NTS United States Department of Commerce National Institute of Standards and Technology

NISTIR 3963

UNSTEADY LAMINAR FLOW IN A CIRCULAR TUBE: A TEST OF THE HERCOL (HERMITIAN COLLOCATION) COMPUTER CODE

James F. Welch
James A. Hurley
Michael P. Glover
Ryan D. Nassimbene
Marilyn R. Yetzbacher

NISTIR 3963

UNSTEADY LAMINAR FLOW IN A CIRCULAR TUBE:
 A TEST OF THE
 HERCOL (HERMITIAN COLLOCATION) COMPUTER CODE

James F. Welch James A. Hurley
Michael P. Glover
Ryan D. Nassimbene

Marilyn R. Yetzbacher

Chemical Engineering Division
Chemical Science and Technology Laboratory
National Institute of Standards and Technology
Boulder, Colorado 80303-3328

May 1991

[^0]ABSTRACT 1
INTRODUCTION 2
UNSTEADY LAMINAR FLOW IN A CIRCULAR TUBE 2
COMPARISON OF NUMERICAL AND ANALYTICAL SOLUTIONS 7
CONCLUSIONS 12
ACKNOWLEDGMENTS 12
REFERENCES 12
NOMENCLATURE 13
APPENDIX A 15

LIST OF FIGURES

Figure 1. Schematic diagram of the cylindrical tube 3
Figure 2. Velocity profiles of unsteady laminar flow in a circular tube, fluid at rest initially 8
Figure 3. Velocity profiles for unsteady laminar flow in a circular tube, fluid in motion initially. 9

LIST OF TABLES

TABLE 1 POISEUILLE VELOCITY PROFILE 4
TABLE 2 EQUATIONS OF CONTINUITY AND MOTION IN CYLINDRICAL COORDINATES ($\mathrm{r}, \theta, \mathrm{z}$), FOR A FLUID AT REST INITIALLY 5
TABLE 3 EQUATIONS OF CONTINUITY AND MOTION IN CYLINDRICALCOORDINATES ($\mathrm{r}, \theta, \mathrm{z}$), FOR A FLUID INITIALLY IN MOTION6
TABLE 4 COMPARISON OF NUMERICAL AND ANALYTICAL SOLUTIONS OF 10
$\frac{\partial \phi}{\partial \tau}=4+\left[\frac{1}{\xi} \frac{\partial \phi}{\partial \xi}+\frac{\partial^{2} \phi}{\partial \xi^{2}}\right]$ ON THE INTERVAL $[0$ (0.1) 1.0]
AT $\tau=0.05$
TABLE 5 COMPARISON OF NUMERICAL AND ANALYTICAL SOLUTIONS OF 11
$\frac{\partial \phi}{\partial \tau}=4+\left[\frac{1}{\xi} \frac{\partial \phi}{\partial \xi}+\frac{\partial^{2} \phi}{\partial \xi^{2}}\right]$ ON THE INTERVAL [0 (0.1) 1.0] AT $\tau=0.20$

Unsteady Laminar Flow in a Circular Tube: A test of the HERCOL (Hermitian collocation) Computer Code

James F. Welch, James A. Hurley, Michael P. Glover, Ryan D. Nassimbene, and Marilyn R. Yetzbacher

HERCOL, a computer code for the integration of second-order differential equations in one space dimension by Hermitian collocation, was used to calculate the unsteady velocity profiles for laminar flow in a circular tube. The code was tested for stability and accuracy on this problem for which an analytical solution exists prior to application to a like problem in which the initial and boundary conditions preclude the existence of analytical solutions.

The test problem is one in which a pressure gradient is imposed on a fluid initially at rest in a circular tube; the fluid accelerates, and, at steady state, has a parabolic velocity profile. A second example was constructed from the first; a pressure gradient equal but opposite in sign is imposed on the fluid with a fully developed parabolic velocity profile. At steady state, the velocity is again parabolic but in the opposite direction to that at the initial conditions.

Excellent agreement with the analytical solution was obtained in the first problem; in the second, the behaviour was as expected. This example is suitable for first-time users of the code.

Key words: numerical integration;-partial differential equation; unsteady-state laminar flow;

INTRODUCTION

Velocity profiles for two examples of unsteady laminar flow of a fluid of constant density, ρ, and constant viscosity, μ, in a horizontal tube of length L and radius R (Figure 1) were calculated with the aid of HERCOL [1], a computer code for the integration of second-order differential operators in one space dimension. For the first example, the analytical solution [2,3] was compared with the results obtained from the code to assess the performance of HERCOL and to estimate its efficacy for the solution of similar problems for which no analytical solution exists. A simple modification of the first example to form a second was used to emphasize the speed and ease with which problems, with no readily available analytical solution may be solved with HERCOL.

In addition to serving as a test for HERCOL, the solution may be useful for estimating the time required for the flow in a sampling tube operated in a periodic fashion to achieve steady state.

UNSTEADY LAMINAR FLOW IN A CIRCULAR TUBE

A pressure gradient, $-\frac{\partial p}{\partial z}$, of constant magnitude $\left(p_{0}-p_{L}\right) / L$ is imposed on a fluid contained in a tube shown in Figure 1. The fluid initially at rest is accelerated and at steady state has the Poiseuille velocity distribution given in Table 1

As shown in Table 2, the equations of continuity and motion are combined, and the result is transformed by a change of variables; the solution in the form of an infinite series is obtained by separation of variables [3].

The second example was constructed from the first; the fluid was assumed to have a Poiseuille velocity distribution initially, and the imposed pressure gradient had the same magnitude but opposite sign. The effect was to decelerate and reverse the flow. The equation of motion and related boundary conditions and initial conditions are listed in Table 3.

0	0

$z=L$ $=L$
tube.
Developing Yelocity Profile

S
Schematic diagram of the cylindrical
Figure 1.
$z=0$

TABLE 1

POISEUILLE VELOCITY PROFILE

Dimensional Form	
Velocity Profile	$\mathrm{v}_{\mathrm{Z}}=\mathrm{v}_{\max }\left[1-(\mathrm{r} / \mathrm{R})^{2}\right]$
Maximum Velocity	$\mathrm{v}_{\max }=\left(\mathrm{p}_{0}-\mathrm{p}_{\mathrm{L}}\right) \frac{\mathrm{R}^{2}}{4 \mu}$

Dimensionless Form	
Dimensionless Velocity	$\phi=\mathrm{v}_{\mathrm{z}} / \mathrm{v}_{\max }$
Dimensionless Position Variable Dimensionless Velocity Profile	$\xi=\mathrm{r} / \mathrm{R}$

TABLE 2

```
EQUATIONS OF CONTINUITY AND MOTION
    IN CYLINDRICAL COORDINATES (r,0,z)
        FOR A FLUID INITIALLY AT REST
```

 EQUATION OF CONTINUITY \(\left(\mathrm{v}_{\mathbf{r}}, \mathrm{v}_{\theta}=0, \rho\right.\) and \(\mu\) constant \()\)
 $$
\frac{\partial}{\partial \mathrm{z}}\left(\rho \mathrm{v}_{\mathrm{z}}\right)=0
$$

EQUATION OF MOTION $\left(\mathrm{v}_{\mathbf{r}}, \mathrm{v}_{\theta}, \frac{\partial \mathrm{v}_{z}}{\partial \mathrm{z}}=0, \rho\right.$ and μ constant $)$

$$
\rho \frac{\partial \mathrm{v}_{\mathrm{z}}}{\partial \mathrm{t}}=-\frac{\partial \mathrm{p}}{\partial \mathrm{z}}+\mu\left[\frac{1}{\mathrm{r}} \frac{\partial}{\partial \mathrm{r}}\left[\mathrm{r} \frac{\partial \mathrm{v}_{\mathrm{z}}}{\partial \mathrm{r}}\right]\right]
$$

TRANSFORMATION OF VARIABLES

$$
\phi=\frac{\mathrm{v}_{\mathrm{Z}}}{\mathrm{v}_{\max }} \quad-\frac{\partial \mathrm{p}}{\partial \mathrm{z}}=\left(\mathrm{p}_{0}-\mathrm{p}_{\mathrm{L}}\right) / \mathrm{L} \quad \xi=\mathrm{r} / \mathrm{R} \quad \tau=\frac{\mu \mathrm{t}}{\rho \mathrm{R}^{2}}
$$

TRANSFORMATION OF EQUATION OF MOTION

$$
\frac{\partial \phi}{\partial \tau}=4+\frac{1}{\xi} \frac{\partial}{\partial \xi}\left[\xi \frac{\partial \phi}{\partial \xi}\right] \quad \text { or } \quad \frac{\partial \phi}{\partial \tau}=4+\left[\frac{1}{\xi} \frac{\partial \phi}{\partial \xi}+\frac{\partial^{2} \phi}{\partial \xi^{2}}\right]
$$

INITIAL BOUNDARY CONDITIONS
I.C.:

$$
\tau=0
$$

$$
\phi=0 \text { for } 0 \leq \xi \leq 1
$$

B.C. 1:

$$
\xi=0
$$

$$
\frac{\partial \phi}{\partial \xi}=0
$$

B.C. 2:

$$
\xi=1
$$

$$
\phi=0
$$

ANALYTICAL SOLUTION [3]

$$
\phi=\left(1-\xi^{2}\right)-8 \sum_{\mathrm{n}-1}^{\infty} \frac{\mathrm{J}_{0}\left(\alpha_{\mathrm{n}} \xi\right)}{\alpha_{\mathrm{n}}^{3} \mathrm{~J}_{1}\left(\alpha_{\mathrm{n}}\right)} \mathrm{e}^{-\alpha_{\mathrm{n}}^{2} \tau}
$$

where α_{n} are the roots of $\mathrm{J}_{0}(\alpha)$

TABLE 3

EQUATIONS OF CONTINUITY AND MOTION

IN CYLINDRICAL COORDINATES ($\mathrm{r}, \theta, \mathrm{z}$) FOR A FLUID INITIALLY IN MOTION

EQUATIION OF CONTINUITY $\left(\mathrm{v}_{\mathrm{r}}, \mathrm{v}_{\theta}=0, \rho\right.$ and μ constant $)$

$$
\frac{\partial}{\partial \mathrm{z}}\left(\rho \mathrm{v}_{\mathrm{z}}\right)=0
$$

EQUATIION OF MOTION $\left(\mathrm{v}_{\mathrm{r}}, \mathrm{v}_{\boldsymbol{\theta}}, \frac{\partial \mathrm{v}_{\mathrm{z}}}{\partial \mathrm{z}}=0, \rho\right.$ and μ constant $)$

$$
\rho \frac{\partial \mathrm{v}_{\mathrm{z}}}{\partial \mathrm{t}}=-\frac{\partial \mathrm{p}}{\partial \mathrm{z}}+\mu\left[\frac{1}{\mathrm{r}} \frac{\partial}{\partial \mathrm{r}}\left[\mathrm{r} \frac{\partial \mathrm{v}_{\mathrm{z}}}{\partial \mathrm{r}}\right]\right]
$$

TRANSFORMATION OF VARIABLES

$$
\phi=\frac{\mathrm{v}_{\mathrm{Z}}}{\mathrm{v}_{\max }} \quad-\frac{\partial \mathrm{p}}{\partial \mathrm{z}}=-\left(\mathrm{p}_{0}-\mathrm{p}_{\mathrm{L}}\right) / \mathrm{L} \quad \xi=\mathrm{r} / \mathrm{R} \quad \tau=\frac{\mu \mathrm{t}}{\rho \mathrm{R}^{2}}
$$

TRANSFORMATION OF EQUATION OF MOTION

$$
\frac{\partial \phi}{\partial \tau}=-4+\frac{1}{\xi} \frac{\partial}{\partial \xi}\left[\xi \frac{\partial \phi}{\partial \xi}\right] \quad \text { or } \quad \frac{\partial \phi}{\partial \tau}=-4+\left[\frac{1}{\xi} \frac{\partial \phi}{\partial \xi}+\frac{\partial^{2} \phi}{\partial \xi^{2}}\right]
$$

INITIAL BOUNDARY CONDITIONS

I.C.:
$\tau=0$

$$
\phi=0 \text { for } 0 \leq \xi \leq 1
$$

B.C. 1:
$\xi=0$
$\frac{\partial \phi}{\partial \xi}=0$
B.C. 2:
$\xi=1$
$\phi=0$

COMPARISON OF NUMERICAL AND ANALYTICAL SOLUTIONS

Velocity profiles, Figure 2, for the example in which the fluid was initially at rest, were calculated on the interval 0 to 1 with steps of $0.1,[0(0.1) 1.0]$, for the equation of motion written in the form

$$
\xi \frac{\partial \phi}{\partial \tau}=4 \xi+\left[\frac{\partial \phi}{\partial \xi}+\xi \frac{\partial^{2} \phi}{\partial \xi^{2}}\right]
$$

to eliminate numerical difficulties at $\xi=0$. Results from HERCOL are denoted by asterisks "*", analytical solutions are shown as dashed curves (---), and the steady-state solution is shown as a solid line (—). Tables 4 and 5 list values of ϕ for ξ on the interval [0, (0.1), 1.0] calculated from HERCOL, and from the analytical solution; for practical purposes, the results are identical.

Figure 3 is a plot of the velocity profiles for the second example; the fluid is initially in motion with a Poiseuille velocity distribution and a pressure gradient with the same magnitude as in the first example but with opposite sign as imposed on the flow at $\tau=0$. At $\tau=0.05$, the velocity profile has been distorted and at $\tau=0.20$, the flow is in the opposite direction. At steady-state, the velocity profile is symmetric about $\phi=0$ with respect to the initial velocity profile. A condition such as this may occur in the discharge lines of a surge-type gas compressor.

Figure 2. Velocity profiles for unsteady laminar flow in a circular tube, fluid at rest initially.

Figure 3. Velocity profiles for unsteady laminar flow in a cylindrical tube, fluid in motion initially.

TABLE 4

COMPARISON OF NUMERICAL AND ANALYTICAL SOLUTIONS OF

$$
\frac{\partial \phi}{\partial \tau}=4+\left[\frac{1}{\xi} \frac{\partial \phi}{\partial \xi}+\frac{\partial^{2} \phi}{\partial \xi^{2}}\right]
$$

ON THE INTERVAL [0(0.1) 1.0] AT $\tau=0.05$

ξ	$\phi_{\text {HERCOL }}$	$\phi_{\text {analytical }}$	\% Difference
0.00	0.19962	0.19959	0.015
0.10	0.19948	0.19946	0.010
0.20	0.19897	0.19894	0.015
0.30	0.19772	0.19769	0.015
0.40	0.19497	0.19495	0.010
0.50	0.18935	0.18933	0.011
0.60	0.17861	0.17859	0.011
0.70	0.15936	0.15934	0.013
0.80	0.12701	0.12698	0.024
0.90	0.07594	0.07592	0.026
1.00	0.00000	0.00000	-

[^1]
TABLE 5

COMPARISON OF NUMERICAL AND ANALYTICAL SOLUTIONS OF

$$
\frac{\partial \phi}{\partial \tau}=4+\left[\frac{1}{\xi} \frac{\partial \phi}{\partial \xi}+\frac{\partial^{2} \phi}{\partial \xi^{2}}\right]
$$

ON THE INTERVAL [0 (0.1) 1.0] AT $\tau=0.20$

ξ	$\phi_{\text {HERCOL }}$	$\phi_{\text {analytical }}$	\% Difference
0.00	0.65181	0.65178	0.005
0.10	0.64680	0.64678	0.003
0.20	0.63158	0.63156	0.003
0.30	0.60551	0.60549	0.003
0.40	0.56759	0.56758	0.002
0.50	0.51646	0.51645	0.002
0.60	0.45049	0.45048	0.002
0.70	0.36782	0.36781	0.003
0.80	0.26650	0.26650	0
0.90	0.14454	0.14453	0.007
1.00	0.00000	0.00000	-

$\phi_{\text {HERCOL }}$: numerical results from HERCOL
$\phi_{\text {analytical }}$: analytical solution

CONCLUSIONS

The performance of HERCOL was quite satisfactory for the solution of the equation of motion in cylindrical coordinates,

$$
\frac{\partial \phi}{\partial \tau}=4+\left[\frac{1}{\xi} \frac{\partial \phi}{\partial \xi}+\frac{\partial^{2} \phi}{\partial \xi^{2}}\right]
$$

with combined Dirịchlet, $\left.\phi\right|_{\xi}$, and Neumann, $\left.\frac{\partial \phi}{\partial \xi}\right|_{\xi}$, boundary conditions.

The code will be useful for generation of solutions for similar problems in which the initial and boundary conditions preclude analytical solutions, the equation of state is not a simple function, or the transport properties of the fluid are not constant.

ACKNOWLEDGMENTS

The comments and suggestions of J.M. Gary, the author of HERCOL, were quite helpful in this effort.

REFERENCES

[1] Gary, John M., "HERCOL Computer Program for the Solution of Initial Boundary-Value Problems with Hermitian Collocation," Applied and Computational Mathematics Division 719, National Institute of Standards and Technology, 325 Broadway, Boulder, CO 80303
[2] Szymanski, P., "Quelques Solutions exactes des equations de l'hydrodynamiquie due fluide visqueux dan les cas d'un tube cylindrique," Journal de Mathematiques Pures et Appliquies, Series 9, 11, (1932), pp. 67-107.
[3] Bird, R.B., W.E. Stewart, and E.N. Lightfoot, "Transport Phenomena," John Wiley \& Sons, New York, (1960), pp. 126-130.

NOMENCLATURE

Symbols
$\mathrm{p}=$ pressure
$r=$ radial coordinate,L
$R=$ tube radius, L
$\mathrm{t}=\mathrm{time}, \mathrm{t}$
$\mathrm{v}=$ velocity, L / t
$z=$ rectangular coordinate, L
$\alpha=$ roots of Bessel function of the first kind, zero order
$\rho=$ density, $\mathrm{M} / \mathrm{L}^{2}$
$\xi=$ dimensionless position variable
$\phi=$ dimensionless volocity variable
$\theta=$ azmithual coordinate, radians
$\tau=$ dimensionless time variable
Subscripts

analytical	analytical solution
HERCOL	numerical solution
L	station "L"
\max	maximum
z	z-component
0	station "0"

Mathematical Functions
$\mathrm{J}_{0}=$ Bessel function of the first kind, zero order
$\mathrm{J}_{1}=$ Bessel function of the first kind, first order

APPENDIX A

LISTING OF SOURCE CODE FOR CALCULATION OF UNSTEADY LAMINAR VELOCITY PROFILES

C Name:
BSL126.FOR
C Required: HERCOL.FOR
C Purpose: Solve for unsteady laminar flow in a circular duct, Example 4.1-1 BSL

C Keywords: fluid flow, laminar, duct, unsteady
C Type: Program
C Status: Experimental
C Reference: Bird, R.B., W.E. Stewart, and E.N. Lightfoot,

Version:
011591
PROGRAM HCTEST
PARAMETER (NU1=81, NU2=4, LW=20)
REAL RWORK (10000), XPTS (NU1), U(NU1, NU2)
REAL WL(LW), WR(LW)
REAL XO (NU1), UX(NU1, NU2), UERR(NU1,3), UMX, SECOND
REAL RTOL, ATOL, T, TOUT, CPU1, CPU2, PI2, ALPHA, EPSA, EPSR
INTEGER IWORK(1000), INFO(15), NODE (2), LUNIT, NPRT, NSYS
INTEGER NPTS, LRW, LIW, MESS, L, NPDE, M, K, IDID, NODE2, I
COMMON /FCOM/ NSYS
COMMON /INICOM/ ALPHA
COMMON /TOLCOM/ NODE2 (2),EPSR,EPSA
INTEGER NU1,NU2,LW
DATA LRW, LIW/20000, 1000/

DO 600, $\mathrm{MM}=1,5$
MESS = 10
C WRITE ERROR MESSAGES ON UNIT 9
LUNIT $=9$
NSYS = 2
C
INITIAL VALUE OF THE TIME-LIKE VARIABLE

$$
T=0
$$

C FINAL VALUE OF THE INTEGRATION VARIABLE

$$
\text { TOUT }=0.20
$$

C INFO IS USED TO SET OPTIONS
DO 005, L = 1,15 INFO (L) $=0$
005 CONTINUE

C ALPHA = 10** $(\mathrm{MM}+1)$
C WRITE (MESS, 200) ALPHA
C NUMBER OF ODE VARIABLES WL AT LEFT BOUNDARY XPTS(1) NODE(1) $=0$

C NUMBER OF ODE VARIABLES WR AT RIGHT BOUNDARY XPTS(NPTS) NODE (2) $=0$

C RELATIVE AND ABSOLUTE ERROR TOLERANCES
RTOL=1. OE-4
ATOL=1. OE-4
C NUMBER OF COMPONENTS IN THE VECTOR OF UNKNOWNS, U NPDE $=1$

C NUMBER OF BREAKPOINTS, XPTS (1) ...XPTS (NPTS)

$$
\text { NPTS }=11
$$

C SET UP THE MESH AND SPECIFY THE INITIAL VALUE OF U DO $010 \mathrm{I}=1, \mathrm{NPTS}$ XPTS $(I)=\operatorname{REAL}(I-1) / \operatorname{REAL}(N P T S-1)$

C Bird, Stewart, and Lightfoot (4.1-28)
$\mathrm{U}(\mathrm{I}, 1)=0.0$
C Bird, Stewart, and Lightfoot (4.1-27)

$$
U X(I, 1)=0.0
$$

010 CONTINUE

EPSR=RTOL EPSA=ATOL

NODE2 (1) =NODE (1)
NODE2 (2) =NODE (2)
C WRITE OUT THE INPUT PARAMETERS
WRITE (MESS, 198)
WRITE (MESS, 210) NPDE, NPTS, T, TOUT, RTOL, ATOL, NSYS, \$ (INFO (L), L=1, 15)
WRITE (MESS, 220) NODE
C TIME THE HERCOL SUBROUTINE
CPUI $=\operatorname{SECOND}()$
CALL HERCOL(INFO, IDID,U,UX,NU1,NPTS,NPDE,WL,WR,NODE, XPTS, 1 T,TOUT, RTOL, ATOL, RWORK, LRW, IWORK, LIW, LUNIT)
$\mathrm{CPU} 2=\operatorname{SECOND}()-\mathrm{CPU1}$
IF (IDID .LT. 0) THEN
WRITE (MESS,230) IDID,T
GOTO 600
END IF
WRITE (MESS, 240) T, IDID, CPU2
WRITE (MESS, 250) RWORK(7), (IWORK(L), L=11, 15), IWORK(8)

C CALCULATE THE ERROR
IFLAG $=0$
$U M X=0.0$
$S Q E R R=0.0$
C COMPUTE THE SQUARE ERROR
C DO 020 I = 1,NPTS
C VAL = THETA (XPTS (I), T, IFLAG)

020 CONTINUE
WRITE (MESS,370) NSYS,T,UMX
WRITE (MESS, 398)
DO 030 I = 1,NPTS

WRITE (MESS, 405) I, XPTS (I), U(I,NPDE)
C WRITE (MESS, 405) I, XPTS (I), U(I,NPDE), UX(I,NPDE), UERR(I,NPDE)
CONTINUE

WRITE (MESS,201) SQERR
CONTINUE
CLOSE (9)
CLOSE (10)
C FORMAT STATEMENTS
198 FORMAT (1X, ' $\left.++++++++++++++++++++++++{ }^{\prime}\right)$
200 FORMAT (1X, 'ALPHA $=$ ',1PE12.4)
201 FORMAT (1X,' SQUARE ERROR = ',1PE12.4)
210 FORMAT (/' EX 4.1-2 BSL, P. 126 '/1X,'NPDE=', I2,' NPTS=', \$ I3,' $T=1,1 P$ E10.3,' TOUT=', E10.3/1X, 'RTOL=', E9.2,' ATOL=', \$ E9.2, ' NSYS=', I2/1X,'INFO=', 15I4)
220 FORMAT (' NODE=', 2I5)
230 FORMAT (/' ***** HERCOL FAILED IDID=1,I6,' T=',1PE10.3)
240 FORMAT (' $\mathrm{T}=1,1 \mathrm{P}$ E10.3,' IDID=1, I5,' $\mathrm{CPU}=1, \mathrm{E} 9.2$)
250 FORMAT (3X,' $H=1,1 P E 9.2,{ }^{\prime}$ NSTEP $=1, I 4,^{\prime}$ NFE=', I4,' NJE=', I4,

370 FORMAT (5X,'NSYS=', I2,' T=',1PE10.3,' MAX ABS ERROR=', E10.3)
398 FORMAT (1X,'TABLE OF CALCULATED RESULTS')
405 FORMAT (1X,I4,2X,5(1PE12.4))
610 FORMAT(' UERR(M,I) M=',I2/(5X,1P8E9.2))
620 FORMAT(' UERR(I) '/(5X,1P8E9.2))
END

SUBROUTINE FUN(T, XC, UT, U, UX, UXX, NCPT, NPDE, FT, IRES)
C FOR THE HCTEST OF HERCOL

REAL T,XC(NCPT), U(NCPT, NPDE), UX(NCPT, NPDE),
\$ UXX(NCPT, NPDE), FT(NCPT, NPDE), UT(NCPT, NPDE)
COMMON /FCOM/ NSYS
INTEGER NCPT, NPDE, IRES
INTEGER M, I
INTEGER NSYS
DO $020 \mathrm{M}=1$, NPDE
DO 010 I $=1$, NCPT
C Bird, Stewart, and Lightfoot (4.1-21)
$\mathrm{FT}(\mathrm{I}, \mathrm{M})=\mathrm{XC}(\mathrm{I}) * \mathrm{UT}(\mathrm{I}, \mathrm{M})-\mathrm{XC}(\mathrm{I}) * \operatorname{UXX}(\mathrm{I}, \mathrm{M})-\mathrm{UX}(\mathrm{I}, \mathrm{M})-4 * \mathrm{XC}(\mathrm{I})$
010 CONTINUE
020 CONTINUE
RETURN
END
C

SUBROUTINE BDYLFT(T, UT, U, UX, NPDE, WT, W, B, IRES)
C
C FOR THE HCTEST OF HERCOL
C
C
REAL T, UT(NPDE), U(NPDE), UX(NPDE), WT(*), $W(*), \quad B(*), P I 2$
COMMON /FCOM/ NSYS
INTEGER NPDE, IRES INTEGER NSYS

C FINITE VALUE OF U AT LEFT-HAND BOUNDARY

$$
B(1)=U X(1)
$$

RETURN
END

C

SUBROUTINE BDYRHT(T, UT, U, UX, NPDE, WT, W, B, IRES)

REAL T, UT(NPDE), U(NPDE), UX(NPDE), WT(*), W(*), B(*), PI2 INTEGER NPDE, IRES
INTEGER NSYS
COMMON /FCOM/ NSYS
COMMON /INICOM/ ALPHA
C $U=0$ AT RIGHT-HAND BOUNDARY

$$
B(1)=U(1)
$$

RETURN
END

SUBROUTINE JACOB(T, XC, UT, U, UX, UXX, WTL, WL, WTR, WR,

PROVIDE AN ANALYTIC JACOBIAN FOR THE HCTEST CODE
REAL XC(NCPT), UT (NCPT, NPDE), U(NCPT, NPDE),
$\$ \quad \mathrm{UX}(\mathrm{NCPT}, \mathrm{NPDE}), \mathrm{UXX}(\mathrm{NCPT}, \mathrm{NPDE}), \mathrm{WTL}(*), \mathrm{WL}(*), \mathrm{WTR}(*)$, \$ WR(*), DFDU(NCPT, NPDE, NPDE, 4), DBLDW(NBL, NWL, 2), \$ DBLDU (NBL, NPDE, 3), DBRDW (NBR, NWR, 2), \$ DBRDU (NBR, NPDE, 3), T

COMMON /FCOM/ NSYS
INTEGER NCPT, NPDE,NBL,NBR,NWL,NWR
INTEGER K,M
INTEGER NSYS
C
$\operatorname{DBLDU}(1,1,1)=1.0 \mathrm{EO}$
$\operatorname{DBLDU}(1,1,2)=-1.0 \mathrm{E} 0$
$\operatorname{DBRDU}(1,1,1)=1.0 \mathrm{E} 0$
$\operatorname{DBRDU}(1,1,2)=-1.0 \mathrm{E} 0$

RETURN
END

SUBRCUTINE SETTOL(RTOLK,ATOLK,RTOLW,ATOLW,NPTS,NPDE)
C SET ERROR TOLERANCE ARRAY FOR TEST CASES
REAL RTOLK(NPTS,NPDE),ATOLK(NPTS,NPDE), 1 RTOLW(*), ATOLW(*)

REAL EPSR,EPSA
COMMON /TOLCOM/ NODE(2),EPSR,EPSA
COMMON /FCOM/ NSYS
INTEGER ND1,NPDE,NPTS,K,M INTEGER NSYS,NODE
C
DO $20 \mathrm{~K}=1$, NPTS
DO $20 \mathrm{M}=1, \mathrm{NPDE}$
RTOLK (K, M) =EPSR
ATOLK (K, M) =EPSA
20 CONTINUE

IF (NODE (1) . NE. O) THEN
DO $30 \mathrm{~K}=1, \mathrm{NODE}(1)$
RTOLW (K) =EPSR
ATOLW (K) =EPSA
END IF
IF (NODE (2) .GT. 0) THEN ND1=NODE (1)

DO $40 \mathrm{~K}=\mathrm{ND} 1+1$, $\mathrm{NODE}(2)+\mathrm{ND} 1$
RTOLW (K) =EPSR
ATOLW (K) =EPSA
CONTINUE
END IF
RETURN
END

SUBROUTINE UINIT (XC, UC,NCPT,NPDE,WL,WR)
REAL XC(NCPT) ,UC(NCPT,NPDE),WL(*),WR(*),PI2 REAL ALPHA

COMMON /INICOM/ ALPHA COMMON /FCOM/ NSYS

INTEGER NCPT,NPDE, K, M INTEGER. NSYS

DO $100 \mathrm{~K}=1$, NCPT
$\mathrm{UC}(\mathrm{K}, 1)=\mathrm{XC}(\mathrm{K}) * * 2$
100 CONTINUE
RETURN
END

NISTIR 3963
2. PERFORMINQ ORQANIZATION REPORT NUMEER

BIBLIOGRAPHIC DATA SHEET

TITLE AND SUETITLE

Unsteady Laminar Flow in a Circular Tube; A test of the HERCOL
(Hermitian Collocation) Computer Code

AUTHO $\mathbb{S}^{3} 1 \mathrm{ch}$, James F., James A. Hurley, Michael P. Glover, Ryan D. Nassimbene, and Marilyn R. Yetzbacher

PERFORMINQ ORGANIZATION (IF JOINT OR OTHER THAN MIST, SEE INSTRUCTIONS)

U.S. DEPARTMENT OF COMMERCE

MATHOMAL HSTITUTE OF STANDARDS AND TECHNOLOQY
BOULDER, COLORADO $80303-3323$
SPONSORING ORCMNIZATION MAME AND COMPLETE ADDRESS (STREET, CTTY, STATE, ZIP)

SUPPLEMENTARY MOTES

ABSTRACT (A200WORD OR LESS FACTUAL SUNMMARY OF LOST SIGNIFICANT INFORMATION. FF DOCUMENT INCLUDES A SIGNIFICANT BIBLIOGRAPHY OR LIERATURE SURVEY, MENTION IT HERE)

HERCOL, a computer code for the integration of second-order differential equations in one space dimension by Hermitian collocation was used to calculate the unsteady velocity profiles for laminar flow in a circular tube. The code was tested for stability and accuracy on this problem for which an analytical solution exists prior to application to a like problem in which the initial and boundary conditions preclude the existence of analytical solutions.

The test problem is one in which a pressure gradient is imposed on a fluid initially at rest in a circular tube; the fluid accelerates and at steady state has a parabolic velocity profile. A second example was constructed from the first; a pressure gradient equal but opposite in sign in imposed on the fluid with a fully developed parabolic velocity profile. At steady state, the velocity is again parabolic but in the opposite direction to that at the initial conditions.

Excellent agreement with the analytical solution was obtained in the first problem; in the second, the behaviour was as expected. This example is suitable for first-time users of the code.

KEY WORDS (6 TO 12 ENTRIES; ALPHABETICAL ORDER; CAPITALZZ ONLY PROPER MAMES; AND SEPARATE KEY WORDS BY SEMICOLONS)
numerical integration; partial differential equation; unsteady-state laminar flow

AVALLABITTV

unLumited

FOR OFFICLIL DISTRIBUTION. DO NOT RELEASE TO MATIONAL TECHNICAL INFORMATION SERVICE (MTIS).
ORDER FROM SUPERMTENDENT OF DOCUMETTS, U.3. GOVERNBENT PRINTHM OFFCE, WASMINETON, DC 20402
ORDER FROM NATIONAL TECHNICAL INFORMATION SERVCE (UTIS), SPRIMOFAED, VA 22131.

[^0]: U.S. DEPARTMENT OF COMMERCE, Robert A. Mosbacher, Secretary NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, John W. Lyons, Director

[^1]: $\phi_{\text {HERCOL }}$: numerical results from HERCOL
 $\phi_{\text {analytical }}$: analytical solution

