

NATIONAL INSTITUTE OF STANDARDS &
TECHNOLOGY

Research Information Center

Gaithersburg, MD 20899

NBSIR 88-3830

The ICST-NBS Information Resource
Dictionary System Command Language
Prototype

Alan Goldfine

Thomasin Kirkendall

U.S. DEPARTMENT OF COMMERCE
National Bureau of Standards

Institute for Computer Sciences and Technology

Gaithersburg, MD 20899

August 1988

75 Years Stimulating America's Progress

U.S. DEPARTMENT OF COMMERCE
NATIONAL BUREAU OF STANDARDS

30
U

NBSIR 88-3830

THE ICST-NBS INFORMATION RESOURCE
DICTIONARY SYSTEM COMMAND LANGUAGE
PROTOTYPE

Alan Goldfine

Thomasin Kirkendall

U.S. DEPARTMENT OF COMMERCE
National Bureau of Standards

Institute for Computer Sciences and Technology

Gaithersburg, MD 20899

August 1988

U.S. DEPARTMENT OF COMMERCE, C. William Verity, Secretary

NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director

Page iii

THE ICST-NBS INFORMATION RESOURCE DICTIONARY SYSTEM
COMMAND LANGUAGE PROTOTYPE

Alan Goldfine
Thomasin Kirkendall

This publication is a report on the Information
Resource Dictionary System (IRDS) Command Language
prototype developed by the Institute for Computer
Sciences and Technology of the National Bureau of
Standards. It discusses the structure, source code,
and operating environment of the IRDS Prototype,
specifies the precise subset of the standard IRDS
Command Language implemented, provides instructions
for installing the Prototype software, and leads the
reader through a typical user session.

Key words: command language; data dictionary; data
dictionary system; Information Resource Dictionary
System; IRDS; prototype.

ACKNOWLEDGMENTS

We would like to gratefully acknowledge the summer trainees
and coop students, working at ICST-NBS, who contributed to
the programming, installation, testing, and documentation of
the Prototype: Sam Cook, Joe Farrington, Jim Gould, Richard
Morris, and Doug White.

Page iv

Page v

TABLE OF CONTENTS

Page

1. AN OVERVIEW OF THE IRDS PROTOTYPE 1

1.1 HISTORY 1

1.2 OPERATING ENVIRONMENT 1

1.3 DISTRIBUTION OF THE IRDS PROTOTYPE 2

1.4 SCOPE AND USE OF THIS REPORT 3

2. AN IRDS PROTOTYPE SESSION 4

3. THE IRDS PROTOTYPE COMMAND LANGUAGE 6

3 . 1 NOTATION 7

3.2 IRD COMMANDS 7

3.2.1 ADD ENTITY 7

3.2.2 MODIFY ENTITY 8

3.2.3 DELETE ENTITY 9

3.2.4 ADD RELATIONSHIP 9

3.2.5 MODIFY RELATIONSHIP 10
3.2.6 DELETE RELATIONSHIP 11
3.2.7 MODIFY ENTITY ACCESS-NAME 11
3.2.8 MODIFY ENTITY DESCRIPTIVE-NAME 12
3.2.9 COPY ENTITY 12
3.2.10 GENERAL OUTPUT 13

3.3 IRD-SCHEMA COMMANDS 15
3.3.1 ADD META-ENTITY 15
3.3.2 MODIFY META-ENTITY 16
3.3.3 DELETE META-ENTITY 16
3.3.4 ADD META-RELATIONSHIP 17
3.3.5 MODIFY META-RELATIONSHIP 17
3.3.6 DELETE META-RELATIONSHIP 18
3.3.7 MODIFY META-ENTITY ACCESS-NAME 18
3.3.8 OUTPUT IRD-SCHEMA 19

3.4 UTILITY COMMANDS 21
3.4.1 CREATE IRD 21
3.4.2 REMOVE IRD 22
3.4.3 EXIT 23
3.4.4 HELP 23

3.5 ERROR MESSAGES 2 3

3.6 COMMAND LANGUAGE ABBREVIATIONS 24

4. THE IRDS PROTOTYPE SCHEMA 2 5

4.1

THE STRUCTURE OF THE SQL TABLES 2 5

4.1.1 The META-ATTRIBUTE-TYPE Table 25
4.1.2 The META-ATTRIBUTE-GROUP-TYPE/META-ATTRIBUTE-

TYPE Table 2 6

TABLE OF CONTENTS

Page vi

Page

4.1.3 The META-ENTITY-TYPE/META-ATTRIBUTE-TYPE Table 26
4.1.4 The META-ENTITY-TYPE/META-ATTRIBUTE-GROUP-TYPE

Table 28
4.1.5 The META-ENTITY/META-ATTRIBUTE Table 28
4.1.6 The META-ENTITY/META-ATTRIBUTE-GROUP Table . . 30
4.1.7 The META-RELATIONSHIP-TYPE/META-ATTRIBUTE-TYPE

Table 3 0

4.1.8 The META-RELATIONSHIP/META-ATTRIBUTE Table . . 31
4.1.9 The ENTITY/ATTRIBUTE Table 32
4.1.10 The ENTITY/ATTRIBUTE-GROUP Table 33
4.1.11 The RELATIONSHIP/ATTRIBUTE Table 33

4.2

IMPLEMENTOR DEFINED VALUES IN THE IRDS PROTOTYPE 34
4.2.1 Values For Meta-Attribute-Types 34
4.2.2 Values For Meta-Entities 36

5. THE IRDS PROTOTYPE SOURCE CODE 42
5.1 OVERVIEW 42
5.2 DICTIONARY SUBROUTINES 42
5.3 PARSING THE COMMANDS . 43
5.4 COMMAND SUBROUTINES 44
5.5 OCI SUBROUTINES 44
5.6 HLI SUBROUTINES 44
5.7 GLOBAL VARIABLES . 4 5

5.8 PROGRAM DATA STRUCTURES 45

6. INSTALLATION INSTRUCTIONS 47

TABLE OF CONTENTS

Page 1

1. AN OVERVIEW OF THE IRDS PROTOTYPE

1 . 1 HISTORY

Specifications for the Information Resource Dictionary
System (IRDS) , the emerging standard for data dictionary
software, have been under development since 1980 as a joint
effort of the Institute for Computer Sciences and Technology
of the National Bureau of Standards (ICST-NBS) and Technical
Committee H4 of the Accredited Standards Committee X3 (X3H4)

[1].

Because the IRDS specifications, in particular those for
the IRDS Command Language, describe a system quite different
from currently available commercial data dictionary systems,
ICST-NBS decided to develop a prototype Command Language
implementation. The initial goal was to produce an IRDS
prototype that would serve as a tool allowing experimenta-
tion on, and testing of, both the overall IRDS capabilities
and the particular Command Language syntax. Later, this
IRDS prototype would be available for use by organizations
wishing to become familiar with the upcoming standard.

The IRDS Prototype was developed and used for testing the
Specifications during 1985-1986. This coincided with the
period of public and Federal Government agency review of the
IRDS. In 1986, ICST-NBS began distributing the IRDS Proto-
type source code to interested outside organizations. In
1988, ICST-NBS released a revised version of the IRDS Proto-
type that is compatible with the final, standard specifica-
tions .

1 . 2 OPERATING ENVIRONMENT

The Prototype uses SQL calls to the ORACLE 1 database man-
agement system to model the IRDS data structures and to pro-
vide the underlying data management. A set of C language
programs interpret the Prototype commands and interface with
the DBMS

.

ORACLE was chosen as the DBMS because it was available,
was appropriate for the task, and because it implemented the

i ORACLE is a registered trademark of Oracle Corporation.

Chapter 1 — AN OVERVIEW OF THE IRDS PROTOTYPE

Page 2

SQL standard. This use, however, should not be considered
an endorsement or certification of the ORACLE product.

The Prototype is designed to be independent of the par-
ticular hardware environment and operating system of the
system hosting the C compiler and Oracle DBMS.

1.3 DISTRIBUTION OF THE IRDS PROTOTYPE

The source code for the Prototype is available free of
charge to interested organizations. The code is distributed
on 5 1/4 inch, double-sided, double-density diskettes,
stored in ASCII text file format. The files are readable by
any computer using the DOS operating system.

ICST-NBS is distributing the Prototype to allow organiza-
tions to experiment with the emerging IRDS Standard Command
Language. Users are encouraged to evaluate the Prototype
software, and the underlying IRDS Specifications, for cor-
rectness, design philosophy, and desirable enhancements.
Users are also asked to provide ICST-NBS with feedback con-
cerning their experiences with the Prototype.

Users of the IRDS Prototype must agree to fully identify
and credit ICST-NBS as the developer of the Prototype in any
publications, talks, reports, or products that are based on
work utilizing the Prototype.

The ICST-NBS IRDS Prototype is in the public domain, and
no restrictions are placed on its use. It is not subject to
copyright in the United States. ICST-NBS provides no war-
ranty, and is exempt of any liability.

To find out more about the IRDS Prototype, or to request
a copy of the source code, please contact:

IRDS Prototype Project
National Bureau of Standards
Information Systems Engineering Division
Building 225, Room A266
Gaithersburg, MD 20899

Tel: (301) 975-3252

Chapter 1 — AN OVERVIEW OF THE IRDS PROTOTYPE

Page 3

1.4 SCOPE AND USE OF THIS REPORT

The remainder of this report begins with a detailed de-
piction of a typical IRDS Prototype session, including a
discussion of how to create new dictionaries. Chapter 3

follows with a description of the Prototype Command
Language, including a description of the available commands,
clauses, error messages, and allowable abbreviations. Chap-
ter 4 discusses the structure of the SQL tables that store
the IRD data and "implementor defined" parameter values used
by the Prototype. In Chapter 5, the source code that imple-
ments the Prototype user interface is discussed. Much of
the material in Chapters 4 and 5 may be of interest pri-
marily to dictionary administrators. Finally, Chapter 6

presents a detailed set of instructions for installing the
Prototype software.

This report deals only with the ICST-NBS Prototype. It
does not provide a complete description of the IRDS Stan-
dard, the details of the Command Language, or any guidelines
on IRDS usage. We recommend that users read the IRDS Tech-
nical Overview [2] as a tutorial and a general reference. A
discussion, with many examples, of the complete Command
Language is found in [3]. Guidelines for IRDS applications
are presented in [4], and a guide on data entity naming con-
ventions, within the framework of the IRDS, can be found in
[5].

Chapter 1 — AN OVERVIEW OF THE IRDS PROTOTYPE

Page 4

2. AN IRDS PROTOTYPE SESSION

Once the Prototype software has been installed, according
to directions in Chapter 6, a user accesses the Prototype by
running the executable file.

A session begins with the display of some package infor-
mation giving the Prototype version number and the date that
version was compiled. This is followed by the request:

IRDS user name s

The Prototype has no facilities for validating the user name
that is entered? the information is used exclusively for
audit purposes, such as for ADDED-BY attributes.

The Prototype then asks:

Is this a batch or interactive run (b/i)?

If the user enters "b”, each user command is echoed, so the
command string itself will be recorded as part of the batch
output copy. An 18 i" specifies no echoing of the command
string, and so is the normal response for a user working at
a terminal.

Since each copy of the Prototype can support 25 discrete
dictionaries, the Prototype will, in general, display at
this point a menu of all previously created IRDs:

Available IRDs are:

a) <name of first IRD>
b) cname of second IRD>
c) <name of third IRD>

Please specify your choice (letter)

Chapter 2 AN IRDS PROTOTYPE SESSION

Page 5

The user must select one of the specified choices, even if
he or she intends to create a new IRD

.

The Prototype acknowledges the selection with

The current IRD is <name of XRD>

The Prototype then places the user "in" the selected IRD,
and returns the prompt symbol . If the selected IRD is
the one desired, the user can now begin working. If, on the
other hand, the user wishes to create a new IRD, he or she
does so at this point, using CREATE IRD (see section 3.3.1).

If there are no previously created IRDs to select from,
the Prototype will not display the above menu of existing
IRDs, but will generate an implicit CREATE IRD command,
and display the following:

INFORMATION IXXXX
INFORMATION IXXXX
INFORMATION IXXXX
INFORMATION IXXXX
INFORMATION IXXXX
INFORMATION IXXXX
INFORMATION IXXXX

Creating 1st schema table
Creating 2nd schema table
Creating 3rd schema table
Creating 1st data table
Creating 2nd data table
Creating 3rd data table
All done.

The current IRD has no name.
What name do you want to give it?

The Prototype names the new IRD, displays

The current IRD is <name of IRD>

places the user in this IRD, and returns the prompt symbol
">•'

.

It should be emphasized that the IRDS Command Language
requires the use of the semicolon as the terminator of a
command. The Prototype will take no action, and will remain
in a wait state if the user forgets to place a semicolon at
the end of a command.

Chapter 2— AN IRDS PROTOTYPE SESSION

Page 6

3. THE IRDS PROTOTYPE COMMAND LANGUAGE

The IRDS Prototype currently implements the following 21
commands

:

IRD Commands

ADD ENTITY
MODIFY ENTITY
DELETE ENTITY
ADD RELATIONSHIP
MODIFY RELATIONSHIP
DELETE RELATIONSHIP
MODIFY ENTITY ACCESS-NAME
MODIFY ENTITY DESCRIPTIVE-NAME
COPY ENTITY
OUTPUT IRD

IRD-Schema Commands

ADD META-ENTITY
MODIFY META-ENTITY
DELETE META-ENTITY
ADD META-RELATIONSHIP
MODIFY META-RELATIONSHIP
DELETE META-RELATIONSHIP
MODIFY META-ENTITY ACCESS-NAME
OUTPUT IRD-SCHEMA

Utility Commands

CREATE IRD
REMOVE IRD
EXIT
HELP

The HELP facility, in addition to providing users with
on-line assistance, also serves to document the precise sub-
set of the IRDS Command Language implemented in the current
version of the Prototype.

The following sections present, for each implemented com-
mand, the subset of the Command Language syntax that has
been included in the Prototype, along with one or more ex-
amples of the command's use. The format of the Prototype's
response to a correctly specified command is also described,
as are any differences between the Prototype implementation

Chapter 3 THE IRDS PROTOTYPE COMMAND LANGUAGE

Page 7

and the Standard Command Language, as defined in the IRDS
Specifications [1], and discussed in [2] and [3].

3 . 1 NOTATION

/" A
The construct { in the syntax listings below

V B

represents a choice between the clauses A and B.

Words in capitals, such as ADD, ENTITY, and DESCRIPTIVE-
NAME, are IRDS-defined words.

Angle brackets and ”>" enclose syntactic categories,
e.g., "<access-name>" and "<attribute-clause> M

.

Square brackets " [" and "] " enclose optional items. A
string of the form [, <C> ...] represents the occurrence
of zero or more instances of syntactic category C.

3.2 IRD COMMANDS

3.2.1 ADD ENTITY

Syntax :

ADD ENTITY <access-name> ENTITY-TYPE = <entity-type>
[ENTITY DESCRIPTIVE-NAME = <descriptive-name>

]

[WITH [ATTRIBUTES] <attribute-clause>
[,

<attribute-clause> ...]] ;

where <attribute-clause> is:
<attribute-type> = <attribute>

or
<attribute-group-type> =

(<component-attribute-type> = <attribute>
[,

<component-attribute-type> = <attribute>
...])

Examples

:

add entity u8 entity-type = system?

add entity u8 entity-type = system
entity descriptive-name = example_system

Chapter 3 THE IRDS PROTOTYPE COMMAND LANGUAGE

Page 8

with comments = "this is an example system"

;

add entity u8 entity-type = system
with external-security = "none”,

location = "example book",
identification-names =

(alternate-name = "example",
alternate-name-context = "here")

;

Prototype Response :

Entity <access-name> added.

3.2.2 MODIFY ENTITY

Syntax :

MODIFY ENTITY <access-name>
[ENTITY DESCRIPTIVE-NAME = <descriptive-name>]

[WITH [ATTRIBUTES] <attribute-claus@>
[,

<attribute-clause> . .
.

]

where <attribute-clause> is
<attribut@-type> = <attribute>

or
<attribute-group-type> =

(<component-attribut@-type> = <attribute>
[, <component-attribute-type> = <attribute> . .

.

Examples :

modify entity PAYROLL-SYSTEM with
external-security = "confidential",
identification-names =

(alternate-name = "PAYROLL-SYS"

,

alternate-name-context = "DIVISION-100")

;

modify entity AS
entity descriptive-name = ACCOUNTING-SYSTEM;

Chapter 3 THE IRDS PROTOTYPE COMMAND LANGUAGE

Page 9

Prototype Response :

Entity <access-name> modified.

3.2.3 DELETE ENTITY

Syntax :

DELETE ENTITY <access-name> [, access-name ...] ;

Examples :

delete entity u8a-30;

delete entity u8a-30, u8a-31, u8a-32;

Prototype Response :

Entity <access-name> deleted.

Entity <access-name> deleted.

3.2.4 ADD RELATIONSHIP

Syntax :

ADD RELATIONSHIP

/ <relationship-type>
<access-name-l> {

_ <relationship-class-type>

[NEW [<entity-2-type>
]]

<access-name-2>

[WITH [ATTRIBUTES] <attribute-type> = <attribute>
[, <attribute-type> = <attribute> ...]] ;

Chapter 3 THE IRDS PROTOTYPE COMMAND LANGUAGE

Page 10

Examples :

add relationship u8 system-contains-system u8a;

add relationship u8 contains new system u8a-30?

add relationship u8 system-contains-system new u8a-30;

add relationship u-8 processes payroll
with access-method = "protected", frequency =

"bi-monthly"

;

Prototype Response :

Relationship <access-name-l> <relationship-type>
<access-name-2> added

•

3.2.5 MODIFY RELATIONSHIP

Syntax ;

MODIFY RELATIONSHIP

/ <relationship-type>
<access-name-l> {

_<relationship-class-type>

<access-name-2>

[WITH [ATTRIBUTES] <attribute-type> = <attribute>
[, <attribute-type> = <attribute> ...]]

Example :

modify relationship u8 processes payroll with
frequency = "50", access-method = "direct";

Prototype Response :

Relationship <access-name-l> <relationship-type>
<access-name-2> modified.

Chapter 3 THE IRDS PROTOTYPE COMMAND LANGUAGE

Page 11

3.2.6 DELETE RELATIONSHIP

Syntax ;

DELETE RELATIONSHIP

/ <relationship-type>
<access-name-l> {

_ <relationship-class-type>

<access-name-2>

/ <relationship-type>
[, <access-name-l> {

_ <relationship-class-type>

<access-name-2>

—] ;

Examples :

delete relationship u8 system-contains-system u8-30;

delete relationship u8 contains u8-25, u8 contains u8a;

Prototype Response :

Relationship <access-name-l> <relationship-type>
<access-name-2> deleted.

Relationship <access-name-l> <relationship-type>
<access-name-2> deleted.

3.2.7 MODIFY ENTITY ACCESS-NAME

Syntax :

MODIFY ENTITY ACCESS-NAME FROM <old-name> TO <new-name> ;

Chapter 3 THE IRDS PROTOTYPE COMMAND LANGUAGE

Page 12

Example :

modify entity access-name from u8-20 to testl;

Prototype Response :

Entity access-name modified from <old-name> to
<new-name>

.

3.2.8 MODIFY ENTITY DESCRIPTIVE-NAME

Syntax :

MODIFY ENTITY DESCRIPTIVE-NAME FROM <old~name>
TO <new-name> ;

Example :

modify entity descriptive-name from
Old-Long-Name-1234567890 to New-Long-Name-1234567890

;

Prototype Response :

Entity descriptive-name modified from <old-name> to
<new-name> for <access-name>

.

3.2.9 COPY ENTITY

Syntax :

COPY ENTITY <access-name-l> [WITH RELATIONSHIPS]

TO <access-name-2>
[ENTITY DESCRIPTIVE-NAME = <descriptive-name>] ?

Examples :

copy entity U8-20-10 with relationships to New-u8-20-10

;

copy entity Tape__recording to Memoirs
entity descriptive-name = Life_and_Times

?

Chapter 3 THE IRDS PROTOTYPE COMMAND LANGUAGE

Page 13

Prototype Response ;

Entity <access-name-l> copied to
entity <access-name-2>

.

3.2.10 GENERAL OUTPUT

Syntax :

OUTPUT IRD

/“ALL ENTITIES
/ ENTITIES [WITH] ACCESS-NAME = <scan-mask>

/ [, <scan-mask> ...]

SELECT { ENTITIES [WITH] DESCRIPTIVE-NAME =

\ scan-mask [, <scan-mask> ...]

\ ENTITIES DIRECTLY RELATED TO <access-name>
_ [,

<access-name> ...]

[WHERE
< conditional expression using " ("

,
")

"

,

"AND", "OR"
and subexpressions:

ENTITY-TYPE = <entity-type> [, <entity-type> . .
.

]

ENTITY ASSIGNED ACCESS-NAME <rel-op>
<access-name>

ENTITY ASSIGNED DESCRIPTIVE-NAME <rel-op>
<descriptive-name>

<attribute-type> <rel-op> <attribute> >]

/” ALL
/ ENTITY ACCESS-NAME

SHOW { ENTITY DESCRIPTIVE-NAME
\ ALL ATTRIBUTES
_ ALL RELATIONSHIPS

A <scan-mask> may use, in addition to explicitly specified
characters, the substitution characters "*" and "?". Sub-
stitution character "*" matches any sequence of characters,
including the null sequence? substitution character "?"

matches any single character other than null. The term
<rel-op> refers to one of the operators:

Chapter 3 — THE IRDS PROTOTYPE COMMAND LANGUAGE

Page 14

equal to,

, not equal to,

, greater than,
"< 88

, less than,
»>==»• or "/<"

,
greater than or equal to,

"<=" or , less than or equal to.

Examples :

output ird select all show all?

output ird
select entities with access-name = *database*, dbms*
where entity-type = file

show entity access-name?

Prototype Response ?

For each of the entities in a hypothetical IRD reported
on by OUTPUT IRD SELECT ALL SHOW ALL? the Prototype
would generate a display looking something like:

Entity = H-I

Descriptive-Name = Health-Insurance

Entity-Type = SYSTEM

Attributes

Added-By = Goldfine
Last-Modified-By = Kirk

o
o
o

System-Category = Personnel

Attribute-Groups

Date-Time-Added
System-Date = 19860720
System-Time = 152654

Date-Time-Last-Modified
System-Date = 19860723
System-Time = 093150

Chapter 3 THE IRDS PROTOTYPE COMMAND LANGUAGE

Page 15

Relationships

H-I SYSTEM-PROCESSES-FILE H-I-Carrier
ACCESS-METHOD = Direct
FREQUENCY = Weekly

J_Smith USER-RUNS-SYSTEM H-I
FREQUENCY = Daily

o
o
o

At the end of the output, the following message is dis-
played:

IRD output completed.

3.3 IRD-SCHEMA COMMANDS

3.3.1 ADD META-ENTITY

Syntax :

ADD META-ENTITY <meta-entity-name> META-ENTITY-TYPE =

<meta-entity-type>
[WITH [META-ATTRIBUTES]

<meta-attribute-type> = <meta-attribute>
[, <meta-attribute-type> = <meta-attribute> ...]] ;

Examples :

add meta-entity COLOR meta-entity-type = attribute-type?

add meta-entity COLOR meta-entity-type = attribute-type
with purpose = "this is attribute-type is used to

define the color of a DOCUMENT"?

Prototype Response :

Meta-entity <meta-entity-name> added.

Chapter 3 THE IRDS PROTOTYPE COMMAND LANGUAGE

Page 16

3.3.2 MODIFY META-ENTITY

Syntax :

MODIFY META-ENTITY <meta-entity-name>
WITH [META-ATTRIBUTES] <attribute-type> = <attribute>

[, <attribute-type> = <attribute> ...] ;

Examples :

modify meta-entity PUBLICATION
with purpose = "this entity-type refers only to formally

published documents" ;

modify meta-entity COLOR
with maximum-number-of-occurrences = 7 ,

format = string ?

Prototype Response :

Meta-entity <meta-entity-name> modified.

3.3.3 DELETE META-ENTITY

Syntax :

DELETE META-ENTITY <meta-entity-name>
[WITH META-RELATIONSHIPS] ?

Example :

delete meta-entity u8a-30;

Prototype Response :

Meta-entity <meta-entity-name> deleted.

Chapter 3 — THE IRDS PROTOTYPE COMMAND LANGUAGE

Page 17

3.3.4 ADD META-RELATIONSHIP

Syntax :

ADD META-RELATIONSHIP

/ <xaeta-relationship-type>
<meta-entity-l> {

_ <meta-relationship-class-type>

<meta-entity-2> [POSITION = <n>]

[WITH [META-ATTRIBUTES]
<meta-attribute-type> = <meta-attribute>

[, <meta-attribute-type> = <meta-attribute> ...]] ;

Example :

add meta-relationship
document-contains-program connects document
position = 1 with purpose = "example";

Prototype Response :

Meta-relationship <meta-entity-l>
<meta-relationship-type> <meta-entity-2> added.

3.3.5 MODIFY META-RELATIONSHIP

Syntax :

MODIFY META-RELATIONSHIP

/ <meta-relationship-type>
<meta-entity-l> {

_ <meta-relationship-class-type>

<meta-entity-2>
[POSITION = <n>]

[WITH [META-ATTRIBUTES]
<meta-attribute-type> = <meta-attribute>

[, <meta-attribute-type> = <meta-attribute> ...]] ;

Chapter 3 THE IRDS PROTOTYPE COMMAND LANGUAGE

Page 18

Example :

modify meta-relationship
document-contains-program connects program position
with purpose = "another example";

Prototype Response :

Meta-relationship <meta-entity-l>
<meta-relationship-type> <meta-entity-2> modified.

3.3.6 DELETE META-RELATIONSHIP

Syntax :

DELETE META-RELATIONSHIP

/ <m@ta-relationship-type>
<meta-entity-l> {

_ <meta-relationship-class-type>

<meta-entity-2> [POSITION = <n>] ?

Example :

delete meta-relationship
document-contains-program connects program

position = 2;

Prototype Response :

Meta-relationship <meta-entity-l>
<meta-relationship-type> <meta-entity-2> deleted.

3.3.7 MODIFY META-ENTITY ACCESS-NAME

Syntax :

MODIFY META-ENTITY ACCESS-NAME
FROM <meta-entity-access-name-l>

TO <meta-entity-access-name-2> ;

Chapter 3 — THE IRDS PROTOTYPE COMMAND LANGUAGE

Page 19

Example :

modify meta-entity access-name from document to report;

Prototype Response :

Meta-entity access-name modified from
<meta-entity-access-name-l>

to <meta-entity-access-name-2>

.

3.3.8 OUTPUT IRD—SCHEMA

Syntax :

OUTPUT IRD-SCHEMA

/“all
SELECT { <meta-entity-name>

_ [, <meta-entity-name> ...]

/ ALL
/ ALL META-ATTRIBUTES

SHOW { META-ATTRIBUTES
\ <meta-attribute-type>
_ [/ <meta-attribute-type> ...]

Example :

output ird-schema select document show all;

Prototype Response :

For this command, the Prototype would generate a display
looking something like:

Meta-Entity = DOCUMENT

Meta-Entity-Type = ENTITY-TYPE

Chapter 3 THE IRDS PROTOTYPE COMMAND LANGUAGE

Page 20

Meta-Attributes

Added-By = BASIC-FUNCTIONAL-SCHEMA
Meta-Entity-Substitute-Name = DOC
Connectable = YES

o
o
o

System-Generated = NO
System-Lock = ON

Meta-Attribute-Groups

DATE-TIME-ADDED
SYSTEM-DATE = 19860720
SYSTEM-TIME = 152654

DATE-TIME-LAST-MODIFIED
SYSTEM-DATE = 19860723
SYSTEM-TIME = 093150

Meta-Relationships

DOCUMENT ENTITY-TYPE-CONTAINS-ATTRIBUTE-TYPE
ADDED-BY

Implementation-Lock = OFF
o
o
o

System-Lock - ON
DOCUMENT ENTITY-TYPE-CONTAINS-ATTRIBUTE-TYPE

CLASSIFICATION
Implementation-Lock = OFF

o
o
o

System-Lock = OFF
o
o
o

DOCUMENT ENTITY-TYPE-CONTAINS-ATTRIBUTE-GROUP-TYPE

IDENTIFICATION-NAMES
Implementation-Lock = OFF

o
o
o

Chapter 3 — THE IRDS PROTOTYPE COMMAND LANGUAGE

Page 21

System-Lock = OFF
DOCUMENT-CONTAINS-DOCUMENT

RELATIONSHIP-TYPE-CONNECTS-ENTITY-TYPE
DOCUMENT

Implementation-Lock = OFF
o
o
o

System-Lock = OFF
o
o
o

USER-RESPONSIBLE-FOR-DOCUMENT
RELATIONSHIP-TYPE-CONNECTS-ENTITY-TYPE

DOCUMENT
Implementation-Lock = OFF

o
o

System-Lock = OFF

At the end of the output, the following message is dis-
played:

IRD-SCHEMA output completed.

NOTE: Care should be taken in issuing the command:

output ird-schema select all show all;

This command will cause the display of the entire IRD-
Schema, which will include the Minimal Schema and, unless it
has been redefined, the Basic Functional Schema. Over
350,000 characters of text are generated in the display of
the Minimal and Basic Functional Schemas.

3 . 4 UTILITY COMMANDS

3.4.1 CREATE IRD

Syntax :

CREATE IRD <IRD-name> IRD-SCHEMA IS STANDARD ;

Chapter 3 THE IRDS PROTOTYPE COMMAND LANGUAGE

Page 22

Example :

create ird production-2 ird-schema is standard;

The term "standard" in the Prototype's CREATE IRD command
refers to a combination of the Minimal Schema and the Basic
Functional Schema of the IRDS Standard.

Prototype Response :

INFORMATION IXXXX: Creating 1st schema table
INFORMATION IXXXX: Creating 2nd schema table
INFORMATION IXXXX: Creating 3rd schema table
INFORMATION IXXXX: Creating 1st data table
INFORMATION IXXXX: Creating 2nd data table
INFORMATION IXXXX: Creating 3rd data table
INFORMATION IXXXX: All done.

3.4.2 REMOVE IRD

Syntax :

REMOVE IRD <IRD-name> ?

Example :

remove ird test-04 ?

Prototype Response :

IRD <IRD-name> removed.

The Specifications for the IRDS Command Language do not con-
tain a REMOVE IRD command. However, the ability to create
new IRDs certainly implies the need to remove them. Hence
the Prototype was implemented with this command.

Chapter 3 — THE IRDS PROTOTYPE COMMAND LANGUAGE

Page 23

3.4.3 EXIT

Syntax :

EXIT ?

Example :

exit;

Prototype Response :

Return to calling program or operating system.

3.4.4 HELP

Syntax :

HELP [<command>] ;

Examples :

help;

help add meta-relationship;

Prototype Response :

For HELP;, a list of the currently available commands.

For HELP <command>;, a description of the syntax of that
command, and some examples of command usage.

3.5 ERROR MESSAGES

The Prototype generates all the appropriate error mes-
sages specified in the IRDS Standard. In addition, certain
error conditions that are not documented in the Specifica-
tions are recognized by the Prototype. These conditions
cause the generation of self explanatory error messages be-
ginning with "EXXXXX : "

.

Chapter 3 THE IRDS PROTOTYPE COMMAND LANGUAGE

Page 24

3.6 COMMAND LANGUAGE ABBREVIATIONS

The Prototype accepts abbreviations for a set of IRDS-
words that are defined in the Standard and that are part of
the Command Language. An abbreviation can be used anywhere
in place of its corresponding full formulation.

IRDS-word Abbreviation

ACCESS-NAME NAME
ALTERNATE-NAME ANAME
ASSIGNED ASSGN
ATTRIBUTES ATTRB
ATTRIBUTE-TYPE ATYPE
COPY CPY
CREATE CRE
DELETE DEL
DESCRIPTIVE-NAME DNAME
ENTITY-TYPE ETYPE
META-ATTRIBUTES ' MATRBS
META-ENTITY MENTY
META-ENTITY-TYPE METYPE
META-RELATIONSHIP MREL
META-RELATIONSHIPS MRELS
MODIFY MOD
OUTPUT OUT
RELATIONSHIP REL
RELATIONSHIPS RELS
RELATIONSHIP-TYPE RTYPE

The Prototype also accepts the set of meta-entity
substitute-names, such as DOC for DOCUMENT and SYS-CON-SYS
for SYSTEM-CONTAINS-SYSTEM, defined as part of the "stand-
ard" schema. Appendices A and B of the IRDS Technical Over-
view [2] contain a complete list of these substitute-names.

Chapter 3 — THE IRDS PROTOTYPE COMMAND LANGUAGE

Page 25

4. THE IRDS PROTOTYPE SCHEMA

4.1 THE STRUCTURE OF THE SQL TABLES

Each IRD has associated with it eleven SQL tables, which
contain all the IRD and IRD-schema data for that dictionary.
These tables are:

o META-ATTRIBUTE-TYPE
o META-ATTRIBUTE-GROUP/META-ATTRIBUTE-TYPE
o META-ENTITY-TYPE/META-ATTRIBUTE-TYPE
o META-ENTITY-TYPE/META-ATTRIBUTE-GROUP-TYPE
o META-ENTITY/META-ATTRIBUTE
O META-ENTITY/META-ATTRIBUTE-GROUP
o META-RELATIONSHIP-TYPE/META-ATTRIBUTE-TYPE
O META-RELATIONSHIP/META-ATTRIBUTE
O ENTITY/ATTRIBUTE
o ENTITY/ATTRIBUTE-GROUP
o RELATIONSHIP/ATTRIBUTE

The following sections present the SQL definitions for
each of these tables.

4.1.1 The META-ATTRIBUTE-TYPE Table

The META-ATTRIBUTE-TYPE table (MATYPE) stores the
descriptive information defining the Prototype's meta-
attribute-types, as specified in section 9.3 of Module 1 of
the IRDS, Specifications [1]. Each row of the table corre-
sponds to a meta-attribute-type; the columns could be said
to correspond to meta-meta-attribute-types. Once the Proto-
type source code is compiled, MATYPE is fixed, in that there
is no provision in the Standard for a user to be able to
redefine meta-attribute-types. Since it is fixed, MATYPE is
stored once, and is shared by all IRDs using the given
executable

.

Definition :

create table MATYPE

(meta_attribute_type_name
internal_name
description
format
minimum_length

char (65)

,

char (30),
char (240)

,

char (7)

,

integer (2)

,

Chapter 4 THE IRDS PROTOTYPE SCHEMA

Page 26

maximum_length integer (5)

,

default_ char (20)

,

constraints char (240)

,

repeating char (3)

,

system_maintained char (3),
fixed char (3)

,

required char (3)

,

uniqueness_rules char (3))

4.1.2 The META-ATTRIBUTE-GROUP-TYPE/META-ATTRIBUTE

-

TYPE Table

The META-ATTRI BUTE -GROUP-TYPE/META -ATTRI BUTE -TYPE
(MAGTYPE_MATYPE) table describes the association between the
meta-attribute-group-types and their component meta-
attribute-types in the Prototyped IRD-schema, as specified
in section 9.6 and Table 3 of Module 1 of the IRDS Specifi-
cations. Each row of the table corresponds to a component
meta-attribute-type of a meta-attribute-group-type? each
column corresponds to a meta-attribute-type. MAGTYPE__MATYPE
is fixed, stored once, and shared by all IRDs.

Definition:

create table MAGTYPE MATYPE

(magtype
internal_name
matype
pos
sys_chars

char (64)

,

char (30)

,

char (64)

,

integer (2)

,

char (2))

4.1.3 The META-ENTITY-TYPE/META-ATTRIBUTE-TYPE Table

The META-ENTITY-TYPE/META-ATTRIBUTE-TYPE (METYPE_MATYPE)
table describes the correspondence between the meta-entity-
types and their associated meta-attribute-types in the Pro-
totype's IRD-schema, as specified in section 9.4 and Table 1

of Module 1 of the IRDS Specifications. Each row of the
table corresponds to a meta-entity-type? each column cor-
responds to a meta-attribute-type. METYPE_MATYPE is fixed,
stored once, and shared by all IRDs.

Chapter 4 — THE IRDS PROTOTYPE SCHEMA

Page 27

Definition:

create table METYPE MATYPE
(me_type char (40)
defined_by char (2) ,

alt_mname char (1) ,

common char (2) ,

connectable char (1) ,

e_class char (1) ,

fmt char (2) ,

i_lock char (1) ,

integer_l imi

t

char (3) ,

inverse char (1) ,

1ast_changed_by char (1) ,

origin char (3) ,

phase__class char (2) ,

1ine_count_l imit char (3) ,

1 ine_length_l imit char (3) ,

max_lngth char (2) ,

max_dname_lngt

h

char (2) ,

max_dname_lngth_de f char (1) ,

max_name_lngt

h

char (2) ,

max_name_lngth_de f char (1) ,

max_name_l imit char (3) ,

max_occ_def char (1) ,

max_occ_l imit char (3) ,

min_lngth char (2) ,

min_dname_lngth char (2) ,

min_dname_lngth_def char (1) ,

min_name_lngth char (2) ,

min_name_lngth_def char (1) ,

i_count char (2) ,

mod_count char (1) ,

pic char (1) ,

purpose char (1) ,

seq char (2) ,

sig_attrbs char (2) ,

st_name char (1) ,

string_length_limit char (3) ,

sys_gened char (2) ,

sys_lock char (2) ,

val idation_type char (1) ,

var_lngth_l imit char (3) ,

rule_desc char (1) ,

max_dname_lngth_l im char (3) ,

max_menty_ass_name_l im char (3) ,

max_menty_ass_dname_l im char (3) ,

r_name char (4) ,

Chapter 4 — THE IRDS PROTOTYPE SCHEMA

Page 28

r_mname char (4) ,

mode_ char (1) ,

sys_maint char (1) ,

grp_txt_a1wd char (3) ,

var char (1))

4.1.4 The META—ENTITY—TYPE/META-ATTRIBUTE—GROUP—TYPE Table

The MET A -ENTITY -TYPE/META” ATTRIBUTE -GROUP-TYPE
(METYPE_MAGTYPE) table describes the correspondence between
the meta-entity-types and their associated meta-attribute-
group-types in the Prototype's IRD-schema, as specified by
section 9.7 and Table 4 of Module 1 of the IRDS Specifica-
tions. Each row corresponds to a meta-entity-type; each
column corresponds to a component meta-attribute-type of a
meta-attribute-group-type. METYPE-MAGTYPE is fixed, stored
once, and shared by all IRDs.

Definition:

create table METYPE MAGTYPE
(metype char (64) ,

data_range char (1) ,

data_value char (1) ,

added char (2) ,

modified char (2))

4.1.5 The META-ENTITY/META-ATTRIBUTE Table

The META-ENTITY/META-ATTRIBUTE (MENTY_MATT)
table stores

all meta-attributes associated with all meta-entities in the
Prototype's IRD-schema. Each row corresponds to a meta-
entity; each column corresponds to a meta-attribute-type.
When a new IRD is created, the table is initially populated
with the meta-entities in the Minimal Schema and the Basic
Functional Schema, as specified in section 10.2.1 of Module
1 and section 5.1 of Module 2 of the IRDS Specifications.
As new meta-entities are added to the IRD-schema, they are
entered into this table.

Definition :

create table MENTY__MATT
(me_type char (35) ,

menty char (64) ,

Chapter 4 — THE IRDS PROTOTYPE SCHEMA

Page 29

id_number integer (3)

,

internal_name char (30)

,

menty_variation_name char (8)

,

menty_revis ion_number integer (1) ,

menty_ass_dname char (64)

,

defined_by char (32)

,

alt_mname char (32)

,

common char (3) ,

connectable char (3) ,

e_class char (8)

,

fmt char (7)

,

i_lock char (3)

,

integer_l imi

t

integer (22)

,

inverse char (64) ,

last_changed_by char (32)

,

origin char (8)

,

phase_class char (12) ,

1ine_count_l imi

t

integer (5) ,

line_length_limit integer (3)

,

max_lngth integer (5) ,

max_dname_lngth integer (3)

,

max_dname_lngth_de f integer (3)

,

max_name_lngth integer (3)

,

max_name_lngth_de f integer (3)

,

max_name_l imit integer (3) ,

max_occ_def integer (3) ,

max_occ_l imit integer (3)

,

min_lngth integer (2) ,

min_dname_lngth integer (2)

,

min_dname_lngth_def integer (2) ,

min_name_lngth integer (3.) ,

min_name_lngth_def integer (1) ,

i_count integer (9)

,

mod_count integer (9)

,

pic char (64) ,

purpose char (65535)

,

seq char (3)

,

sig_attrbs integer (2) ,

st_name char (31)

,

string_length_limit integer (3)

,

sys_gened char (3)

,

sys_lock char (3) ,

validation_type char (5)

,

var char (31)

,

var_lngth_l imit integer (2)

,

rule_desc char (1)

,

max_dname_lngth_l im integer (2)

,

max_menty_ass_name_l im integer (2)

,

Chapter 4 — THE IRDS PROTOTYPE SCHEMA

Page 30

max_menty_ass_dname_l im
r_name
r__mname
mode_
sys_maint
grp_txt_a 1wd

integer (2)

,

char (1)

,

char (1) ,

char (8) ,

char (3)

,

char (3))

4.1.6 The META—ENTITY/META—ATTRIBUTE—GROUP Table

The META-ENTITY/META-ATTRIBUTE-GROUP (MENTY_MAG) table
stores all meta-attribute-groups associated with all meta-
entities in the Prototype's IRD-schema. Each row cor-
responds to a meta-entity? each column corresponds to a com-
ponent meta-attribute-type of a meta-attribute-group-type.
When a new IRD is created, the table is initially populated
with the meta-entities in the Minimal Schema and the Basic
Functional Schema, as specified in section 10.2.1 of Module
1 and section 5.1 of Module 2 of the IRDS Specifications.
As new meta-entities are added to the IRD-schema, they are
entered into this table.

Definition:

create table MENTY__MAG
(menty
menty_var_name
menty_rev_num
added$date
added$time
modified$date
modified$time

char (64)

,

char (8)

,

integer,
char (8)

,

char (6)

,

char (8)

,

char (6))

4.1.7 The META-RELATIONSHIP-TYPE/META-ATTRIBUTE-TYPE Table

The META-RE LATIONSH I P-TY PE/META-ATTRIBUTE-TYPE
(MRTYPE_MATYPE) table describes the correspondence between
the meta-relationship-types and their associated meta-
attribute-types in the Prototype's IRD-schema, as specified
in section 9.5 and Table 2 of Module 1 of the IRDS Specific-
ations. Each row corresponds to a meta-relationship-type;
each column corresponds to a meta-attribute-type.
MRTYPE__MATYPE is fixed, stored once, and shared by all IRDs.

Chapter 4 — THE IRDS PROTOTYPE SCHEMA

Page 31

Definition:

create table MRTYPE MATYPE
(mrtype integer (2
metypel char (35) ,

metype2 char (35) ,

mrel_class_type char (9) ,

mrel_type char (64) ,

grp_pos char (2) ,

i lock char (2) ,

max occ char (1) ,

origin char (3) ,

pos char (1) ,

purpose char (1) ,

seq parm char (1) ,

sing char (1) ,

sys_lock char (2))

4.1.8 The META-RELATIONSHIP/META-ATTRIBUTE Table

The META-RELATIONSHIP/META-ATTRIBUTE (MREL_MATT) table
stores all meta-attributes associated with all meta-
relationships in the Prototype's IRD-schema. Each row cor-
responds to a meta-relationship; each column corresponds to
a meta-attribute-type. When a new IRD is created, the table
is initially populated with the meta-relationships defined
in the Minimal Schema and the Basic Functional Schema, as
specified in section 10.3 of Module 1 and section 6 of Mod-
ule 2 of the IRDS Specifications. As new meta-relationships
are added to the IRD-schema, they are entered into this
table.

Definition :

create table MREL_MATT
(mrtype
mentyl
mentyl_var
mentyl_rev_num
menty2
menty2_var
menty2_rev_num
grp_pos
i_lock
max_occ
origin
pos

integer (2)

,

char (64)

,

char (8)

,

integer,
char (64)

,

char (8)

,

integer,
integer (2)

,

char (3)

,

integer (3)

,

char (8)

,

integer (1)

,

Chapter 4 THE IRDS PROTOTYPE SCHEMA

Page 32

purpose char (65535)
seq parm char (3) ,

sing char (8) ,

sys_lock char (3))

4.1.9 The ENTITY/ATTRIBUTE Table

The ENTITY/ATTRIBUTE (ENTY_ATT) table stores all attri-
butes associated with all entities in the application IRD

.

Each row corresponds to an entity; each column corresponds
to an attribute-type defined in the schema of the applica-
tion IRD. The table is empty when the IRD is created. As
entities are added to the IRD, they are entered into this
table « When new attribute-types are defined in the schema,
corresponding columns are added to the table, making the
table dynamic with respect to columns as well as rows.

The following definition is not an extract from the Pro-
totype source code, but is equivalent to that more dynamic
definition:

Definition:

create table ENTY ATT
(entity_type char (64) ,

entity_name char (32) ,

var^name char (8) ,

rev^num integer,
descriptive_name char (64) ,

added__by char (32) ,

allowable__value char (32) ,

classification char (32) ,

code_list_location char (32) ,

comments char (240)

,

data__class char (32) ,

data_type char (16) ,

description char (5000)

,

dict_partition_name char (32) ,

document_category char (32) ,

external_security char (32) ,

internal_format char (32) ,

ird__schema_phase_name char (32) ,

justification char (5) ,

last_modified_by char (32) ,

length integer,
location char (32) ,

mod_count integer,

Chapter 4 -- THE IRDS PROTOTYPE SCHEMA

Page 33

integer_o f_records
num_lines_code
precision
record_category
scale
system_category
usage

integer,
integer,
integer (2)

,

char (32)

,

integer (2)

,

char (32)

,

char (32))

4.1.10 The ENTITY/ATTRIBUTE-GROUP Table

The ENTITY/ATTRIBUTE-GROUP (ENTY_AG) table stores all
attribute-groups associated with all entities in the appli-
cation IRD. Each row corresponds to an entity; each column
corresponds to a component attribute-type of an attribute-
group-type defined in the schema of the application IRD.
The table is empty when the IRD is created. As entities are
added to the IRD, they are entered into this table. When
new attribute-group-types are defined in the schema, cor-
responding columns are added to the table, making the table
dynamic with respect to columns as well as rows.

The following definition is equivalent to the definition
found in the source code:

Definition:

create table ENTY AG
(entity_name char (32)
var_name char (8) ,

rev_num integer,
alw_range$high_of_range char (32)
a1w_range $ 1ow_o f_range char (32)
duration$duration_type char (32)
duration$duration value char (22)
d_t_added$system_date char (8) ,

d_t_added$system_time char (6) ,

d__t_mod$system_date char (8) ,

d_t_mod$system_time char (6) ,

id_names$alternate name char (32)
id_names$alt_name_context char (32)

4.1.11 The RELATIONSHIP/ATTRIBUTE Table

The RELATIONSHIP/ATTRIBUTE (REL_ATT) table stores all
attributes associated with all relationships in the applica-
tion IRD. Each row corresponds to a relationship; each col-

Chapter 4 — THE IRDS PROTOTYPE SCHEMA

Page 34

umn corresponds to an attribute-type defined in the schema
of the application IRD. The table is empty when the IRD is
created. As relationships are added to the IRD, they are
entered into this table. When new attribute-types are defi-
ned in the schema, corresponding columns are added to the
table, making the table dynamic with respect to columns as
well as rows.

Definition;

create table REL ATT
(relationship_type char (64)

,

entityl char (32),
var_namel char (8),
rev_numl integer,
@ntity2 char (32)

,

var_name

2

char (8)

,

rev_num2 integer,
relationship_class__type char (64)
relationship_type char (64)

,

entityl char (32),
varename

1

char (8)

,

rev_jiuml integer,
entity2 char (2)

,

var_name2 char (8)

,

rev_num2 integer,
relationship_class_type char (64)

,

access_method char (32)

,

default^view char (3)

,

frequency char (32)

,

relative_position integer (22))

4.2 IMPLEMENTOR DEFINED VALUES IN THE IRDS PROTOTYPE

The IRDS Standard Specifications [1] characterize many of
the meta-meta-attributes and meta-attributes in the above
tables as "implementor defined" or "installation specified"
when applied to specific meta-attribute-types or meta-
entities. The following sections list the values used in
the Prototype for these meta-meta-attributes and meta-
attributes „

4.2.1 Values For Meta-Attribute-Types

ADDED-BY
Maximum Length = 32

Chapter 4 -- THE IRDS PROTOTYPE SCHEMA

Page 35

DECODED-VALUE
Maximum Length = 32

ENCODED-VALUE
Maximum Length = 32

GROUP-POSITION
Maximum Length = 2

HIGH-VALUE
Maximum Length =22

INTEGER-LIMIT
Maximum Length = 22

INVERSE-NAME
Maximum Length = 32

LAST-MODIFIED-BY
Maximum Length = 32

LINE-COUNT-LIMIT
Maximum Length = 5

LOW-VALUE
Maximum Length = 22

MAXIMUM-NUMBER-OF-OCCURRENCES
Maximum Length = 3

MAXIMUM-NUMBER-OF-OCCURRENCES-DEFAULT
Maximum Length = 3

MAXIMUM-NUMBER-OF-OCCURRENCES -LIMIT
Maximum Length = 3

META-ENTITY-SUBSTITUTE-NAME
Maximum Length = 32

MINIMUM-ATTRIBUTE-LENGTH
Maximum Length =

NUMBER-OF-INSTANCES
Maximum Length = 22

NUMBER-OF-TIMES-MODIFIED
Maximum Length = 22

Chapter 4 THE IRDS PROTOTYPE SCHEMA

Page 36

ORIGIN
Minimum Length = 6

Maximum Length = 8

PICTURE
Maximum Length = 32

PURPOSE
Minimum Length = 1
Maximum Length = 5000

SEQUENCE-PARAMETER
Minimum Length = 2

Maximum Length = 3

SIGNIFICANT-ATTRIBUTES
Maximum Length = 2

START-NAME
Maximum Length = 8

VARIATION
Maximum Length = 2

VARIATION-LENGTH-LIMIT
Maximum Length = 2

4.2.2 Values For Meta-Entities

The following are the implementor defined meta-
attributes for the "Standard IRD-Schema" meta-entities:

Each meta-entity has either MINIMAL-SCHEMA or BASIC-
FUNCTIONAL-SCHEMA, as appropriate, as its Added-By meta-
attribute.

Entitv-Tvpes

Each entity-type has for its Meta-Entity-Substitute-Name
the value given in sections A.l and B.l of the IRDS Techni-
cal Overview [2].

For each entity-type:

Maximum-Entity-Assigned-Access-Name-Length = 32
Maximum-Entity-Assigned-Descriptive-Name-Length = 64

Chapter 4 — THE IRDS PROTOTYPE SCHEMA

Page 37

Minimum-Entity-Assigned-Access-Name-Length = 1

Minimum-Entity-Assigned-Descriptive-Name-Length = 1

Relationship-Types and Relationship-Class-Tvpes

Each relationship-type and relationship-class-type has
for its Meta-Entity-Substitute-Name the value given in
sections A. 2 and B.2 of the IRDS Technical Overview.

Attribute-Types

ADDED-BY
Maximum-Attribute-Length = 32
Minimum-Attribute-Length = 1

DEFAULT-VIEW
Meta-Entity-Substitute-Name = DEF-VIEW
Maximum-Attribute-Length = 3

Minimum-Attribute-Length = 2

IRD-PARTITION-NAME
Maximum-Attribute-Length = 32
Minimum-Attribute-Length = 1

LAST-MODIFIED-BY
Meta-Entity-Substitute-Name = LAST-MOD-BY
Maximum-Attribute-Length = 32
Minimum-Attribute-Length = 1

NUMBER-OF-TIMES-MODIFIED
Meta-Entity-Substitute-Name = NO-TIMES-MOD
Maximum-Attribute-Length = 22
Minimum-Attribute-Length = 1

IRD-SCHEMA-PHASE-NAME
Meta-Entity-Substitute-Name = S-PH-NAME
Maximum-Attribute-Length = 32
Minimum-Attribute-Length = 1

SYSTEM-DATE
Maximum-Attribute-Length = 8

Minimum-Attribute-Length = 8

SYSTEM-TIME
Maximum-Attribute-Length = 6

Minimum-Attribute-Length = 6

Chapter 4 — THE IRDS PROTOTYPE SCHEMA

Page 38

ACCESS-METHOD
Maximum-Attribute-Length = 32
Minimum-Attribute-Length = 1

ALLOWABLE-VALUE
Maximum-Attribute-Length = 32
Minimum-Attribute-Length = 1

ALTERNATE-NAME
Meta-Entity-Substitute-Name = ALT-NAME
Maximum-Attribute-Length = 32
Minimum-Attribute-Length = 1

ALTERNATE-NAME-CONTEXT
Meta-Entity-Substitute-Name = ALT-NAME-CONTEXT
Maximum-Attribute-Length = 32
Minimum-Attribute-Length = 1

CLASSIFICATION
Meta-Entity-Substitute-Name = CLASS
Maximum-Attribute-Length = 32
Minimum-Attribute-Length = 1

CODE-LIST-LOCATION
Meta-Entity-Substitute-Name = CODE-LOC
Maximum-Attribute-Length = 32
Minimum-Attribute-Length = 1

COMMENTS
Maximum-Attribute-Length = 240
Minimum-Attribute-Length = 1

DATA-CLASS
Maximum-Attribute-Length = 32
Minimum-Attribute-Length = 1

DATA-TYPE
Maximum-Attribute-Length = 16
Minimum-Attribute-Length = 5

DESCRIPTION
Meta-Entity-Substitute-Name = DESC
Maximum-Attribute-Length = 5000
Minimum-Attribute-Length = 1

DOCUMENT-CATEGORY
Meta-Entity-Substitute-Name = DOC-CAT
Maximum-Attribute-Length = 32

Chapter 4 — THE IRDS PROTOTYPE SCHEMA

Page 39

Minimum-Attribute-Length = 1

DURATION-TYPE
Meta-Entity-Substitute-Name =
Maximum-Attribute-Length = 32
Minimum-Attribute-Length = 1

DURATION-VALUE
Meta-Entity-Substitute-Name =
Maximum-Attribute-Length = 22
Minimum-Attribute-Length = 1

EXTERNAL-SECURITY
Meta-Entity-Substitute-Name =
Maximum-Attribute-Length = 32
Minimum-Attribute-Length = 1

FREQUENCY
Meta-Entity-Substitute-Name =
Maximum-Attribute-Length = 32
Minimum-Attribute-Length = 1

HIGH-OF-RANGE
Meta-Entity-Substitute-Name =
Maximum-Attribute-Length = 32
Minimum-Attribute-Length = 1

INTERNAL-FORMAT
Meta-Entity-Substitute-Name =
Maximum-Attribute-Length = 32
Minimum-Attribute-Length = 1

JUSTIFICATION
Meta-Entity-Substitute-Name =
Maximum-Attribute-Length = 5

Minimum-Attribute-Length = 4

LENGTH
Maximum-Attribute-Length = 22
Minimum-Attribute-Length = 1

LOCATION
Meta-Entity-Substitute-Name =

Maximum-Attribute-Length = 32
Minimum-Attribute-Length = 1

LOW-OF-RANGE
Meta-Entity-Substitute-Name =

DUR-TYPE

DUR-VAL

SEC

FREQ

HIGH

INTF

JUS

LOC

LOW

Chapter 4 — THE IRDS PROTOTYPE SCHEMA

Page 40

Maximum-Attribute-Length = 32
Minimum-Attribute-Length = 1

NUMBER-OF-LINES-OF-CODE
Meta-Entity-Substitute-Name = NO-LINES-CODE
Maximum-Attribute-Length = 22
Minimum-Attribute-Length = 1

NUMBER-OF-RECORDS
Meta-Entity-Substitute-Name = NO-OF-RECS
Maximum-Attribute-Length = 22
Minimum-Attribute-Length = 1

PRECISION
Maximum-Attribute-Length = 2

Minimum-Attribute-Length = 1

RECORD-CATEGORY
Meta-Entity-Substitute-Name = REC-CAT
Maximum-Attribute-Length = 32
Minimum-Attribute-Length = 1

RELATIVE-POSITION
Meta-Entity-Substitute-Name = REL-POS
Maximum-Attribute-Length = 22
Minimum-Attribute-Length = 1

SCALE
Meta-Entity-Substitute-Name = SCL
Maximum-Attribute-Length ™ 2

Minimum-Attribute-Length = 1

SYSTEM-CATEGORY
Meta-Entity-Substitute-Name = SYS-CAT
Maximum-Attribute-Length = 32
Minimum-Attribute-Length = 1

USAGE
Maximum-Attribute-Length = 32
Minimum-Attribute-Length = 1

IRDS-Defaults

EXISTING-IRDS-DEFAULTS
Format = STRING
Maximum-Attribute-Length = 32
Maximum-Entity-Assigned-Descriptive-Name-Length

Chapter 4 — THE IRDS PROTOTYPE SCHEMA

Page 41

Maximum-Entity-Assigned-Descriptive-Name-Length-
Default = 64

Maximum-Entity-Assigned-Access-Name-Length = 32
Maximum-Entity-Assigned-Access-Name-Length-Default = 32
Maximum-Number-Of-Occurrences = 10
Maximum-Number-Of-Occurrences-Default = 10
Minimum-Attribute-Length = 1
Minimum-Entity-Assigned-Descriptive-Name-Length = 1

Minimum-Entity-Assigned-Descriptive-Name-Length-
Default = 1

Minimum-Entity-Assigned-Access-Name-Length = 1

Minimum-Entity-Assigned-Access-Name-Length-Default = 1

Significant-Attributes = 1
Standard-Mode = YES

IRDS-Limits

EXISTING-IRDS-LIMITS
Integer-Limit = 10000000000000000000000
Line-Count-Limit = 32767
Line-Length-Limit = 80
Maximum-Entity-Assigned-Access-Name-Length-Limit = 32
Maximum-Entity-Assigned-Descriptive-Name-Length-Limit = 64
Maximum-Meta-Entity-Assigned-Access-Name-Length-Limit = 32
Maximum-Meta-Entity-Assigned-Descriptive-Name-Length-

Limit = 64
Maximum-Number-Of-Occurrences-Limit = 10
String-Length-Limit =72
Variation-Name-Limit = 8

Chapter 4 THE IRDS PROTOTYPE SCHEMA

Page 42

5. THE IRDS PROTOTYPE SOURCE CODE

5 . 1 OVERVIEW

The C language Prototype program translates IRDS commands
into SQL commands and sends these to the Oracle database
management system, where the database representing the IRD
is maintained. The program performs various consistency
checks, some of which include calls to the DBMS to access
data. Formatting of the output and some of the entity se-
lection is done at the C program level. The remainder of
the selection is done through the DBMS facilities.

5 . 2 DICTIONARY SUBROUTINES

When the user executes the IRDS prototype, the C program
looks for the Oracle table DICTXONARY_NAMES to get a list of
available IRDs. If no such table is found, the subroutine
SET=DXCT will call MK_DICT to create the necessary tables.
MK_DICT creates and fills DICTIONARY_NAMES and those tables
that are fixed. MK_DXCT also creates a set of tables that
are modifiable, adding prefix to the name of each such
table. MK_DICT then fills the new schema level tables, the
data for which comes from the file XRDS.TBL. The IRD level
tables are then created using the information contained in
the schema level tables. The user is then asked to name the
new XRD=

If the DXCTXONARY_NAMES table exists but is empty, then
the Prototype assumes that the static tables and a set of
dictionary tables have already been created and filled. In
this case, the user is asked to name the IRD.

If there is data in the DICTIONARY_NAMES table, then the
list of IRDs is displayed to the user for the user's
selection.

When the user executes a CREATE IRD command, the program
executes the subroutine CRE_DICT, which finds a prefix to
use and then creates a new IRD. The subroutine SET_DICT,
which is responsible for making sure that the user is placed
in the correct IRD, is executed before the user is given a
prompt.

Chapter 5 — THE IRDS PROTOTYPE SOURCE CODE

Page 43

5.3 PARSING THE COMMANDS

Preliminary parsing of each IRDS command is performed by
the subroutine GETCOM. GETCOM calls subroutines READCOM and
INDEXCOMM. READCOM reads in a command from the standard
input. INDEXCOMM takes the string of input from READCOM and
divides it into words which are stored in the global array
WORD. INDEXCOMM also determines which command was typed in,
and records this in the global variable NCOMMAND.

Subroutine DO_COMMAND , called after GETCOM, calls
subroutine CK_SYNTAX. CK_S YNTAX calls subroutine
MATCH_TEMPLATE

,
giving it the template for the specific

command and the array of words that INDEXCOMM produces.
MATCH_TEMPLATE checks, word-by-word, that the template
matches the array of words given. MATCH_TEMPLATE will not
do any backtracking, instead counting on having unique
choices when there are several options.

MATCH_TEMPLATE assumes that the following characters,
when they appear in a template, mean special things:

[] { I
} #

' '

These special meanings are as follows:

o [and] surround a part of the command that is
optional

.

o The construct { a
|

b
|

c } matches exactly one of a,
b, or c, where a, b, and c do not have to be simple.

o ' a ' will match 0 or more a's, where a does not have
to be simple. The check for another a is made before
the check for what comes after the ' in the template,
and this should be considered when writing templates.

o The character # is followed by a number, 1 through 9,
which is the index to be used into an array of linked
lists. The word at this position in the input is
added to the linked list which has the given index.

Linked lists are used so that instances of the same type
of structure can be stored together into fixed places in the
array. For example, a list of attributes specified in an
ADD or MODIFY command can all be in one place. These linked
lists are dynamic, but because what is stored in them gets
translated and stored into non-dynamic structures later,

Chapter 5 — THE IRDS PROTOTYPE SOURCE CODE

Page 44

there is a limit, about 100, to the number of items that can
be in a list.

Output commands are not completely parsed by
MATCH_TEMPLATE , which counts on subroutine WHERE_S to more
thoroughly parse any WHERE clause. WHERE_S makes sure that
the attribute-types used do exist, and also does other simi-
lar checks. WHERE_S uses backtracking to find the correct
parse.

5 .

4

COMMAND SUBROUTINES

After a command has been read in and parsed, the linked
list of values from the parse is passed by DO_COMMAND to the
subroutine for that command. Each command has a correspond-
ing subroutine, and each subroutine has, as its name, an
abbreviation of the name of the command. The subroutines do
the required consistency checking, and translate the command
into a SQL command or a series of SQL commands, which are
then executed. Examples of constraints that are checked
are; modifying only existing entities, adding only one en-
tity with a given access-name, and adding an attribute for
an entity only if the entity's type is meta-related to the
attribute's type with an entity-type-contains-attribute-type
meta-relationship. Some of the checks involve retrieving
information out of the Oracle database using SQL commands
executed through subroutine calls. Some of the checks and
actions are common to several commands, and thus have been
written as separate subroutines.

5 .

5

OCI SUBROUTINES

The Oracle Call Interface, OCI, subroutines are the sub-
routines supplied by the DBMS. They all start with an O and
are described in Oracle's Pro*C User's Guide. These
subroutines allow SQL commands to be executed against a

database in Oracle.

5 .

6

HLI SUBROUTINES

The Prototype's C program contains a special set of sub-
routines, the name of each member of which starts with HLI__.

This is an attempt at a consistent interface to the DBMS
that both eliminates the repeated writing of certain
sequences of calls to Oracle's OCI subroutines, and also

Chapter 5 — THE IRDS PROTOTYPE SOURCE CODE

Page 45

checks for errors. Not all of the calls to the OCI sub-
routines in the rest of the code have been replaced, but the
number has been reduced. This effort has helped to place
the direct interface to the DBMS into a limited area of the
source code.

5.7 GLOBAL VARIABLES

There are a few variables that were made global because
of their frequent use in different subroutines. These
global variables are defined at the top of each source code
file. Two of the variables, CURSOR and LDA, were defined
for the Oracle subroutines to use. WORD is an array of 100
strings that will hold the input after it has been split up
into words. NWORDS is the number of words in the array
WORD. PREFIX indicates which IRD a user has activated.
NCOMMAND records the type of the current command (e.g., ADD
ENTITY or OUTPUT IRD) . There are a few global variables
that are defined near the definition of a subroutine, and
which are used only in that subroutine or set of sub-
routines .

5.8 PROGRAM DATA STRUCTURES

In each of the source code files, types are defined
before the global variables are defined. Most of the types
defined are structures. There are separate structures that
store information about entities, relationships, and
attributes, and similar ones that store information at the
schema level.

There are a few static variables. The space for these is
allocated in the global area, but the variables can be used
only where they are defined. The static variables were used
to save values between calls to a subroutine, without making
the program responsible for the values.

Constants are defined in the file IRDS.CON. and are all
in uppercase. One set of constants is used to allow the
variable NCOMMAND to be assigned the name of a command
instead of an integer or a string. Using an integer
directly as the name of a command is confusing, and using a
string would require a sequence of ELSE IF statements to de-
termine which command subroutine to call. There is a set of
constants to be used to set the length of strings, but these

Chapter 5 — THE IRDS PROTOTYPE SOURCE CODE

Page 46

constants have not been used consistently enough to allow
them to be increased without the likelihood of problems
arising.

Chapter 5 — THE IRDS PROTOTYPE SOURCE CODE

Page 47

6 . INSTALLATION INSTRUCTIONS

The following are needed to install and run the
Prototype

:

1. A copy of the Oracle Database Management System

2. A "C" Compiler

3. Two 5 1/4 inch diskettes, supplied by ICST-NBS. These
diskettes are written in DOS double-sided double-
density format, and contain five ASCII text files.
The files are:

irdsa.c)

irdsb.c > the source code
irdsc.c _)

irds.con --- the settable constants

irds.tbl the IRD-schema tables

To install the Prototype, the following steps should be
performed in the order given:

1 . Transfer the files from the
computer.

diskettes to the host

2. Choose or create an Oracle account for the IRDS
tables.

3 . Change the

#define ORACLE_UID "irds/irds"

statement in irds.con by replacing "irds/irds"
with the Oracle userid/password to be used by the
IRDS

.

4 . Change the

#define TABLEFILE "dral
:
[kirk. irds

.
j oe] irds . tbl"

statement in irds.con by replacing

"dral: [kirk. irds. joe] irds.tbl"

Chapter 6 — INSTALLATION INSTRUCTIONS

Page 48

with the complete name of the file that irds.tbl is
stored in.

5. Compile irdsa.c, irdsb.c, and irdsc.c, using any
standard "C" compiler. The Prototype uses Oracle ver-
sion 4 or version 5 HLI subroutines, so the HLI
libraries must be linked.

6. Run the executable. The first time it is run it will
create and fill the tables it needs.

Other than in connection with 3 and 4 above, or in
conjunction with a deliberate modification of the source
code itself, it's probably not advisable to change any of
the constants in irds.con. If you do change any of the
constants, the source code must be recompiled. A newly com-
piled version can use the tables created by a previous ver-
sion.

If you encounter any problems installing or using the
Prototype, please contact Tammy Kirkendall at (301)975-3253
or Alan Goldfine at (301)975-3252.

Chapter 6 — INSTALLATION INSTRUCTIONS

Page 49

REFERENCES

1. ANSI, American National Standard X3. 138-1988. Information
Resource Dictionary System . American National Standards
Institute, New York, 1988.

2. Goldfine, A. H. and Konig, P. A., A Technical Overview of
the Information Resource Dictionary System (Second
Edition) . NBSIR 88-3700, National Bureau of Standards,
Gaithersburg, MD, January, 1988.

3. Goldfine, A. H. , Using the Information Resource Diction-
ary System Command Language (Second Edition) . NBSIR 88-
3701, National Bureau of Standards, Gaithersburg, MD,
January, 1988.

4. Law, M. H. , Guide to Information Resource Dictionary
System Applications: General Concepts and Strategic
Systems Planning . NBS Special Publication 500-152,
National Bureau of Standards, Gaithersburg, MD, April, 1988.

5. Newton, J. J., Guide on Data Entity Naming Conventions .

NBS Special Publication 500-149, National Bureau of Stan-
dards, Gaithersburg, MD, October, 1987.

REFERENCES

NBS-114A (rev. 2»ao)

U.S. DEPT. OF COMM,U.S. DEPT. OF COMM.

BIBLIOGRAPHIC DATA

1. PUBLICATION OR
REPORT NO.

2. Performing Organ. Report No. 3. Publication Date

SHEET (See instructions) NBSIR 88-3830 AUGUST 1988
4. TITLE AND SUBTITLE

The ICST-NBS Information Resource Dictionary System Command Language Prototype

5. AUTHOR(S)

Alan Goldfine, Thomasin Kirkendall

6. PERFORMING ORGANIZATION (If Joint or other than NBS, see instructions)

NATIONAL BUREAU OF STANDARDS

7. Contract/Grant No.

U.S. DEPARTMENT OF COMMERCE
GAITHERSBURG, MD 20899

I. Type of Report & Period Covered

9c SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street, City, Stme, ZIP)

10. SUPPLEMENTARY NOTES

| |
Document describes a computer program; SF-185, FIPS Software Summary, is attached.

11. ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a significant
bibliography or literature survey, mention it here)

This publication is a report on the Information Resource Dictionary System (IRDS)

Command Language prototype developed by the Institute for Computer Sciences and

Technology of the National Bureau of Standards. It discusses the structure, source

code, and operating environment of the Prototype, specifies the precise subset of the

standard IRDS Command Language implemented, provides instructions for installing

the Prototype software, and leads the reader through a typical user session.

12. KEY WORDS (Six to twelve entries ; alphabetical order; capitalize only proper names; and separate key words by semicolon s)

command language; data dictionary; data dictionary system; Information Resource

Dictionary System; IRDS; prototype.

13. AVAILABILITY 14. NO. OF
PRINTED PAGES

[X~^ Unlimited

| |

For Official Distribution. Do Not Release to NTIS 55

1
Order From Superintendent of Documents, U.S. Government Printing Office, Washington, D.C.
20402. 15. Price

[X^ Order From National Technical Information Service (NTIS), Springfield, VA. 22161
$13.95

USCOMM-DC 6043-P80

