AFRS Performance Evaluation Tests

R. T. Moore, R. Michael McCabe and R. Allen Wilkinson
U.S. DEPARTMENT OF COMMERCE

National Bureau of Standards
Institute for Computer Science and Technology
Gaithersburg, MD 20899

August 1988
Interim Report

Prepared for:
Federal Bureau of Investigation
U.S. Department of Justice

Washington, DC 20535

AFRS PERFORMANCE EVALUATION TESTS

R. T. Moore, R. Michael McCabe and R. Allen Wilkinson
U.S. DEPARTMENT OF COMMERCE National Bureau of Standards Institute for Computer Science and Technology Gaithersburg, MD 20899

August 1988
Interim Report

Prepared for:
Federal Bureau of Investigation
U.S. Department of Justice

Washington, DC 20535

U.S. DEPARTMENT OF COMMERCE, C. William Verity, Secretary NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director

Table of Contents

Introduction 1
Performance Metrics 1
Comparison With "GROUND TRUTH" 2
Comparison With "FALSE GROUND TRUTH". 3
Comparison With First Pass Data 3
Test Results 4
"GROUND TRUTH" Match Results 4
"FALSE GROUND TRUTH" Results 8
First Pass Match Results 9
Conclusions 10
FIGURES 11 to 32
APPENDIX A-1 to A-21

AFRS PERFORMANCE EVALUATION TESTS

by

R. T. Moore, R. Michael McCabe and R. Allen Wilkinson

INTRODUCTION

The FBI's Automatic Fingerprint Reader Systems (AFRS) are designed to scan life-sized fingerprint images and to detect selected features including, but not always limited to, minutiae. The position and orientation of these minutiae are recorded in units of X, Y, and Theta. For a variety of reasons, an AFRS generally fails to detect all of the true minutiae in a fingerprint and generally makes a number of false detections. Also, the true minutiae that are detected in different readings of the same fingerprint impression are not necessarily found in exactly the same relative positions. Thus, the accuracy, consistency and reliability of minutiae detection are useful measures of reader performance.

PERFORMANCE METRICS

Historically, ${ }^{1}$ reader performance has been evaluated by superimposing a plot of the minutiae detections made by the fingerprint reader on a photograph of the fingerprint enlarged to the same scale as the plot. Then, a fingerprint expert marks the plot indicating each true, false, or missing minutiae in the area of the fingerprint that is being considered. Limits of positional accuracy and angular accuracy are applied and each minutia detected by the reader is classed as either a true or a false minutia. A detection score is then assigned:

$$
\begin{equation*}
\text { Detection Score }=(\mathrm{D}-\mathrm{M}-\mathrm{F}) / \mathrm{T} \tag{1}
\end{equation*}
$$

where $\mathrm{D}=$ number of true minutiae detected by reader
$\mathrm{M}=$ number of true minutiae missed by reader
$\mathrm{F}=$ number of false minutiae detected by reader
$\mathrm{T}=$ total number of true minutiae in fingerprint
It should be noted that the scoring in Equation 1 penalizes a missed minutia twice as heavily as a false minutia.

Scores can range from 1.00 for perfect performance (no missed or false minutiae) down to large negative values which might result with few true detections and many false detections.

This procedure for evaluating reader performance is useful but quite labor intensive. As a consequence, reader performance evaluation in the past has usually been limited to the

[^0]examination of only a small number of sample fingerprints. Until fairly recently, the measurement of reader consistency, or repeatability, has received very little attention.

Recent work has been directed toward automating certain portions of the process. In particular, computer programs have been developed ${ }^{2}$ that permit two sets of minutiae data to be aligned in translation and rotation to a "best fit" position. These programs are adapted from the M-40 matcher algorithm and are applied in four stages in an iterative manner. From the final positioning, tolerances are applied to the relative displacement and orientation of minutiae pairs that are nearly aligned with each other to determine whether or not they are mates.

If one of the two sets of minutiae data is considered "ground truth" data, then the number of minutiae pairs that are within the tolerance limits establishes the value of D in Equation 1. The total number of minutiae in the "ground truth" data set establishes the value of T . The value of M is equal to $\mathrm{T}-\mathrm{D}$, while F is equal to the total number of minutiae detected in the data set being compared minus the value of D.

COMPARISON WITH "GROUND TRUTH"

In a typical instance, a fingerprint is read manually using any one of several different types of semi-automatic terminals. The reading is performed twice; once by each of two different operators. Next, the minutiae from each reading are plotted out at 10 X enlargement. The two plots are then overlaid and any discrepancies are easily identified and can be resolved. The resulting minutiae list, after all anomalies have been resolved, is considered a reasonable estimate of "ground truth" for that fingerprint. It may not exactly coincide with the machine read data for mating pairs of minutiae on that fingerprint simply because the human expert and the machine sometimes use slightly different rules in assigning position and orientation to a minutia, but usually these differences tend to be small.

When the data from a machine read fingerprint is compared with the "ground truth" data, the values for entry in Equation 1 can be developed. In addition, the distribution of the displacements in the position of mating minutiae pairs can be determined. The displacement is calculated as the straight line distance between each of the mating pairs whose X, Y and Theta differences are within the tolerance limits that have been established. It is calculated as:

$$
\begin{equation*}
S=\sqrt{\left(X^{2}+Y^{2}\right)} \tag{2}
\end{equation*}
$$

where $\mathrm{S}=$ straight line distance
$\mathrm{X}=$ displacement in X
$\mathrm{Y}=$ displacement in Y

When "ground truth" minutiae data are recorded, each minutia is given a reference number. Each minutia of machine read minutiae data is also assigned a reference number. The comparison programs use these reference numbers to identify mating pairs of minutiae. These reference numbers are also used in recording how frequently each "ground truth" minutiae is

[^1]detected on successive readings of the same fingerprint, or on repeated processing of the gray scale data developed during a single reading of the fingerprint.

COMPARISON WITH "FALSE GROUND TRUTH"

The programs also provide an alternative means for evaluating the consistency of reader performance given identical gray scale fingerprint information as the input data on successive runs. Here, a "false ground truth" data set is calculated and used to determine how repeatedly each minutia, either true or false, is detected.

The recorded gray scale data is input to the reader the first time and the minutiae are detected. Each minutia in the first set of detections from the fingerprint is considered a potential site for a "false ground truth" minutia "cluster" location. Then, the recorded gray scale data is input a second time and the minutiae are detected again. The minutiae of the second set of detections are then translated and rotated for "best fit" with the first set of minutiae. The position and orientation of the minutiae in the second set of detections are compared with those of the first and those that are within the selected tolerance limits are declared mates. Each mating pair of minutiae is the basis for adjustment in the location of its "cluster" site. The new location of the "cluster" site is the mean position of its two members. Minutiae that are beyond the tolerance limits for displacement and/or orientation do not have mates. Their locations establish candidate new sites for additional "clusters" to be formed with minutiae detected from the third and subsequent passes of the recorded gray scale data through the reader.

This process is repeated on the subsequent minutiae detections made from the fingerprint data. As additional minutiae on the subsequent runs are found to be located within the tolerance limits of position and orientation that are established for mates, they become members of that "cluster", or become potential sites for new "clusters". The center point of each "cluster" is continually recalculated on the basis of the positions of the members of that "cluster". Occasionally, minutiae will leave one "cluster" and join another as a result of this recalculation of center position of the "cluster".

An analysis of these "cluster" sizes provides an indication of reader consistency. Ideally, all "clusters" should have a number of members equal to the number of times that the identical gray scale data was passed through the system for minutiae detection. Smaller "clusters" are indicative of inconsistencies in performance.

COMPARISON WITH FIRST PASS DATA

A third means of evaluating consistency is provided when minutiae data from the first of a series of passes of gray scale data are used as a reference. These data are compared with the minutiae data from each of the succeeding passes of the identical gray scale data. The "cluster" size information developed from this routine is similar but not identical to that developed from use of the "false ground truth" procedure described above. This is because there is no recalculation of "cluster" center position as members are added to it. In addition to cluster size information, this routine also provides information on the distribution of the values of the displacement in the position of the mating minutiae. Since the same gray scale information is being input on each pass, this displacement is assumed to be caused by noise in the minutiae detection electronics.

TEST RESULTS

In connection with the conversion of the AFRS from a flying spot scanner to a solid state scanner, certain special test materials were prepared. Among these was a recording of the fingerprints of a single individual using three different inking densities, "Light", "Medium", and "Heavy". These fingerprints were scanned by the digital scanner on AFRS No. 4 and the gray scale data were recorded on disk. This permitted the same gray scale data to be directed repeatedly to the AFRS preprocessor for minutiae detection. Ideally, the same gray scale data should produce an identical minutiae list each time it is processed. Differences in the identity or position of the detected minutiae represent imperfect performance of the preprocessor which might be caused by noise or other factors.

This gray scale data recorded on disk was input to the preprocessor of AFRS No. 4 eight times. The detected minutiae were registered and clipped and then recorded as eight fingers of data from each of three cards. The data from the lightly inked card were recorded as card 105, medium as card 203, and heavy as card 301 from system No. 4.

The same procedure was followed using the same fingerprints on AFRS No. 2. This system has had decoupling capacitors installed on the printed circuit cards in the preprocessor.

"GROUND TRUTH" MATCH RESULTS

The "ground truth" data for these three fingerprints was obtained using the Graphic Pen ${ }^{3}$ at NBS. The objective was to record only those minutiae that appeared within the area covered by the clipping box. This would provide minutiae from an area that was common to the area of the machine-read minutiae data. A plot of the machine read data was centered in the field of view of the Graphic Pen in order to approximately define the clipping box boundaries. Then the fingerprint was positioned under the magnifier lenses and adjusted to make the minutiae agree with those on the machine-read plot. Next the outline of the clipping box was centered on the machine-read plot. Finally the minutiae of the fingerprint that were within or even slightly beyond the boundaries of the clipping box were read by two different operators to develop the "ground truth" data base for the minutiae of that finger.

There may be an element of uncertainty in this process. This comes about because in the machine-read data, the clipping box is centered on a position that is found as a result of processing the ridge flow data derived from the machine-read gray scale information. If noise in the system affects minutiae positions, it may also affect ridge flow data. This might cause the clipping box boundaries to be slightly different for each pass of identical gray scale data through the preprocessor. Because of this, some of the minutiae near the boundaries of the clipping box in the "ground truth" data set may actually be outside the boundaries of the clipping box for the machine-read data on one or more of the processing passes. Candidate minutiae have been identified that might have been missed for this reason. These candidates consist of "ground truth" minutiae that were located very close

[^2]to the clipping box boundary that were not detected in any of the multiple passes of the gray scale data through the preprocessor.

On the lightly inked fingerprint there were 83 minutiae on the initial "ground truth" list. Of these, nine minutiae, Nos. $1,2,3,4,8,12,23,56$, and 78 were not detected in any pass of the data. It is reasonable to assume that they might have been outside the clipping box. A value of 74 is therefore used for T in Equation 1 for this fingerprint. On the fingerprint with medium inking, there were 75 minutiae on the initial list and three of these, Nos. 1, 49 and 53 were not detected in any pass of the data, so T is assumed to have a value of 72 . On the fingerprint with the heavy inking, there were 76 minutiae on the initial "ground truth" list. Four of these, Nos. 5, 6, 19 and 51 had no detections in any pass of the machine-read data so a value of 72 is assumed for T .

The tolerance limits on displacement and orientation for a pair of minutiae to be considered mates are 0.4 mm (four X, Y matcher units) and 12 degrees (Theta).

With the gray scale data from these three fingerprints recorded on disk and then entered as eight independent passes into the preprocessor of AFRS No.4, the values for use in Equation 1 are shown in the following Table 1.

TABLE 1

Detection Scores for AFIS No. 4

	Light			Medium			Heavy		
Pass	D	M	F	D	M	F	D	M	F
1	18	56	60	20	52	54	28	44	60
2	20	54	46	28	44	49	30	42	57
3	14	60	48	27	45	43	35	37	58
4	20	54	51	19	51	47	34	38	49
5	18	56	57	24	48	51	33	39	53
6	15	59	57	22	50	40	40	32	46
7	16	58	51	24	48	53	33	39	54
8	19	55	50	24	48	45	34	38	49
Tot.	$\overline{140}$	$\overline{452}$	420	$\overline{188}$	$\overline{388}$	$\overline{382}$	$\overline{267}$	$\overline{309}$	$\overline{426}$
Score:	-732/5	92 $=$	-1.24	-582/	$576=$	-1.01	-468/	$576=$	-0.81

The mean number of true minutiae detected on the lightly inked print was 17.5 or 24% of the "ground truth" minutiae. On the medium inked print it was 23.5 , or 33% of "ground truth". On the heavily inked print it was 33.375 , or 46% of "ground truth".

On the lightly inked print, 34 different true minutiae were detected on one or more passes, but only six were consistently detected on all eight passes. On the medium inked print, 46 different true minutiae were detected on one or more passes, and only five were detected on all eight passes. With the heavily inked print, 48 true minutiae were detected on one or more passes and 16 were detected on all eight passes. The distribution of the numbers of
minutiae and consistency of their detection with eight passes through the preprocessor of AFRS No. 4 is shown in Table 2.

TABLE 2

Consistency of Detections, AFRS No. 4

LIGHT MEDIUM HEAVY

7	11	3	Minutiae detected 1 time		
5	5	3	$"$	$"$	2 times
6	8	5	$"$	$"$	3

Figure 1 shows this same data in a different way. This is a cumulative distribution of the percentage of the minutiae detections that are repeated eight times, seven times, etc.

Figures 2, 3 and 4 show distribution of distances that the minutiae were displaced from the "ground truth" position in each of the eight passes of the gray scale data through the AFRS No. 4 preprocessor for the light, medium and heavily inked image. Figure 5 shows a summary of this same information for the eight passes and all three inkings. This figure shows that the most frequent displacement is two units with the lightly inked images. The heavily inked image shows a noticeable peak at one unit of displacement.

The preprocessor of AFRS No 2. has been modified with the addition of some decoupling capacitors to its printed circuit cards in an attempt to reduce internally generated noise. The same procedures were followed with this reader as with AFRS No. 4. Gray scale data was recorded on disk and passed through the preprocessor eight times and the minutiae detections from each pass compared with the "ground truth" data from the light, medium and heavily inked fingerprint. The results are shown in Table 3. They are very comparable to the performance shown for AFRS No. 4 in Table 1. The lightly inked print provided a mean of 17.5 true minutiae or 24% of "ground truth". On the medium inked print the mean number of detections was 21.625 or 30% of "ground truth". The heavily inked print yielded a mean of 33.125 minutiae which is 46% of the "ground truth".

The distribution of numbers of minutiae and the consistency of detection is shown in Table 4.

TABLE 3

Detection Scores for AFRS No. 2

LIGHT

Pass	D	M	F	D	M	F	D	M	F
1	24	50	53	18	54	55	34	38	50
2	17	57	41	28	44	57	32	40	56
3	20	54	51	21	51	53	31	41	60
4	16	58	47	23	49	52	36	36	45
5	12	62	48	20	52	41	37	35	46
6	21	53	62	21	51	57	31	41	54
7	15	59	58	21	51	51	31	41	54
8	15	59	62	21	51	55	32	40	58
Tot.	$\overline{140}$	$\overline{452}$	$\overline{422}$	$\overline{173}$	$\overline{403}$	$\overline{421}$	$\overline{265}$	$\overline{311}$	$\overline{430}$
Score:	$-733 / 592$	$=-1.24$	$-648 / 576$	$=-1.13$	$-476 / 576$	$=-0.83$			

TABLE 4

Consistency of Detections, AFRS No. 2

LIGHT MEDIUM HEAVY

4	11	6	Minutiae detected 1 time			
8	4	2	$"$	$"$	2 times	
2	3	3	$"$	$"$	3	

Figure 6 shows the cumulative distribution of the repeated minutiae detections shown in Table 4.

Figures 7, 8 and 9 show distribution of distances that the minutiae were displaced from the "ground truth" position in each of the eight passes of the gray scale data through the AFRS No. 2 preprocessor for the light, medium and heavily inked image.

Figure 10 shows a summary of this same information for the eight passes and all three inkings. This figure shows that the most frequent displacement is two units with the light
and medium inked images. The heavily inked image again shows a noticeable peak at only one unit of displacement.

"FALSE GROUND TRUTH" RESULTS

"False ground truth" is the name that has been given to the set of candidate "cluster" sites in (X, Y, Theta) space representing every minutiae detection, true or false, resulting from multiple passes of the same gray scale data through the preprocessor and minutiae detection logic. Each field of detected minutiae is translated and rotated to a "best fit" position with respect to the field of minutiae detected in the first pass. Mating minutiae are identified and the "cluster" site is recalculated to be the mean position and orientation of the mates comprising the cluster. Minutiae that do not have mates within the tolerance limits of displacement and rotation still establish candidate sites that may become populated with subsequent passes of the data.

Since the gray scale data that is used is digital, performance in a noise-free environment would be expected to produce N "clusters" each having a population of M mates, where N is a constant number of minutiae detections and M is the number of times that the same gray scale data is passed through the detector. The fact that this is not the case is a matter of serious concern.

Table 5 shows the performance of AFRS No. 4 on the light, medium and heavily inked prints. The same data is shown in Fig. 11 as the cumulative distribution of the percentage of multiple detections. There is very small difference in the results from the light and medium inked print, while the heavily inked print produced noticeably more consistent detections.

Table 6 and Fig. 12 show the corresponding performance of AFRS No. 2. Here the superiority of the heavily inked print is much less pronounced.

TABLE 5

SUMMARY OF "FALSE GROUND TRUTH" CLUSTER SIZES - AFRS NO. 4

LIGHT MEDIUM HEAVY

60	69	33	Minutiae detected 1 time			
27	30	16	$"$	$"$	2 times	
21	16	9	$"$	$"$	3	

TABLE 6

SUMMARY OF "FALSE GROUND TRUTH" CLUSTER SIZES - AFRS NO. 2

LIGHT MEDIUM HEAVY

58	53	57	Minutiae detected 1 time		
36	27	17	$"$	$"$	2 times
14	11	12	$"$	$"$	3

The software routines that developed the data shown above in Tables 5 and 6 for "false ground truth" performance list the identity of each of the minutiae that formed each of the clusters. Many of these clusters appear to have been formed from false detections that occurred repeatedly. A comparison of the numbers of minutiae detected eight times in Tables 2 and 4 with the number of minutiae detected eight times in Tables 5 and 6 reveals information about how frequently these repeated false detections occurred.

FIRST PASS MATCH RESULTS

This comparison takes the minutiae detections resulting from the first pass of the gray scale data from the light, the medium, and the heavily inked fingerprint and treats it as the reference against which the other seven passes of the data from each of these fingerprints are compared. As is the case of the "false ground truth" data there is no distinction made as to whether the minutiae detected are true or false. The chief utility of this comparison is to provide a measure of the displacements in position and orientation of mating minutiae that is not biased by the human position selection rules as it is in the "ground truth" data.

Figures 13 through 15 show the seven individual results obtained from each of the three degrees of inking on AFRS No. 4. Figures 16 and 17 show the summary data for this system.

Figures 18 through 20 show the seven individual results from each of the three inkings on AFRS No. 2 and Figs. 21 and 22 cover the summary results for this system.

These data show that the most frequently observed displacement in position for mating minutiae is one matcher unit, although there are displacements greater than that in a few percent of the detections. With no noise, it would be expected that there would be no displacement, since the same digital data is input each time.

CONCLUSIONS

These test results indicate that despite the improvements resulting from upgrading the readers with the new solid state scanner subsystems, there are serious problems in the AFRS. These are manifest in the form of inconsistencies in the detection of minutiae, both true and false, even when identical gray scale data is input to the preprocessor and minutiae detection circuitry. The performance is more erratic when lightly or moderately inked fingerprints are used than with heavily inked, high contrast, images. In these tests, only about one quarter of the true minutiae were detected in lightly inked prints, one third in the moderately inked prints and one half in the heavily inked prints on any single processing of the fingerprint data. Presumably the observed inconsistencies in performance result from noise in the preprocessor. Minor inconsistencies in detection performance could be expected to be caused by the recursive behavior of the ridge valley filter, but these would be expected to be constrained to the top few per cent of the fingerprint image area. Since several of the instances where minutiae were detected consistently (eight times) occur in the top five percent of the image area, it is not believed that the recursive attributes of the filter are a major contributor to the inconsistencies observed in minutiae detection.

It is believed that the detection probability displayed in these tests is not capable of supporting an effective automated latent fingerprint identification system. It is suggested that long range planning should contemplate reconversion of the files to be used for an automated latent system. Rigorous quality control measures are suggested to insure that the quality of the re-converted file data is maintained at an acceptable level. It is believed that some of the software routines listed in the Appendix would be appropriate candidates for use in support of this function.

These test data also strongly suggest that there is no significant difference in the performance of AFRS No. 2 and No. 4 and that the FBI made the correct choice in not adding the decoupling capacitors to the remainder of the AFRS preprocessors. It is believed that much more extensive measures will be required to correct the problems in these systems.

Finally, these data show a definite trend to improved performance with increasing ink density. This is in agreement with vendor claims that readers perform better with electronically generated fingerprints which provide images with high contrast.

CUM. \% BY NO. OF DETECTIONS

Figure 1

Figure 2

MINUTIAE DISPLACEMENT FROM GROUND TRUTH SAME GRAY SCALE DATA - AFRS \#4 - MEDIUM INKING

Figure 3

MINUTIAE DISPLACEMENT FROM GROUND TRUTH SAME GRAY SCALE DATA - AFRS \#4 - HEAVY INKING

Figure 4

NO. OF MINUTIAE

Figure 5

CUM. \% BY NO. OF DETECTIONS

Figure 6

Figure 7

Figure 8

MINUTIAE DISPLACEMENT FROM GROUND TRUTH
SAME GRAY SCALE DATA - AFRS \#2 - HEAVY INKING

Figure 9

NO. OF MINUTIAE

Figure 10

CUM. \% BY NO. OF DETECTIONS

- $\overrightarrow{0}$ ○

Figure 11

CUM. \% BY NO. OF DETECTIONS

Figure 12

MINUTIAE DISPLACEMENT FROM PASS \#1
SAME GRAY SCALE DATA - AFRS \#4 - LIGHT INKING

MINUTIAE DISPLACEMENT FROM PASS \#1
SAME GRAY SCALE DATA - AFRS \#4 - MEDIUM INKING

Figure 14

Figure 15

Figure 16

CUM. \% BY NO. OF DETECTIONS

Figure 17

PASS 12

PASS \&

Figure 18

SAME GRAY SCALE DATA - AFRS \#2 - MEDIUM INKING

Figure 19

Figure 20

NO. OF MINUTIAE

	\vec{N}	$\overrightarrow{0}$	\vec{G}	N	N	W
0	0	0	0	0	0	

Figure 21

CUM. \% BY NO. OF DETECTIONS

Figure 22

APPENDIX

This appendix contains a verbal description, flow diagrams, and the entire code for the program FINDTRANS and its subroutines. The program and subroutines are written in FORTRAN-77. Only two of the subroutines, FBIOPEN and FBIREAD are machine specific and only run on a VAX/VMS system, while the remaining subroutines and program should be portable.

The program FINDTRANS calculates the "best fit" transformation values for delta X , delta Y and delta THETA to be used in matching a pair of fingerprints. Additionally, the program evaluates the accuracy of a match performed using these transformation values. A "best fit" may be defined as the orientation in translation and rotation of a comparison fingerprint with a mating base fingerprint, such that the positions of the majority of minutiae from the comparison fingerprint are relatively close to those of the base fingerprint as evidenced by highest matching score. A "best fit" transformation may be one of several possible "best fit" transformations because of the many combinations of transformations that can be generated with equal scores. In this situation the first "best fit" transformation found is the transformation used.

As input, FINDTRANS requires the name of the file containing the base fingerprint (the one which will not be transformed) and the quantity of other prints to be compared against this base fingerprint. For each comparison print, the minutiae positions are read in and the initial "best fit" is assumed at the transformation values of 0 in $X, 0$ in $Y, 0$ in rotation. FINDTRANS then issues four calls to the subroutine BESTFIT, which calculates new transformation values. Each time BESTFIT is called, a constant theta difference limit of 12 degrees is used. However, the straight line distance tolerance decreases with each call to BESTFIT. The values that are used for the four calls are $30,15,8$, and 4 respectively. Only four calls of BESTFIT are used as the "best fit" values after the fourth iteration show very little sign of change. When FINDTRANS is done, the "best fit" transformation is known and diagnostic output of the match performed using this transformation is generated.

BESTFIT is the primary subroutine called by FINDTRANS, as it performs the majority of the processing. It initially saves the assumed "best fit" values that were passed to it and asks the user to input the beginning and ending rotational range with values stated in degrees. This range is used to test for the best transformation rotation value. This will be a value between the assumed "best fit" rotation plus the beginning value, increasing in increments of one degree, to the assumed "best fit" rotation plus the ending value. The beginning and ending values may be negative but the beginning value must always be less than the ending value. The comparison print is transformed using the present rotation value of the programming loop. After the transformation, the two prints are compared to find possible matches in minutiae positions. Any minutiae position in the base print that has a minutiae position in the comparison print located within the straight line distance tolerance and with the difference in theta values less than or equal to 12 degrees is considered to be a possible match. These possible matches are saved in a table called the S-table. Each entry in the S-table is given a score which rates the closeness of the match between the two minutiae. Using a scoring strategy, a score is generated for the entire transformation. If this is the first transformation then the score is assumed to be the highest score and is saved with the transformation values that generated the score. If this is not the first transformation then the score is compared against the saved score. If the new score is higher than the saved score, then the values and score are saved as the new "best fit" and high score. When the last rotation value of the loop has been processed, the highest score
and the corresponding transformation values are saved. This rotation value is used to retransform the comparison print and then recreate the S-table for this transformation. The data in the S-table is used to determine where the concentration of S-table entries are located. This point of concentration is the negative offset needed for the "best fit" X and Y values. If the point of concentration is at position $(3,-1)$ then the new "best fit" values are the previous "best fit" X value minus 3, and the previous "best fit" Y value plus 1. BESTFIT returns to FINDTRANS, its caller, the "best fit" values it has generated and the score of the match generated with these transformation values.

Several scoring strategies have been tested in an effort to evaluate the accuracy of a match between a base fingerprint and a transformed comparison fingerprint. The strategies that were tested include highest S-table entry score, average of the S-table entry's scores and total of the S-table entry's scores. The highest S-table score was found to be an effective method until the prints had at least one minutiae position match exactly on both prints. This caused the highest possible score to be generated. Many transformation values caused this situation. Due to this, the highest score method could not accurately choose a "best fit". To solve this problem more than one S-table entry value had to be used so the total and average methods were tested. Averaging the S-table on some matches cause a selection of two or more "best fit" transformations. With examination, these were not found to be very accurate. By using the total method the best results were obtained. The total method summed the S-table scores to generate the overall score. This method was used in BESTFIT to create a match score.

Example of results using all three methods

Entry \#	S-table 1 scores	S-table 2 scores	S-table 3 scores
1	100	120	180
2	100	110	100
3	50	70	80
4	60	80	40
5	150	90	60
6	20	No entry	No entry
Total method	480	470	460
Average method 80	94	92	
Highest method 150	120	180	

To create the S-table for a comparison, the routine MAK40 is called. This routine creates a table of pairs of minutiae whose delta X, delta Y and delta theta differences are within the tolerance levels. The tolerance limits are linear distance, usually no more than four units, and angular difference, usually no more than 12 degrees. This table keeps track of the minutiae identity numbers for the transformed print and base print, the differences in X, and Y, the delta theta of these two minutiae, and the score for the entry. When an entry is added to the list it is assigned a score of zero. Once all the entries have been created, MAK40 generates a score for each one. To do this, the linear distance between these two entries is calculated using their X and Y difference values [1]. If the distance is not within the straight line distance tolerance level or is greater than five, it has no effect on the score. If the distance is within the straight line distance tolerance and less than five, the score is adjusted by adding five minus the distance to the score [2]. When all the entry scores have been generated, MAK40 returns to its caller the completed S-table and the number of entries in the S-table.

$$
\text { Distance }=\sqrt{\begin{array}{l}
{\left[\left(\text { delta } X_{2}-\text { delta } X_{1}\right)^{2}\right.} \\
\left.+\left(\text { delta } Y_{2}-\text { delta } Y_{1}\right)^{2}\right] \tag{1}
\end{array}}
$$

$$
\begin{equation*}
\text { Score }=\text { Score + (} 5 \text { - Distance) } \tag{2}
\end{equation*}
$$

To determine the "best fit" X and Y values, the routine WINDOW is called. WINDOW generates values to be placed in a table indexed by delta X and delta Y values from the S table. The S-table entries with the same delta X and delta Y values are counted and that number is placed in the proper delta X, delta Y location. This routine moves a window over the delta X, delta Y table and generates three values for each position in that table. These values are for the specified window size, a window size that is two increments smaller, and a window size that is four increments smaller. A starting window size must always be an odd number and be greater than or equal to 5 units. This forces the center of the window to be at an integer coordinate position, not located between coordinates. If the specified size is 7×7 then the other two values are for windows 5×5 and 3×3. WINDOW returns the location of the highest score for a large window. If two or more locations tie, then the delta X, delta Y position of the one out of this group with the highest medium window score is returned. If a tie still exists, the highest score from the smallest window has its location returned. Finally, if a tie exists in all three window sizes, the average of delta X , delta Y locations that tie in the smallest window are the values that are returned.


```
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0 0 4 5
0046
0047
0048
0049
0050
0051
0052
0053
0054
0055
0056
0057
0058
0859
0060
0061
0062
0063
0064
0065
0066
0867
0068
0069
0870
0071
0072
0073
074
0075
0076
0877
0078
0079
0 0 8 0
0084
0082
0 0 8 3
```

```
C * Calculates possible transformation values
```

C * Calculates possible transformation values
BY R. ALLEN WILKINSON
BY R. ALLEN WILKINSON
INITALIZE VARIABLES
INITALIZE VARIABLES
IMPLICIT INTEGER (A-Z)
IMPLICIT INTEGER (A-Z)
INTEGER UNIT,FIN
INTEGER UNIT,FIN
INTEGER NUM,I.J.K.L
INTEGER NUM,I.J.K.L
INTEGER ISTAB(500,6),ISCNT,CHART(200,10)
INTEGER ISTAB(500,6),ISCNT,CHART(200,10)
INTEGER BEST(4),TOTAL(25),TABLE(10,500,6),TSCNT(10),GROUP(20)
INTEGER BEST(4),TOTAL(25),TABLE(10,500,6),TSCNT(10),GROUP(20)
INTEGER*2 B(250.3.2)
INTEGER*2 B(250.3.2)
CHARACTER TYPE
CHARACTER TYPE
C
C
C NUM NUMBER OF FINGERS TO BE COMPARED
C NUM NUMBER OF FINGERS TO BE COMPARED
C:
C:
S TABLE ENTRIES
S TABLE ENTRIES
C* ISTAB(K,6)
C* ISTAB(K,6)
NUMBER OF ENTRIES IN S TABLE
NUMBER OF ENTRIES IN S TABLE
ARRAY FOR MINUTIAE MATCHED CHART
ARRAY FOR MINUTIAE MATCHED CHART
TOTAL OF DISTANCE CHART OVER I FINGERS
TOTAL OF DISTANCE CHART OVER I FINGERS
MINUTIAE MATCHED SUMMARY ARRAY
MINUTIAE MATCHED SUMMARY ARRAY
DATA UNIT/7/
DATA UNIT/7/
DATA TOTAL/0,0/
DATA TOTAL/0,0/
INCLUDE '[WILKINSON.LIB]COM004.FOR/LIST'
INCLUDE '[WILKINSON.LIB]COM004.FOR/LIST'
INTEGER*2 A
INTEGER*2 A
INTEGER IMX
INTEGER IMX
C
C
C* A(250.3.2) MINUTIAE ARRAY(MINUTIAE \#,DATA TYPE,PRINT TYPE)
C* A(250.3.2) MINUTIAE ARRAY(MINUTIAE \#,DATA TYPE,PRINT TYPE)
COMMON /BLK004/A(250,3.2).IMX(2)
COMMON /BLK004/A(250,3.2).IMX(2)
C DATA TYPE- X=1,Y=2,THETA=3
C DATA TYPE- X=1,Y=2,THETA=3
PRINT TYPE- SEARCH PRINT=1,FILE PRINT=2
PRINT TYPE- SEARCH PRINT=1,FILE PRINT=2
IMX(2) NUMBER OF MINUTIAE(PRINT TYPE)
IMX(2) NUMBER OF MINUTIAE(PRINT TYPE)
INCLUDE '[WILKINSON.LIB]COM007.FOR/LIST'
INCLUDE '[WILKINSON.LIB]COM007.FOR/LIST'
C

```
C
```



```
C
```

C
- ISBZ(2),ISRZ(2),ISUNIT,SCORES(40).IPRM2,IJUMP
- ISBZ(2),ISRZ(2),ISUNIT,SCORES(40).IPRM2,IJUMP
INCLUDE '[WILKINSON.LIB]COMO12.FOR/LIST'
INCLUDE '[WILKINSON.LIB]COMO12.FOR/LIST'
LOGICAL DIAG
LOGICAL DIAG
COMMON /BLK012/DIAG(100)
COMMON /BLK012/DIAG(100)
C F FLAG SUBROUTINE DIAGNOSTIC
C F FLAG SUBROUTINE DIAGNOSTIC
C DIAG(1) BESTFIT S TABLE INFO PRINTED
C DIAG(1) BESTFIT S TABLE INFO PRINTED
C DIAG22 BESTFIT S TABLE DX.DY VALUES PLOTTED
C DIAG22 BESTFIT S TABLE DX.DY VALUES PLOTTED
C DIAGS3 BESTFIT DISTANGE SUMMARIES PRINTED
C DIAGS3 BESTFIT DISTANGE SUMMARIES PRINTED
BESTFITT DISTANGE SUMMARIES PRINTED
BESTFITT DISTANGE SUMMARIES PRINTED
INCLUDE '[WILKINSON.LIB]COMOI3.FOR/LIST'
INCLUDE '[WILKINSON.LIB]COMOI3.FOR/LIST'
C
C
CHARACTER TMPFILE*40
CHARACTER TMPFILE*40
INTEGER DISTAN
INTEGER DISTAN
C
C
COMMON/BLK013/TMPFILE.DISTAN(25)
COMMON/BLK013/TMPFILE.DISTAN(25)
C * USED IN OPENFBI
C * USED IN OPENFBI
C * TMPFILE ORIGINAL FILE NAME UPON OPENNING
C * TMPFILE ORIGINAL FILE NAME UPON OPENNING
C * USED IN BESTFIT
C * USED IN BESTFIT
DISTAN(I) DISTANCE FROM CENTER COUNTS ON A FINGER (I=DISTANCE)
DISTAN(I) DISTANCE FROM CENTER COUNTS ON A FINGER (I=DISTANCE)
INCLUDE '[WILKINSON.LIB]COMDATA.FOR/LIST'
INCLUDE '[WILKINSON.LIB]COMDATA.FOR/LIST'
C
C
C DATA ARRAYS *
C DATA ARRAYS *
INTEGER=2 FINGER,QUALITY,MINCNT, XYT
INTEGER=2 FINGER,QUALITY,MINCNT, XYT
C
C
COMMON /BLKDATA/FINGER(10).QUALITY(10).MINCNT(10).
COMMON /BLKDATA/FINGER(10).QUALITY(10).MINCNT(10).
- XYT(250.3.10)
- XYT(250.3.10)
C ** USED IN NEW FBI DATA ORGANIZATION
C ** USED IN NEW FBI DATA ORGANIZATION
C F* FINGER(I) Ith FINGER'S ACTUAL NUMBER
C F* FINGER(I) Ith FINGER'S ACTUAL NUMBER
QUALITY(I) Ith FINGER'S DATA QUALITY
QUALITY(I) Ith FINGER'S DATA QUALITY
MINCNT(I) Ith FINGEROS NUMBER OF MINUTIAE
MINCNT(I) Ith FINGEROS NUMBER OF MINUTIAE
XYT(J.K,I) Ith FINGER'S jth MINUTIAE DATA
XYT(J.K,I) Ith FINGER'S jth MINUTIAE DATA
WHERE K=
WHERE K=
1 FOR X DATA VALUE 0-255
1 FOR X DATA VALUE 0-255
2 FOR Y DATA VALUE 0-255
2 FOR Y DATA VALUE 0-255
3 FOR THETA DATA VALUE 0-359
3 FOR THETA DATA VALUE 0-359
INCLUDE '[WILKINSON.LIB]COMIO.FOR/LIST'
INCLUDE '[WILKINSON.LIB]COMIO.FOR/LIST'
C
C
STRUCTURE /FBIDAT/
STRUCTURE /FBIDAT/
UNION
UNION
MAP

```
            MAP
```

CHARACTER：40 CLASS
CHARACTER：9 CDATE
CHARACTER＊ 8 CTIME
CHARACTER＊ 3 FILL
INTEGER＊2 CARD
INTEGER：2 OFFSET（10）
INTEGER＊2 VALUES（7550）

```

\section*{END MAP}
```

MAP
CHARACTER：15192 BUF
END MAP
END UNION
END STRUCTURE
RECORD／FBIDAT／INPUT
COMMON／BLKIO／INPUT
USED IN NEW FBI I／O ROUTINES－FBIOPEN，FBIREAD，FBIWRITE
PCNUM PROCESS CONTROL NUMBER
CLASS CLASSIFICATION
CDATE FILE CREATION DATE
CTIME FILE CREATION TIME
FILL JUST USED TO FILL TO WORD BOUNDARY
OFFSET（I）OFFSET FROM PCN TO FINGER FI＇S DATA
values（i）actual minutiae data array
DIAG（1）＝．FALSE．
DIAG（2）＝．FALSE．
DIAG（3）＝．FALSE．
DIAG（4）＝．TRUE．
OPEN FILES
WRITE（6．1100）
FORMAT（ $i x \cdot$＇BASE FINGER＇）
CALL FBIOPEN（UNIT）
READ RECORD
CALL FBIREAD（UNIT）
CLOSE（UNIT）
CALL FINNUM（FIN）
IMX（1）＝MINCNT（FIN）ISET NUMBER OF MINUTIAE
$0010 \quad I=1 . I M X(1)$
DO $15 \mathrm{~J}=1.3$
$A(I, J, 1)=X Y T(I, J, F I N)$
$B(I, J, 1)=X Y T(I, J, F I N)$
CONTINUE
15
10
ENTER LOOP FOR ALL TRANSFORMING FINGERS
WRITE（6． 1101 ）
FORMAT（1X．＇ENTER NUMBER OF FINGERS TO COMPARE TO BASE＇）
READ（5．＇（I2）＇）NUM
DO 20 L＝1．NUM
C
C
C
OPEN FILE
WRITE（6，1102）
FORMAT（ $1 X,{ }^{\prime}$ FINGER TO TRANSFORM＇）
CALL FBIOPEN（UNIT）
READ RECORD
CALL FBIREAD（UNIT）
CLOSE（UNIT）
CALL FINNUM（FIN）
$\operatorname{BEST}(1)=0$
BEST（2）$=0$
$\operatorname{BEST}(3)=0$
IMX（2）＝MINCNT（FIN）ISET NUMBER OF MINUTIAE
DO $30 \quad J=1$ ．IMX（2）
DO $35 K=1,3$ $A(J, K, 2)=X Y T(J, K, F I N)$
B（J，K，2）$=X Y T(J, K, F I N)$
CONTINUE
CONTINUE
DO FINE ALIGNMENT CHANGES TO FIND BEST FIT
C
35
30
C
C
C

```
```

$L S=30$

0167 0168 0169 0170 0171 0172 0173 0174 0175 0176 0177 0178 0179 0180 0181 0182 0183 0184 0185 0186 0187 0188 0189 0190

0191

0192
0193
0194
0195
0196
0197 0198 0199 0200 0201 0202 0203 0204 8285 0286 0287 0208 0209 0210 0211 0212
0213
0214
0215
0216
0217
0218
0219
0220
0221
0222
0223
0224
0225
0226
0227
0228
0229
0230
0231
0232
0233
0234
0235
0236
8237
0238
0239
0240
0241
0242 0243

LTHETA=12
DIAG(1)=. FALSE.
DIAG(2)=.FALSE.
DIAG (3) =. FALSE.
CALL BESTFIT(BEST, B) IFINDS BEST FIT FOR PRESENT LS AND LTHETA VALU
LS=15
CALL BESTFIT(BEST, B) IFINDS BEST FIT FOR PRESENT LS AND LTHETA VALU
LS=8
CALL BESTFIT(BEST, B) IfindS best fit for present ls and litheta valu
LS=4
DIAG(1)=.TRUE.
DIAG 2) =. TRUE.
DIAG(3)=.TRUE.
CALL BESTFIT(BEST, B) IFINDS BEST FIT FOR PRESENT LS AND LTHETA VALU
DO $21 \quad Z=1,25$
TOTAL(Z) $=$ TOTAL(Z) +DISTAN(Z) IADD CURRENT DISTANCES TO TOTALS
CONTINUE
CALL TRNSFX(A,2,IMX(2),BEST(3),BEST(2),BEST(1))
CALL MAK40(ISTAB, ISCNT)
TSCNT(L) =ISCNT
DO $23 Z=1$. ISCNT
DO $22 K=1,6$
$\operatorname{TABLE}(L, Z, K)=\operatorname{ISTAB}(Z, K)$
CONTINUE
continue
CONTINUE
WRITE (6.1000)
FORMAT (1H1, ******* OVERALL DISTANCE SUMMARY ********')
WRITE(6, 1001)

$\begin{array}{llllllllllll}\dot{B}^{\circ} & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 \\ 23 & \left.24^{\prime}\right)\end{array}$
WRITE (6,1002) (TOTAL(K), K=1,25)
FORMAT (1X.25I4)
INITIALIZE CHART VARIABLES
DO 880 L=1, NUM
GROUP (L) $=0$
880 CONTINUE
DO $890 \mathrm{~L}=1$. I $\mathrm{MX}(1)$
DO $895 \quad Z=1,10$
$\operatorname{CHART}(L, Z)=0$
CONTINUE
CONTINUE
CREATE MINUTIAE MATCHED ARRAY
DO 900 L=1.NUM
DO 910 $Z=1$. TSCNT (L)
CHART(TABLE (L, Z, 4), L) $=\operatorname{TABLE}(L, Z, 5)$
CONTINUE
CONTINUE
PRINT MINUTIAE MATCH CHART
COUNT NUMBER OF MATCHES PER MINUTIAE
CREATE MINUTIAE MATCHED SUMMARY
DO 920 Z=1.IMX(1)
WRITE (6,i004) 2 , (CHART $(Z, L), L=1,10)$
FORMAT (1X,I4,10I4)
$C N T=0$
DO $930 \quad Y=1.10$
IF (CHART$(Z, Y) . E Q .0)$ GOTO 930
CNT $=C N T+1$
CONTINUE
IF (CNT.EQ.0) GOTO 920
GROUP (CNT)=GROUP (CNT) +1
CONTINUE
PRINT MINUTIAE MATCHED SUMMARY
DO $940 \mathrm{Z}=1$. NUM
WRITE (6,i005) GROUP (Z), Z
FORMAT(1X.I 3.' MINUTIAE MATCHED'.I3.' TIMES')
CONTINUE
STOP
END

```
0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059
0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072
0073
0074
0075
0076
0077
0078
0079
0080
0081
0082
```


0083

0108
0109
0118
0111
0112
0113
0114
0115
0116
0117
8118
0119
0120
0121
0122
0123
8124
0125
0126
81 127
0128
0129
0130
8131
0132
0133
0134
0135
0136
0137
0138
0139
0140
0141
0142
0143
0144
0145
0146
0147
0148
0149
0150
0151
0152
0153
0154
0155
0156
0157
0158
0159
0160
0161
0162
0163
0164
0165
0166
PRINT *.'ENTER BEGINNING AND ENDING VALUES FOR •,WORD(1)
READ (5, (I3 ${ }^{\circ}$)K,K1
WRITE (6,150) WORD (1),K,K1
FORMAT (iH1.'TABLE FOR'., A8. 14.' THRU'.I3)
CNT=1
WRITE (6,180) BEST (3), BEST (2), BEST (1)
FORMAT (1X,'STARTING TRANSFORMATION IS $X={ }^{\circ}$.I3.' $Y=$.
- I3.' THETA=', I3)
DO 60 VALUE=K.K1
$D X=0$
$D Y=0$
DT=0
TEST=SAVE(1)+VALUE
CALL TRNSFX(A,2.IMX(2), SAVE(3).SAVE(2),TEST)
CALL MAK4O(ISTAB.ISCNT)
$S=0$
MAX=1
NOCNT=0
DO $40 \mathrm{~J}=1$. ISCNT
IF (ISTAB (J. 6).EQ.0) THEN
NOCNT=NOCNT+1
GOTO 40
END IF
$D X=D X+I S T A B(J, 1)$
$D Y=O Y+1 S T A B(J .2)$
$D T=D T+I S T A B(J, 3)$
$S=S+I S T A B(J, 6)$
CONTINUE
IF (ISCNT.EQ.0) GOTO 70
IF (ISCNT.LT.NOCNT) GOTO 70
IF (ISCNT.EQ.NOCNT) GOTO 70
RTEMP=DX/(ISCNT-NOCNT)
DXEJNINT(RTEMP)
RTEMP=DY/(ISCNT-NOCNT)
DY=JNINT (RTEMP)
RTEMP=DT/(ISCNT-NOCNT)
DT=JNINT(RTEMP)
IF (ISTAB(J,6).GT. ISTAB(MAX, 6)) MAX=J
IF (.NOT.DIAG(4)) THEN IDIAG(4) TRUE DO TOTAL
RTEMP=S/(ISCNT-NOCNT)
$S=J N I N T(R T E M P)$
ENDIF
WRITE (6.50)DX.DY, DT,S, WORD (1).TEST
FORMAT ($1 \times,{ }^{\prime}$ DX: ', I3.' DY:', I3.' DT:', I3.' SCORE:',I5.
AT '.A8.' VALUE: •I3)
IF (BEST (4).LT.S) THEN
BEST (4) $=5$
TOTETEST
CNT=1
ELSE
IF (BEST (4).EQ.S) THEN
CNT=CNT+1
TOT=TOT+TEST
ENDIF
ENDIF
GOTO 51
WRITE (6,52)WORD(1), TEST
FORMAT (1 X, 'ISCNT=0 NO SCORE AT ', AB, ' VALUE', I 4)
DO $53 \mathrm{~J}=1.250$
DO $55 \quad I=1,3$
$A(J, I, 2)=B(J, I, 2)$
CONTINUE
CONTINUE
CONTINUE
RTEMP=TOT/CNT
BEST (1) =JNINT (RTEMP)
WRITE (6.181) BEST(3),BEST (2).BEST (9)
FORMAT ($i x$. 'BEST TRANSFORMATION IS $X={ }^{\prime}, 13 .^{\prime} \quad Y=$ '
- I3. THETA='.13)
CALL TRNSFX(A,2,IMX(2), BEST (3), BEST (2), BEST (1))
CALL MAK4O(ISTAB,ISCNT) IGENERATE ISTAB
DO $189 \mathrm{~J}=$ Y. IMX(2)
$00188 \mathrm{Ji=1} .3$
$A(J, J 1,2)=B(J, J 1,2)$
CONTINUE
CONTINUE
DO $190 \mathrm{~J}=-45.45$
DO 195 J $1=-45,45$
STABLE $(\downarrow . J 1)=0$
continue
CONTINUE
LOAD PLOT ARRAY A-12

```
C
```

C
DO 200 J=1.ISCNT
DO 200 J=1.ISCNT
IF (.NOT.DIAG(1)) GOTO 202 !PRINT S TABLE IF TRUE
IF (.NOT.DIAG(1)) GOTO 202 !PRINT S TABLE IF TRUE
WRITE (6,201)J,(ISTAB(J,K),K=1,6)
WRITE (6,201)J,(ISTAB(J,K),K=1,6)
201 FORMAT(1X.'ISCNT:',I3.' DX:',I3.' DY:',I3.' DT',I3
201 FORMAT(1X.'ISCNT:',I3.' DX:',I3.' DY:',I3.' DT',I3
SM\&:',I3.' FM年:',I3,' SCORE:',I5)
SM\&:',I3.' FM年:',I3,' SCORE:',I5)
202 STABLE(ISTAB(J,2).ISTAB(J,1))=
202 STABLE(ISTAB(J,2).ISTAB(J,1))=
STABLE(ISTAB(J,2),ISTAB(J,1))+1
STABLE(ISTAB(J,2),ISTAB(J,1))+1
CONTINUE
CONTINUE
CONVERT STABLE ARRAY TO BE OUTPUTTED
CONVERT STABLE ARRAY TO BE OUTPUTTED
0-9, A-Z, 0-2
0-9, A-Z, 0-2
0-9,10-35,36-61
0-9,10-35,36-61
MAX=0
MAX=0
DO 250 J=-45.45
DO 250 J=-45.45
DO 240 J 1=-45,45
DO 240 J 1=-45,45
IF (STABLE(J,J1).EQ.0) THEN
IF (STABLE(J,J1).EQ.0) THEN
OUT(J,J1)=',
OUT(J,J1)=',
GOTO 240
GOTO 240
ENDIF
ENDIF
IF (STABLE(J.J1).LT.10) THEN
IF (STABLE(J.J1).LT.10) THEN
OUT(J.J1)=CHAR(STABLE(J.J1)+48)
OUT(J.J1)=CHAR(STABLE(J.J1)+48)
ELSE
ELSE
IF (STABLE(J,J1).GT.35) THEN
IF (STABLE(J,J1).GT.35) THEN
OUT(J,J1)=CHAR(STABLE(J,J1)+60)
OUT(J,J1)=CHAR(STABLE(J,J1)+60)
ELSE
ELSE
OUT(J,J1)=CHAR(STABLE(J, J1)+55)
OUT(J,J1)=CHAR(STABLE(J, J1)+55)
ENDIF
ENDIF
ENDIF
ENDIF
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CALL WINDOW(5,5)
CALL WINDOW(5,5)
BEST (3)=BEST(3)-HWIND
BEST (3)=BEST(3)-HWIND
BEST(2)=BEST(2)-VWIND
BEST(2)=BEST(2)-VWIND
CALL TRNSFX(A,2,IMX(2),BEST(3),BEST(2),BEST(1))
CALL TRNSFX(A,2,IMX(2),BEST(3),BEST(2),BEST(1))
CALL MAK40(ISTAB.ISCNT) IGENERATE ISTAB
CALL MAK40(ISTAB.ISCNT) IGENERATE ISTAB
DO 251 J=1.IMX(2)
DO 251 J=1.IMX(2)
DO 252 J1=1.3
DO 252 J1=1.3
A(J,J1,2)=B(J,J1,2)
A(J,J1,2)=B(J,J1,2)
CONTINUE
CONTINUE
251
251
ONTINUE

```
        ONTINUE
```



```
* S TABLE CHART
```

* S TABLE CHART
IF (.NOT.DIAG(2)) GOTO 261 IPRINT S TABLE PLOTTING IF TRUE
IF (.NOT.DIAG(2)) GOTO 261 IPRINT S TABLE PLOTTING IF TRUE
WRITE (6,225)
WRITE (6,225)
FORMAT(1X.,-4........-3........-2........-1'.
FORMAT(1X.,-4........-3........-2........-1'.
*
*
. 0
. 0
@.........i..............-.-.............-. 4.
@.........i..............-.-.............-. 4.
*
*
DO 260 j=-45,45
DO 260 j=-45,45
WRITE (6, 235)J,(OUT(J,K),K=-45,45),J
WRITE (6, 235)J,(OUT(J,K),K=-45,45),J
235 FORMAT(1X,I3.91A1.I3)
235 FORMAT(1X,I3.91A1.I3)
IF (J.EQ.VWIND) THEN
IF (J.EQ.VWIND) THEN
OVER(49+HWIND:49+HWIND)='/'
OVER(49+HWIND:49+HWIND)='/'
WRITE(6,236)OVER
WRITE(6,236)OVER
FORMAT('+'.A97)
FORMAT('+'.A97)
ENDIF
ENDIF
CONTINUE
CONTINUE
WRITE (6.225)
WRITE (6.225)
C
C
C * SUMMARY DISTANCE CHART
C * SUMMARY DISTANCE CHART
261 IF (.NOT.DIAG(3)) GOTO 300 IPRINT DISTANCE SUMMARY CHART
261 IF (.NOT.DIAG(3)) GOTO 300 IPRINT DISTANCE SUMMARY CHART
WRITE(6.210)
WRITE(6.210)
210 FORMAT(1H1.'SUMMARY CHART OF BEST FIT DISTANCES')
210 FORMAT(1H1.'SUMMARY CHART OF BEST FIT DISTANCES')
DO 209 J=1.ISCNT
DO 209 J=1.ISCNT
DIST=(ISTAB(J,1)-HWIND)**2
DIST=(ISTAB(J,1)-HWIND)**2
DIST=DIST+(ISTAB(J,2)-VWIND)**2
DIST=DIST+(ISTAB(J,2)-VWIND)**2
DIST=JNINT(SQRT(FLOAT(DIST)))
DIST=JNINT(SQRT(FLOAT(DIST)))
IF (DIST.GT.24.OR.DIST.LT.0) GOTO 209
IF (DIST.GT.24.OR.DIST.LT.0) GOTO 209
DISTAN(DIST+1)=DISTAN(DIST+1)+1
DISTAN(DIST+1)=DISTAN(DIST+1)+1
CONTINUE
CONTINUE
WRITE (6,212)

```
    WRITE (6,212)
```



```
    WRITE (6,230)(DISTAN(K),K=1,25)
```

 WRITE (6,230)(DISTAN(K),K=1,25)
 FORMAT(1X,25I4)
 FORMAT(1X,25I4)
 TEMP=DISTAN(1)+DISTAN(2)+DISTAN(3)+DISTAN(4)+DISTAN(5)
 TEMP=DISTAN(1)+DISTAN(2)+DISTAN(3)+DISTAN(4)+DISTAN(5)
 PRINT .'TOTAL 0-4:',TEMP
 PRINT .'TOTAL 0-4:',TEMP
 K=TEMP-(IMX(1)-TEMP)-(IMX(2)-TEMP)
 K=TEMP-(IMX(1)-TEMP)-(IMX(2)-TEMP)
 RTEMP=(FLOAT(K))/(FLOAT(IMX(1)))
 RTEMP=(FLOAT(K))/(FLOAT(IMX(1)))
 WRITE(6.183)RTEMP
 WRITE(6.183)RTEMP
 23

```
23
```

```
0250
183
0251
0252
184
\(\begin{array}{ll}0253 & 300 \\ 0254 & 182\end{array}\)
\(\begin{array}{ll}0253 & 300 \\ 0254 & 182\end{array}\)
0254
0255
        FORMAT (1X, ISCNT: ', I4, IMX(1):, I 4.' IMX(2): ',I4)
        WRITE (6, 182) BEST (3), BEST (2), BEST (1)
        FORMAT ( \(1 \mathrm{X},{ }^{\prime}\) BEST TRANSFORMATION IS \(X={ }^{\circ}, I 3,{ }^{\prime} Y=\) '
        - I3.' THETA=', I3)
        RETURN
        END
```

```
II)
* OPENS A FINGERPRINT FILE
** 1! FOR VAX ONLY I! **
* BY R. ALLEN WILKINSON
* INItalize variables
INTEGER UNIT
    INCLUDE '[WILKINSON.LIB]COMO13.FOR/LIST'
    CHARACTER TMPFILE*40
    INTEGER DISTAN
    COMMON/BLK013/TMPFILE,DISTAN(25)
    USED IN OPENFBI
    TMPFILE ORIGINAL FILE NAME UPON OPENNING
    USED IN BESTFIT
    DISTAN(I) DISTANCE FROM CENTER COUNTS ON A FINGER (I=DISTANCE)
    OPEN FILES
    PRINT *'ENTER FILE IN SINGLE QUOTES'
    READ (5,*)TMPFILE
    OPEN(UNIT,FILE=TMPFILE,STATUS='UNKNOWN',BLOCKSIZE=15192.
                    BUFFERCOUNT=1,RECL=15192,RECORDTYPE='VARIABLE',
                    ORGANIZATION='SEQUENTIIAL',FORM='FORMATTED',
                    IOSTAT=IOS,ERR=1000)
    RETURN
    1000 WRITE(6,1010)IOS
    1010 FORMAT(1X,'H⿱⿱亠䒑日阝⿱⿱亠䒑日\zh20十 ERROR: ',I3.' ###*)
    RETURN
    END
```

```
            SUBROUTINE FBIREAD(UNIT)
0001
0002
0003
0004
0005
0006
0007
0008
0 0 0 9
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059
0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072
0073
0074
0075
0076
0077
0078
0079
0088
0081
082
```

```
C C READS A FINGERPRINT FILE
```

C C READS A FINGERPRINT FILE
C : I! FOR VAX ONLY II.*
C : I! FOR VAX ONLY II.*
C ** BY R. ALLEN WILKINSON
C ** BY R. ALLEN WILKINSON
C * INITALIZE VARIABLES
C * INITALIZE VARIABLES
IMPLICIT INTEGER (A-Z)
IMPLICIT INTEGER (A-Z)
INTEGER IOS,TEMP,UNIT,CARD,K,PNT
INTEGER IOS,TEMP,UNIT,CARD,K,PNT
INCLUDE 'COMIO.FOR/LIST'
INCLUDE 'COMIO.FOR/LIST'
C
C
STRUCTURE /FBIDAT/
STRUCTURE /FBIDAT/
UNION
UNION
MAP
MAP
CHARACTER:10 PCNUM
CHARACTER:10 PCNUM
CHARACTER*40 CLASS
CHARACTER*40 CLASS
CHARACTER:9 CDATE
CHARACTER:9 CDATE
CHARACTER.8 CTIME
CHARACTER.8 CTIME
CHARACTER:3 FILL
CHARACTER:3 FILL
INTEGER:2 CARD
INTEGER:2 CARD
INTEGER:2 OFFSET(10)
INTEGER:2 OFFSET(10)
INTEGER:2 VALUES(7550)
INTEGER:2 VALUES(7550)
END MAP
END MAP
MAP
MAP
CHARACTER=15192 BUF
CHARACTER=15192 BUF
END MAP
END MAP
END UNION
END UNION
END STRUCTURE
END STRUCTURE
RECORD /FBIDAT/INPUT
RECORD /FBIDAT/INPUT
COMMON /BLKIO/INPUT
COMMON /BLKIO/INPUT
C USED IN NEW FBI I/O ROUTINES - FBIOPEN,FBIREAD,FBIWRITE
C USED IN NEW FBI I/O ROUTINES - FBIOPEN,FBIREAD,FBIWRITE
C P PCNUM PROCESS CONTROL NUMBER
C P PCNUM PROCESS CONTROL NUMBER
C CLASS CLASSIFICATION
C CLASS CLASSIFICATION
CDATE FILE CREATION DATE
CDATE FILE CREATION DATE
CTIME FILE CREATION TIME
CTIME FILE CREATION TIME
FILL JUST USED TO FILL
FILL JUST USED TO FILL
OFFSET (I) OFFSET FROM PON TO FINGER II'S DAT
OFFSET (I) OFFSET FROM PON TO FINGER II'S DAT
OFFSET(I) OFFSET FROM PCN TO FINGER II'S DATA
OFFSET(I) OFFSET FROM PCN TO FINGER II'S DATA
vAlUES(I) ACTUAL MINUTIAE DATA ARRAY
vAlUES(I) ACTUAL MINUTIAE DATA ARRAY
INCLUDE 'COMDATA.FOR/LIST'
INCLUDE 'COMDATA.FOR/LIST'
C
C
C DATA ARRAYS *
C DATA ARRAYS *
INTEGER.2 FINGER,QUALITY,MINCNT,XYT
INTEGER.2 FINGER,QUALITY,MINCNT,XYT
C
C
COMMON /BLKDATA/FINGER(10),QUALITY(10),MINCNT(10),
COMMON /BLKDATA/FINGER(10),QUALITY(10),MINCNT(10),
* XYT(250,3,10)
* XYT(250,3,10)
C * USED IN NEW FBI DATA ORGANIZATION
C * USED IN NEW FBI DATA ORGANIZATION
C F FINGER(I) Ith FINGER'S ACTUAL NUMBER
C F FINGER(I) Ith FINGER'S ACTUAL NUMBER
C ** QUALITY(I) Ith FINGER'S DATA QUALITY
C ** QUALITY(I) Ith FINGER'S DATA QUALITY
C: MINCNT(I) Ith FINGER'S NUMBER OF MINUTIAE
C: MINCNT(I) Ith FINGER'S NUMBER OF MINUTIAE
C * XYT(J,K,I) Ith FINGER'S Jth MINUTIAE DATA
C * XYT(J,K,I) Ith FINGER'S Jth MINUTIAE DATA
C * WHERE K=
C * WHERE K=
C 1 FOR X DATA VALUE 0-255
C 1 FOR X DATA VALUE 0-255
C: 1 FOR X DATA VALUE 0-255
C: 1 FOR X DATA VALUE 0-255
C: 3 FOR THETA DATA VALUE 0-359
C: 3 FOR THETA DATA VALUE 0-359
つのO
つのO
C
C
SELECT CARD
SELECT CARD
WRITE(6,)'ENTER CARD TO BE READ'
WRITE(6,)'ENTER CARD TO BE READ'
READ(5.)CARD
READ(5.)CARD
C * READ FILES
C * READ FILES
10 CONTINUE
10 CONTINUE
READ(7.40.IOSTAT=IOS,ERR=1000,END=1100)
READ(7.40.IOSTAT=IOS,ERR=1000,END=1100)
- NBYTES.INPUT.BUF
- NBYTES.INPUT.BUF
FORMAT(Q.A)
FORMAT(Q.A)
IF (CARD.NE.INPUT.CARD) GOTO }1
IF (CARD.NE.INPUT.CARD) GOTO }1
DO 100 I=1.10
DO 100 I=1.10
IF (INPUT.OFFSET(I).EQ.0) THEN
IF (INPUT.OFFSET(I).EQ.0) THEN
MINCNT(I)=0
MINCNT(I)=0
ELSE
ELSE
FINGER(I) = INPUT,VALUES(INPUT,OFFSET(I)-46+2)
FINGER(I) = INPUT,VALUES(INPUT,OFFSET(I)-46+2)
QUALITY(I) =INPUT, VALUES(INPUT,OFFSET(I)-46+3)
QUALITY(I) =INPUT, VALUES(INPUT,OFFSET(I)-46+3)
MINCNT(I) =INPUT.VALUES(INPUT.OFFSET(I) -46+4)
MINCNT(I) =INPUT.VALUES(INPUT.OFFSET(I) -46+4)
PNT=INPUT. OFFSET(I)-42
PNT=INPUT. OFFSET(I)-42
DO 150 J=1, MNCNT(I)

```
            DO 150 J=1, MNCNT(I)
```

```
                            XYT(J,2.I)=INPUT.VALUES(PNT+K)
                                    XYT(J,1,I)=INPUT.VALUES(PNT+K+1)
                    XYT(J,3,I)=INPUT.VALUES(PNT+K+2)
                                CONTINUE
    ENDIF
    CONTINUE
    RETURN
    WRITE(6,1010)IOS
    FORMAT(ix,'HGERROR: ',I3.' DURING READ &##')
    RETURN
    WRITE(6,1110)
    FORMAT(1X.'END OF FILE REACHED!!!!!')
    WRITE(6,1i20)CARD
    FORMAT(1X.'CARD F'.I7.' MAY NOT BE IN FILE')
    RETURN
    END
```

$\begin{aligned} & 0001 \\ & 0002 \end{aligned}$		SUBROUTINE MAK40(ISTAB.ISCNT) PARAMETER (IPRM1=500)
0003	c	
0004	c	ROUTINE TO FORM TABLE OF Closeness...VAlues
0005	C	
0006	C	MAY 22, 1984 1640
0007	C	AUGUST 25, 1986
0008	C	SEPTEMBER 18, 1986
0009	C	tr calculated as the hypotenuse rather than by just limits
0010	C	IN X AND Y.
0011	C	
0012		IMPLICIT INTEGER(A-Q,S-Z)
0013		REAL TR, TEMP (IPRM1)
0014		DIMENSION ISTAB (IPRM1,6)
0015		INCLUDE 'COM004.FOR/LIST'
0016	1 C	
0017	1	INTEGER*2 A
0018	1	INTEGER IMX
0019	1 C	
0020	1	COMMON /BLK004/A (250,3,2).IMX (2)
0021	1 C	A (250,3,2) MINUTIAE ARRAY(MINUTIAE DATA TYPE, PRINT TYPE)
0022	1 C	DATA TYPE- $X=1, Y=2$, THETA $=3$
0023	1 C	PRINT TYPE- SEARCH PRINT=1, FILE PRINT=2
0024	1 C	IMX(2) NUMBER OF MINUTIAE(PRINT TYPE)
0025	1 C	
0026	C	
0027		INCLUDE 'COM007.FOR/LIST'
0028	C	
0029	1	COMMON /BLK007/LN(51),LT(51),LS,LTHETA,MTM2, IPRMT, UPPER(2)
0030	1	ISBZ (2).ISRZ(2).ISUNIT, SCORES (40). IPRM2. I JUMP
0031	1 C	
0032	C	
0033	C	SETUP THE FIRST 2 STEPS. WHEN AN ENTRY IS MADE IN THE ISTAB ON ONE
0034	c	LINE REPRESENTING THE PAIR (i, j) THEN THE SAME ENTRY WILL BE MADE
0035	C	eventually in the slot representing the pair (j.i).
0036	C	
0037		
0038		ISCNT=0 ! NUMBER OF SLOTS USED
0039		DO 100 I $1=1 . I M X(9) \quad$ CYCLE TO 100 FOR EACH SEARCH MIN.
0040		LSL=A(19.1.1)-LS ! LEFT EDGE OF SRCH BOX
0041		LSR=A $11.1,1$ +LS ! RIGHT EDGE
0042		LSB=A 11.2 .1 -LS ! BOTTOM EDGE
0043		LSTaA 11.2 .1) +LS ! TOP EDGE
0044		DO 90 J1=1.IMX(2) ! LOOK AT EACH FILE MINUTIA
0045		IF (A (J1.2.2).GE.LSB)THEN I ABOVE BOTTOM EDGE
0046		
0047		IF $\left(\begin{array}{l}\text { (}\end{array}\right.$
0048		IF (A(J1, 1, 2) .LE.LSR)THEN ! TO THE LEFT OF RIGHT EDGE
0049		DIST $=(A(J 1,1,2)-A(11,1,1)) * 2+$
0056		$(A(J 1,2,2)-A(11,2,1))=2$
0051		IF (DIST.LE. (LS**2)) THEN
0052		DELTHEA $(\mathrm{J}, 3,2)-\mathrm{A}(11,3,1) \quad 1 \mathrm{DELTA}$ THETA
0053		IF (IABS (DELTHE).GT.LTHETA)THEN
0054		IF (DELTHE.GE.0)THEN
0055		DELTHE=DELTHE-360
0056		ELSE
0057		DELTHE=DELTHE+360
0058		ENDIF
0059		ENDIF
0060		IF (IABS (DELTHE). LE. LTHETA) THEN
0061		ISCNT $=$ ISCNT+ 9 ! FILE MIN. WITHIN BOX
0062		IF (ISCNT.GT.500) THEN I RAN OUT OF ROOM IN ISTAB
0063		PRINT 60.11.J1
0064	60	FORMAT (//1X, '新 MATCH87 ERROR --EXCEEDED'.
0065		-ISTAB-- I $1 / \mathrm{J} 1=$ ', 214)
0066		STOP
0067		ENDIF
0068		$1 \operatorname{STAB}(\operatorname{SCNT}, 1)=\mathrm{A}(\mathrm{J} 1.1,2)-\mathrm{A}(11.1 .1) \quad 1 \mathrm{DELTA} X$
0069		ISTAB (ISCNT, 2) $=\mathrm{A}(\mathrm{J} 1.2,2)-\mathrm{A}(11,2,1)$! DELTA Y
0070		ISTAB (ISCNT, 3) = EELTHE 1 DELTA THETA
0071		1 STAB (ISCNT.4) $=11$! SEARCH MIN
0072		ISTAB (ISCNT,5)=J1 I FILEMINUTIA
0073		TEMP (ISCNT) $=0$! TS SCORE
0074		ENDIF
0075		ENDIF
0076		ENDIF
0077		ENDIF
0078		ENDIF
0079		ENOIF
0088	90	CONTINUE A-18
0881	100	CONTINUE A-18
0882	C	COMPARE THE LIST OR SLOTS A FORM INITIAL SCORES
0083	$C *$	COMPARE THE LIST OR SLOTS A FORM INITIAL SCORES

```
C
IF(LS.LT.10) THEN
        KR=LS+1
        ELSE
        KR=10
    ENDIF
    KR=5
DO 150 I2m1.ISCNT
    DO 140 J2=I 2+1.ISCNT I LOOK O THEM ALL
        IF(I2.EQ.J2) GO TO 140 | DON'T COMPARE TO SELF
        TR=(ISTAB(I2,1)-ISTAB(J2,1))**2+(ISTAB(I2,2)-ISTAB(J2, 2))**2
        TR=SORT (TR)
        IF((KR-TR).GT.0)THEN
                TEMP(I2)=TEMP(I2)+KR-TR
                TEMP(J2)=TEMP(J2)+KR-TR
            ENDIF
        CONTINUE
    CONTINUE
    DO 160 J 2=1,ISCNT
        ISTAB(J2,6)=JNINT(TEMP(J2))
160 CONTINUE
RETURN
END
```

```
0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0220
021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
041
0042
0043
0044
0046
0047
0048
0049
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059
0060
0061
0062
0063
0064
0065
0066
0067
0068
```

OOOOOO

```
OOOOOO
    SUBROUTINE WINDOW(OFFX,OFFY)
C * FINDS HIGHEST TOTAL SCORE IN A WINDOW SIZE
C * FINDS HIGHEST TOTAL SCORE IN A WINDOW SIZE
    OFFX BY OFFY
    OFFX BY OFFY
    RETURN COORDINATES OF CENTER IN VARIABLE
    RETURN COORDINATES OF CENTER IN VARIABLE
    HWIND AND VWIND (X,Y RESPECTIVELY)
    HWIND AND VWIND (X,Y RESPECTIVELY)
    IMPLICIT INTEGER (A-Z)
    IMPLICIT INTEGER (A-Z)
        REAL RTEMP
        REAL RTEMP
        DIMENSION MAX(3),SUM(3)
        DIMENSION MAX(3),SUM(3)
C * MAX(I) HIGHEST SCORE IN WINDOW
C * MAX(I) HIGHEST SCORE IN WINDOW
INCLUDE '[WILKINSON.LIB]COMO07.FOR/LIST'
INCLUDE '[WILKINSON.LIB]COMO07.FOR/LIST'
COMMON /BLK007/LN(51),LT(51),LS,LTHETA,MTM2,IPRMT,UPPER(2),
COMMON /BLK007/LN(51),LT(51),LS,LTHETA,MTM2,IPRMT,UPPER(2),
    - ISBZ(2),ISRZ(2), ISUNIT,SCORES(40), IPRM2,I JUMP
    - ISBZ(2),ISRZ(2), ISUNIT,SCORES(40), IPRM2,I JUMP
    INCLUDE '[WILKINSON.LIB]COM008.FOR/LIST'
    INCLUDE '[WILKINSON.LIB]COM008.FOR/LIST'
    COMMON /BLK008/STABLE(-45:45,-45:45), !TABLE OF DELTA Y,X SCORES
    COMMON /BLK008/STABLE(-45:45,-45:45), !TABLE OF DELTA Y,X SCORES
SCUBE(-45:45), IPOINTER TO HEAP BY VALUE OF DELTAY
SCUBE(-45:45), IPOINTER TO HEAP BY VALUE OF DELTAY
HEAP(600,4), IUP TO 300 DELTA X,THETA,SCORE,FLG/PTR
HEAP(600,4), IUP TO 300 DELTA X,THETA,SCORE,FLG/PTR
    - IRNG(120), !RANGES FOR EACH PLANE
    - IRNG(120), !RANGES FOR EACH PLANE
    - HIGHS(-29:30,3). ICONTIANS MAX SCORES OF WINDOWS
    - HIGHS(-29:30,3). ICONTIANS MAX SCORES OF WINDOWS
    * HWIND,VWIND,AWIND. IDIMENSIONS OF WINDOW
    * HWIND,VWIND,AWIND. IDIMENSIONS OF WINDOW
    - MAXRG1,MAXRG2,MAXRNG,MAXWIN IMAXIMUM WINDOW VARIABLES
    - MAXRG1,MAXRG2,MAXRNG,MAXWIN IMAXIMUM WINDOW VARIABLES
    MAX (1)=0
    MAX (1)=0
    MAX (2)=0
    MAX (2)=0
    MAX (3)=0
    MAX (3)=0
    DO 100 I=-LS,LS ICENTER Y
    DO 100 I=-LS,LS ICENTER Y
        DO 150 J=-LS.LS ICENTER X
        DO 150 J=-LS.LS ICENTER X
        SUM (1)=0
        SUM (1)=0
        SUM(2)=0
        SUM(2)=0
        X=(OFFX-1)/2
        X=(OFFX-1)/2
        DO 160 K=I-Y,I+Y IY EDGE LIMITS
        DO 160 K=I-Y,I+Y IY EDGE LIMITS
            DO 170 L=J-X,J+X IX EDGE LIMITS
            DO 170 L=J-X,J+X IX EDGE LIMITS
                SUM(1)=SUM(1)+STABLE(K,L) ISUM OF WINDOW
                SUM(1)=SUM(1)+STABLE(K,L) ISUM OF WINDOW
                IF (K.GT. (I-Y).AND.K.LT.(I+Y).AND.L.GT. (J-X).
                IF (K.GT. (I-Y).AND.K.LT.(I+Y).AND.L.GT. (J-X).
                AND.L.LT.(J+X)) SUM(2)=SUM(2)+STABLE(K,L)
                AND.L.LT.(J+X)) SUM(2)=SUM(2)+STABLE(K,L)
                IF (K.GT. (I-Y+1).AND.K.LT. (I+Y-1).AND.L.GT.(J-X+1).
                IF (K.GT. (I-Y+1).AND.K.LT. (I+Y-1).AND.L.GT.(J-X+1).
                AND.L.LT.(J+X-1)) SUM(3)=SUM(3)+STABLE(K.L)
                AND.L.LT.(J+X-1)) SUM(3)=SUM(3)+STABLE(K.L)
            CONTINUE
            CONTINUE
        CONTINUE
        CONTINUE
        IF (SUM(1).LT.MAX(1)) GOTO 150 ISAVE HIGHEST SUM
        IF (SUM(1).LT.MAX(1)) GOTO 150 ISAVE HIGHEST SUM
        IF (MAX(1).EQ.SUM(1)) THEN
        IF (MAX(1).EQ.SUM(1)) THEN
                IF (SUM(2).LT.MAX(2)) GOTO 150
                IF (SUM(2).LT.MAX(2)) GOTO 150
            IF (SUM(2).EQ.MAX(2)) THEN
            IF (SUM(2).EQ.MAX(2)) THEN
                IF (SUM(3).LT.MAX(3)) GOTO 150
                IF (SUM(3).LT.MAX(3)) GOTO 150
                IF (SUM(3).EQ.MAX(3)) THEN
                IF (SUM(3).EQ.MAX(3)) THEN
                    CNT=CNT+1
                    CNT=CNT+1
                    TEMPH=TEMPH +J
                    TEMPH=TEMPH +J
                    TEMPV=TEMPV+I
                    TEMPV=TEMPV+I
                    GOTO 150
                    GOTO 150
                ENDIF
                ENDIF
                ENDIF
                ENDIF
        ENDIF
        ENDIF
        MAX(1)=SUM(1) ISAVE SUM
        MAX(1)=SUM(1) ISAVE SUM
        MAX(2)=SUM(2) !SAVE SUM
        MAX(2)=SUM(2) !SAVE SUM
        MAX(3)=SUM(3) ISAVE SUM
        MAX(3)=SUM(3) ISAVE SUM
        CNT=1
        CNT=1
        TEMPH=J
        TEMPH=J
        TEMPV=I
        TEMPV=I
        CONTINUE
        CONTINUE
    CONTINUE
    CONTINUE
    RTEMP=TEMPH/CNT
    RTEMP=TEMPH/CNT
    HWIND=JNINT(RTEMP)
    HWIND=JNINT(RTEMP)
    RTEMP=TEMPV/CNT
    RTEMP=TEMPV/CNT
    VWIND=JNINT(RTEMP)
    VWIND=JNINT(RTEMP)
    RETURN
    RETURN
    END
```

 END
    ```
```


[^0]: 1 R. M. Stock and C. W. Swonger, Development and Evaluation of a Reader of Fingerprint Minutiae, Cornell Aeronautical Laboratory Technical Report CAL No. XM-2478-X1, Contract J-FBI-6499, January 1969.

[^1]: ${ }^{2}$ A description and listing of these programs appears in the Appendix.

[^2]: ${ }^{3}$ R. T. Moore and J. R. Park, "The Graphic Pen - An Economical Semiautomatic Fingerprint Reader", Proc. 1977 Carnahan Conference on Crime Countermeasures, UKY BU112, ORES, Univ of Kentucky, Lexington, KY 40506.

