In this manner, disk overload is prevented, because new
datasets cannot be created indefinitely.

b. The Complex Binary Dataset (CBD) files.

Except for the original datasets, which are stored as direct-access binary files,

the modules read and write complex binary datasets (CBD) during execution to

store intermediate results in the course of the research project. These datasets

are recorded with the filename fort and with integer unit numbers for extensions.

The unit numbers are automatically assigned, as described in the previous section.

For example, fort.40 would contain the initial near-field data, while fort. 60 would

5

contain the initial far-field data. To maximize disk storage, all datasets are stored

as unformatted binary files.

Because all modules read and/or write one or more CBD files, we must keep

track of these files and must be able to access a desired dateset with relative ease.

For this purpose a support system to manage unit numbers has been constructed.

This works as follows:

An existing dataset is identified by its unit number^ which is the extension of

the fort file. An existing unit number is any unit number that has been created since

initialization. An existing unit number, in general, has no special status and is not

automatically accessed by any module until it is made active^ additional, or current.

A unit number is active if its value is recorded in the ACTIVE.lUN file, whereas a

unit number is additional if its value is recorded in the ADD.IUN file. The current

unit numbers are the last unit numbers recorded in the files FF.IUN and NF.IUN. In

general, these are the unit numbers created by the most recently executed module,

but can be altered according to the user’s needs. A general purpose module will

access either the current near-field unit number or the current far-field unit number,

depending on the setting of the variable FFNF recorded in the file FFORNF.IUN.
The variable FFNF can have the values ‘ff’ or ‘nf’.

When modules access datasets a precedence rule is followed: the ACTive file

gets accessed first, and the ADD itional file gets accessed if the module requires two

datasets. The current file gets accessed only if the ACTive file is set to zero, and any

existing file can be accessed only if it is made ACTive, ADD itional or current. To
access a desired current file with modules that process either far-field or near-field

datasets the ‘FFORNF’ switch has to be set to tell the system whether far-field or

near-field unit numbers are of interest.

Several utilities have been written to define these file types easily. These utili-

ties are listed in Table 3. To view the existing unit numbers we execute USHOWUN
(Utility, SHOW Unit Numbers), which summarizes the existing files according to

their type (as defined in FFORNF.IUN) and status (ACT, ADD, current, existing).

USHOWUN will also identify the unit numbers of special datasets, such as the TS
(Taylor Series) file, EC (error corrected) and DS (direct sum) files. To activate a

dataset, execute one of the special utilities listed in Table 3. Similarly, we can add

a dataset. To make a dataset current, we can execute the decrementing or incre-

menting modules (UDECFF, UDECNF, UINCFF, UINCNF) repeatedly until the

desired unit number is the last unit number shown by USHOWUN. Two examples

of the output of USHOWUN are given in Appendix C with explanations.

c. Output files.

Most modules read and write CBD files according to the unit management

scheme built into every module. In addition, some of the modules create special

ASCII files to be used as input to graphics programs. The module UCBDGRD, for

example, reads the ACTive or current CBD file, with filename fort and an extension

defined by the active or current unit number. It then outputs ASCII files, whose

filenames are obtained by concatenating the setting of the switch FFORNF with

the descriptors AMP or PHASE, and appending a filename extension .GRD. The

6

structure of these files is determined by the requirement of the graphics package

in use. Similary, the module UCBDDAT creates ASCII files for simple a:y-plots,

with filenames obtained the same way as for .GRD files, but using .DAT as the

filename extension. This module outputs a set of x-values and one, two, or three

y-values. The actual number of data columns output by UCBDDAT is determined

by the ACTz've, KDT>itional and current switch settings. The rules are as follows:

to write only a single column of y-values, the active file must be nonzero and the

additional file must be zero. To write two sets of y-values, the additional file must

also be nonzero. To write three sets of y-values, both the active and additional unit

numbers must be zero, in which case the current unit number will be used to create

the first column, and the next two adjacent existing unit numbers will be used

to create columns two and three in the .DAT file. A simple module UACTADDO
(Utility, set ACTive and ADDitional to zero) will reinitialize the unit numbers so

that up to three columns of data might be written.

All research modules create output files that contain information about the

execution flow of the module. These files have filenames identical to the module

names and .OUT file extension. Parameters used and the unit numbers accessed or

created are listed in these files, so that an orderly cross-referencing can be conducted

if some of the results are brought into question. In addition, these modules record

their activity in a history file (.HST) so that the sequence of executions can be

checked at a later time.

4. Research Modules

In Table 2 we list the currently existing modules. These modules were designed in

the course of a research project where the goal was to understand the propagation of

errors in near-field data to the far field data, and to develop techniques to remove the

effects of these errors from the far-field data. Thus, some of these modules are very

specific to this research projects; others, however, have more general applicability.

To illustrate the use of these modules in research, we provide first a simple,

then a more elaborate, example of a computational sequence that delivers results

required by two representative research problems.

A simple research problem.

Given a near-field dataset, obtain perspective plots of the near field and of the com-

puted far field.

Using ’x’ to mean ’execute’ a module, this simple task would be accomplished

by entering the following batch commands at the DOS prompt:

X uinitun

X urdnfff

X ucbdgrd

pit ff

X uswtonf

X ucbdgrd

pit nf

7

Here “plt is a DOS batch file that calls on the system plot package to process the

graphical data files output by UCBDGRD. The details of this procedure would vary

from system to system, depending on the graphics package used.

From Table 2 we can easily ascertain that the above sequence of computational

steps will deliver the results required. First, by executing UINITUN we initialize

the system variables and unit numbers. As a result, all previous settings will be

lost. Next, we read in the original near-held dataset and transform it to the far

held. At this point, the data management system sets the ffornf variable to ff,

because the last held created was a far held. Then, UCBDGRD will access the

far-held dataset to create a perspective plot hie. To create a plot hie using the

current near-held dataset, we must set the system variable ffornf to nf. Hence,

we execute USWTONF, and then UCBDGRD will access the near-held dataset to

create a perspective plot hie for the near held.

A more complicated research problem.

Given a near-field dataset and a known probe-position error function, use the Tay-

lor series expansion to generate error-contaminated near-field values. Then, remove

these errors from the data using a well defined error- correction technique, and com-

pare the error-free, error-contaminated and error- corrected near and far fields by

looking at the respective complex ratios of field values at each data point. Present

the results in perspective plots and/or linear plots, showing amplitude ratios and

phase differences.

Using the existing set of research modules, this relatively involved research task

can be brought to conclusion as follows:

X uinitun

X umakedz

X urdnfff

X uswtonf

X utsz

X uecz4

Executing this sequence, we have accomplished the hrst part of the research.

Again, we started by initializing the system parameters and unit numbers. Then,

a probe-displacement error held is created by executing UMAKEDZ, which reads

relevant parameter hies as shown in Table 4 to obtain the desired error function’s

specihcations. This routine also creates a .GRD hie for obtaining a perspective

plot of the error function. Next, the original near-held dataset is read in and

the corresponding far-held dataset is calculated. We execute USWTONF so that

the current near held will be read by module UTSZ. Then errors are introduced

into the original near-held dataset by executing module UTSZ, which carries out

a Taylor series expansion with respect to the Z coordinates. The errors that have

been introduced are then removed by executing UECZ4, which removes probe-

position errors in the Z coordinate up to the fourth order. A discussion of this

error-correction technique is given elsewhere by the authors [2].

8

At this point each dataset has been recorded on the disk in complex binary

data files with filenames fort and file extensions .a:x, where xx is some unit number

automatically assigned by the data management section of the system. We can

now obtain the far field corresponding to each near field that has been created. We
proceed as follows:

X udecnf

X urdnfff

X uincnf

X urdnfff

All far-field datasets of interest have now been created. By executing UDECNF,
the current near field unit number has been decremented by one (assuming that

the unit increment/decrement parameter is one, the default), thereby making the

near field obtained prior to the last near field current. Then executing URDNFFF
transforms this near-held dataset into a far-held dataset, which is stored as ^fort.xx

hie with the next available hlename extension xx having been obtained from FF.IUN.

Next, UINCNF increments the near-held unit number to increase the current unit

number by one, which, in this case, is the last near held created. Again executing

URDNFFF creates the corresponding far-held dataset. This procedure has relied on

using the current near-held unit number to specify which near-held dataset is to be

read in and transformed into a far-held dataset. An entirely equivalent procedure,

which would make use of active unit numbers to accomplish the same task, proceeds

as follows:

X uacttsz

X urdnfff

X uactecz

X urdnfff

Only plotting and comparing the various near helds and far helds is left. The
module UDIVCBD can be used to form the complex ratio of two near-held or far-

held datasets. As discussed in the data-management section, the desired datasets

may be loaded by dehning an active and an additional unit number, or if these are

set to zero, then the two most recently created helds (near or far) will be used,

depending on the setting recorded in hie FFORNF.IUN. Thus, to take the ratio of

the error-contaminated near held to the original near held, we execute the following:

X uswtonf

X uacttsz

X uaddnfO

X udivcbd

Similarly, to take the ratio of the error-corrected near held and of the original

near held we execute the following:

X uactecz

X uaddnfO

9

X udivcbd

In both of the above sequences of operations complex ratio fields are created,

which are recorded sequentially using near-field unit numbers, after USWTONF was

executed at the beginning of the sequence. The second execution of UADDNFO is

really redundant, because the first execution of this module is still in effect.

To create far-field ratios the procedure is somewhat different, since far fields

have not been labeled by special identifiers, such as ts and ec. Any far field can

be made current by incrementing or decrementing the far-field unit numbers an

appropriate number of times, and can be selected by executing one of the modules

UACTFF or UADDFF. Thus, to form all ratios we execute the following sequence:

X uswtoff

X uaddffO

X uincff

X uactff

X udecff

X udivcbd

X uincff

X uactlf

X udecff

X udivcbd

All far-field ratios of interest have now been created and recorded on far-

field unit numbers. This was accomplished by first switching to the far fields

(USWTOFF), then making the original far field the additional field (UADDFFO),
followed by making the far field created before the last one the active field (UINCFF,
UACTFF and UDECFF) and taking the ratio (UDIVCBD). After the ratio was

taken the current far-field unit number was automatically decreased. Next, the

previously created far field was made current (UINCFF) and active (UACTFF),
the current unit number reincremented (UDECFF) and then the ratio (UDIVCBD)
was taken. Each ratio field was automatically assigned the next available far-field

unit number.

At this point we can obtain a system status report, so that any problem with

the sequence of operations could be detected. For this purpose we execute the

module USHOWUN, whose output is presented in the second table in Appendix C,

with a detailed discussion.

After examining the output of USHOWUN and ascertaining that no errors were

made, we can plot any of the existing fields (fort.xx files). First, an ASCII plot file

(.GRD) needs to be created using the module UCBDGRD, after which plots can

be created using the plot package. The module UGBDGRD will read the current

far- or near-field dataset, depending on the setting of the switch ffornf. This setting

can be selected by executing USWTOFF or USWTONF. The chosen current file

will then be accessed unless the active file is nonzero. A desired unit number can

be made active by executing one of the modules that have the phrase ACT in their

name followed by the appropriate .lUN filename designator.

10

Sample plotting procedures would be as follows:

X uactO

X uswtonf

X unorml

X ucbdgrd

pit nf

and

X unormO

X uacttsz

X ucbdgrd

pit nf

and

X uactO

X uswtoff

X unorml

X ucbdgrd

pit ff

In all three examples we first specify the type of fields we want to access. Thus,

in the first example, we first set the active file to zero and then execute USWTONF
so that the current near field is accessed. Then, UNORMl sets the normalization

constant to one, since we wish to plot a ratio field, which should not be renormalized

when it is converted to decibels. Next, the plot file is created by UCBDGRD. In

the second example, the normalization constants are restored to their proper values

(UNORMO), the error-contaminated near field that was created using the Taylor

series is activated (UACTTSZ), and then UCBDGRD creates a plot file of the error-

contaminated near field. In the third example, we again plot a ratio field since the

current far field is accessed. All three cases use the DOS batch command pit to plot

either the far field (ff) or the near field (nf).

11

5. Output Files.

All research modules have been constructed to write an output file where the param-

eters and data files used during execution are clearly listed. This way the settings of

input/output parameters can be cross-referenced, and the correctness of the com-

putational sequence and numerical inputs can be ascertained. These output files

have the name of the modules as their filenames and .OUT for the file extension.

Certain modules write ASCII datasets to be used by the graphics package on

the system. The module UCBDGRD creates two-dimensional ASCII datasets for

perspective and contour plots, and the module UCBDDAT creates ASCII datasets

(.DAT) for simple xy-plots. The module URMSCBD creates a .DAT file to plot the

rms distribution of the power radiated in a far field. These .GRD and .DAT ASCII

files may also be used to examine the data for any features we might be interested

in.

The module UPRNCBD creates an ASCII file that contains a printout of the

absolute amplitude and the phase of the rows and/or columns of any far- or near-

field CBD (Complex Binary Data) file, which is chosen according to the switch

setting of ffornf Sind the settings of the current and the active unit numbers. Thus,

if the active unit number is zero, then the current file will be printed. The particular

rows and/or columns to be printed over a specific data range are specified in the

parameter file SUB.PRN. The module UPRDBCBD converts all the amplitudes to

dB before creating a similar table.

6. DOS Batch Files

DOS batch files can be used to advantage to save time and effort when performing

step-by-step computations to obtain a result. We can write batch files merely as

abbreviations of longer commands, or to collect a set of executable steps that will

be used many times over. The complexity of the batch files and their usefulness are

limited only by the programmer’s knowledge of the DOS operating system and the

programmer’s imagination.

The use of the plt.bat file has been illustrated in the previous section a number

of times. Another example of a batch file is the abbreviation of the execution of

the first simple research problem discussed above. Thus, the batch file would

look like this:

call x uinitun

call x urdnfff

call x ucbdgrd

call x uswtonf

call x ucbdgrd

call pit nf

call pit ff

Simply typing pltnfff at the DOS prompt would execute all the steps in this

batch file. We now have a very easily usable, high-level program that will produce

plots of the current near- and far-field datasets. The DOS expression call is used here

12

to continue execution within the batch file to the last line. Without call execution

would not return to the next step, but exit to the DOS prompt.

The second research problem is the implementation of an error-correction tech-

nique after an error-contaminated near-held dataset has been created using the Tay-

lor series expansion with a predehned probe-position error function. What might

change from one implementation to the next is the original dataset to be used, and

the form and magnitude of the error function. These are all inputs to the complete

procedure; that is, the program execution steps are the same, independent of these

parameters. Therefore, a DOS batch hie is appropriate for recording the steps of

this relatively complicated research project. This batch hie could be appropriately

called errcor.bat (error correction), and would look like this:

call X uinitun

call X umakedz

call X urdnfff

call X uswtonf

call X utsz

call X uecz4

call X uacttsz

call X urdnfff

call X uactecz

call X urdnfff

call X uswtonf

call X uacttsz

call X uaddnfO

call X udivcbd

call X uactecz

call X udivcbd

call X uswtoff

call X uaddffO

call X uincff

call X uactff

call X udecff

call X udivcbd

call X uincff

call X uactff

call X udecff

call X udivcbd

This batch hie goes as far as creating all the required near and far helds of the

research project, as well as the ratio helds. It stops short of plotting any of the

existing helds. A separate batch hie would be appropriate for creating a desired set

of plots.

Batch hies using executable modules of the PNFC allows us to create and
save complicated research procedures in a straightforward and efficient manner.

13

A collection of such batch files can greatly enhance the computational scope and

efficiency of any research project.
7.

Symbol Definitions

Table 6 lists descriptors used in naming the subroutines of the PNFC. This table

should make reading the source codes easier. We hope that authors of new code

will use existing symbols as far as possible to contribute to the coherence of the full

package.

8. Subroutine Descriptors

Table 7 lists the available subroutines along with brief descriptions of their functions.

This can be helpful when creating new modules or when planning to write new
subroutines to perform computational tasks not yet addressed in the package.

9. Table of Dependencies

Appendix D is a table of dependencies for the research modules, listing in the order

called the first occurence of each distinct subroutine call for each module listed

in table 2. Similarly, Appendix E is a table of dependencies for the subroutines,

showing the interrelationships between the various subroutines. This also serves as

an index of subroutines, because all existing subroutines are included alphabetically

in the leftmost column. In each case, the subroutines called by the routines on the

left are listed in the order in which they are called. In this manner we can get an

overview of both the contents and structure of the complete code. These files can

be used to advantage when developing new code, or when improving the existing

code is contemplated.

14

10. Conclusion

In this report we have outlined the computational structrure of a newly created

software package named Planar Near-Field Codes (PNFC) for personal computers.

This package supports the computational effort needed to solve research problems

in antenna metrology.

The PNFC package can be used to address diverse research problems because

of its highly modular structure. The modules have been constructed to provide

the computational procedure for recurring research themes in antenna metrology

as well as for research problems that arise in connection with the specific task of

correcting for probe position errors in planar near-held data. We have implemented

a data management procedure that automatically keeps track of the various datasets

being created and stored during the course of research. Because of the highly

modular nature of the PNFC new research modules can be easily constructed and

incorporated into the total system. A large number of independent subroutines are

available to support new efforts, and new subroutines can be added without any

difficulty.

Streamlining computations along the lines presented in this software package

can reduce signihcantly the time needed to obtain answers to complicated research

problems. Adding to the current version of the package will in time result in a truly

comprehensive software package capable of dealing with most computational needs

of antenna metrology. For this reason all users are encouraged to add to the effort

as they see appropriate.

References

[1] L. A. Muth and R. L. Lewis, Planar Near-Field Codes for Personal Computers,

National Institute of Standards & Technology Internal Report, NISTIR 89-

3929, Oct. 1989.

[2] L. A. Muth and R. L. Lewis, A general technique to correct probe position

errors in planar near-field measurements to arbitrary accuracy, IEEE Trans.

Antennas Propagat., vol AP-38, no. 12, pp 1925-1932, Dec. 1990.

15

Table 1

Definition of Symbols Used in Naming Modules

SYMBOL MEANING

0

1

2

act

actO

add

addO

initial, set to 0

version 1

squared quantity

active, activate

set ACTive switch to 0

additional

set ADDitional switch to 0

amp
ap

cbd

amplitude

amplitude, phase

complex binary dataset

cor

db

dif

div

drv

ds

dacb

dat

dbp

dc

dec

deriv

dif2

difa

dz

correct, corrected, correction

in decibels

difference

divide, divided (ratio)

derivative

direct sum
direct access complex binary (file)

.DAT (file)

dB, phase complex storage

decrement

decrement

derivative

difference between squared amplitudes

difference in amplitude

function dz

ec error correction

err

ff

ffO

grd

hst

error

far field

original far field

•GRD (DOS file extension)

history

inc

init

laplcn

make
nf

nfO

increment

initialize

Laplacian

make
near field

original near field

nc

normO

norml

increment

normalization of original datasets

normalization with 1

16

op operator

prn print

rbd real binary dataset

rd read

rms root mean square

show show

sw switch

to to

ts Taylor series

u utility

un unit number

17

Table 2

List of Modules That Perform Basic Computational Tasks

UAMP2CBD read a near-field or a far-field dataset and write its squared ampli-

tude to a complex binary data file

UAPDACB read an amplitude, phase ASCII file and write a direct-access com-

plex binary file

UCBDDAT
UCBDGRD

read a complex binary data file and create a .DAT file for x-y plots

read a complex binary data file and create a two-dimensional .GRD
file for contour or surface plotting

UDBPDACB read a dB,phase ASCII file and write a direct-access complex binary

file

UDERIV read a near-field dataset and write the derivative of some specified

order

UDIF2CBD read two far-field or near-field datasets and write the difference of

UDIFACBD
the squared amplitudes to a CBD file

read two far-field or near-field datasets and write the difference of

UDIFCBD
the amplitudes to a CBD file

read two far-field or near-field datasets and write the complex dif-

ference to a CBD file

UDIFDB read two far-field or near-field datasets and write the difference of

UDIVCBD
amplitudes in dBs and the phase difference to a CBD file

read two far-field or near-field datasets and write the complex ratio

to a CBD file

UDIVRBD
UDSX

read two real binary data files and write the ratio to a RBD file

create a near-field dataset containing x-axis position errors using

the direct-sum algorithm

UDSXY create a near-field dataset containing both x-axis and y-axis posi-

tion errors using the direct-sum algorithm

UDSXYZ create a near-field dataset containing position errors along all three

coordinate axes using the direct-sum algorithm

UDSY create a near-field dataset containing y-axis position errors using

the direct-sum algorithm

UDSZ create a near-field dataset containing z-axis position errors using

the direct-sum algorithm

UECX4 read a near-field dataset containing x-axis position errors and per-

form a fourth-order error correction

UECY4 read a near-field dataset containing y-axis position errors and per-

form a fourth-order error correction

UECZ2 read a near-field dataset containing z-axis position errors and per-

form a second-order error correction

UECZ3 read a near-field dataset containing z-axis position errors and per-

form a third-order error correction

18

UECZ4

UKCORR

ULAPLCN

UMAKEDX

UMAKEDY

UMAKEDZ

UOPNORM
UPRDBCBD

UPRNCBD

UPRRICBD

URBDDAT

URBDGRD

URDFFNF
URDNFFF
URMSCBD

USUBGRD

UTSNFAP

UTSTZ

UTSX

UTSXY

UTSY

UTSZ

read a near-field dataset containing z-axis position errors and per-

form a fourth-order error correction

read a near-held dataset containing z-axis position errors and mul-

tiply by the phase-correction factor to obtain a zeroth-order

error correction

read a near-held dataset and form the Laplacian and check that it

satishes the scalar wave equation

create an array DX using a specihed error function and write a

GRD hie to plot the error function

create an array DY using a specihed error function and write a

GRD hie to plot the error function

create an array DZ using a specihed error function and write a

GRD hie to plot the error function

calculate the norm of the error operator

print the amplitude in decibels and the phase in degrees of specihed

rows and columns of a complex binary data hie

print the magnitude and phase of specihed rows and columns of a

complex binary data hie

print the real and imaginary values of specihed rows and columns

from a complex binary data hie

read a real binary data hie and create a .DAT hie for plotting a

specihed row and column as x-y plots

read a real binary dataset and create a two-dimensional .GRD hie

for plotting contour or surface plots

read a far-held dataset and transform it to a near-held dataset

read a near-held dataset and transform it to a far-held dataset

sum the rms values at grid points of a CBD hie, and create a .DAT
hie for plotting

convert a specihed part (SUB) of a CBD hie to a GRD hie for

plotting

create two additional near-held data sets by mixing amplitudes and

phases from two existing near-held data sets

create an error-held dataset containing z-coordinate position errors

using the Taylor series method

introduce x-coordinate position errors into a near-held dataset us-

ing the Taylor series method

introduce both x- and y-coordinate position errors into a near-held

dataset using the Taylor series method

introduce y-coordinate position errors into a near-held dataset us-

ing the Taylor series method

introduce z-coordinate position errors into a near-held dataset us-

ing the Taylor series method

19

Table 3

List of Modules That Perform Basic Data Management Functions

UACTO
UACTADDO
UACTDDB
UACTDIF
UACTDIV
UACTDRV
UACTDS
UACTECX
UACTECY
UACTECZ
UACTFF
UACTFFO
UACTKEC
UACTNF
UACTNFO
UACTTSX
UACTTSXY
UACTTSY
UACTTSZ
UADDO
UADDDRV
UADDDS
UADDECX
UADDECY
UADDECZ
UADDFF
UADDFFO
UADDNF
UADDNFO
UADDTSX
UADDTSXY
UADDTSY
UADDTSZ
UDCDFDV
UDECFF
UDECNF
UINCFF
UINCNF
UINITUN
UNCDFDV
UNORMO

set the active unit number to 0

set the active and additional unit numbers to 0

set the active unit number to the value in difdb.iun

set the active unit number to the value in dif. iun

set the active unit number to the value in div.iun

set the active unit number to the value in drv.iun

set the active unit number to the value 0 and write error message

set the active unit number to the value in ecx.iun

set the active unit number to the value in ecy.iun

set the active unit number to the value in ecz.iun

set the active unit number to the final value in ff.iun

set the active unit number to the initial value in ff.iun

set the active unit number to the value in kec.iun

set the active unit number to the final value in nf.iun

set the active unit number to the initial value in nf.iun

set the active unit number to the value in tsx.iun

set the active unit number to the value in tsxy.iun

set the active unit number to the value in tsy.iun

set the active unit number to the value in tsz.iun

set the additional unit number 0

set the additional unit number to the value in drv.iun

set the additional unit number to 0 and write error message

set the additional unit number to the value in ecx.iun

set the additional unit number to the value in ecy.iun

set the additional unit number to the value in ecz.iun

set the additional unit number to the final value in ff.iun

set the additional unit number to the initial value in ff.iun

set the additional unit number to the final value in nf.iun

set the additional unit number to the initial value in nf.iun

set the additional unit number to the value in tsx.iun

set the additional unit number to the value in tsxy.iun

set the additional unit number to the value in tsy.iun

set the additional unit number to the value in tsz.iun

decrement the unit number recorded in difdiv.iun

decrement the value of the current far-field unit number
decrement the value of the current near-field unit number

increment the unit number recorded in ff.iun

increment the unit number recorded in nf.iun

initialize the system parameters and unit numbers

increment the unit number recorded in difdiv.iun

set the far-field and near-field normalization constants to their

initial values

20

UNORMl
URESTFF
URFSTNF
USAVFFF
USAVFNF
USCLDXl
USCLDX2
USCLDX3
USCLDYl
USCLDY2
USCLDY3
USCLDZl
USCLDZ2
USCLDZ3
USFTDBl

USFTDB2

USFTDB3

USHOWUN

USWBOTH
USWFFNF
USWTOAMP
USWTODB
USWTOFF
USWTONF
USWTONON

set the far-field and near-field normalization constants to unity

restore the unit numbers in ff.iun to the values saved in save.ffs

restore the unit numbers in nf.iun to the values saved in save.nfs

save the unit numbers recorded in ff.iun in save.ffs

save the unit numbers recorded in nf.iun in save.nfs

set the value of scale. dx to the first number in epsxyz.set

set the value of scale. dx to the second number in epsxyz.set

set the value of scale. dx to the third number in epsxyz.set

set the value of scale. dy to the first number in epsxyz.set

set the value of scale. dy to the second number in epsxyz.set

set the value of scale. dy to the third number in epsxyz.set

set the value of scale. dx to the first number in epsxyz.set

set the value of scale. dx to the second number in epsxyz.set

set the value of scale. dx to the third number in epsxyz.set

copy the first set of values of dbctoff,dbfloor in dbmins.set to

dbmin.db

copy the second set of values of dbctoff^dbfloor in dbmins.set to

dbmin.db

copy the third set of values of dbctoff,dbfloor in dbmins.set to

dbmin.db

display on the screen the current system parameter settings

and the current unit settings

record the value ffnf into ffornf.iun

toggle the value recorded in ffornf.iun between ff 3,nd nf

record the value amp in ampordb.grd

record the value dB in ampordb.grd

record the value ff in ffornf.iun

record the value nf in ffornf.iun

record the value none in ampordb.grd

21

Table 4

List of Parameter Files Used by the Research Modules and the Data Files They Create

MODULE PARAMETER FILES DATA FILES

UAMP2CBD dabd.iof, difdiv.iun uamp2cbd.out, amp2.iun, fort.a:cc^

UAPDACB adab.iof [adab.iof]^

UCBDDAT dabd.iof, ampordb.grd nfyamp.dat, nfyphase.dat

ampnom.nf, ampnorm.ff nfxamp.dat, nfxphase.dat

difdiv.iun, dbmin.db ffyamp.dat, ffyphase.dat

dbloss.grd, iregion.nf ffxamp.dat, ffxphase.dat

iregion.ff, plot.dir ucbddat.out

UCBDGRD ampordb.grd, ampnorm.nf nfamp.grd, nfphase.grd

ampnorm.ff, dbloss.grd ffamp.grd, ffphase.grd

dbmin.db
,
dabd.iof, plot. dir ucbdgrd.out

UDBPDACB adab.iof [adab.iof]^

UDERIV order.drv, dabd.iof, sub.grd order. drv, uderiv.out, fort.xa:^

dbmin.db, plot. dir drv.iun, drvamp.grd, drvphase.grd

UDIF2CBD difdiv.iun, dabd.iof udif2cbd.out, dif2.iun, fort.xx^

UDIFACBD difdiv.iun, dabd.iof udifacbd.out, dif2.iun, iovi.xx^

UDIFCBD difdiv.iun, dabd.iof udifcbd.out, dif.iun, iovt.xx^

UDIFDB ampnorm.nf, ampnorm.ff ddbamp.grd, ddbphase.grd

difdiv.iun, dabd.iof, dbmin.db udifdb.out, difdb.iun, fort.a:x^

UDIVCBD difdiv.iun, dabd.iof udivcbd.out, div.iun

iregion.ff, iregion.nf fort.xx^

UDIVRBD difdiv.iun, dabd.iof udivrbd.out, rdiv.iun

iregion.ff, iregion.nf fort.zx^

UDSX sub.ds, filter. ff, scale.dx ds.iun, uds-out.xx

sub.prn, dabd.iof, fun.dx

dx.iun

dsnf.xx^

UDSXY sub.ds, filter.ff, scale.dx ds.iun, uds_out.xx

scale.dy, sub.prn, dabd.iof

fun.dx, fun.dy, dx.iun, dy.iun

dsnf.xx^

UDSXYZ sub.ds, filter.ff, scale.dx ds.iun, uds_out.xx

scale.dy, scale. dz, sub.prn

dabd.iof, fun.dx, fun.dy

fun.dz, dx.iun, dy.iun, dz.iun

dsnf. xx^

UDSY filter.ff, scale. dy, dabd.iof ds.iun, uds-out.xx

sub.ds, sub.prn, fun.dy, dy.iun dsnf.xx^

UDSZ filter.ff, scale. dz, dabd.iof ds.iun, uds-out.xx

sub.ds, sub.prn, fun.dz, dz.iun dsnf.xx^

UECX4 tsx.iun, dx.iun, fun.dx

scale.dx, dabd.iof

uecx4.out, ecx.iun, fort.xx^

UECY4 tsy.iun, dy.iun, fun.dy

scale.dy, dabd.iof

uecy4.out, ecy.iun, fort.xx^

22

UECZ2 tsz.iun, dz.iun, fun.dz

scale. dz, dabd.iof

uecz2.out, ecz.iun, fort.rca:^

UECZ3 tsz.iun, dz.iun, fun.dz

scale. dz, dabd.iof

uecz3.out, ecz.iun, fort.ss^

UECZ4 tsz.iun, dz.iun, fun.dz

scale.dz, dabd.iof

uecz4.out, ecz.iun, iovi.xx^

UKCORR dabd.iof, tsz.iun, dz.iun

fun.dz, scale.dz

ukcorr.out, kec.iun

fort.xz^

ULAPLCN dabd.iof, plot. dir Inamp.grd, ampO.grd, ulaplcn.out

Inphase.grd, phaseO.grd

UMAKEDX dabd.iof, fun.dx, polydx.par

perdx.par, randx.par

iregion.ff, iregion.nf, [dx.grd]^

dx.iun, umakedx.out, fort.a;2:^

UMAKEDY dabd.iof, fun.dy, polydy.par

perdy.par, randy.par

iregion.ff, iregion.nf, [dy.grd]^

dy.iun, umakedy.out, fort.zz^

UMAKEDZ dabd.iof, fun.dz, polydz.par

perdz.par, randz.par

iregion.ff, iregion.nf, [dz.grd]^

dz.iun, umakedz.out, fort.xx^

UOPNORM dabd.iof, scale. dz, iregion.ff

difdiv.iun, iregion.nf, fun.dz

uopnorm.out

UPRDBCBD ampnorm.nf, ampnorm.ff

dabd.iof, dbloss.grd

dbmin.db, sub.prn

uprdbcbd.out

UPRNCBD dabd.iof, sub.prn uprncbd.out

UPRRICBD dabd.iof, sub.prn uprricbd.out

URBDDAT dabd.iof, plot. dir, sub.dat

iregion.ff, iregion.nf

ff_y_mag.dat, ff_x_mag.dat

nf-x_mag.dat, nf_y_mag.dat

urbddat.out

URBDGRD dabd.iof, plot. dir ff_mag.grd, nf_mag.grd, urbdgrd.out

URDFFNF filter. ff, dabd.iof

ffnf.dz, ampnorm.ff

ampnorm.nf, db.ff, db.nf

iregion.ff, iregion.nf, db.ff

db.nf, urdffnf.out, ampnorm.ff

ampnorm.nf, ffornf.iun, fort.xx^

URDNFFF filter. ff, dabd.iof

ampnorm.ff, ampnorm.nf

db.ff, db.nf

iregion.ff, iregion.nf, db.ff, db.nf

urdnfff.out, sub.ds, ampnorm.ff

ampnorm.nf, ffornf.iun, iovt.xx^

URMSCBD dabd.iof, ampnorm.ff

plot. dir

db.ff, db.nf, ampnorm.ff

urmscbd.out, rms.dat, ioit.xx^

USUBGRD dbloss.grd, dabd.iof, plot. dir

ampnorm.nf, ampordb.grd

ampnorm.ff, dbmin.db, sub.grd

ffamp.grd, ffphase.grd

nfamp.grd, nfphase.grd

usubgrd.out

UTSNFAP tsz.iun, dabd.iof utsnfap.out, tsamp.iun, tsphs.iun

fort.xz^

UTSTZ dz.iun, dabd.iof

fun.dz, scale. dz

utstz.out, tstz.iun

iovi.xx^

UTSX dabd.iof, filter.ff, sub.prn

dx.iun, fun.dx, scale.dx

iregion.ff, iregion.nf, tsx.iun

utsx.out, fort.xa;^

23

UTSXY dabd.iof, filter.ff, sub.pm
dx.iun, fun.dx, scale.dx

dy.iun, fun.dy, scale.dy

iregion.ff, iregion.nf, tsxy.iun

utsxy.out, fort.xx^

UTSY dabd.iof, filter.ff, sub.pm
dy.iun, fun.dy, scale.dy

iregion.ff, iregion.nf, tsy.iun

utsy.out, ioii.xx^

UTSZ dabd.iof, filter.ff, sub.pm
dz.iun, fun.dz, scale.dz

iregion.ff, iregion.nf, tsz.iun

utsz.out, fort.a:a:^

^ The DOS extension number xx added to the filename FORT is recorded in the

appropriate TUN file

^ The brackets [filename] is to be understood as the contents of the filename. For

example, the output file name is read in as a parameter from file adab.iof

^ The DOS extension number xx added to filename DSNF and to filename UDS-OUT
is recorded in file DS.IUN.

24

Table 5

List of Parameter and Data Management Files Used by the Data Management Modules

MODULE PARAMETER FILES OUTPUT FILE

UACTO active.iun

UACTADDO active.iun, add.iun

UACTDDB difdb.iun active.iun

UACTDIF dif.iun active.iun

UACTDIV div.iun active.iun

UACTDRV drv.iun active.iun

UACTDS - error! - active.iun

UACTECX ecx.iun active.iun

UACTECY ecy.iun active.iun

UACTECZ ecz.iun active.iun

UACTFF ff.iun active.iun

UACTFFO ff.iun active.iun

UACTKEC kec.iun active.iun

UACTNF nf.iun active.iun

UACTNFO nf.iun active.iun

UACTTSX tsx.iun active.iun

UACTTSXY tsxy.iun active.iun

UACTTSY tsy.iun active.iun

UACTTSZ tsz.iun active.iun

UADDO add.iun

UADDDRV drv.iim add.iun

UADDDS - ERROR! - add.iun

UADDECX ecx.iun add.iun

UADDECY ecy.iun add.iun

UADDECZ ecz.iun add.iun

UADDFF ff.iun add.iun

UADDFFO ff.iun add.iun

UADDNF nf.iun add.iun

UADDNFO nf.iun add.iun

UADDTSX tsx.iun add.iun

UADDTSXY tsxy.iun add.iun

UADDTSY tsy.iun add.iun

UADDTSZ tsz.iun add.iun

UDCDFDV difdiv.iun, ffornf.iun

ff.iun, nf.iun

difdiv.iun

UDECFF ff.iun ff.iun

UDECNF nf.iun nf.iun

UINCFF ff.iun ff.iun

UINCNF nf.iun nf.iun

25

UINITUN init.iun, data.dir active.iun, add.iun, amp2.iun

ampordb.grd, asci.iun, dif.iun

dif2.iun, difdb.iun, difdiv.iun

div.iun, drv.iun, dx.iun, dy.iun

dz.iun, ecx.iun, ecy.iun, ecz.iun

fF.iun, fFnf.dz, filter.fF, fun.dx

fun.dy, fun.dz, kec.iun, nf.iun

order.drv, rdiv.iun, tsamp.iun

tsphs.iun ,tstz.iun, tsx.iun

tsxy.iun, tsy.iun, tsz.iun

UNCDFDV difdiv.iun, fFornf.iim

fF.iun, nf.iun

difdiv.iun

UNORMO tempnorm.nf, tempnorm.fF tempnorm.nf, ampnorm.nf

ampnorm.nf, ampnorm.ff tempnorm.fF, ampnorm.ff

UNORMl ampnorm.nf, ampnorm.fF tempnorm.nf, ampnorm.nf

tempnorm.nf, tempnorm.fF tempnorm.fF, ampnorm.ff

URESTFF save.fFs fF.iun

URESTNF save.nfs nf.iun

USAVEFF fF.iun save.fFs

USAVENF nf.iun save.nfs

USCLDXl epsxyz.set, scale.dx scale.dx

USCLDX2 epsxyz.set, scale.dx scale.dx

USCLDX3 epsxyz.set, scale.dx scale.dx

USCLDYl epsxyz.set, scale.dy scale.dy
USCLDY2 epsxyz.set, scale.dy scale.dy
USCLDY3 epsxyz.set, scale.dy scale.dy
USCLDZl epsxyz.set, scale.dz scale.dz

USCLDZ2 epsxyz.set, scale.dz scale.dz

USCLDZ3 epsxyz.set, scale.dz scale.dz

USETDBl dbmins.set dbmin.db

USETDB2 dbmins.set dbmin.db

USETDB3 dbmins.set dbmin.db

USHOWUN active.iun, add.iun, amp2.iim

ampnorm.ff, ampnorm.nf, ampordb.grd

asci.iim, data.dir, dif.iun, dif2.iun

difdb.iun, difdiv.iun, div.iun, drv.iun

ds.iim, dx.iun, dy.iun, dz.iun, ecx.iun

ecy.iun, ecz.iun, fF.iun, fFnf.dz

fFornf.iim, filter.fF, fun.dx, fun.dy

fun.dz, kec.iun, nf.iu, order.drv

rdiv.iun, scale. dx, scale. dy, scale.dz

tsamp.iun, tsphs.iun ,tstz.iun, tsx.iun

tsxy.iun, tsy.iun, tsz.iun

USWBOTH fFornf.iun

26

USWFFNF fFornf.iim

USWTOAMP
USWTODB
USWTOFF
USWTONF
USWTONON

fFornf.iun

ampordb.grd

ampordb.grd

fFornf.iun

fFornf.iun

ampordb.grd

^ Output from module UDS is not written to a FORT.ix file, but rather to a file

named DSNF.xa: which is stored in another file directory as specified by the local file

DATA.DIR. Consequently, these unit numbers do not fit into a purely integer-unit

numbering scheme.

27

SYMBOL

0

1

2

a

b

c

d

e

f

g
i

k

1

m
n

o

P
r

s

t

w
X

y
z

as

bd

ca

cb

cc

ch

cm
cr

da

db

df

ds

dx

Table 6

List of Symbols Used in Naming PNFC Subroutines

MEANING

initialization designator

one dimensional, subsequent operation designator,

alternate procedure designator

two dimensional

”a”, access, array, ascii, amplitude

”b”, backward, binary

change, convert to, column, complex, constant, copy

data, derivative, difference, dimensional, direct (access),

disk (as a storage location), double precision

exponential, even

far, field, file, forward, formated, function

gamma, generate

imaginary, imaginary part, integer

k (integer constant), wave number, spectrum space k

1 (integer constant)

m (integer constant), maximum, minimum, minus, multiple

near (fresnel region), negative quantity

odd, or

parameter(s), phase, plot, plus, power, print, product, pseudo

read, real (single precision), real part, row

shift, shifted, single precision, store, sum, plural designation

taylor (series), times, transform

weight, weighted, write

coordinate (distance along x axis), general variable designation

name change letter (to avoid conflicts)

coordinate (distance along y axis)

coordinate (distance along z axis)

ascii

binary data

complex array ”a”

complex array ”b”

complex constant

character variable

centimeter

create

direct access

decibel

difference

direct sum
derivative with respect to x, increment in x direction

28

dy

dz

ec

eq ,

fF

fs

hd

hi

im

ik

iy

jx

In

mk
mm
mx
nf

or

pf

ph

rc

rd

re

rz

sm
sq

to

ts

ud

un

wl

wn
xp

amp
add

ary

asc

box

cos

chk

cnt

dat

dif

derivative with respect to y, increment in y direction

derivative with respect to z, increment in z direction, z error terms

error correction

equality

far field

fioating point

files

header

high

imaginary

third index of three dimensional array

first (column) index of an array

second (row) index of an array

logarithm

make
maximum/minimum
maximum
near field

or

plot file

phase

real constant

read

real

real dz array

sum
square, squared

to

taylor series

update

unit number, ’’unorm”

wave length

wave number
exponential

amplitude

add

array

ascii

box

cosine

check

center

file extension designation for two-dimensional plot files

difference

29

div divide

dnf derivative of near field

dot dot product (of two vectors)

drv derivative

end end

err error, error field

exp exponent

fbt forward/backward transform

fFt fast fourier transform

fil file

fit filter

fun function

get get

grd file extension designation for

hst history

iof input/output file

img imaginary

inp input

ins insertion

int integrate

iun integer unit number

leq less than or equal

log logarithm

mak make
mul multiply

mod modulate, modulated by

out output

par parameter

per periodic

pff psuedo far field

pit plot

ply polynomial

prg program

prn print

pws plane-wave spectrum

scl scale

set set, setup

sft shift

sin sine

str store

aray array

bndr boundry

char character

gama gamma

30

gamm gamma
file file

fils files

find find

fltr filter

func function

grid grid (coordinate grid)

init initalize

limt limit

loss loss

make make
mult multiply

mess message

prnt print

rndm random
swap swap

unit unit

gamma gamma
polyn polynomial

ratio ratio

const constant

Irigth length

range range

laplcan Laplacian

31

Table 7

List of Subroutines of the PNFC

ACPCFFD
ACPCNFD
ACTIUN
ADABIOF
ADABPAR
ADDBOX
AMPDIF2

APDSETl

APNAME
CABD
CABDIOF
CABDPAR
CABSl
CACBK3D

CACEIPH
CADACB

CADDl
CADD2
CADD3
CADDCC2
CAEIPH2

CAEIPHC

CANECB2

CAPCCDl
CAPRI

CAPRIl

CAPRI2D

CAPRNT

CARAYMX2

introduce Amplitude Change and Phase Change to Far-Field Data

introduce Amplitute Change and Phase Change to Near-Field Data

return integer value from ACTIVE.lUN if nonzero

get the Input Output File for ASCII to Direct Access Binary routines

read the PARameters for the ASCII to Direct Access Binary conversion

ADD a BOX function of amplitude EPS to complex CDATA
obtain the difference between the absolute values of different planes of a 3-

dimensional complex array and obtain the new array’s maxima and minima

(2-dimensional)

convert two columns or rows of a 3-dimensional array to real-imaginary or

amplitude-phase format and form a complex difference array (1-dimensional)

append a given filename to the character string ‘AP’

convert two ASCII datasets to a self-documented Complex Binary Dataset

get the Input Output File for the Conversion of ASCII to Binary Data

read PARameters for the Conversion of ASCII to Binary Data routines

compute ABSolute values of a Complex array (1-dimensional)

multiply a 3-dimensional complex array by a 2-dimensional complex array

raised to an integer power

Complex Array times Exponential to power I times real array (2-dimensional)

read two ASCII files and create a self-documented Direct-Access Complex

Binary file

ADDition of two Complex arrays (1-dimensional)

ADDition of two Complex arrays (2-dimensional)

ADDition of two Complex arrays (3-dimensional)

ADDition of a Complex Constant to a Complex Array (2-dimensional)

Complex Array times Exponential to power I times real array times real

constant (2-dimensional)

Complex Array times Exponential to power I times Phase Constant (2-

dimensional)

copy a complex array CA to complex array CB, where CA and CB may have

unequal column lengths (2-dimensional)

Complex Array Plus Complex Constant in Double precision (1-dimensional)

convert Complex numbers with Amplitude-Phase format to Real-Imaginary

format (2-dimensional)

convert Complex numbers with Amplitude-Phase format to Real-Imaginary

format (1-dimensional)

convert Complex numbers with Amplitude-Phase format numbers to Real-

Imaginary format using double-precision intrinsic functions

PRiNT the maximum and minimum values of a Complex Amplitude-Phase

array

find a Complex ARrAY’s MaXimum (2-dimensional)

32

CARBK3D

CARBKD3

CARCBD2

CASUMSQ

CATOCBl
CATOCB2
CBDTODB

CCA2B1

CDFSETl

CDIFl
CDIF2
CDIVDS2
CDOT
CGATHER
CHKEQFP
CHKEQI
CHKLEQI
CHKPARO

CHKPARl

CHKPAR2

CHLAST
CHLNGTH
CIMGSTR
CINITl
CINIT2

CIRCFLT
CMULDS2

CMULRD2
CMULTl
CMULT2
CMULTR2
CNIMCCl

multiply a 3-dimensional double-precision complex array by a 2-dimensional

double-precision array raised to an integer power (3-dimensional)

multiply a 3-dimensional complex array by a 2-dimensional double-precision

array raised to an integer power (3-dimensional)

Complex Array plus Real weight times Complex double-precision array (2-

dimensional)

Sum the squares of the absolute values of selected elements of a complex

array (2-dimensional)

Copy a complex array CA to CB (1-dimensional)

Copy a complex array CA TO CB (2-dimensional)

read a Complex Binary Dataset, and convert from (real, imaginary) TO
(amplitude, phase) format, with amplitude in DB
Copy a Complex Column of data from array CA (2-dimensional) to array

CB (1-dimensional)

Convert the DiFerence between two columns or rows of a 3-dimensional com-

plex array from real-imaginary to amplitude-phase (1-dimensional)

Complex DiFerence of two arrays (1-dimensional)

Complex DiFerence of two arrays (2-dimensional)

Complex Division of single-precision array by Double-precision array

Complex Dot product

sequentially copy regularly spaced elements of one array to another

CHecK for EQuality between two Floating Point numbers; stop if unequal

CHecK whether two Integers are EQual; stop if unequal

CHecK whether one Integer is Less than or EQual to another; stop otherwise

CHecK if a parameter exceeds its specified maximum value; stop and deliver

specialized error message

CHecK if a set of two parameters exceed their maximum values; stop and

print specialized error message

CHecK if a set of two parameters exceed their maximum values; stop and

print specialized error message

Locate the last non-blank character of a string 80 characters long

determine number of CHaracters up to the first blank in a character variable

SToRe the IMaGinary part of a specified row and column of a Complex array

INITialize a Complex array with a complex constant (1-dimensional)

INITialize a Complex array with a Complex constant (2-dimensional)

CIRCular FiLTer of a complex data array

Complex MULtiplication of a Double-precision complex array by a Single-

precision complex array (2-dimensional)

Complex MULtiplication of Real Double-precision array by a complex array

Complex MULTiplication of two arrays (1-dimensional)

Complex MULTiplication of two arrays (2-dimensional)

Complex MULTiplication of Real array by complex array (2-dimensional)

add Complex Constant to Negative Imaginary part of Complex array

33

CNTCACB
COEFFTS
CONST
CONSTAX
COS2
COS3
COS4
COSAX
COSAX2
COSX
CRA2B1
CRATI02
CRFUNC
CRIAP
CRIAPl
CRIAP2D

CRITOC2

CRNFERR

CSMWCPl

CSMWCP2

CSQRl

CSUMl
CSUM2
CSUMCPl

CSUMCP2

CSUMIK2

CSUMRWl

CSUMRW2

CSWCPE2

CUTOFFl

CeNTer Complex Array within a zero padded Complex array CB
calculate and store the COEFFicients of the Taylor Series

function to return the value unity

function to return the value unity

function to return COSine squared of x

function to return COSine cubed of x

function to return COSine of x raised to the fourth power

function to return COS(A*X)
function to return COSine squared of A*X
function to return COS(X)
copy a Row of a 2-dimensional Complex array into a 1-dimensional array

Complex RATIO of two arrays (2-dimensional)

CReate or initialize a direct access file to record FUNCtion names used

Convert Real-Imaginary complex array to Amplitude-Phase (2-dimensional)

Convert Real-Imaginary complex array to Amplitude-Phase (1-dimensional)

Convert Real-Imaginary Complex array to Amplitude-Phase using double-

precision trigonometic functions (2-dimensional)

Form a Complex array from the Real part of one complex array and the

Imaginary part of another complex array (2-dimensional)

CReate a Near Field with ERRors using multiple Fourier transforms and a

specified error function dz

Complex SuM (1-dimensional) of Product of real Weights (1-dimensional),

real array (1-dimensional) and a Complex array (2-dimensional)

Complex SuM (2-dimensional) of Product of real Weights (1-dimensional),

real array (2-dimensional) and a Complex array (2-dimensional)

obtain the square of the absolute values of selected elements of a complex

array (1-dimensional)

SUM a 2-dimensional complex array by columns (1-dimensional)

Complex SUM over third dimension of a 3-dimensional array (2-dirnensional)

Complex SUM by rows of the product of the elements of a 2-dimensional real

array and a 2-dimensional complex array (1-dimensional)

Complex SUM over the third dimension of the element-by-element product of

a 3-dimensional complex array and a 2-dimensional real array (2-dimensional)

Complex SUM of a 3-dimensional complex array over the third dimension

(2-dimensional)

Complex SUM of Rows (over the second dimension) of a complex array

Weighted by a real 1-dimensional array (1-dimensional)

Complex Sum over the third dimension of a complex array Weighted by real

1-dimensional array (2-dimensional)

Weighted Complex Sum of the Product of a 3-dimensional ComPlex array

times a real array raised to an array of Exponents (2-dimensional)

Set an array element to zero when the difference between a constant squared

and the array element squared is less than a specified value (1-dimensional)

34

CUT0FF2

CXPCLOG

DABDIOF
DABDPAR
DATFILE
DATORBl
DBl
DB2
DCLN2
DNFDX
DNFDXDY
DNFDY
DNFDZ
DNFDZE
DNFDZO
DSPWS
DSPWSX

DSPWSXY

DSPWSY

DSWCRPl

ECEXP

ECX4

ECY4

ECZ4

EIGAMAZ
ERRMESS
FAXSBYS

FFLIMTS

FFNF
FFNFIUN
FFNFX

Set an array element to zero when the element’s value is smaller than a

specified constant (2-dimensional)

add a Gomplex EXPonent array to the Gomplex LOGarithm of a complex

array

obtain the Direct-Access Binary Data Input Output File

obtain Direct-Access Binary Data’s PARameters

create an ASGII DATa FILE for multiple plots

copy a Double-precision Array TO a Real array (1-dimensional)

convert real part of complex array to dB (1-dimensional)

convert real part of complex array to dB (2-dimensional)

Double-precision Gomplex Logarithm of complex array (2-dimensional)

Derivative of Near Field with respect to the X coordinate

mixed Derivatives with respect to X and Y coordinates

Derivative of Near Field with respect to the Y coordinate

Derivatives of Near Field with respect to the Z coordinate

Derivatives of Near Field with respect to Z, Even orders

Derivatives of Near Field with respect to Z, Odd orders

Direct Sum of Plane Wave Spectrum

Direct Sum of Plane Wave Spectrum to compute the near field in the x-y

plane, where the X coordinate can have arbitrary errors

Direct Sum of Plane Wave Spectrum to compute the near field in the x-y

plane, where both the X and the Y coordinates can have arbitrary errors

Direct Sum of Plane Wave Spectrum to compute the near field in the x-y

plane, where the Y coordinate can have arbitrary errors

Double-precision Sum of the Weighted Product of a constant to a array of

integer powers times a complex array (1-dimensional)

compute the Gomplex EXPonential of a double-precision complex array (2-

dimensional)

given a near field contaminated with X errors, apply the Error-Gorrection

technique to Ath order

given a near field contaminated with Y errors, apply the Error- Gorrection

technique to Ath order

given a near field contaminated with Z errors, apply the Error-Gorrection

technique to Ath order

create an array of phase factors (2-dimensional)

print a set of specified ERRor MESSages

create the product of external Functions fx and fy, which are of the form

A*(X-xS) and B*(Y-yS)

Far Field LIMITS to specify the range of a far field coordinate when summing
the plane wave spectrum

given a Far-Field, compute the corresponding Near-Field, using the FFT
read the Far Field or Near Field Unit Numbers
given a Far Field, obtain the Near Field, when the X coordinate may have

errors, using the direct-sum routines

35

FFNFXY

FFNFXYZ

FFNFY

FFNFZ

FFORNF
FFPFF
FFRANGE

FFTFFT
FILSIOF
FILSPAR
FINDEND
FLTEIGZ
FLTLIMT
FLTPWSG
FLTRHIK

FOURT
FRBW
FRGRD
FRRAD
FRRADHD
FUNAXBY
FUNCSCL
FUNCXY
FWDCRAl

FWRADl
FWRAD2
GAMMASQ
GETFILE
GETWN
GETWND
GRDDACB

GRID
GRIDD
GTPRNPR
HSTAMP2
HSTDFDB

given a Far Field, obtain the Near Field, when the X and the Y coordinates

may have errors, using the direct-sum routines

given a Far Field, obtain the Near Field, when the X, Y and the Z coordi-

nates may have errors, using the direct-sum routines

given a Far Field, obtain the Near Field, when the Y coordinate may have

errors, using the direct-sum routines

given a Far Field, obtain the Near Field, when the Z coordinate may have

errors, using the direct-sum routines

read the FFORNF.IUN file

given a Far-Field, obtain the Pseudo Far-Field

select the Far Field RANGE of variables for summing the plane wave spec-

trum

Fast Fourier Transform followed by inverse Fast Fourier Transform

get the Input Output File for reading output filenames

read a list of output filenames

skip to the end of a file

FiLTer the array containing values of using a specified lower limit on 7^

obtain data-point-spacing criteria for LIMiTing the plane-wave spectrum

FiLTer sum of logarithm of Plane-Wave Spectrum added to

transform a near field to a far field, FiLTeR High frequencies in K-space, and

transform back to a near field (possibly at different z coordinate)

Multi-dimensional Cooley-Tukey fast Fourier transform (FFT)

Formated Read and Binary Write of a real dataset

Formated Read of a .GRD dataset with conversion from decibels to amplitude

FoRmated Read of a Real ASGII Dataset

FoRmated Read of a Real ASCII Dataset with HeaDer information

create an array equal to the product of FUNctions of the form A*X*B*Y
calculate a SCaLed grid-increment for a periodic function

create an array equal to the product of FUNctions of the form f(X)*f(Y)

Formatted Write of a Real Array obtained form a Double-precision array

(1-dimensional)

Formated Write of Real ASCII Dataset (1-dimensional)

Formated Write of Real ASCII Dataset (2-dimensional)

calculate real double-precision array 7^

obtain the next filename from an array of filenames

given the frequency, calculate the wavenumber

given the frequency (in double-precision), calculate the wavenumber

read amplitude and phase .GRD files, and write a Direct-Access Complex

Binary Data file

create a single-precision GRID along an axis

create a Double-precision GRID along an axis

GeT the PRriNt PaRameters for rows and/or columns of an array

append file information to HiSTory file from program UAMP2CBD
append file information to HiSTory file from program UDIFDB

36

HSTDIF
HSTDIF2
HSTDIFA
HSTDIV
HSTDRV
HSTDS
HSTDS3
HSTDSX
HSTDSXY
HSTDSY
HSTEC
HSTFFNF
HSTKEC
HSTMKDX
HSTMKDY
HSTMKDZ
HSTNFFF
HSTNRM
HSTRDIV
HSTRMS
HSTTS
HSTTSAP
HSTTST
HSTTSX
HSTTSXY
HSTTSY
HSTUNO
HSTUNl
INPDABP
INPDACB
INPDRVP

INPDZP

INPFFP

INPFFPO
INPFILS
INPGRDP
INPNFP

INPNFPO
INPRCBD
INPTSP

append file information to HiSTory file from program UDIFCBD
append file information to HiSTory file from program UDIF2CBD
append file information to HiSTory file from program UDIFACBD
append file information to HiSTory file from program UDIVCBD
append file information to HiSTory file from program UDERIV
append file information to HiSTory file from program UDS
append file information to HiSTory file from program UDSXYZ
append file information to HiSTory file from program UDSX
append file information to HiSTory file from program UDSXY
append file information to HiSTory file from program UDSY
append file information to HiSTory file from program UERRCOR
append file information to HiSTory file from program URDFFNF
append file information to HiSTory file from program UKCORR
append file information to HiSTory file from program UMAKEDX
append file information to HiSTory file from program UMAKEDY
append file information to HiSTory file from program UMAKEDZ
append file information to HiSTory file from program URDNFFF
append file information to HiSTory file from program UOPNORM
append file information to HiSTory file from program UDIVRBD
append file information to HiSTory file from program URMSCBD
append file information to HiSTory file from program UTS
append file information to HiSTory file from program UTSNFAP
append file information to HiSTory file from program UTST
append file information to HiSTory file from program UTSX
append file information to HiSTory file from program UTSXY
append file information to HiSTory file from program UTSY
append file information to HiSTory file from program UNORMO
append file information to HiSTory file from program UNORMl
INPut Direct-Access Binary file Parameters

INPut Direct-Access Binary file Parameters and the dataset

INPut a subset of the direct-access binary file parameters needed for the

module UDERIV
INPut a subset of the direct-access binary file parameters needed for the

module UMAKEDZ
INPut a subset of the direct- access binary file Parameters needed to charac-

terize the Far Field

INPut Far Field Parameters and data from the direct-access binary file

INPut the filename pointing to a list of FILenameS and read the list

INPut a subset of the direct-access binary file needed for module UCBDGRD
INPut a subset of the direct-access binary file Parameters needed to charac-

terize the Near Field

INPut Near-Field Parameters and data from direct-access binary file

INPut two Real datasets into a Complex Binary Data array

INPut a subset of the direct-access binary file needed for the module UTS

37

INSLOSS
INTNF3
lUNIT
lUNS

lYJXCNT
LAPLCAN
MAKEDZ
MAKPFF
MDARBl
MDNFDX
MDNFDY
MDNFDZ
MDNFDZE
MDNFDZO
MIGAMMZ
MKGAMMA
MKPERDZ
MKPERFN
MKPLYDZ
MKPOLYN
MMICA
MMRA
MMRGA
NF
NFFF
NFMODX
NFMODY
NFPFF
NFTSXK
NFTSXY
NFTSXYK
NFTSYK
NFTSZK
NFZKTS

NORM2

OUTASG

OUTDAGB
OUTDPS
OUTGRD
OUTPFSO

convert INSertion LOSS from decibels to amplitude and scale data array

INTegral of Near Field with respect to the 3rd coordinate Z

function to increment by 1 the current Integer UNIT number
Obtain the unit num.bers in files NF.IUN anf FF.IUN and check that addi-

tional unit numbers are available

determine the midpoint (GeNTer) of two integers

calculate the LAPLaCiAN of a near field

MAKE a function DZ, which is a function of X and Y
MAKe a Pseudo Far Field equal to the Fourier transform of the box function

Make two single-precision copies of a Double-precision ARray (1-dimensional)

Multiple Derivatives of the Near Field with respect to X
Multiple Derivatives of the Near Field with respect to Y
Multiple Derivatives of the Near Field with respect to Z

Multiple derivatives of the Near Field with respect to Z, Even orders

Multiple derivatives of the Near Field with respect to Z, Odd orders

calculate the array —i^Z
MaKe the arrays 7 ^ and KY and KX
MaKe a function DZ, which is a PERiodic function of X and Y
MaKe a PERiodic FuNction of the form A • {x — Xq) B [y — y^)

MaKe a PoLYnomial function DZ of X and Y
MaKe a POLYNomial function of x and y raise to a specified power

obtain the Minimum and Maximum of a Complex Array’s Imaginary part

obtain the Minimum and Maximum values of a Real array

obtain the Minimum and Maximum of a Complex Array’s Real part

create a complex NF array using arbitrary functions of x and y
given a Near Field, compute the corresponding Far Field

MODulate a complex NF array with a function of X
MODulate a complex NF array with a function of Y
given a Near Field, obtain the corresponding Pseudo Far Field

calculate the Kth term of the Taylor Series in X from Near-Field data

sum the X &: Y Taylor Series terms and print out selected partial sum results

calculate the Kth term of the Taylor Series in X & Y from Near-Field data

calculate the Kth term of the Taylor Series in Y from Near-Field data

calculate the Kth term of the Taylor Series in Z from Near-Field data

create a sequence of Near Fields at Zk in a specified range and number of

steps using the Taylor Series technique

NORMalize a real array by a constant divided by the difference between the

array’s maximum and minimum values (2 dimensional)

convert a complex array to amplitude and phase format and OUTput the

resulting real and imaginary parts as two ASCII datasets

OUTput a Direct-Access Complex Binary dataset

OUTput a complex array to Disk, a Print array and/or a Storage array

OUTput the amplitude and phase of a complex array .GRD files

get 4 filenames and OUTput 4 .PLT files

38

OUTPFSl

OUTRGRD
PCCRGRD

PERFUNC
PERFUNX
PERFUNY
PERFUNZ
PFCORR
PFCRAP

PFFFF
PFFNF
PFREAL
PFREIM
PFSET

PLRDATA

PLTFILE
POLYN
POLYNXY
PPFCRAP

PPWSNF2

PPWSNF3

PPWSNFX

PPWSNFY

PPWSNFZ

PRDCTC2

PRDRTC2

OUTput the amplitude and phase of a specified column and a specified row

of a complex array as .PLT FileS

OUTput a Real array to a .GRD file

Print a Column and/or Row of amplitude and phase data of a Complex array,

and output amplitude and phase .GRD files

specifies a PERiodic FUNCtion to be evaluated

specify and record the name of the PERiodic FUNction of X to be evaluated

specify and record the name of the PERiodic FUNction of Y to be evaluated

specify and record the name of the PERiodic FUNction of Z to be evaluated

PlotFile data obtained from a column or row of a complex array

PlotFile data obtained from a column and/or row of a complex array which

may have been converted to amplitude and phase

given a Pseudo Far Field, obtain the corresponding Far Field

given a Pseudo Far Field, obtain the corresponding Near Field

PlotFile data obtained from real array array

PlotFile data obtained from the REal or IMaginary part of complex array

PlotFile SETup: specify column or row of a complex array and convert com-

plex numbers to amplitude-phase format or vice versa (1-dimensional)

write a PLotfile of Real Data consisting of 3 equally incremented column

arrays and two real arrays (1-dimensional)

output a real array to .PLT file

POLYNomial function of a single variable at a single point

sum POLYNomial functions of X and Y
Print and create Plot File data from a selected column and/or a row of a

complex array, which may be converted to amplitude and phase

direct-sum of Plane-Wave Spectrum to compute the Near Field at specified

points which can include arbitrary displacements in the x and y coordinates

direct-sum of the Plane-Wave Spectrum to compute the Near Field at spec-

ified points which can include arbitrary displacements in j:, y and 2: coordi-

nates

direct-sum of the Plane-Wave Spectrum to compute the Near Field at spec-

ified points which can include arbitrary displacements in the X coordinates

direct-sum of the Plane-Wave Spectrum to compute the Near Field at spec-

ified points which can include arbitrary displacements in the Y coordinates

direct-sum of the Plane-Wave Spectrum to compute the Near Field at spec-

ified points which can include arbitrary displacements in the Z coordinates

PRoduct of a Double precision Column array to an integer power Times a

Complex array (2-dimensional)

PRoduct of a Double precision Row array to an integer power Times a Com-
plex array (2-dimensional)

39

PRDTC2

PRIMSUM

PRNCORR
PRNFUNC

PRNPLT

PRNRCOR
PRNRICR

PRNTCID
PRNTRID

RADDRC2
RANERB2

RANGED

RANGES

RARYMM2
RATORBl
RATORB2D
RCA2B1

RCBD2

RCBDIOF

RCBDPAR

RCBDSET
RDCBDl
RDCBD2
RDCBD3
RDDABP
RDDACBD
RDFUNC
RDIF2
RDOT
RDRBD2

PRoduct of a Double precision 2-dimensional array to an integer power Times

a Complex array (2-dimensional)

PeRIMeter SUM around a nested, successively larger squares within a 2-

dimensional real array

PRiNt the amplitude and phase of a Column OR a Row of a complex array

PRiNt the parameters of the FUNCtion used to create an displacement error

file

PRiNt and create 4 .PLT files the amplitude and phase of a column and a

row of a complex array

PRiNt a Real-array’s specified Column OR Row
PRiNt the Real and Imaginary parts of a Column and/or Row of a 2-

dimensional complex array

PRINT a specified column and the maximum amplitude of a Complex array

PRINT a specified column and the maximum and minimum values of a Real

array

Real array ADDed to a Real Constant (2-dimensional)

copy a Real array RA to RB when the two arrays may have unequal column

lengths

obtain the RANGE of values in a Double-precision array between two speci-

fied indeces (1-dimensional)

obtain the RANGE of values in a Single-precision array between two specified

indeces (1-dimensional)

get Real ARraY’s Maximum and Minimum values (2-dimensional)

copy a Real array RA TO RB (1-dimensional)

copy a Real array RA TO a Double-precision array RB (2-dimensional)

copy a Column of data from a specified row of a real 2-dimensional array to

a 1-dimensional array

read a Real binary dataset and store in alternatimg locations in a real array

(2-dimensional)

get the Input Output Filename to read 2 Real Binary datasets into a Complex

array

Read PARameters and filenames to input 2 Real Binary datasets into a Com-
plex array

SET to read two Real Binary datasets into a Complex array

ReaD a Complex Binary Dataset (1-dimensional)

Read a Complex Binary Dataset (2-dimensional)

Read a Complex Binary Dataset (3-dimensional)

ReaD the Direct-Access Binary Dataset’s Parameters

ReaD a Direct-Access Complex Binary Dataset

ReaD the names of specific FUNCtions used to create current error-array file

calculate the DIFference between two Real arrays (2-dimensional)

DOT product of Real arrays (2-dimensional)

ReaD a Real Binary Dataset (2-dimensional)

40

RDRBD2D
REARANG
RINITl
RINIT2
RKCARBK2

RMSQR

RMULT2
RNDM
RNDMDZ
RNDMFCT
RRA2B1

RRATI02
RSUMCOL
RSUMROW
RZTORCl
RZTORC2
SCALE
SCLCCl
SCLCC2
SCLRCl
SCLRCID
SCLRR2
SCLRR2D

SETBNDR
SETFILS
SETFIOF
SETFPAR
SETTSX
SETTSXY

SETTSY
SETTSZ
SFTCACB
SFTRARB
SIN4X •

STRNGLN
SUMPRM

SUMPRMl

ReaD a Real Binary Dataset in Double precision (2-dimensional)

amplitude, phase, distance correction and swap to obtain far-field data

INITialization with a Real constant (1-dimensional)

INITialization with a Real constant (2-dimensional)

weighted complex sum of a 2-dimensional Complex Array times a Real Array

raised to an integer power (2-dimensional)

Convert the square root of an array’s elements into decibels and return the

number of non-zero elements (1-dimensional)

Real MULTiplication of two arrays (2-dimensional)

function call to return a RANDoM number

create a RaNDoM array DZ
create a RaNDoM FunCTion and store in an real array (2 dimensinal)

copy a Row of data from a apecified column of a real 2-dimensional array to

a 1-dimensional array

calculate the RATIO of the elements of two Real arrays (2-dimensional)

Sum a COLumn of elements of a Real array (2-dimensional)

Sum a ROW of elements of a Real array (2-dimensional)

Real array TO a Real Constant power (1-dimensional)

Real array TO a Real Constant power (2-dimensional)

an array of consecutive integers multipled by a real constant (1-dimensional)

SCaLe a Complex array by a Complex Constant (1-dimensional)

SCaLe a Complex array by a Complex Constant (2-dimensional)

SCaLe a Complex array by a Real Constant (1-dimensional)

SCaLe a Complex array by a Real Double precision Constant (1-dimensional)

SCaLe a Real array by a Real Constant (1-dimensional)

SCaLe a Real Double precision array by a Double precision constant (2-

dimensional)

SET the BouNDaRy of a complex array equal to a complex constant

SET up to read a list of FILenameS
get the Input Output File for reading Filenames

read the output Filenames

SET up the necessary arrays for a Taylor Series in X calculation

SET up the necessary arrays for calculating a Taylor Series along both the

X and Y coordinates

SET up the necessary arrays for a Taylor Series in Y calculation

SET up the necessary arrays for Taylor Series in Z calculations

ShiFT the location of Complex data in zero padded array to array center

ShiFT the location of Real data in zero padded array to array center

calculate the function SINe of X raised to the fourth power

find the locations of the first and last non-blank characters in a string

SUM the values on the PeRiMeter of a square embedded within a real array

(2-dimensional)

SUM the values on the PeRiMeter of a square embedded within a real array,

omitting the corners from the sum (2-dimensional)

41

SUMSUMS

SWAP
SWCRIP2

TIMER
TIMERS
TODAY
TSCOEF

TSXSLM
TSXYSN
TSYSLM
TSZK
TSZKl
TSZSLM
TSZSLMO
TSZSLMl

UDASCUN
UDDSIUN
UDDXIUN
UDDYIUN
UDDZIUN
UDFFIUN
UDNFIUN
WCBDl
WCBD2
WCBD3
WDACBD
WDSCBD
WLTOCM
WLTOCMD
WRBD2
WRBD2D

WRCHKF
WRFUNC
XCHAR
XSCHAR
XYGRIDS

an array of SUMs of a real array’s elements from successively increasing array

locations to the end (1-dimensional)

switch begining to end Array-element Positions of both rows and columns

Weighted Complex Sum of 3-dimensional Complex array times a Real array

raised to an array of Integer Powers (2-dimensional)

store system TIME on first call, return time difference on second call

multiple TIME initilizations, time differences returned on second call

write current date to screen

calculate and store the Taylor Series COEFficients and an array of integer

powers

Taylor Series in X Summed from Low to Maximum order

Taylor Series in X and Y Summed to order N
Taylor Series in Y Summed from Low to Maximum order

Taylor Series in Z term of order K
Taylor Series in Z term of order K and output partial sum
Taylor Series in Z Summed from Low to Maximum order

Taylor Series in Z Summed from Low to Maximum order after initialization

Taylor Series in Z Summed from Low to Maximum order, and output each

partial sum
UpDate ASCII output file Unit Number
UpDate Direct-Sum output file Unit Number
UpDate DX error array’s output file Unit Number
UpDate DY error array’s output file Unit Number
UpDate DZ error array’s output file Unit Number
UpDate Far Field’s output file Unit Number
UpDate Near Field’s output file Unit Number
Write an unformatted Complex Binary Dataset (1-dimensional)

Write unformatted Complex Binary Dataset to fort.xx file (2-dimensional)

Write unformatted Complex Binary Dataset to fort.xx file (3-dimensional)

Write a self-documented Direct-Access Complex Binary Dataset

Write unfromatted Complex Binary Dataset to dsnf.xx file (2-dimensional)

convert a WaveLength TO CentiMeters

convert WaveLengths TO Centimeters in double precision

Write an unformatted Real Binary Dataset to 3
, fort.xx file

Write an unformatted Double-precision Real Binary Dataset to a fort.xx file

(2-dimensional)

WRite a CHecK list of parameters to a print File

WRite the specified FUNCtion name to specified file

eXpress an integer modulus 100 as a CHARacter variable

express an integer modulus 10 as a Single CHARacter variable

create X and Y CRIDs in Single precision

42

Appendix A

Creating the Original Direct Access Binary Dataset

Two modules, UAPDACB and UDBPDACB, are provided for inputing ASCII

data files to create direct-access complex binary datasets.

Module UAPDACB reads two real ASCII data files, one containing amplitude

data, and one containing phase data (in degrees). The data in each ASCII file

are interpreted as successive columns of data, with each column having a constant

X coordinate. The names of the two ASCII data files, and their data formats,

are specified in a user-supplied parameter file, whose filename is recorded in file

ADAB.IOF. The contents of this parameter file are defined in the following table:

List of User-Supplied Parameters in the File Named by ADAB.IOF

FFORNF
LABEL
FILEl, FILE2
FILES
FORM
NY, NX
DY, DX
FREQ
ZO

data type specifier specifying either Far-Field OR Near-Field data

character variable used only for identification

Filenames of the two ASCII input files

Filename of the direct-access complex binary dataset that is created

Fortran data-format specification for the ASCII input files

the number of respective rows and columns in the ASCII data files

data point spacing in near-field datasets along the Y and X axes

operating frequency [GHz]

coordinate [cm] location of the near-field measurement plane

The three files specified in this parameter file are located in a directory whose

path is given in a local file named DATA.DIR. The two input ASCII data files are

read by subroutine FRRAD, which is called by module UAPDACB. Alternatively,

subroutine FRRADHD, which assumes that a 120 character HeaDer preceedes the

data, can be used.

The module UDBPDACB also inputs two ASCII data files to create a direct-

access complex binary dataset, but it assumes that one ASCII file contains ampli-

tude data expressed in decibels and one contains phase data expressed in degrees.

The data in each file are interpreted as successive rows of data, with each row hav-

ing a constant Y coordinate. Both files are assumed to have been setup as .GRD
files suitable for input to the system plot package. As before, these files and their

associated parameters are specified in a user-supplied parameter file whose filename

is recorded in ADAB.IOF.
The input data are written to a direct-access complex binary dataset as succes-

sive records each consisting of one entire column of data. The first seven records in

each original dataset contain essential parameters of the dataset. The first record

gives the file record LENGTH, which is numerically set equal to 8*NY. The next

six records are the entries in the above table (except those printed in italics) and

are written in the order listed.

43

Appendix B

System Initialization

At the beginning of any research project the system has to be initialized to

properly set the the system parameters and unit numbers. This is accomplished by

executing module UINITUN, which will write the following table to the screen:

THE INITIAL SETTINGS are:

filter.ff: cksqrd= O.OOOOOOOE+00

ffnf.dz: dzinc= O.OOOOOOOE+00

order.drv: idrvinc,iorder= 1

ampordb.grd: ampordb= dB
fun.dx: funtype= per

fun.dy: funtype= per

fun.dz: funtype= per

active.iun: iactive= 0

add.iun: iadd= 0

amp2.ixm: iunamp2= 0

asci.iun: iunasci= 7

difdiv.iun: idifdiv= 1

dif2.iun: iundif2= 0

dif.iun: iundif= 0

difdb.iun: iundfdb= 0

div.iun: iundiv= 0

drv.iun: iundrv= 0

dx.iun: iundx= 61

dy.iun: iundy— 62

dz.iun: iundz= 63

ecx.iun: iunecx= 0

ecy.iun: iunecy= 0

ecz.iun: iunecz= 0

ff.iun: iunff= 60

kec.iun: iunkec= 0

nf.iun: iunnf= 40

rdiv.iun: iunrdiv= 0

tsx.iun: iuntsx= 0

tsxy.iun: iuntsxy= 0

tsy.iun: iuntsy= 0

tsz.iun: iuntsz= 0

tsamp.iun: iuntsa= 0

tsphs.iun: iuntsp= 0

tstz.iun: iuntst= 0

STOP: UINITUN: normal termination

44

On each line in the above table the first entries give the name of the file where

the information is recorded, while the second entries give the name(s) of the fortran

variable(s) that contain the value(s), which are shown last. The key abbreviations

in the filenames and variable names can be deciphered by consulting Table 1. For

example, iunasci specifies the current setting of the ascii output unit number, and

iundz specifies the unit number of the dz dataset. Many of the unit numbers are set

to 0, simply signifying that no data has yet been created for these fields. There are

a few remaining variables included in the table that have special meanings. These

are defined below:

ampordb
cksqrd

dzinc

idrivinc

iorder

funtype

set to dB to create .GRD files in decibels; alternatively can be set to amp
filter limit for truncating plane-wave spectrum

incremental distance to be added to the measurement-plane distance when
calculating the near field in module URDFFNF
increment by which iorder is increased whenever order, drv is accessed by

module UDERIV
order of the derivative to be calculated by module UDERIV, after which

its value is incremented by idrivinc

TYPE of FUNction used by any of the modules UMAKEDX, UMAKEDY,
or UMAKEDZ to create error fields. Permitted values are per (periodic),

poly (polynomial), or ran (random) function

45

Appendix C

System Status Reports

After the execution of any module one can request a status report for the system

to examine the system parameter settings and the unit number settings. This is

accomplished by executing USHOWUN. One might do this to check the sequence

of executions for correctness and to decide what data management steps one needs

to take to access the next dataset needed to continue the research correctly. When
USHOWUN is executed after UMAKEDZ and URDNFFF have been executed only

once, the following table is displayed:

THE CURRENT SETTINGS are:

ampordb.grd: dB
filter.ff: O.OOOOOOOE+00

order.drv: 1 1

scale.dx: O.OOOOOOOE+00 0.1000000

scale.dy: O.OOOOOOOE+00 0.1000000

scale.dz: O.OOOOOOOE+00 0.2000000

ampfF,invff: 1987.822 5.0306314E-04

ampnfjinvnf: 1.059250 9.4406420E-01

ffnf.dz: O.OOOOOOOE+00

ffornf: ff

fun.dx: per

fun.dy: per

fun.dz: per

active.iim: 0

add.iun: 0

amp2.iun: 0

asci.iun: 7 8

inc difdiv: 1

dif2.iun: 0

dif.iun: 0

difdb.iun: 0

div.iun: 0

drv.iun: 0

ds.iun: -1 0

dx.iun: 0 61

dy.iun: 0 62

dz.iun: 63 63

ecx.iun: 0

ecy.iun: 0

ecz.iun: 0

ff.iun: 60 60

46

40

kec.iun: 0

nf.iun: 40

rdiv.iim: 0

tsx.iun: 0

tsxy.iun: 0

tsy.iun: 0

tsz.iun: 0

tsamp.iun: 0

tsphs.iun: 0

tstz.iun: 0

USHOWUN: unit status report complete

Most of features and entries in the above table have been explained in Appendix

A. Here, however, some of the entries show two unit numbers. The combinations of

two equal unit numbers signifies that the modules writing these unit numbers have

only been executed once, thereby making the initial unit numbers, as defined in

Appendix A, the current unit numbers. In the case of DS.IUN the initial values are

shown, indicating that none of the direct sum utility modules have been executed.

Initialization of file DS.IUN is the responsibility of the user.

After creating all the datasets required by the error correction research problem

(see Section 4) and after executing UDSZ, USHOWUN can be executed to get an

overview of the system status. The output table appears as below:

THE CURRENT SETTINGS are:

ampordb.grd: dB
filter. ff: O.OOOOOOOE+00

order. drv: 1 1

scale. dx: O.OOOOOOOE+00 0.1000000

scale, dy: O.OOOOOOOE+00 0.1000000

scale.dz: O.OOOOOOOE+00 0.2000000

ampfF,invff: 1987.822 5.0306314E-04

ampnf,invnf: 1.059250 9.4406420E-01

ffnf.dz: O.OOOOOOOE+00

ffornf: ff

fun.dx: per

fun.dy: per

fun.dz: per

active.iun: 58

add.iun: 60

amp2.iun: 0

asci.iun: 7 17

inc difdiv: 1

dif2.iun: 0

dif.iun: 0

47

difdb.iun: 0

div.iun: 0

drv.iun: 0

ds.iun: 0 0

dx.iun: 0 61

dy.iun: 0 62

dz.iun: 63 63

ecx.iun: 0

ecy.iun: 0

ecz.iun: 42

ff.iun: 60 56

kec.iun: 0

nf.iun: 40 44

rdiv.iim: 0

tsx.iun: 0

tsxy.iun: 0

tsy.iun; 0

tsz.iun: 41

tsamp.iim: 0

tsphs.iun: 0

tstz.iun: 0

USHOWUN: unit status report complete

Now we see that two unequal unit numbers appear in some of the entries.

These indicate the range of unit numbers for the particular type of field, (ff or n/),

that exist after repeated executions of the various modules. The first unit number

indicates the initial unit number created and the last number indicates the current

value of the unit number. The dataset referred to by the current value of the unit

number will be automatically accessed if the value in ACTIVE.lUN is 0. In addition,

all special types of near-held datasets that have been created during the course of

the research are recorded in their respective unit number hies. For example, the

entry under TSZ.IUN is 41, meaning that the dataset with hlename contains

the error-contaminated near-held dataset that was created using the Taylor series

method. The datasets indicated by DS.IUN are stored separately from this scheme.

Thus, the entry indicates that hie dsnf.OO has been stored in a separate directory,

whose- path is specihed in hie DATA.DIR.

48

UAMP2CBD;
UAPDACB:
UCBDDAT:

UCBDGRD:
UDBPDACB:
UDERIV:

UDIF2CBD:
UDIFACBD:
UDIFCBD:
UDIFDB:

UDIVCBD:
UDIVRBD:
UDSX:

UDSXY:

UDSXYZ:

UDSY:

UDSZ:

UFCX4:

UFCY4:

UFCZ2:

UFCZ3:

UFCZ4:

UKCORR:

Appendix D

The Research Modules and their Subroutine Dependencies

inpfFp inpnfp rdcbd2 csqrl wrbd2 udffiun udnfiun hstamp2 udascun

cadacb

fFornf inpgrdp getwn chlngth gtprnpr udascun xygrids rdcbd2

insloss criap dbl cnimccl ppfcrap outpfsO xchar xschar

inpgrdp getwn chlngth xygrids ranges rdcbd2 insloss udascun outgrd

grddacb

chlngth inpdrvp rdcbd2 getwn settsz dnfdz wcbd2 udnfiun hstdrv

udascun prncorr xygrids ranges outgrd

inpffp inpnfp rdcbd2 csqrl rdif2 wrbd2 udffiun udnfiun hstdif2 udascun

inpfFp inpnfp rdcbd2 cabsl rdif2 wrbd2 udffiun udnfiun hstdifa udascun

inpffp inpnfp rdcbd2 cdif2 wcbd2 udffiun udnfiun hstdif udascun

inpffp getwn inpnfp cbdtodb cdif2 wcbd2 udffiun udnfiun hstdfdb

udascun xygrids ranges outgrd

inpffp inpnfp rdcbd2 cinitl cratio2 wcbd2 udffiun udnfiun hstdiv udascun

inpffp inpnfp rdrbd2 rinitl rratio2 wrbd2 udffiun udnfiun hstrdiv udascun

uddsiun inpffpO inpffp rdcbd2 getwn mkgamma cinitl inpnfpO inpnfp

nfff chkleqi catocb2 ffnf gtprnpr chlngth udascun xchar prnfunc wltocm

prncorr rdrbd2 sclrr2 ffnfx wdscbd hstdsx

uddsiun inpffpO inpffp rdcbd2 getwn mkgamma cinitl inpnfpO inpnfp

nfff chkleqi catocb2 ffnf gtprnpr chlngth udascun xchar prnfunc wltocm

prncorr rdrbd2 sclrr2 ffnfxy wdscbd hstdsxy

uddsiun inpffpO inpffp rdcbd2 getwn mkgamma cinitl inpnfpO inpnfp

nfff chkleqi catocb2 ffnf gtprnpr chlngth udascun xchar prnfunc wltocm

prncorr rdrbd2 sclrr2 raddrc2 ffnfxyz wdscbd hstds3

uddsiun inpffpO inpffp rdcbd2 getwn mkgamma cinitl inpnfpO inpnfp

nfff chkleqi catocb2 ffnf gtprnpr chlngth udascun xchar prnfimc wltocm

prncorr rdrbd2 sclrr2 ffnfy wdscbd hstdsy

uddsiun inpffpO inpffp rdcbd2 getwn mkgamma cinitl inpnfpO inpnfp

nfff chkleqi catocb2 ffnf gtprnpr chlngth udascun xchar prnfunc wltocm

prncorr rdrbd2 sclrr2 raddrc2 ffnfz wdscbd hstds

inptsp getwn udascun prnfunc wltocm rdrbd2 sclrr2 rdcbd2 ecx4 gtprnpr

prncorr wcbd2 udnfiun hstec

inptsp getwn udascun prnfunc wltocm rdrbd2 sclrr2 rdcbd2 ecy4 gtprnpr

prncorr wcbd2 udnfiun hstec

inptsp wltocm getwn rdrbd2 sclrr2 rdcbd2 settsz mdnfdz cmultr2 cadd2

dnfdzo sclrcl catocb2 csumik2 udascun prncorr wcbd2 udnfiun hstec

inptsp wltocm getwn rdrbd2 sclrr2 rdcbd2 settsz mdnfdz cmultr2 cadd2

dnfdzo sclrcl dnfdze csumik2 udascun prncorr wcbd2 udnfiun hstec

inptsp getwn udascun prnfunc wltocm rdrbd2 sclrr2 rdcbd2 ecz4 gtprnpr

prncorr wcbd2 udnfiun hstec

inptsp wltocm getwn rdrbd2 sclrr2 rdcbd2 caceiph wcbd2 udnfiun

udascun hstkec

49

ULAPLCN:

UMAKEDX:

UMAKEDY:

UMAKEDZ:

UOPNORM:
UPRDBCBD:
UPRNCBD:
UPRRICBD:
URBDDAT:

URBDGRD:
URDFFNF:

URDNFFF:

URMSCBD:

USUBGRD:
UTSNFAP:
UTSTZ:

UTSX:

UTSXY:

UTSY:

UTSZ:

chlngth cinitl inpnfpO inpnfp rdcbd2 getwn mkgamma udascun caraymx2

prncorr laplcan catocb2 sclrcl xygrids ranges pccrgrd cadd2

crfunc inpdzp rinitl wltocm mkpolyn funcscl mkperfn perfunx

rndmfct norm2 iyjxcnt sftrarb grid ranges wrbd2 uddxiun

hstmkdx udascun rdfunc rarymm2 outrgrd

crfunc inpdzp rinitl wltocm mkpolyn funcscl mkperfn perfuny

rndmfct norm2 iyjxcnt sftrarb grid ranges wrbd2 uddyiun

hstmkdy udascun rdfunc rarymm2 outrgrd

crfunc inpdzp rinitl wltocm mkpolyn funcscl mkperfn perfunz

rndmfct norm2 iyjxcnt sftrarb grid ranges wrbd2 uddziun

hstmkdz udascun rdfunc rarymm2 outrgrd

inpffp inpnfp rdcbd2 casumsq hstnrm chlngth udascun

inpffp inpnfp rdcbd2 insloss criap db2 udascun xchar prnricr

inpffp inpnfp rdcbd2 udascun xchar prncorr

inpffp inpnfp rdcbd2 udascun xchar prnricr

inpgrdp getwn chlngth xchar rdrbd2 chkleqi xygrids ranges udascun

rarymm2 prnrcor pltfile

udascun inpgrdp getwn chlngth xygrids ranges rdrbd2 mmra outrgrd

inpffpO inpffp rdcbd2 wltocm getwn mkgamma catocb2 ffnf wcbd2

udffiun udnfiun udascun caraymx2

cinitl inpnfpO inpnfp rdcbd2 catocb2 getwn mkgamma nfff iyjxcnt

sftcacb wcbd2 udnfiun udffiun udascun caraymx2

chlngth inpffpO wcbd2 udffiim inpffp rdcbd2 chkleqi getwn udascun

caraymx2 csqrl primsum sumsums rmsqr plrdata hstrms

inpgrdp getwn chlngth xygrids ranges rdcbd2 insloss udascun outgrd

inpnfp rdcbd2 criap critoc2 capri wcbd2 udnfiun udascun hsttsap

udascun inptsp wltocm rdcbd2 rdrbd2 sclrr2 getwn catocb2 settsz

cinitl tszslm xchar prncorr wcbd2 udnfiun hsttst

inptsp chkleqi getwn inpffpO inpffp rdcbd2 mkgamma ffnf cinitl inpnfpO

iyjxcnt sftcacb udascim prnfunc wltocm gtprnpr rdrbd2 sclrr2

prncorr coeffts settsx nftsxk cadd2 xchar wcbd2 udnfiun hsttsx

inptsp chkleqi getwn inpffpO inpffp rdcbd2 mkgamma ffnf cinitl inpnfpO

iyjxcnt sftcacb udascun prnfimc wltocm rdrbd2 sclrr2 coeffts settsxy

nftsxy wcbd2 udnfiun hsttsxy

inptsp chkleqi getwn inpffpO inpffp rdcbd2 mkgamma ffnf cinitl inpnfpO

iyjxcnt sftcacb udascim prnfimc wltocm gtprnpr rdrbd2 sclrr2

prncorr coeffts settsy nftsyk cadd2 xchar wcbd2 udnfiun hsttsy

inptsp chkleqi getwn inpffpO inpffp rdcbd2 mkgamma ffnf cinitl inpnfpO

iyjxcnt sftcacb udascun prnfunc wltocm gtprnpr rdrbd2 sclrr2

prncorr coeffts settsz nftszk cadd2 xchar wcbd2 udnfiun hstts

50

Appendix E

The PNFC Subroutines and Their Subroutine Dependencies

ACPCFFD:
ACPCNFD:
ACTIUN:
ADABIOF:
ADABPAR:
ADDBOX:
AMPDIF2:

chlngth

errmess

APDSETl:
APNAME:
CABD:
CABDIOF:
CABDPAR:
CABSl:
CACBK3D:
CACEIPH:

cca2bl cra2bl criapl capril cdifl

strngln

cabdiof cabdpar frbw

chlngth

errmess

CADACB:
CADDl:
CADD2:
CADD3:
CADDCC2:
CAEIPH2:
CAEIPHC:
CANECB2:
CAPCCDl:
CAPRI:
CAPRIl:
CAPRI2D:

adabiof adabpar frradhd capri wdacbd

CAPRNT:
CARAYMX2:
CARBK3D:
CARBKD3:
CARCBD2:
CASUMSQ:
CATOCBl:
CATOCB2:

nimrca prntrld mmica

CBDTODB:
CCA2B1:

rdcbd2 criapl cnimccl dbl

CDFSETl:
CDIFl:

CDIF2:

CDIVDS2:
CDOT:

cca2bl cra2bl cdifl criapl capril

51

CGATHER:
CHKEQFP:
CHKEQI:
CHKLEQI:
CHKPARO:
CHKPARl:
CHKPAR2:
CHLAST:
CHLNGTH:
CIMGSTR:
CINITl:

CINIT2:

CIRCFLT:
CMULDS2:
CMULRD2:
CMULTl:
CMULT2:
CMULTR2:
CNIMCCl:
CNTCACB:
COEFFTS:
const:

^

constax: ^

cos2:
^

cos3: ^

cos4: ^

cosax: ^

cosax2: ^

cosx:
^

CRA2B1:
CRATI02:
CRFUNC:
CRIAP:
CRIAPl:
CRIAP2D:
CRITOC2:
CRNFERR
CSMWCPl
CSMWCP2
CSQRl:
CSUMl:
CSUM2:
CSUMCPl:
CSUMCP2:

iyjxcnt sftcacb

chlngth

nfpff catocb2 fFnf

52

CSUMIK2:
CSUMRWl:
CSUMRW2:
CSWCPE2:
CUTOFFl:
CUTOFF2:
CXPCLOG:
DABDIOF:
DABDPAR:
DATFILF:
DATORBl:
DBl:

DB2:

DCLN2:
DNFDX:
DNFDXDY:
DNFDY:
DNFDZ:
DNFDZF:
DNFDZO:
DSPWS:
DSPWSX:
DSPWSXY:
DSPWSY:
DSWCRPl:
FCFXP:
FCX4:
FCY4:
FCZ4:

FIGAMAZ:
FRRMFSS:
FAXSBYS:
FFLIMTS:
FFNF:
FFNFIUN:
FFNFX:
FFNFXY:
FFNFXYZ:
FFNFY:
FFNFZ:
FFORNF:
FFPFF:
FFRANGF:
T?T?TT?T?T.

chlngth

chkparO chkparl

catocb2 prdrtc2 sclccl fourt acpcnfd swap

prdctc2 prdrtc2 sclccl fourt acpcnfd swap

catocb2 prdctc2 sclccl fourt acpcnfd swap

dnfdze cmulds2

catocb2 prdtc2 fourt acpcnfd swap sclrcl

migammz cmulds2 dnfdze

settsx mdnfdx cmultr2 sclrcl catocb2 cadd2 csumik2

settsy mdnfdy cmultr2 sclrcl catocb2 cadd2 csumik2

settsz mdnfdz cmultr2 dnfdzo dnfdze sclrcl catocb2 cadd2 csuniik2

fx fy (unspecified functions)

ffpff pffnf

strngln

migammz dcln2 ppwsnfx sclcc2

migammz dcln2 ppwsnf2 sclcc2

migammz dcln2 ppwsnfS sclcc2

migammz dcln2 ppwsnfy sclcc2

migammz dcln2 ppwsnfz sclcc2

eigamaz fitlimt fiteigz cmulds2

fflimts

sclrr2 fourt

53

FILSIOF:

FILSPAR:
FINDEND:
FLTEIGZ:
FLTLIMT:
FLTPWSG:
FLTRHIK:
FOURT:
FRBW:
FRGRD:
FRRAD:
FRRADHD:

fltlimt

nfFf ffnf

FUNAXBY:
FUNCSCL:

fx fy (unspecified functions)

FUNCXY:
FWDCRAl:
FWRADl:
FWRAD2:
GAMMASQ:
GETFILE:
GETWN:
GETWND:

fx fy (unspecified functions)

datorbl fwradl

GRDDACB:
GRID:
GRIDD:

adabiof adabpar frgrd capri wdacbd

GTPRNPR:
HSTAMP2:
HSTDFDB:
HSTDIF:
HSTDIF2:
HSTDIFA:
HSTDIV:
HSTDRV:
HSTDS:
HSTDS3:
HSTDSX:
HSTDSXY:
HSTDSY:
HSTEC:
HSTFFNF:
HSTKEC:
HSTMKDX:
HSTMKDY:
HSTMKDZ:

ffornf chkleqi

findend

findend

findend

findend

findend

findend

findend

findend

findend

findend

findend

findend

findend

findend

findend

findend

findend

findend

54

HSTNFFF: findend

HSTNRM: findend

HSTRDIV: findend

HSTRMS: findend

HSTTS: findend

HSTTSAP: findend

HSTTST: findend

HSTTSX: findend

HSTTSXY: findend

HSTTSY: findend

HSTUNO: findend

HSTUNl: findend

INPDABP: dabdiof dabdpar rddabp getwn wrchkf

INPDACB: dabdiof dabdpar rddacbd getwn wrchkf

INPDRVP: dabdiof dabdpar rddabp

INPDZP: dabdiof dabdpar rddabp

INPFFP: dabdiof dabdpar rddabp

INPFFPO: dabdiof dabdpar rddacbd

INPFILS: filsiof filspar

INPGRDP: dabdiof dabdpar rddabp

INPNFP: dabdiof dabdpar rddabp

INPNFPO: dabdiof dabdpar rddacbd

INPRCBD: rcbdiof rcbdpar rcbdset

INPTSP: dabdiof dabdpar rddabp

INSLOSS: sclccl

INTNF3: migammz fourt swap cdivds2 acpcffd acpcnfd

iunit:
^

lUNS: ffnfiun

lYJXCNT:
LAPLCAN: nfpff dnfdze dnfdx cadd2 dnfdy pffnf

MAKEDZ: grid funaxby sclrr2 (fx fy = unspecified externals)

MAKPFF: cinitl addbox nfpff

MDARBl: datorbl

MDNFDX: dnfdx

MDNFDY: dnfdy

MDNFDZ: mdnfdze mdnfdzo

MDNFDZE: dnfdze

MDNFDZO: cmulds2 mdnfdze
MIGAMMZ:
MKGAMMA: gridd gammasq
MKPERDZ: grid faxsbys rarymm2 sclrr2 (fx fy = unspecified externals)

MKPERFN: grid faxsbys (fx fy = unspecified externals)

MKPLYDZ: grid polynxy rarymm2 sclrr2

MKPOLYN: grid polynxy rztorcl

55

MMICA:
MMRA:
MMRCA:
NF: fx fy (unspecified functions)

NFFF: nfpff pfffF

NFMODX: f (unspecified function)

NFMODY: f (unspecified function)

NFPFF: setbndr fourt swap acpcffd

NFTSXY: gtprnpr prncorr nftsyk cadd2 nftsxk nftsxyk

NFTSXK: dnfdx rkcarbk2

NFTSXYK: dnfdxdy rkcarbk2

NFTSYK: dnfdy rkcarbk2

NFTSZK: dnfdzo dnfdze rkcarbk2

NFZKTS: catocb2 ffnf tszSLMO

NORM2: rarymm2 sclrr2

OUTASC: criap fwrad2

OUTDACB: setfils wdacbd
OUTDPS: prncorr catocb2 wcbd2

OUTGRD: criap dbl cnimccl mmrca getfile outrgrd mmica
OUTPFSO: getfile pltfile

OUTPFSl: pfcrap outpfsO

OUTRGRD:
PCCRGRD: caraymx2 prncorr outgrd

perfunc: ^ cosax (or cosax2, etc.)

perfunx: ^ wrfunc cosax (or cosax2, etc.)

perfuny: ^ wrfunc cosax (or cosax2, etc.)

perfunz: ^ wrfunc cosax (or cosax2, etc.)

PFCORR: pfset pfreim

PFCRAP: pfcorr pfreim

PFFFF: migammz exp clog ecexp

PFFNF: fourt acpcnfd swap

PFREAL:
PFREIM:
PFSET: cca2bl cra2bl criap 1 capril

PLRDATA: scale pfreal pltfile

PLTFILE:
polyn: ^

POLYNXY: polyn

PPFCRAP: prncorr prnricr pfcrap

PPWSNF2: ffrange fltpwsg carcbd2 dspwsxy

PPWSNF3: ffrange fltpwsg carcbd2 dspwsxy

PPWSNFX: ffrange fltpwsg carcbd2 dspwsx

PPWSNFY: ffrange fltpwsg carcbd2 dspwsy

PPWSNFZ: ffrange fltpwsg carcbd2 dspws

56

PRDCTC2:
PRDRTG2:
PRDTC2:
PRIMSUM: sumprm sumprml
PRNCORR: cca2bl criapl cra2bl

PRNFUNC: chlngth rdfunc

PRNPLT: prncorr outpfsl

PRNRCOR: rca2bl rra2bl

PRNRICR: cca2bl cra2bl

PRNTCID: caraymx2

PRNTRID:
RADDRC2:
RANERB2:
RANGED:
RANGES:
RARYMM2:
RATORBl:
RATORB2D:
RCA2B1:
RCBD2: errmess

RCBDIOF:
RCBDPAR:

chlngth

RCBDSET:
RDCBDl:

rcbd2

RDGBD2: xchar

RDCBD3: xchar

RDDABP: chlngth chkpar2 errmess

RDDACBD: chlngth chkpar2 errmess

RDFUNC:
RDIF2:

RDOT:

chla^t

RDRBD2: xchar

RDRBD2D: xchar

REARANG:
RINITl:

RINIT2:

RKCARBK2:
RMSQR:
RMULT2:
rndm: ^

swap

RNDMDZ: rndm
RNDMFCT:
RRA2B1:
RRATI02:

rndm

57

RSUMCOL:
RSUMROW:
RZTORCl:
RZTORC2:
SCALE:
SCLCCl:
SCLCC2:
SCLRCl:
SCLRCID:
SCLRR2:
SCLRR2D:
SETBNDR:
SETFILS:

SETFIOF:
SETFPAR:
SETTSX:
SETTSXY:
SETTSY:
SETTSZ:
SFTCACB:
SFTRARB:
sin4x:

^

STRNGLN:
SUMPRM:
SUMPRMl:
SUMSUMS:
SWAP:
SWCRIP2:
TIMER:
TIMERS:
TODAY:
TSCOEF:
TSXSLM:
TSXYSN:
TSYSLM:
TSZK:
TSZKl:
TSZSLM:
TSZSLMO:
TSZSLMl:
UDASCUN:
UDDSIUN:
UDDXIUN:
UDDYIUN:

cinitl

setfiof setfpar

gridd cutoffl catocb2 nfpfF

gridd cutofFl catocb2 nfpfF

gridd cutoffl catocb2 nfpfF

mkgamma cutoffl cutoff2 migammz catocb2 nfpfF

rsumcol rsumrow

rsumcol rsumrow

dnfdx swcrip2

dnfdxdy swcrip2

dnfdy swcrip2

dnfdzo dnfdze swcrip2

tszK outdps

dnfdzo dnfdze swcrip2

settsz tszSLM
dnfdz swcrip2 criap caprnt catocb2 wcbd2

58

UDDZIUN:
UDFFIUN:
UDFIUN:
UDNFIUN:
WCBDl:
WCBD2: xchar

WCBD3: xchar

WDACBD:
WDSCBD: chlngth xchar

WLTOCM:
WLTOCMD:
WRBD2: xchar

WRBD2D: xchar

WRCHKF: wltocm

WRFUNC: chlngth

xchar: ^

xschar: ^

XYGRIDS: grid

^ Function subprogram name designation

59

BL-114A

(5-90)

U.S. DEPARTMENT OF COMMERCE
NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY

BIBLIOGRAPHIC DATA SHEET

1. PUBUCATION OR REPORT NUMBER

NISTIR 3970
2. PERFORMINQ ORGANIZATION REPORT NUMBER

June 1991
3. PUBUCATION DATE

4. TITLE AND SUBTITLE

Personal Computer Codes for Analysis of Planar Near Fields

5. AUTHOR(S)

Lorant A. Muth and Richard L. Lewis

6. PERFORMINQ ORGANIZATION (IF JOINT OR OTHER THAN NIST, SEE INSTRUCTIONS)

U.S. DEPARTMENT OF COMMERCE
NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY
BOULDER, COLORADO 80303-3328

7. CONTRACT/QRANT NUMBER

8. TYPE OF REPORT AND PERIOD COVERED

9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (STREET, CITY, STATE, ZIP)

Air Force Guidance and Metrology Center
Newark Air Force Base, Ohio 43057

10. SUPPLEMENTARY NOTES

11. ABSTRACT (A 200-WORD OR LESS FACTUAL SUMMARY OF MOST SIGNIFICANT INFORMATION. IF DOCUMENT INCLUDES A SIGNIFICANT BIBUOGRAPHY OR
UTERATURE SURVEY, MENTION IT HERE.)

We have developed Fortran codes for analysis of planar near-field data. We describe
some of the inner workings of the codes, the data management schemes, and the structure of the
input/output sections to enable scientists and programmers to use these codes effectively as a
research tool in antenna metrology. The open structure of the codes allows a user to incor-
porate into the package new applications for future use with relative ease. Ihe subroutines
currently in existence are briefly described, and a table showing the interdependence among
these subroutines is constructed. Some basic research problems, such as transformation of a
near field to the far field and correction of probe position errors, are carried out from
start to finish to illustrate use and effectiveness of these codes. Sample outputs are shown.
Tlie advantage of a high degree of modularization is demonstrated by the use of DOS batch files
to execute Fortran modules in a desired sequence.

12. KEY WORDS (6 TO 12 ENTRIES; ALPHABETICAL ORDER; CAPITAUZE ONLY PROPER NAMES; AND SEPARATE KEY WORDS BY SEMICOLONS)

antenna metrology; computer codes; data management; planar near fields; far fields;
research tool; subroutines

13. AVAILABIUTY

UNUMITED

FOR OFFICIAL DISTRIBUTION. DO NOT RELEASE TO NATIONAL TECHNICAL INFORMATION SERVICE (NTIS).

X

X

ORDER FROM SUPERINTENDENT OF DOCUMENTS, U.S. GOVERNMENT PRINTING OFFICE,
WASHINGTON, DC 20402.

ORDER FROM NATIONAL TECHNICAL INFORMATION SERVICE (NTIS), SPRINGFIELD, VA 22161.

14. NUMBER OF PRINTED PAGES

64

15. PRICE

ELECTRONIC FORM

u.S. GOVERNMENT PRINTING OFFICE: 1991 - 576-212/45136

I

