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Unsteady Laminar Flow in a Circular Tube:

A test of the HERCOL (Hermitian collocation) Computer Code

James F. Welch, James A. Hurley, Michael P. Glover,

Ryan D. Nassimbene, and Marilyn R. Yetzbacher

HERCOL, a computer code for the integration of second—order differential equations in one

space dimension by Hermitian collocation, was used to calculate the unsteady velocity profiles for laminar

flow in a circular tube. The code was tested for stability and accuracy on this problem for which an

analytical solution exists prior to application to a like problem in which the initial and boundary

conditions preclude the existence of analytical solutions.

The test problem is one in which a pressure gradient is imposed on a fluid initially at rest in a

circular tube; the fluid accelerates, and, at steady state, has a parabolic velocity profile. A second

example was constructed from the first; a pressure gradient equal but opposite in sign is imposed on the

fluid with a fully developed parabolic velocity profile. At steady state, the velocity is again parabolic but

in the opposite direction to that at the initial conditions.

Excellent agreement with the analytical solution was obtained in the first problem; in the second,

the behaviour was as expected. This example is suitable for first—time users of the code.

Key words: numerical integration;.partial differential equation; unsteady—state laminar flow;
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Unsteady—State Laminar Velocity Profiles

INTRODUCTION

Velocity profiles for two examples of unsteady laminar flow of a fluid of constant density, /?, and

constant viscosity, //, in a horizontal tube of length L and radius R (Figure 1) were calculated with the

aid of HERCOL [1], a computer code for the integration of second—order differential operators in one

space dimension. For the first example, the analytical solution [2,3] was compared with the results

obtained from the code to assess the performance of HERCOL and to estimate its efficacy for the

solution of similar problems for which no analytical solution exists. A simple modification of the first

example to form a second was used to emphasize the speed and ease with which problems, with no

readily available analytical solution may be solved with HERCOL.

In addition to serving as a test for HERCOL, the solution may be useful for estimating the time

required for the flow in a sampling tube operated in a periodic fashion to achieve steady state.

UNSTEADY LAMINAR FLOW IN A CIRCULAR TUBE

A pressure gradient, — of constant magnitude
(p^

— imposed on a fluid contained

in a tube shown in Figure 1. The fluid initially at rest is accelerated and at steady state has the

Poiseuille velocity distribution given in Table 1

As shown in Table 2, the equations of continuity and motion are combined, and the result is

transformed by a change of variables; the solution in the form of an infinite series is obtained by

separation of variables [3].

The second example was constructed from the first; the fluid was assumed to have a Poiseuille

velocity distribution initially, and the imposed pressure gradient had the same magnitude but opposite

sign. The effect was to decelerate and reverse the flow. The equation of motion and related boundary

conditions and initial conditions are listed in Table 3.
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Unsteady—State Laminar Velocity Profiles
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Unsteady—State Laminar Velocity Profiles

TABLE 1

POISEUILLE VELOCITY PROFILE

Dimensional Form

Velocity Profile Vz — Vmax [1
~

Maximum Velocity
r2

vmax = (P^ - Pj^)
JJl

Dimensionless Form

Dimensionless Velocity 0 — Vz/vmax

Dimensionless Position

Variable ^ = r/R

Dimensionless

Velocity Profile ^ = 1 - ^2
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Unsteady—State Laminar Velocity Profiles

TABLE 2

EQUATIONS OF CONTINUITY AND MOTION
IN CYLINDRICAL COORDINATES (r,^,z)

FOR A FLUID INITIALLY AT REST

EQUATION OF CONTINUITY (vr,v
^
= 0, /? and // constant )

= 0

Qwrr
EQUATION OF MOTION (vj, = 0, /? and /z constant)

^Vz _ ^ .
fi d >\

7^
L

TRANSFORMATION OF VARIABLES

0 =
Vz

Vmax 0
e = r/R

at

TRANSFORMATION OF EQUATION OF MOTION

1 d

/If.
or

1#
1 d(t)

,

INITIAL BOUNDARY CONDITIONS

I.C.: r = 0 oII

B.C. 1: II o

B.C. 2: 1 = 1 oII

ANALYTICAL SOLUTION [3]

00

n—

1

where Qn are the roots of J (o;)

0
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Unsteady—State Laminar Velocity Profiles

TABLE 3

EQUATIONS OF CONTINUITY AND MOTION
IN CYLINDRICAL COORDINATES (r,^,z)

FOR A FLUID INITIALLY IN MOTION

EQUATION OF CONTINUITY (vr,v^ = 0, p and p constant)

d
-g^P^z) = 0

gr
EQUATION OF MOTION (vj-, = 0» and p constant)

5vz _ ^
, n i d

r ~Ui
L J J

TRANSFORMATION OF VARIABLES

<j> =
vz

Vmax e = r/R
pi

TRANSFORMATION OF EQUATION OF MOTION

1 d
4 + or

INITIAL BOUNDARY CONDITIONS

I.C.; r == 0 oII

B.C. 1: = 0 oII

B.C. 2: = 1 oII
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Unsteady—State Laminar Velocity Profiles

COMPARISON OF NUMERICAL AND ANALYTICAL SOLUTIONS

Velocity profiles, Figure 2, for the example in which the fluid was initially at rest,

calculated on the interval 0 to 1 with steps of 0.1, [0 (0.1) 1.0], for the equation of motion

form

to eliminate numerical difficulties at ^ = 0. Results from HERCOL are denoted by asterisks

analytical solutions are shown as dashed curves ( ), and the steady—state solution is shown as a

solid line ( ). Tables 4 and 5 list values of
(f)

for ^ on the interval [0, (0.1), 1.0] calculated from

HERCOL, and from the analytical solution; for practical purposes, the results are identical.

Figure 3 is a plot of the velocity profiles for the second example; the fluid is initially in motion

with a Poiseuille velocity distribution and a pressure gradient with the same magnitude as in the first

example but with opposite sign as imposed on the flow at T = 0. At r = 0.05, the velocity profile has

been distorted and at r = 0.20, the flow is in the opposite direction. At steady—state, the velocity

profile is symmetric about ^ = 0 with respect to the initial velocity profile. A condition such as this

may occur in the discharge lines of a surge—type gas compressor.

were

written in the
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Unsteady—State Laminar Velocity Profiles

Figure 2. Velocity profiles for unsteady lonninar flow

in a circular tube, fluid at rest initiallyo

8



Unsteady—State Laminar Velocity Profiles

Figure 3. Velocity profiles for unsteady laminar flow
in a cylindrical tube, fluid in motion initially.
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Unsteady—State Laminar Velocity Profiles

TABLE 4

COMPARISON OF NUMERICAL AND ANALYTICAL SOLUTIONS OF

ON THE INTERVAL [0 (0.1) 1.0] AT r = 0.05

^ HERCOL ^ analytical
% Difference

0.00 0.19962 0.19959 0.015

0.10 0.19948 0.19946 0.010

0.20 0.19897 0.19894 0.015

0.30 0.19772 0.19769 0.015

0.40 0.19497 0.19495 0.010

0.50 0.18935 0.18933 0.011

0.60 0.17861 0.17859 0.011

0.70 0.15936 0.15934 0.013

0.80 0.12701 0.12698 0.024

0.90 0.07594 0.07592 0.026

1.00 0.00000 0.00000

HERCOL
: numerical results from HERCOL

<i> ,
• analytical solution

^ analytical
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Unsteady—State Laminar Velocity Profiles

TABLE 5

COMPARISON OF NUMERICAL AND ANALYTICAL SOLUTIONS OF

ON THE INTERVAL [0 (0.1) 1.0] AT r = 0.20

e ^ HERCOL ^ analytical
% Difference

0.00 0.65181 0.65178 0.005

0.10 0.64680 0.64678 0.003

0.20 0.63158 0.63156 0.003

0.30 0.60551 0.60549 0.003

0.40 0.56759 0.56758 0.002

0.50 0.51646 0.51645 0.002

0.60 0.45049 0.45048 0.002

0.70 0.36782 0.36781 0.003

0.80 0.26650 0.26650 0

0.90 0.14454 0.14453 0.007

1.00 0.00000 0.00000

0 HERCOL : numerical results from HERCOL

6 ,
• analytical solution

^ analytical
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Unsteady—State Laminar Velocity Profiles

CONCLUSIONS

The performance of HERCOL was quite satisfactory for the solution of the equation of motion in

cylindrical coordinates,

with combined Dirichlet,
(f) ,

and Neumann
•If ,

boundary conditions.

The code will be useful for generation of solutions for similar problems in which the initial and boundary

conditions preclude analytical solutions, the equation of state is not a simple function, or the transport

properties of the fluid are not constant.
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Unsteady—State Laminar Velocity Profiles

NOMENCLATURE

Symbols

p == pressure

r == radial coordinate, L

R == tube radius, L

t == time, t

V == velocity, L/t

z == rectangular coordinate, L

a -= roots of Bessel function of the first kind, zero order

P == density, M/L^

= dimensionless position variable

<!>--= dimensionless volocity variable

= azmithual coordinate, radians

T == dimensionless time variable

( Subscripts

analytical analytical solution

HERCOL numerical solution

L station "L"

max maximum

z z—component

0 station "0"

Mathematical Functions

Jo = Bessel function of the first kind, zero order

Jl = Bessel function of the first kind, first order

13
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APPENDIX A

LISTING OF SOURCE CODE FOR CALCULATION OF
UNSTEADY LAMINAR VELOCITY PROFILES
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ooo

o

o

o

oo

C Name: BSL126.FOR

C Required: HERCOL.FOR

Purpose: Solve for unsteady laminar flow in a
circular duct. Example 4.1-1 BSL

Keywords

:

fluid flow, laminar, duct, unsteady

Type: Program

Status : Experimental

Reference: Bird, R.B., W.E. Stewart, and E.N. Lightfoot,
"Transport Phenomena", John Wiley & Sons, New York
(1960) , p. 126

C Version: 011591

PROGRAM HCTEST

PARAMETER (NU1=81, NU2=4, LW=20)
REAL RWORK(IOOOO) , XPTS(NUl), U(NU1, NU2)
REAL WL(LW), WR(LW)
REAL XO(NUl), UX(NU1, NU2) , UERR(NU1,3), UMX, SECOND
REAL RTOL, ATOL, T, TOUT, CPUl, CPU2 , PI2, ALPHA, EPSA, EPSR
INTEGER IWORK(IOOO), INFO(15), NODE(2), LUNIT, NPRT, NSYS
INTEGER NPTS, LRW, LIW, MESS, L, NPDE, M, K, IDID, NODE2 , I

COMMON /FCOM/ NSYS
COMMON /INICOM/ ALPHA
COMMON /TOLCOM/ NODE2 (2 ) , EPSR, EPSA

C INTEGER NU1,NU2,LW

DATA LRW, LIW/20000, 1000/
C

OPEN ( 9 , FILE= ’ BSERRM. OUT
'

, STATUS= ' UNKNOWN
'

)

OPEN ( 10 , FILE= ' BSCALCS . OUT
'

, STATUS= ' UNKNOWN
'

)

C DO 600, MM = 1,5

MESS = 10

C WRITE ERROR MESSAGES ON UNIT 9

LUNIT = 9

NSYS = 2

C INITIAL VALUE OF THE TIME-LIKE VARIABLE

T = 0.

16



o
o

C FINAL VALUE OF THE INTEGRATION VARIABLE

TOUT =0.20

C INFO IS USED TO SET OPTIONS

DO 005, L = 1,15
INFO(L) = 0

005 CONTINUE

ALPHA = 10** (MM + 1)
WRITE (MESS, 200) ALPHA

C NUMBER OF ODE VARIABLES WL AT LEFT BOUNDARY XPTS(l)

NODE(l) = 0

C NUMBER OF ODE VARIABLES WR AT RIGHT BOUNDARY XPTS(NPTS)

NODE (2) = 0

C RELATIVE AND ABSOLUTE ERROR TOLERANCES

RTOL=1.0E-4
ATOL=1.0E-4

C NUMBER OF COMPONENTS IN THE VECTOR OF UNKNOWNS, U

NPDE = 1

C NUMBER OF BREAKPOINTS, XPTS ( 1) . . . XPTS (NPTS)

NPTS =11

C SET UP THE MESH AND SPECIFY THE INITIAL VALUE OF U

DO 010 1=1, NPTS

XPTS (I) = REAL (I-l) /REAL (NPTS-1)

C Bird, Stewart, and Lightfoot (4.1-28)

U(I,1) =0.0
C Bird, Stewart, and Lightfoot (4.1-27)

UX(I,1) = 0.0

010 CONTINUE

EPSR=RTOL
EPSA=ATOL

17



N0DE2 (1)=N0DE(1)
N0DE2 (2)=NODE(2)

C WRITE OUT THE INPUT PARAMETERS
WRITE (MESS, 198)
WRITE (MESS, 210) NPDE, NPTS, T, TOUT, RTOL, ATOL, NSYS

,

$ (INFO(L), L=l, 15)
WRITE (MESS, 220) NODE

C TIME THE HERCOL SUBROUTINE

CPUl = SECOND

0

CALL HERCOL ( INFO , IDID , U , UX , NUl , NPTS , NPDE , WL , WR , NODE , XPTS

,

1 T , TOUT , RTOL , ATOL , RWORK , LRW , IWORK , LIW , LUNIT

)

CPU2 = SECOND 0 - CPUl

IF (IDID .LT. 0) THEN
WRITE (MESS, 230) IDID,T
GOTO 600

END IF

WRITE (MESS, 240) T, IDID, CPU2
WRITE (MESS, 250) RWORK (7 ) , (IWORK(L) , L=ll, 15), IWORK(8)

C CALCULATE THE ERROR
IFLAG = 0

UMX =0.0
SQERR =0.0

C COMPUTE THE SQUARE ERROR

C DO 020 I = 1,NPTS
C VAL = THETA(XPTS(I) , T, IFLAG)
C UERR(I,1) = ABS(U(I,1) ~ VAL)
C UMX = MAX(UMX,ABS(UERR(I,1) )

)

C SQERR = SQERR + UERR(I,1)**2
020 CONTINUE

WRITE (MESS, 370) NSYS,T,UMX

WRITE (MESS, 398)

DO 030 I = 1,NPTS

WRITE (MESS, 405) I, XPTS(I), U(I,NPDE)

C WRITE (MESS, 405) I, XPTS(I), U(I,NPDE), UX(I,NPDE), UERR(I,NPDE)

030 CONTINUE

18



C WRITE (MESS, 201) SQERR

600 CONTINUE

CLOSE (9)
CLOSE (10)

C FORMAT STATEMENTS

198 FORMAT ( IX, '++++++++++++++++++++++++'

)

200 FORMAT (IX, 'ALPHA = ’,1PE12.4)
201 FORMAT (IX,' SQUARE ERROR = ',1PE12.4)
210 FORMAT (/ ' EX 4.1-2 BSL, P. 126 '/IX, 'NPDE=

' , 12 ,

'

NPTS=
'

,

$ 13,' T=', 1PE10.3,' TOUT=', ElO . 3/lX, ' RTOL=
' , E9 . 2

,

'

ATOL=
'

,

$ E9.2, ' NSYS=', I2/1X, 'INFO=' , 1514)
220 FORMAT (' NODE=', 215)
230 FORMAT (/' ***** HERCOL FAILED IDID=',I6,' T=',1PE10.3)
240 FORMAT (' T=

' , IP ElO. 3,' IDID=', 15,' CPU=
' , E9.2)

250 FORMAT (3X, ' H=
' , IP E9 . 2

,

'

NSTEP=
' ,

14,' NFE=
' ,

14,' NJE=', 14,

$ ' NEF=', 13,' NCF=', 13,' NQ=
' , II)

370 FORMAT(5X, 'NSYS=' ,12, ' T=
'

, IPEIO . 3
,

'

MAX ABS ERROR=
'

, ElO . 3

)

398 FORMAT (IX, 'TABLE OF CALCULATED RESULTS')
405 FORMAT ( IX, 14 , 2X , 5 ( 1PE12 . 4 )

)

610 FORMATC UERR(M,I) M=
' , 12/ ( 5X, 1P8E9 . 2 ) )

620 FORMATC UERR(I) '/ (5X, 1P8E9 . 2 ) )

END

C
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SUBROUTINE FUN(T, XC, UT, U, UX, UXX, NCPT, NPDE, FT, IRES)

C FOR THE HCTEST OF HERCOL

REAL T,XC(NCPT), U(NCPT, NPDE) , UX(NCPT, NPDE)

,

$ UXX(NCPT, NPDE), FT(NCPT, NPDE), UT(NCPT, NPDE)

COMMON /FCOM/ NSYS

INTEGER NCPT, NPDE, IRES
INTEGER M, I
INTEGER NSYS

DO 020 M = 1, NPDE

DO 010 1=1, NCPT

C Bird, Stewart, and Lightfoot (4.1-21)

FT(I, M) = XC(I) *UT(I,M) - XC(I) * UXX(I,M) - UX(I,M) - 4 * XC(I)

010 CONTINUE
020 CONTINUE

RETURN
END

SUBROUTINE BDYLFT(T, UT, U, UX, NPDE, WT, W, B, IRES)

FOR THE HCTEST OF HERCOL

REAL T, UT(NPDE), U(NPDE), UX(NPDE), WT(*), W(*) , B(*), PI2

COMMON /FCOM/ NSYS

INTEGER NPDE, IRES
INTEGER NSYS

C FINITE VALUE OF U AT LEFT-HAND BOUNDARY

B(l) = UX(1)

RETURN
END

C =======================================================

SUBROUTINE BDYRHT(T, UT, U, UX, NPDE, WT, W, B, IRES)

20



REAL T, UT(NPDE), U(NPDE), UX(NPDE) , WT(*), W(*) , B(*), PI2
INTEGER NPDE , IRES
INTEGER NSYS
COMMON /FCOM/ NSYS
COMMON /INICOM/ ALPHA

C U = 0 AT RIGHT-HAND BOUNDARY

B(l) = U(l)

RETURN
END

21
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-y>

-c/>

C

SUBROUTINE JACOB (T, XC, UT, U, UX, UXX, WTL, WL, WTR, WR,
$ NCPT, NPDE, DFDU, DBLDW , NBL , NWL , DBLDU, DBRDW, NBR,NWR,
1 DBRDU)

C PROVIDE AN ANALYTIC JACOBIAN FOR THE HCTEST CODE

REAL XC(NCPT), UT(NCPT, NPDE), U(NCPT, NPDE),
UX(NCPT, NPDE), UXX(NCPT, NPDE), WTL(*) , WL(*) , WTR(*)

,

WR(*), DFDU(NCPT, NPDE, NPDE, 4), DBLDW(NBL, NWL, 2),
DBLDU(NBL, NPDE, 3), DBRDW(NBR, NWR, 2),
DBRDU (NBR, NPDE, 3) , T

COMMON /FCOM/ NSYS

INTEGER NCPT, NPDE, NBL, NBR, NWL, NWR
INTEGER K,M
INTEGER NSYS

DBLDU ( Iv 1, 1) = l.OEO
DBLDU ( 1

,

1/ 2) ^ -l.OEO
DBRDU ( 1

,

1) = l.OEO
DBRDU (1, 1, 2) = -l.OEO

RETURN
END

22



SUBROUTINE SETTOL (RTOLK , ATOLK , RTOLW , ATOLW , NPTS , NPDE

)

C SET ERROR TOLERANCE ARRAY FOR TEST CASES

REAL RTOLK (NPTS , NPDE ) , ATOLK (NPTS , NPDE )

,

1 RTOLW(*), ATOLW(*)

REAL EPSR,EPSA

COMMON /TOLCOM/ NODE ( 2 ) , EPSR, EPSA
COMMON /FCOM/ NSYS

INTEGER NDl, NPDE, NPTS, K,M
INTEGER NSYS, NODE

C
DO 20 K=1,NPTS
DO 20 M=1,NPDE

RTOLK (K,M)=EPSR
ATOLK(K,M)=EPSA

20 CONTINUE

IF(NODE(l) .NE. 0) THEN

DO 30 K=l,NODE(l)

RTOLW (K)=EPSR
30 ATOLW(K)=EPSA

END IF

IF (NODE (2) .GT. 0)THEN
ND1=N0DE(1)

DO 40 K=ND1+1,N0DE(2)+ND1

RTOLW (K)=EPSR
ATOLW (K)=EPSA

40 CONTINUE

END IF
RETURN

END
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c

SUBROUTINE UINIT (XC , UC , NCPT , NPDE , WL , WR)

REAL XC(NCPT) ,UC (NCPT, NPDE) ,WL(*) ,WR(*) ,PI2
REAL ALPHA

COMMON /INICOM/ ALPHA
COMMON /FCOM/ NSYS

INTEGER NCPT, NPDE, K,M
INTEGER NSYS

DO 100 K = 1, NCPT

UC(K, 1) = XC(K) **2

100 CONTINUE

RETURN
END

C END OF TEST ROUTINE
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