

AMRF Network Communications

Siegfried (Fred) Rybczynski
Edward J. Barkmeyer

Evan K. Wallace
Michael L. Strawbridge

Don E. Libes
Carol V. Young

June 30, 1988

DISCLAIMER

Certain commercial equipment, instruments, or materials are
identified in this paper in order to adequately specify the
experimental procedure. Such identification does not imply
recommendation or endorsement by the National Bureau of
Standards, nor does it imply that the materials or equipment
identified are necessarily the best available for the purpos

This publication was prepared by United States Government
employees as part of their official duties and is, therefore
work of the U.S. Government and not subject to copyright.

.

AMRF Network

II

.

Ill

.

AMRF Network Communications

Table of Contents

Introduction to the Manual

1 . Purpose of this Document
2. Organization of this Document
3. Intended Audience
3.1. Casual Reader
3.2. System Implementer
3.3. System Operator

System Overview

1. General Overview of AMRF Communications
2 . The AMRF Common Memory Concept
2.1. General Description
2.2. AMRF Implementation of Common Memory
3 . The AMRF Network
3.1. Network Topology
3.2. Mailgram Delivery Over the Network

Common Memory Architecture Description

1. Mailboxes and Mailgrams
1.1. Coordinating Mailbox Access
1.1.1. Read While Write is Active
1.1.2. Update Frequency Exceeds Read Frequency
1.1.3. Read Frequency Exceeds Update Frequency
1.1.4. Multiple Readers of a Common Mailbox
1.1.5. Multiple Writers to a Common Mailbox
1.2. Mailgram Format
1.3. Mailbox and Mailgram Properties

2. Mailbox Interface Implementations
2.1. Implicit Systems
2.2. Explicit Systems
2.2.1. Special Case: Sun Implementations
2.3. Conversion of Implicit to Explicit Systems

and Explicit to Implicit Systems

3 . Mailbox Management
3.1. Create (DECLARE) a Mailbox
3.2. Discontinue (UNDECLARE) a Mailbox
3.3. GET and PUT Operations
3.4. SYNChronizing with Common Memory
4. Global Mailbox Connections

i

AMRF Network

IV. Network Architecture Description

1 . Network Model
2. Network Protocol
2.1. Link and Physical Layers
2.1.1. Interim Alternative: Serial Asynchronous Link
2.1.2. Final Alternative 1: Broadband Token Bus
2.1.3. Final Alternative 2: Baseband CMA/CD Bus
2.1.4. Final Alternative 3: High-Speed Bus Link
2.2. Network Layer
2.3. Transport Layer
2.3.1. Final Standard Transport Protocol
2.3.2. Interim Standard Transport Protocol
2.3.3. Interim Local Transport Protocol
2.4. Session Layer
2.5. Presentation Layer
2.6. Application Layer

3. Network Interface Process (NIP)
3.1. General Description
3.2. Network Device Driver
3.3. Protocol Implementation
3.4. Session Control
3.5. Error Reporting
3.6. Configuration Parameters
3.7. Connection Table Entries
3.8. Directives
3.9. Mailboxes to be Transmitted
3.10. Network Packets
3.11. Initially-Given Mailbox Connections

4. Network Manager (NETCMD

)

4.1. Description
4.2. The Network Manager Display
4.3. Network Manager Commands
4.3.1. CONNECT and DISCONNECT Mailboxes
4.3.2. Other Commands
4.4. Communications to the NIP
4.4.1. Command Structure
4.4.2. Status Structure

4 .

5

4 .

5

4.5
4 .

5

4 .

5

4 .

5

Interface to Common Memory
1. Description
2. MBHAND Commands
2.1. Mailbox Connect
2.2. Mailbox Write
2.3. Mailbox Read

(MBHAND

)

5

.

Subnetworks

ii

AMRF Network

V.

6

6

6

6

6

6

6

6

6

6

Secondary Communications Systems
1. PC-to-Sun (CELL and MHS

)

1.1. TCP Communications
1.2. The Serial Communications Link
1.2.1. Message Structure
1.2.2. Module States
1.2. 2.1. Check Status State
1 . 2 . 2 . 2

.

SEND State
1.2. 2. 3. RECEIVE State
1.2. 2. 4. EXIT State

Programmer Reference Section

1 . Common Memory

1.1.

DEC VAX 785 Implementation

1.2.

Sun Microsystems Implementation
1.2.1. Introduction
1.2.2. Required Processes
1.2.3. How to use the Common Memory System
1.2. 3.1. Process Identification
1.2. 3.2. Using Common Memory Variables
1.2. 3. 2.1. Declaring Variables
1.2. 3. 2. 2. Variable Types
1.2. 3. 2. 2.1. Predefined Types
1.2. 3. 2. 2. 2. User-Defined Types
1.2. 3. 3. Reading and Writing Variables
1.2. 3. 4. Synchronization
1.2. 3. 5. More About Variables
1.2.4. Compiling (or Interpreting) Common Memory Code
1.2.5. Starting the Common Memory Manager (CMM

)

1.2.6. Additional Lisp Notes
1.2.7. Using Sun CM Calls with VAX CM
1.2. 7.1. Restrictions
1 . 2 . 7 . 1 . 1

.

Types
1.2. 7. 1.2. No Queued Updates
1.2. 7. 1.3. No Command Associations
1.2.8. Unusual TYPES
1.2.9. Basic Limitations of this Common Memory

Implementation

1.3. Multibus Implementation
1.4. Hewlett-Packard 9000 Series 200 Implementation

2

2

2

2

2

2

2

2

Network Interface Process (NIP)
1 . Serial Aysnchronous NIPs
1.1. DEC VAX 785 Implementation
1.2. Sun Microsystems Implementation
1.2.1. Implementation Approaches
1.2.2. Shared Data Structures
1.2.3. Timers
1.2.4. Input/Output

iii

AMRF Network

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

1 .

1 .

1 .

1 .

1 .

1 .

1 .

1 .

1 .

1 .

1 .

1 .

1 .

1 .

1 .

1 .

1 .

1 .

1 .

2 . 1 .

2 . 1 .

2 . 1 .

2 . 1 .

2 . 1 .

3 .

3 .

3 .

3 .

3 .

3 .

3 .

3 .

3 .

3 .

3 .

3 .

3 .

3 .

3 .

3 .

3 .

3 .

3 .

3 .

3 .

3 .

Multibus Implementation
1 . COPYMAIL
2 . XPORT
3 . NETWORK
4. MLINK
5 . SLINK
6 . 10
7 . EXCELAN
8. ACIDVR
9 . Special Modules
9.1. NIPMAIN
9.2. CMBUFMGR

9.3.

' CONFIG
9.4. DISPATCHER
9.5. ERROR
9.6. LOADER
9.7. MBXIO
9.8. SFUNCS
9.9. SYSINI
9.10. TESTER
9.11. TIMER
10. Assembly Language Components
10.1. *DEF Files
10.2. ISRVEC

2.1.4.

Hewlett-Packard 9000 Series 200 Implementation
2. 1.4.1. HP Pascal Extensions and Imported System

Modules
2. 1.4. 1.1. Imported System Modules
2. 1.4. 1.2. Pointer Variables
2. 1.4. 1.3. Translating the C "RETURN" Statemnt
2. 1.4. 2. Pascal Strings Versus C Strings
2. 1.4. 3. Pascal Type Checking and Intermodule Dependency
2. 1.4. 4. Debug Variables Added
2. 1.4. 5. Interaction with the IWS Common Memory System
2. 1.4. 6. User Control During Time-Critical Periods
2. 1.4. 7. List of Modules
2. 1.4. 7.1. Modules that are Straight Translations
2. 1.4. 7. 2. Modules that Differ Radically
2 . 1 . 4 . 7 . 3

.

New Modules

2 . 2 .

2 . 2.1
2 . 2.1
2 . 2.1
2 . 2.1
2 . 2.1

Ethernet (TCP/IP) NIPS
DEC VAX 785 Implementation

1 . Introduction
2. TCP Control Table
3 . State of a Connection
4. TCP Modules Called from TCPNIP

iv

AMRF Network

VI

.

2. 2. 1.5. Internal TCP Modules
2. 2. 1.5.1. Connects and Disconnects
2. 2. 1.5. 2. Reads and Writes
2 . 2 . 1 . 5 . 3

.

Service

2 . 2.2
2 . 2.2
2 . 2.2

2 . 2.2
2 . 2.2
2 . 2.2

2 . 2.2
2 . 2.2
2 . 2.2
2 . 2.2
2 . 2.2

Sun Microsystems Implementation
1. Comparison with the SUN NIP serial version
2. Possible Integration with SUN Serial NIP to

Create a Single SUN NIP
3 . TCP Stream Sockets Used
4. TCP Connection Establishment Algorithm
4.1. Socket Connections and Client/server

Relationships
4.2. TCP Connect Timeout
5. TCP Socket Disconnection
6. Configuration Table
7 . Nip Status Packet Remains Unchanged
8 . TCP Connection States

Operator Reference Section

1. Theory of Operations
1.1. Selecting the Network Configuration
1.2. Determining the Required Network Services
1.3. Script Files
1.3.1. Purpose of Script Files
1.3.2. Script File Naming Conventions

2. Starting the Network
2.1. The Discretionary Startup Procedure
2.1.1. Login to the Computer (s)

2.1.2. Establish the Environment
2.1.3. Start the NIPs
2.1.4. Connect Common Memory Mailboxes
2. 1.4.1. Complete Set of Mailbox Connections
2. 1.4. 2. Discretionary Mailbox Connections
2.2. The Streamlined Startup Procedure

2.3. How to Verify That Network Circuits Are Operational
2.3.1. Ethernet TCP/IP Circuits
2.3.2. Serial RS232 Circuits
2.4. How to Start Individual NIPs
2.4.1. Multibus Systems
2. 4. 1.1. HWS, HMC , HBD , HRC , HGP
2 . 4 . 1 . 2 . HVS
2 . 4 .

1

. 3 . TWS , ATC

2.4.2.

Non-Multibus Systems (VAX, IWS , DEMO)
2. 4. 2.1. VAX'S TCPNIP
2.5. If a Restart is Necessary

v

AMRF Network

3 . Operating the Network
3.1. Managing Mailbox Connections
3.1.1. Making (New) Mailbox Connections
3.1.2. Breaking Mailbox Connections
3.2. Removing Stations From the Active Configuration
3.2.1. Station is Active
3.2.2. Station is No Longer Active (Crashed)

3.3.

Inserting Stations Into the Active Configuration
3.3.1. New Stations
3.3.2. Previously-Removed Stations
3.3.3. Stations that Crashed and were Rebooted
3.4. Monitoring Operation Status
3.5. Configuration Shutdown
3.5.1. Orderly Shutdown
3.5.2. Panic Shutdown

VII. Lessons Learned

1 . Common Memory
2. Network
2.1. I/O Using TCP Stream Sockets
2.1.1. Stream Sockets
2.1.2. Connection Establishment
2.1.3. Record Length and Stream Sockets
2.1.4. Socket Configuration
2.2. Network Manager Functions
2.3. Computer-Dependent Byte Ordering
2.4. Commercially Available Network Products

Appendix A - AMRF Interprocess Communication in Multibus Systems

A . 1

.

Representation of Mailboxes
A. 1.1. Mailbox Structure
A. 1.2. Mailgram Flow
A. 1.3. Mailbox Data Representation
A. 2. Access
A . 2 . 1

.

Connection
A. 2. 2. Sending Mail
A. 2. 3. Receiving Mail

Appendix B - Error Conditions & Messages

B. l. Network Manager (NETCMD

)

B.2. Network Interface Process (NIP) Messages
B.2.1. General Observations
B.2.2. Messages Common To All NIP'S
B. 2. 3. Messages Common To TCP/IP NIP's
B. 3. Common Memory Error Messages
B.3.1. General Comment About Common Memory Messages
B.3.2. Sun Common Memory Errors
B. 3.2.1. Listing of Error Messages

vi

AMRF Network

Appendix C - Mailbox Label Assignment

Appendix D - Interface Specifications

D.l. Common Memory
D.1.1. Systems With Fixed Memory Allocation
D.l. 2. Systems With Dynamic Memory Allocation

Appendix E - List of all NETCMD Script File Names

Appendix F - Network Hardware and Software Components

F.l. Multibus Hardware Configuration
F.1.1. Components of the Horizontal Workstation
F.l. 2. Components of the Turning Workstation
F.2. The VAX Computer System
F.3. The Sun (DEMO)
F. 4. The Inspection Workstation

Appendix G - Local Transport Protocol

G. l. Transport Layer Service Interfaces
G.1.1. User Interface
G.l. 2. Network Interface
G.2. Elements of the Protocol
G.3. Details of the Protocol
G.3.1. Initial Connection
G.3.2. Data Transmission
G.3.3. Data Reception
G.3.3.1. Information PDUs
G.3.3. 2. Supervisory PDUs
G.3.3. 3. Unnumbered (Control) PDUs
G.3.4. Acknowledgment
G.3.5. Use of Supervisory PDUs
G.3.6. Timeouts
G.3.7. Deactivating the Connection
G. 3.8. Frame Formats

Appendix H - Common Memory Mapping Protocol

H. l. Service Definition
H.2. Elements of the Protocol
H.3. Protocol Specification

Appendix I - Source Code Listings

Glossary

List of References

Reader Comment Form

vii

AMRF Network

List of Figures

PAGE

Figure II-l Multiple-Processor Structure II- 3

Figure II-2 Global Common Memory Environment II-4
Figure II- 3 Local Common Memory Environment II-6
Figure II-4 Distributed Common Memory II-7
Figure II-5 Common Memory Server for 4.2 BSD II- 9

Figure II-6 Topology of the 1986 AMRF Network 11-11
Figure II-7 Anatomy of a Network Interface Process 11-13

Figure III-l Global Common Memory Environment III-2
Figure III- 2 Generic Mailbox Structure III- 6

Figure III- 3 Common Memory Server for 4.2 BSD III-10

Figure IV-1 Network Status Display IV-1

5

Figure IV- 2 NETCMD Command Structure For Connecting
and Disconnecting Mailboxes IV- 1 6

Figure IV-

3

Topology of the 1986 AMRF Network IV-23

Figure VI-1 Topology of the 1986 AMRF Network VI-5

viii

AMRF Network

List of Tables

PAGE

Table IV-l NETCMD Operator Commands IV- 1

8

Table V-l VAX TCP NIP Connection States V-42

Table V- 2 VAX TCP NIP: Events Causing a
Change of State V-4 3

Table V- 3 VAX TCP NIP: Change of State as
a Function of Events V-4 3

Table V-4 SUN TCP NIP: Change of State as
a Function of Events V- 6 9

Table VI-1 Workstations - Listed by Subnetwork
Connection VI-2

Table VI-2 Table of Network Linkages and
Required Supporting Network Services VI-3

Table VI-3 Pertinent AMRFnet Port Assignments VI-16

ix

'

AMRF Network

I . INTRODUCTION TO THE MANUAL

1. PURPOSE OF THIS DOCUMENT

This document describes the National Bureau of Standards (NBS)
Automated Manufacturing Research Facility (AMRF) factory network,
architecture as implemented during 1985 thru 1987. Although
changes in equipment have been made since 1986, the network
architecture description remains accurate.

Further changes effecting the network architecture, topology, and
operating procedures are expected as computer integrated
manufacturing continues to evolve in the AMRF

.

2. ORGANIZATION OF THIS DOCUMENT

This document is logically organized so that the interested
reader can receive the appropriate level of information without
reading more detail than is necessary. As shown by the table of
contents, this document begins with a high level overview of the
communications system and then describes the common memory and
network architectures in great detail.

Since the Programmer Reference Section and the Operator Reference
Section are relatively short, they have been incorporated into
this single document.

Specific terms are used throughout this documentation to refer to
systems and components of the AMRF. These terms are defined in
the glossary located near the back of this document. All readers
are encouraged to acquaint themselves with the glossary contents.

3

.

INTENDED AUDIENCE

3.1. Casual Reader

The casual reader is directed to Section II, System Overview.

3.2. System Implementor

The system implementor should read all sections of this manual.

3.3. Network Programmer

The network programmer should read all sections of this manual.

3.4. System Operator

The system operator needs only to read Section VI.

I 1

'

.

AMRF Network

II . SYSTEM OVERVIEW

1 . GENERAL OVERVIEW OF AMRF COMMUNICATIONS

The old idea of the automated factory as a group of machines
controlled by one huge central computer lacks flexibility. In
the "factory of the future", computer processes such as control
programs will run on many different computers, of all sizes and
models, and possibly located in different buildings.

Such a "distributed" system requires a method of transferring
information which is fast, accurate, reliable, and independent of
the actual physical location of the machines. The transfer of
information must also be done without interferring with or
adversely affecting real-time processes on the receiving machine.
This can be achieved either by direct or iginator-to-recipient
message passing or by using a common (shared) memory.

The AMRF implementation is based on a global common memory.
Information (data) is deposited into the common memory area by
one process and read from the same area by one or more other
processes. The writer and reader (producer and consumer)
processes can be tightly coupled (i.e., they share the same bus),
or they can be loosely coupled (i.e., the accesses are supported
by some network pathway).

The AMRF common memory uses the concept of computer "mailboxes",
areas of common memory on various computers to which all of the
application processes have access. This access is through the
network communications system, and is subject to strict rules of
protocol [2]. Application processes can leave "messages" for
each other and stop to read their own "mail" at opportune times
without interrupting each other. The common memory mailbox
implementation permits data to be used by more than one process
without explicit action by the originator to deliver it to all
users. Common memory is particularly effective in equipment
level systems which must perform real-time data acquisition and
processing

.

Currently, the AMRF communications network uses an Applitek
broadband token bus and a combination of other computer
communications protocols, including RS232 and Ethernet systems.
Work is underway to upgrade the AMRF network to one based on the
principles of the Manufacturing Automation Protocol (MAP).

2

.

THE AMRF COMMON MEMORY CONCEPT

2.1. General Description

One of the first designs of common memory was developed to
support real-time data reduction and robot control in a

multiprocessor configuration using a physically common memory

II 1

AMRF Network

[1]. Each of the processors (a single board computer) is
connected to a special memory area that is usually on a separate
board. This area maps into the address space of each processor,
allowing it to read and write to this "common memory area" and
thereby communicate with the other processors in the
configuration (Figure II-l).

The premise is that a multilevel control system could be designed
in such a way that each level could execute independently on a
separate processor of the multiprocessor configuration. The
inputs to the levels - command, status, and feedback data - could
be read from one or more common memory buffers. A designated
processor computes the function of that level and the
corresponding outputs could be written to a second set of common
memory buffers and thereby made immediately available to the
other processors (levels).

The advantage of common memory is that, as new processes are
added that need information already present, extant processes do
not have to be modified to deliver that information.

For example, a process was added that displays the robot's
actions on a graphics monitor. The display process was added
without modification to any other part of the system, since it
uses the joint angles which are stored in known common memory
locations. Recently, a "safety" process was added to guarantee
that the robot never departs its working envelope. The safety
process also obtains its information from common memory.

In 1981, work began on an automated factory [11]. This extended
the common memory concept of the robot control system in many
ways. A major extension is that processes which have to
communicate are often in separate backplanes and use different
operating systems. A single physical common memory is no longer
possible or practical, so each computer system has its own local
common memory. These common memories are connected through
locally-developed network services that are transparent to the
user process, establishing a global logical common memory
(Figure II-2)

.

Common memory provides a consistent communications methodology
for this diverse collection of computers and operating systems.

2 . 2 AMRF Implementation of Common Memory

Common memory has been implemented on different systems in the
AMRF using a true hardware shared memory, using message passing
to a memory-manager process, and using a process which copies the
information between the local memory of each control process and
a background common memory.

II - 2

AMRF Network

F igure 11-1 . Multiple-Processor Structure with a Physical Common Memory.

Several microcomputers are connected through a common bus structure to a

common memory area that maps into their address space.

II 3

AMRF Network

Figure 11-2 . Global Common Memory Environment

The mailboxes that comprise the local common memory environments

in the individual computer systems are connected via network

services to create a global common memory.

f

II - 4

AMRF Network

Common memory access is limited to a predefined set of mailboxes,
each containing a single logical record (a "mailgram"

)
which is

regularly updated by a direct replacement (rewrite). The
originating process rewrites the information unit in the
designated mailbox whenever it wants to.

When the retrieving process resides on the same computer system
and has direct access to the same memory address area, it can
"read" the information unit simply by fetching the mailgram from
the common memory space. In the current AMRF topology, this is
true of the VAX-based processes.

In Figure II-3, the arrows show the flow of command and status
information: application process 1 deposits data into common
memory mailbox A, which is read by both application processes 2

and 3. Process 2 generates a message that is deposited into
mailbox B for process 3 to read, based on the data in mailbox A.

In other cases, the retrieving process may reside in the same
computer chassis (i.e., a Multibus system) but have no direct
access to the originator's memory. A transporting process
resident on each of the processor boards must copy the mailgram
in the originator's mailbox to a separate mailbox designated to
receive that information in the local memory area that maps into
the address space of both the information generator and the
information retriever. This is the case with the component
control processes of the NBS Robot Control System [3].

When the retriever resides on physically separate computers, a

Network Interface Process (NIP) resident on the originator's node
uses the local shared memory protocol to read the originator's
mailgram and transmits a copy of the mailgram over the AMRF
network to the NIP on the retriever's system; the receiving NIP
then stores the mailgram into the appropriate mailbox on that
system, where it can be read by the retriever using the local
protocol there.

Figure II-4 displays the distributed common memory. As in
Figure II-3, information is passed between three processes.
However, because these three processes are located on three
different (remote) processors, the NIP passes the information
through the network and into and out of the appropriate common
memory mailboxes . The arrows show the flow of command and status
information

.

II 5

AMRF Network

Computer System

F igure 11-3 . Local Common Memory.

The arrows show the flow of command and status information: Application 1

deposits data into common memory Mailbox A. This data is read by both

Application 2 and Application 3. Application 2 uses this data to generate

additional data for Application 3.

II - 6

Computer

System

AMRF Network

o
E
<X>

oo
O
CD

Z5
JD

CD

Q
CD

CD

CJ
CD

II 7

As

in

Figure

11-3,

information

is

passed

between

three

processes.

However,

because

these

three

processes

are

located

on

three

different

(remote)

processors,

the

NIP

passes

the

information

through

the

network

and

into

and

out

of

the

appropriate

common

memory

mailboxes.

The

arrows

show

the

flow

of

command

and

status

information.

AMRF Network

The common memory implementation on the Sun Microsystems
computers (hereafter refered to as "Sun"), under 4.2 BSD Unix,
has a problem: there is no direct common memory support facility.
This is circumvented by providing a server process that stores
mailgrams in its own memory space, which is private to it.
Communication occurs between user processes on the sun (or any
other sun on the same network) and the server process using
standard 4.2 BSD interprocess communications [12]. The NIP is
simply another process that exchanges mailgrams with the common
memory server (Figure II-5).

In all cases, the control process view of the communication is
that it stores into or fetches from a shared memory area,
according to some protocol common to all processes on that
system. Thus the originating process does not have to know where
the retrieving processes are, or even which ones they are, as
long as it abides by the local protocol; and the retrieving
process does not have to know where or how the information
originated. To both processes, only the structure and function
of the information are significant. This mechanism encourages
the development of standard functional information groups, to be
created and consumed by control and sensory processes, without
regard for the mechanics of interprocess communication.

II 8

AMRF Network

F igure 11-5 . Common Memory Server For 4.2 BSD Unix

II - 9

AMRF Network

3 . THE AMRF NETWORK

3 . 1 Network Topology - 1986

Figure II-6 shows the topology of the 1986 AMRF network.

The network is primarily comprised of point-to-point connections
using serial, RS232 connections. Recent additions have provided
additional network pathways using Ethernet (TCP/IP) to
accommodate greater traffic loads while simultaneously providing
enhanced speed

.

Two subnetworks are identified:

(1) at the Inspection Workstation (serial RS232), and
(2) at the Horizontal Workstation (Ethernet).

The purpose of the subnetworks is to isolate large volumes of
local traffic from the primary network pathways. This has the
advantage of enhancing overall communications performance.

CELL, MHS , PPL, VWS , and CDWS , do not currently run a resident
version of common memory and the network interface process. They
are all interfaced to the global AMRF common memory through a

front end common memory server system. The interface uses TCP to
pass messages between the common memory server and its clients.
Except for CELL and MHS, the clients communicate directly with
the front end common memory.

CELL and MHS run on personal computers (PCs) and utilize a

secondary communications system (a locally-developed program, see
Section V.2.6.) to exchange mailgrams between the PC and a server
process on the common memory front end machine. This server
process then performs TCP communications with the common memory
server process.

We expect the AMRF network to evolve into one predominantly based
on the MAP architecture and composed of one backbone network with
several subnetworks. The pace of this evolution is dependent on
the availability of new commercial products and the continuing
evolution of the MAP standards. Other network architectures,
such as the Department of Defense Internet Architecture (TCP/IP
and associated protocols), will undoubtedly persist within the
AMRF for many more years.

II - 10

AMRF Network

CO
I

=3
CD

The

Topology

of

the

1986

AMRF

Network

AMRF Network

3 . 2 Mailgram Delivery Over the Network

The actual mail delivery processes - the local transport
processes and the network interface processes - are simple table-
driven machines.

During its execution cycle, a local mail delivery process:

(1) examines the mailbox that contains commands addressed to
the delivery process. If a command is found, the process
modifies its mail delivery table as directed.

(2) makes one pass through the delivery table, copying each
eligible mailgram from source to destination. The usual
practice is to copy from the originator's mailbox into the
"shared memory" and from the shared memory to the
retrievers' mailboxes in order to avoid coupling
semaphores

.

Figure II-7 depicts a network interface process (NIP). NIP
tables are similar to local transport tables, except that in each
entry, one of the source and destination mailbox identifiers is
replaced by a network locator. The NIP cycle consists of

(1) examining its command mailbox and modifying its delivery
tables as directed,

(2) processing all outbound table entries,

(3) copying the contents of any mailbox which has changed into
a network packet and routing it to the specified network
location, and finally,

(4) looking up the table entry for each received packet and
depositing the mailgram in the proper local mailbox.

In the current AMRF implementation, the commands that tell the
mail delivery routines to build their tables are issued through a

network manager process. The inputs come directly from a human
operator, who effectively manages the shared memory data
directories (the mailboxes) on paper.

II 12

AMRF Network

F igure 11-7 . The Anatomy of the Network Interface Process (NIP)

II 13

(•

'

AMRF Network

III . COMMON MEMORY ARCHITECTURE DESCRIPTION

1 . MAILBOXES AND MAILGRAMS

All interprocess communication is accomplished through a
mechanism called "mailboxes". Mailboxes are logical storage
areas where messages (called "mailgrams") are placed by the
sender process and picked up by receiver processes. From the
point of view of the sender and receiver processes, the location
of the correspondents does not affect their communication.

These mailboxes reside in a special area of memory, designated
local common memory. Local common memories are combined over the
AMRF network to form a global common memory (Figure III-l).

The user interface to the local common memory area may be
implicit or explicit (see Section III. 3.1, below).
Implementation of an explicit common memory interface implies the
presence of a common memory manager function to dynamically
create and destroy mailboxes and coordinate mailbox access.

The mailgram transfers across computer systems are accomplished
by the communications systems in a fashion totally invisible to
the sender and receiver processes. Moreover, the communications
system operates asynchronously. That is, it does not require the
sender to wait for the receiver to get the mailgram, or the
receiver to pick it up immediately when it arrives.

1 . 1 Coordinating Common Memory Access

Common memory environments can be susceptible to several problems
related to coordinating access to these areas. Each potential
problem, however, has one or more solutions. All of these
methods are used within the AMRF.

1.1.1. Read While Write is Active

A process may be attempting to read information from a common
memory area at the same time as a second process is attempting to
update that same area. As a consequence, the reading process may
get inconsistent information (e.g., the current value of field A
and the former value of field B).

Methods to avoid this are:

(1) use a semaphore for each common memory buffer area (a

mechanism that supports single-process access to the
buffer). Some processors (HP 9000 Series 200 and MC68000)
provide atomic "test and set" operations which can be used
as hardware semaphores. Software semaphores, using
Dekker's algorithm [10] for example, can be extended to
provide mutual exclusion between any number of processes.

Ill 1

AMRF Network

F igure i
1-2 . Global Common Memory Environment

The mailboxes that comprise the local common memory environments

in the individual computer systems are connected via network

services to create a global common memory.

Ill - 2

AMRF Network

(2) define a regular, recurring real-time interval and divide
it into a write-only period and a read-only period. Any
process not prepared to perform a write operation during
the write-only period would have to wait for the next
write-only period. The same restriction holds for read-
only periods.

(3) pass a token among participating processes. The process
that has the token can perform any read or write operation
it wants. Fixed length or varying length time quantums can
be employed. Token passing has an unfortunate drawback: if
the process with the token halts (or appears to do so),
passing of the token becomes impossible and all access to
common memory is barred. In a fixed length time quantum
implementation, the token can be reissued by some governing
process after the expiration of the time quantum (plus some
extra "safety margin"); in a varying length time quantum
implementation, the recovery algorithm is much less
obvious

.

(4) utilize a hardware architecture that does not support
interrupt processing. Once a processor has control of the
bus (and consequent access to common memory), no other
processor can interrupt, thereby assuring that overlapped
access does not occur.

1.1.2. Update Frequency Exceeds Read Frequency

A process may update the common memory area more often than a

reading process is able to retrieve the information.

This may only be an "application-specific" problem. That is, if
the reader process only wants the "current" information (as from
a sensor, for example), then the fact that any amount of older
information may have been missed is a moot point. However, if it
becomes important that the reader process have access to each
information set before it gets updated, then some form of "flow-
control" must be used.

For example, if the information set in a common memory buffer is
uniquely identified (a time stamp or sequence number), then flow
control could be implemented by defining a second buffer in the
common memory area into which the reader process could echo the
unique identifier. When the writer of the original information
sees the echoed identifier in this second common memory buffer,
it knows that it can proceed with the next update.

f

III 3

AMRF Network

1.1.3. Read Frequency Exceeds Update Frequency

A process may read the data in the common memory area more often
than a second process is able to update it. This can result in
"old" information unintentionally being considered "new"
information

.

In the case where the information happens to be a command such as
"hit nail on head with hammer", an undesirable number of
duplicate executions could be performed.

A solution is to identify new information whenever it is placed
into the common memory buffer by implementing a flag field within
the buffer. This flag field could take the form of a sequence
number that gets incremented with each update of the buffer, or a

time stamp that identifies when the information was placed into
the buffer. In each case, the reader process is looking for a
change in the flag field to indicate that buffer contents have
been updated

.

1.1.4. Multiple Readers Of A Common Mailbox

In the case where a single mailbox is being accessed by multiple
readers, if it is important that each of the readers have the
opportunity to retrieve the mailgram before it is overwritten,
then a more elaborate form of flow control must be implemented.

One solution is to share a single "flow control" mailbox between
all the readers. Each reader sets a specific "flag" in the
mailbox indicating he has retrieved the message. When all flags
have been set, the shared-read mailbox contents can be
overwritten. This "solution" immediately introduces another
problem: multiple writers to a single mailbox. (See
Section III .1.1.5.

)

A simpler, more reliable solution is to assign each reader
process its own flow control mailbox.

1.1.5. Multiple Writers To A Common Mailbox

Unpredictable results can occur when more than one process is
permitted to write into a single common memory buffer:

(1) predicting the sequence in which information is written to
the common memory buffer may be impossible,

(2) guaranteeing that all reader clients have seen the contents
of the common memory buffer before it is updated may be
impossible

,

(3) identifying the intended reader client audience for any
particular memory buffer update may be impossible.

Ill - 4

AMRF Network

A simple solution is to stipulate that any common memory buffer
is permitted to have only a single process writing data into it,
although it can have any number of reader clients.

More complex solutions that support the use of a single common
memory buffer by more than one writing process are possible. In
general, these solutions require the implementation of enhanced
flow control and flag field techniques.

1.2. Mailgram Format

In general, there is no standard format for a mailgram. There
are, however, standard information units which must be carried
either in the mailgram, or with the mailbox by the common-memory
services. These are:

1. Length of the current mailgram in the mailbox,
2. Sequence number or other index of change (see below),
3. Access control flags.

When all of these entities are expressed in the mailbox area
itself, the mailbox has the structure shown in Figure III-2.

Some systems implement all of these units in the mailbox area,
(e.g.. Multibus multiprocessor systems); some implement only the
length and sequence units in the mailbox area (e.g., VAX and HP);
and some implement only the text in the mailbox area (e.g., SUN).

Read and write locks, when implemented, are considered to be part
of the mailbox and not the mailgram. That is, when the mailgram
is transported to another network node by the NIP, the lock bytes
are not transported.

Ill 5
f

AMRF Network

Byte 1 2 3 4 5 6 7 8

I

Write Lock
I

I

Read Lock
I

I

I

Sequence
I

I

I

Length
I

I

9 10 11 12

I I I I

I I I I

Process-Dependent Text . . .

I I I Itill
Write Lock is a semaphore indicating current writer activity.

(i.e., if the write lock is ON, then the mailbox

is being written, and should not be read)

Read Lock is a semaphore indicating current reader activity.

(i.e., if the read lock is ON, then the mailbox is

being read, and should not be updated)

Sequence is a sequence number attached to the mailgram in

the particular mailbox. Every time the text of

the mailgram is changed, the sequence number is

incremented. The update can be detected by

examining only the sequence field.

Length is the length of the mailgram in bytes.

Text is the information portion of the mailgram that is

defined entirely by the communicating processes.

F igure I 1
1-2 . Generic Mailbox Structure

1.3. Mailbox and Mailgram Properties

(1) The mailbox must be created (or declared) before mailgrams
can be deposited into it. If the network is to deliver
copies of the mailgram to other , remote locations , then the
mailbox must exist and a network connection must be created
between the sender and receiver of the mailgram before any
mailgram can be delivered.

Ill - 6

AMRF Network

(2) Every mailbox has a unique global (AMRF-wide
)
name. The

name is assigned to the mailbox at the time it is created
and identifies the mailbox to the entire AMRF. That is,
remote systems desiring a copy of the mailbox contents must
have a mailbox with the same name available in their local
common memory (this is a convention enforced by the human
network manager). On some systems, mailbox naming only has
local significance and the transfer of information is
actually to and from an address (i.e., explicit systems).

(3) Every mailbox contains an initial value assigned by the
creator when it is created. In some systems this is a

standard value (e.g., all zeros); in other systems, this
value defaults to the contents of memory at the time of
creation

.

(4) Every mailbox contains exactly one mailgram at any given
time. A mailgram stays in the mailbox no matter how often
it is read, until a new mailgram arrives for that mailbox.
The new mailgram replaces the old one on arrival, whether
or not the old mailgram has ever been read.

(5) The mailbox writer decides when to replace the mailgram.
This may be performed independent of external information,
or may be influenced by "flow control" factors.
(Section III. 1.1)

(6) Only one process is authorized to write into a mailbox at a

time. In the case where more than one process may write
into a specific mailbox, implicit or explicit "flow
control" is implemented to match others. (Section III. 1.1)

(7) Two mailboxes must be "connected" before a mailgram will be
transferred from one to the other by the network. Global
mailboxes are "connected" and "disconnected" by submitting
the appropriate command to the network manager.
(Section IV. 4)

(8) Any number of receiver processes can pick up the current
mailgram in a mailbox.

Ill 7

AMRF Network

(9)

Any receiver process can pick up the same mailgram several
times, if the sender does not change it in the interim, or
miss several mailgrams if the sender changes it more often
than the receiver picks up. When it is important to assure
that a particular recipient has read the mailgram before a
new one is issued, the sender and receiver must agree to a
"flow control" protocol.

The mailbox management mechanism guarantees that a new
mailgram will be distinct from its predecessors. However,
the mailbox management mechanism does hot guarantee that
any particular receiver will have picked up a mailgram
before it is replaced. If it is necessary to assure that a

particular receiver has read the mailgram before it is
replaced, the sender and that receiver must agree to a
protocol by which the sender refrains from replacing the
mailgram until it has an indication that the receiver has
read it. (Section III. 1.1.)

(10) Every mailbox has a fixed size which is defined when the
mailbox is created. There is no AMRF-wide maximum on
mailbox size. There may be a maximum mailbox size for
individual systems, caused by hardware or software
limitations. Any given mailbox must be large enough to
contain the largest mailgram agreed upon between the sender
and receiver (s)

.

(11) Mailgrams can be of variable length; each mailgram contains
information on how long it is . A mailgram may never be
longer than the mailbox in which it is placed. If
necessary, the value is truncated by the common-memory
service routines.

2. MAILBOX INTERFACE IMPLEMENTATIONS

The internal workings of the mailbox operation are unique to each
system, while the transmission of mailgrams from system to system
uses a common network and common protocols. From the user point
of view, however, the method of communication between processes
is independent of the location of the correspondent. The user
program must use the common memory interface appropriate to the
system on which his process resides, and that interface will
represent one of two standard methods, implicit or explicit.

When the communication is between processes on the same system,
the receiver normally reads the same physical memory area that
the sender wrote. When the communication is between processes on
different systems, the networking software copies each new
mailgram from the sender mailbox to an intermediate mailbox
representing the sender mailbox on the receiver's system, and the
receiver then reads from that mailbox.

Ill - 8

AMRF Network

2.1. Implicit Systems

When the implicit method is used, all processes access the same
physical memory area for a specific mailbox. A process fills its
input buffers from the incoming mailboxes before each processing
cycle and empties its output buffers into the outgoing mailboxes
at the end of each processing cycle. It is possible in an
implicit transfer system, therefore, for processes with fixed
intercommunication requirements to be totally ignorant of the
interprocess communication discipline, except for the format of
the mailgrams . This method is used by the VAX and Multibus-based
systems

.

2.2. Explicit Systems

When the explicit method is used, each process associates an
internal "logical unit" number with a common memory mailbox.
This logical unit number is supplied to the process when it
creates the mailbox through the respective common memory service.
The process then references the logical unit number when it
performs PUT or GET operations in order to exchange mailgrams
with the common memory.

2.2.1. Special Case: Sun Implementations

The common memory implementation on the Sun Microsystems
computers (hereafter referred to as "Sun"), under 4.2 BSD Unix,
has a problem: there is no direct common memory support facility.
This is circumvented by providing a server process that stores
mailgrams in its own memory space, which is private to it. The
server runs as a user-level process which needs no special
privileges, and can be run from an unrelated user-id [13].

Communication occurs between user processes and the server
process using standard 4.2 BSD interprocess communications using
TCP/IP rather than UDP [12]. (UDP was rejected because it forced
confrontation with communications unreliability and mailgram
fragmentation: datagrams were limited to IK bytes, which was
smaller than the typical message.) Access to mailboxes is
through valid requests to the server process. The messages are
sent asynchronously by the user process, but arrive
synchronously: the server process is never interrupted.
Typically, the server is waiting for service requests and
responds to them immediately.

The network interface process is simply another process that
exchanges mailgrams with the common memory server (Figure III-3).

Ill - 9

AMRF Network

F igure 111-3 . Common Memory Server For 4.2 BSD Unix

III - 10

AMRF Network

2.3. Conversion of Implicit to Explicit Systems
and Explicit to Implicit Systems

Application processes designed for an implicit transfer
environment can be moved to an explicit transfer environment by
inserting the necessary GETS in a preprocessing routine, the
necessary PUTS in a postprocessing routine, and DECLARES (if they
are not already used).

Programs designed for an explicit transfer environment can be
moved to an implicit transfer environment only if the programs
satisfy the architectural requirements of "process-cycle"
implementation, that is, the programs must loop through an
activity cycle of three parts:

(1) GET all input mailgrams,

(2) perform analysis and determine outputs,

(3)
PUT all output mailgrams

.

In this case, the GET-input and PUT-output sections of the code
can be deleted and the mailbox create commands modified to
identify the target buffers.

3 . MAILBOX MANAGEMENT

A wide variety of common memory access interfaces have been
developed for implementation on the diverse computer systems
within the AMRF. The majority of them are used to provide
enhanced common memory access and depend on the availability of
an intelligent common memory manager, one that performs more than
just simple mailbox updates (e.g., notification of mailgram
arrival). Due to memory space and system architecture
constraints, not all are appropriate for every computer system.

The following subsections describe the functions that are common
to all computer systems: DECLARE, UNDECLARE, GET, PUT. An
additional one, SYNC, is described because of its importance in a

number of computer systems (VAX and Suns).

3.1. Create (DECLARE) a Mailbox

All common memory mailboxes already exist in implicit systems,
since they are referenced by address, and the address is not
permitted to change without prior notification to all client
processes. In this case, a DECLARE connects the user process to
the already existing mailbox.

Ill 11

AMRF Network

For explicit systems, mailboxes are created or attached by a
DECLARE operation. That is, if they don't already exist in the
common memory area, they will be created; if they already exist,
they are attached. Indications of success or failure are
returned from the common memory manager. An internal "logical
unit" number is associated with each common memory mailbox, and
is used for all subsequent common memory interactions referencing
that mailbox.

Some implementations of common memory allow for an access
qualifier to accompany the mailbox declaration. This access
qualifier can have the following values:

(1) READER, if the connecting process only intends to retrieve
mailgrams from the mailbox. This can be further qualified
to indicate that the reader process wants "WAKEUP service"
so they can "sleep" until the mailbox contents have
changed. Nothing happens if the user process is already
awake (active) when a WAKEUP arrives.

(2) WRITER, if the connecting process intends to write into the
mailbox. This can be further qualified to indicate
EXCLUSIVE or NONEXCLUSIVE writer access.

3.2. Discontinue (UNDECLARE) a Mailbox

In explicit systems, mailboxes are released from common memory by
an UNDECLARE operation, by which the user process breaks its
logical connection to the mailbox. The common memory manager
maintains a list of processes that are connected to a specific
mailbox, and only releases a mailbox after the last process has
UNDELCAREd it. When a mailbox has been UNDECLAREd by all its
clients, the common memory manager will return the allocated
space to the "free space" pool so it can be used again for other,
new mailbox declarations

.

In the current software version, the common memory manager in
implicit systems does not "resorb" the undeclared mailbox area.

In addition to user processes, the network interface process
(NIP) connects to and disconnects from a common memory mailbox
when instructed to do so by the network manager. The fact that a

user process makes or breaks a common memory mailbox connection
has no impact on the NIP connections.

A process should arrange to UNDECLARE every mailbox that it
explicitly DECLARES.

Ill 12

AMRF Network

3.3. GET and PUT Operations

There is no common memory management requirement to transfer data
between a common memory mailbox and a user buffer in an implicit
transfer system, since the user performs this transfer directly.
However, for explicit transfer systems the user must issue GET
and PUT calls at appropriate points in the processing cycle.

GET results in the retrieval of a mailgram from a common memory
mailbox. PUT results in the output of a mailgram to a common
memory mailbox.

Through experience with the different common memory
implementations, the GET interface to common memory has evolved
into GET and GET_NEW , where both function as previously
described, but GET_NEW returns an additional Boolean value
indicating TRUE if the mailgram has changed since the last time
the mailbox was read, and FALSE otherwise. This enables the user
process to expedite mailgram processing by providing immediate
identification of new mailgrams.

3.4. SYNChronizing With Common Memory

Some explicit common memory systems attempt to provide the user
process with copies of all updates of a particular mailbox to
which it has DECLAREd a READ connection. (e.g., the Sun
implementation.

)

Each mailgram that arrives for the declared mailbox is queued
until the user process requests a GET. A GET simply returns the
next mailgram in the specified mailbox's queue. Hence, it is
possible that the user process variable values match a past
snapshot of the real common memory rather than the current value.

After returning from a common memory SYNC call, the process
buffers (local copies of the mailgrams) are guaranteed to match
those of the real common memory. SYNC reads all queued mailgram
updates and applies them to the appropriate process buffer.

Several styles of synchronization are possible:

(1) WAIT (sleep), after applying all queued updates, until a

declared (with WAKEUP) mailbox's contents changes before
returning. Use of WAIT implies that at least one mailbox
has been declared WAKEUP or the process will wait forever.

(2) NO_WAIT returns immediately after synchronizing.

(3) WAIT_AT_MOST_ONCE waits for any declared mailbox to change
and then returns immediately; the mailbox does not have to
be declared WAKEUP.

Ill - 13

AMRF Network

(4) WAIT_FOR_ALL waits until all declared mailboxes have
received at least one update before returning. Some
contents may have changed more than once.

(5) WAIT_FOR_READ not only applies all queued mailgram updates,
but also forces a new read of all declared mailboxes to
transfer mailgrams from common memory to the process
buffer.

4. GLOBAL MAILBOX CONNECTIONS

In the 1986 AMRF network, the user process does not have the
ability to generate network connections. That is, connections
between common memory mailboxes on computers connected by the
network are established through operator commands issued through
the network manager (NETCMD, Section IV. 4).

The only mailbox for which a network connection is automatically
requested by the NIP is the NIP'S own NIP_CMD input mailbox. It
is through this mailbox that the NIP receives instructions from
the network manager to establish or remove additional mailbox
connections, and the logical network (mailbox) links are
established

.

Ill 14

AMRF Network

IV. NETWORK ARCHITECTURE DESCRIPTION

1 . NETWORK MODEL

At the time of inception of the AMRF (1981), there were no
national standards by which machines and controllers of various
manufacturers could be expected to intercommunicate. There was,
however, the ISO 7498 Open Systems Interconnection (OSI) model,
and it is upon this model that the AMRF network model and its
implementations are based [5].

The "OSI model" specifies the separation of concerns and
responsibilities into seven "layers" of software and hardware,
loosely defined as follows:

1) Physical : provides direct mechanical and electrical
connection between computer systems or network nodes.

2) Data Link Layer : provides for the reliable transfer of
information over the physical link.

3) Network Layer : provides for the establishment of
host-to-host connections and the end-to-end routing of
individual messages when multiple networks or
intermediaries are involved.

4) Transport Layer : provides for reliable host-to-host
transfer of information over the total network.

5) Session Layer : provides for the differentiation of
distinct conversations (e.g. for different users) between
the same two hosts, and for management of the individual
conversations

.

6) Presentation Layer : provides for conversion of
information units between local and interchange
representations

.

7) Application Layer : many different "service elements",
each providing a different class of data interchange or
data management service.

The OSI model anticipates that for each of the above layers, a

standard, or possibly a choice from 1

a collection of standards,
will be specified in any given network installation. Since 1984,
there has been significant ISO activity in the development of
such standards, and there is now a major manufacturing industry
initiative to specify such standards across American industry,
called the "Manufacturing Automation Protocols" or MAP standard.

IV - 1

AMRF Network

Important in the AMRF Network model from the beginning, and only
recently added to the MAP concept, are the following two notions:

1) A factory floor network is fundamentally a multi-network,
not a single network. That is, a manufacturing network
is really a collection of small networks for various
specialized activities linked together. Ideally, this
linking is performed in such a way that the individual
controllers do not have to be aware of the
interconnections. This is so in any environment in which
real-time activities are networked: one must be able to
constrain the traffic on the network carrying the
time-critical communications without seriously limiting
the overall factory communications capability.

2) The manufacturing engineering and administration systems
must be connectable to various factory floor controllers
in a substantially automated manufacturing operation.
This is so because the scheduling of factory floor
operations depends significantly on customer orders,
source materials inventory, scheduled maintenance
activities and the operating state of various
manufacturing components, while the implementation of
those operations depends directly on the engineering
information, such as process plans and controller
programs

.

2 . PROTOCOL SPECIFICATIONS

Beginning in 1982, the AMRF sought to select then-emerging
standards for the protocols in the layers of the AMRF network.
Some of the AMRF standards choices fortuitously coincided with
the MAP choices; others, largely owing to the availability of
limited choices in 1982-4, did not. The currently operating AMRF
network is largely a collection of interim protocols which are
intended to be gradually supplanted by commercially available
nonproprietary network protocols, as individual component systems
were upgraded or fit into the whole complex.

One of the features of the AMRF network software, which was made
mandatory by the establishment of interim protocols with gradual
phaseout rather than abrupt replacement, was the implementation
of the OSI model as intended. That is, the software implementing
a selected standard for one layer allows for the substitution
of protocols in the layer below it, and may in fact be required
to support use of different protocols in the next lower layer for
different target hosts. (This is not a feature of most of the
''MAP-compatible" software products, which makes phased-in
conversion extremely difficult.)

IV - 2

AMRF Network

2.1. Link and Physical Layers

We pair the Link and Physical layers because in many cases they
are paired in the available products, and because the choice of
data link protocol often depends on the characteristics of the
underlying physical protocol.

This is the first and most significant area in which the AMRF
network requires the support of alternative protocols, which are
listed below as "interim" and "final" alternatives.

2.1.1 Interim Alternative: Serial Asynchronous Link

The physical protocol is EIA RS232C [17] full-duplex,
asynchronous, point-to-point modemless connection at 9600-baud
using 3 pins: Transmit Data (TxD

,

pin 3), Receive Data (RxD
,
pin

2) and Signal Reference Ground (GND
,
pin 7). (The cabling is

8-wire, providing for presence (DTR , RLSD
)
and access-control

(CTS , RTS) signals as well, in case modems are used; but the
direct connections delete those signals to minimize conflicts in
their handling by individual communication ports on different
vendors' equipment.) The connection must be supported in
full-duplex mode, i.e. each station must be prepared to receive
while transmitting.

The associated link layer protocol is AMRF-originated
,
providing

frame definition and integrity checking only. It bears
(intentionally) a weak resemblance to IEEE 802.2. It is defined
in the following paragraphs.

The transmitting entity wraps each service data unit received
from the local network layer in an envelope producing this frame
structure

:

SOH, UI, LNO , LN1 , SDU , CKO, CK1
where

:

SOH is the single byte with hex value 81, designating
start-of- frame

;

UI is the single byte with hex value CC, designating
"Unacknowledged Information" as in IEEE 802.2;

LNO is the low-order byte, and
LN1 is the high-order byte of the positive binary integer

designating the length of the SDU portion of the
frame;

SDU is the service data unit received from/presented to
the network layer;

CKO is the 0-byte, and
CK1 is the 1-byte of the "Fletcher checksum" of all bytes

of the frame, from SOH to the last byte of SDU,
inclusive

.

IV 3

AMRF Network

The transmitting entity then sends this frame on the link
associated with the intended receiving station, at the first
opportunity provided by this interface, and treats the
transmission as complete.

The receiving entity identifies the beginning of a new frame by
the occurrence of the SOH and UI bytes, and otherwise discards
received bytes until this pair is identified. The receiver then
assembles the SDU length from the LNO and LN1 bytes and, if the
result is negative or zero, discards the frame and searches for a
new frame identification. Otherwise, the receiver reads the
number of bytes indicated by the length of the SDU field and two
more for CKO and CK1 . If there is a substantial delay between
receipt of any of these bytes, the frame is discarded and the
search for a new frame resumes. Otherwise, when all of the bytes
have been received, the receiver executes the Fletcher checksum
algorithm [22] on all bytes received, from the SOH thru CK1 . If
the result is zero, the SDU portion of the frame is presented to
the network layer. If the result is nonzero, the frame is
discarded and the search for a new frame resumes.

This technique provides for frame definition and integrity
checking with the "best effort" philosophy: Erroneous frames and
lost frames are discarded entirely by the link layer service,
without retransmission mechanisms, so that only correct frames,
but not necessarily all frames, reach the receiving network
layer. This is analogous to the data link protocols employed by
the IEEE 802 standards. It assumes the availability of
transport layer protocols to recover and retransmit lost
information units.

2.1.2. Final Alternative 1: Broadband Token Bus

The AMRF network did not initially envision direct connection of
every controller to a token bus, since there were no standards at
that time and no implementation could be expected to be available
for more than a few computer or controller systems. The MAP
effort, which created and adopted the IEEE 802.4 Broadband Token
Bus [18] standard, has made this more likely although not
currently possible since commercial products are not available
for all AMRF computer systems.

In the interim, the AMRF acquired (in 1984 before the adoption of
the IEEE standard) a non-standard commercial broadband token bus
network. Because of delays in the network installation and
conflicts with MAP (see below), no AMRF controllers use the MAP
protocol at the moment. Meanwhile, this broadband token bus
network is used to support the AMRF network architecture by
providing transparent services between computer systems separated
by a distance of 1 kilometer.

IV - 4

AMRF Network

2.1.3. Final Alternative 2: Baseband CSMA/CD Bus

The physical and data link protocols are defined by IEEE 802.3
Local Area Networks: Carrier Sense Multiple Access with Collision
Detect [6,9], specifically the 10 MHz baseband option. These
protocols define a common bus on which any connected station may
place a message for any other connected station at any time. The
stipulation of CSMA/CD is that a station detects an existing
message-in-progress (Carrier-Sense) and does not interrupt it.
Since two stations waiting for the same ongoing message to finish
may simultaneously initiate new messages, the possibility of
accidental "collision" exists and must be accounted for
(Collision Detect) and both stations must "back-off" and retry
later

.

The Xerox 10 MHz Ethernet (versions 1 and 2) is nearly identical
to this protocol and may operate on the same physical bus, but
the data link layer is just enough different in format to be
incompatible. Fortunately most Ethernet stations can communicate
with 802.3 stations after a small software revision, so an
Ethernet interim interface can usually be converted to a "final"
IEEE 802.3 interface in the field.

The AMRF envisioned this as the typical engineering or
administration network and the only available standard for a

local high-speed network for real-time control. The expectation
was that there would be multiple such networks linked together by
"gateways" (MAP calls them "routers") on the broadband token bus.
At present many AMRF controllers are locally networked by CSMA/CD
networks, and the integrating gateways (which are present) are
unused

.

2.1.4 Final Alternative 3: High-Speed Bus Link

The alternative approach to integrating systems into the global
broadband network was to construct local high-speed
point-to-point links to a network "front-end". The approach uses
an RS449 synchronous serial interface at one of two speeds to
link the computer/controller system to a "Network Interface Unit"
which would itself be directly connected to the token bus.

The physical layer is defined by EIA RS449 [19] full-duplex
synchronous point-to-point modemless connection at 56 Kbps (or
500 Kbps) using the following circuits: Send Data (SD), Receive
Data (RD), Send Timing (ST), Receive Timing (RT), Terminal Ready
(TR) and Data Mode (DM), which require Send Common (SC) and
Receive Common (RC)

.

The connection must be supported in
full-duplex mode, i.e. each station must be prepared to receive
while transmitting.

IV 5

AMRF Network

The data link layer is defined by ANSI X3 . 66-1978 High Level Data
Link Control Protocol (HDLC

) [4] for "asynchronous balanced
pair", using subset of data unit types defined by CCITT X.25
LAP B. This is the common implementation of "HDLC" offered by
many vendors to support connection to public networks.

In the AMRF original view, this "front-end" protocol was to be
treated as a pure subnetwork protocol (even though each such
subnetwork would have exactly two stations) mandating the use of
the Network layer protocol to effect connection to the target
host, in the same way as the IEEE 802.3 subnetworks above.

Fortuitously, MAP adopted this identical protocol for the
"interim interface" protocol to be used with its NIUs

.

Unfortunately, the MAP token bus implementor layered a
nonstandard asymmetric flow-control protocol on top of the
ANSI/ISO HDLC protocol. Further, because MAP did not originally
accept the subnetwork concept, the perception of the NIU as an
internetwork link was not accepted either. In the MAP interim
interface, the NIU "exposes" the IEEE 802.4 link layer, so that
the host system constructs and receives IEEE 802.4 frames
enveloped in the HDLC plus nonstandard flow-control protocol
frame

.

In order to use the available commercial products, the AMRF
network is forced to convert to this approach. At this time,
none of the AMRF stations is so connected.

2.2. Network Layer

The AMRF network specifies the ISO 8473 Connectionless Network
Service Protocol to provide for host-to-host message routing
services. Briefly, this is a "datagram" protocol, in which each
data unit is labelled with the sending and receiving host and
finds its way through the network from the sender to the receiver
without regard to any previous or concurrent transmissions.

This permits the introduction of "internet gateways" (what MAP
calls "routers") - stations on two or more networks which receive
messages on one of the networks and retransmit them over another
of the networks toward the destination indicated in the network
layer envelope. Since the AMRF network is intrinsically a

multi-network involving several separate physical protocols (with
associated data link protocols), any of the hosts can be
connected to more than one network. If such a host receives a

data unit for which it is not the indicated destination, it can
function as a gateway by retransmitting the data unit by whatever
means it would have used to reach the indicated destination. In
addition, "gateway stations" have been procured to link the major
subnetworks to the token bus.

IV - 6

AMRF Network

Because the destination is clearly specified in the data unit, a

receiving station can determine whether the data unit is intended
for that station or must be relayed to another; and because the
source is clearly specified, the destination station can
determine the true originating host regardless of the path over
which the data unit arrived. To make this simple mechanism work
globally, the AMRF network specifies the network layer protocol
as mandatory, even when a point-to-point link or direct
connection to a common bus is used. The network layer software
is then required to support multiple underlying physical/link
protocols (most stations have serial connections and bus
connections) but not to understand any qualitative differences
between them.

2.2.1. Interim Network Layer

Some AMRF systems (notably the SUN workstations) come equipped
with Ethernet (or IEEE 802.3) network connections, but do not
support the ISO protocols on that network, or at least do not
support ISO protocols on the same network interface on which they
depend for their "private" services. These stations
characteristically use the MilSpec-1777 Internet Protocol [20]
instead of ISO 8473.

MilSpec-1777 is functionally equivalent but totally incompatible
in representation. The AMRF currently tolerates this protocol on
certain subnetworks, but this requires a much higher level
"gateway" service to provide communication between those
subnetworks and the rest of the facility.

2.3. Transport Layer

In the area of transport protocols, the AMRF network is in a

state of change. The nominal standard identified in 1984 - the
ISO standard, which coincided with the MAP choice - had no
commercial implementations available until 1986. This
necessitated the implementation of an interim transport service
protocol for the engineering phase of the AMRF, which was then
used from 1983 through 1986. Moreover, the AMRF network
architecture anticipated the use of a single global transport
protocol, which made it difficult to accommodate adoption of the
standard on some stations while it was still unavailable on
others

.

Recently, it has become necessary to accommodate yet another
interim transport layer protocol, in this case the military
standard adopted in 1983, now available on many commercial
systems, often to the exclusion of other protocols. The current
method of accommodation is to implement identical application
layer services with two separate underlying network service sets
(see Topology), which is clearly a short-term solution.

IV 7

AMRF Network

While the goal is still the global standardization of the ISO
protocol, it is not clear whether that will occur soon enough to
preclude revision of the AMRF network application and session
layers to support multiple transport layer protocols.

All of these protocols essentially provide the same three
services

:

1) end-to-end integrity checking, message ordering and
retransmission, guaranteeing that every message reaches
its destination and messages arrive in the order they
were sent;

2) end-to-end flow-control, allowing stations to control
the rate at which data is transmitted to match the rate
at which it can be processed;

3) segmentation and reconstruction of data units, allowing
messages of arbitrarily large size to be transmitted, by
breaking them into blocks convenient for the network
medium

.

The individual protocols are identified below.

2.3.1 Final Standard Transport Protocol

The nominal AMRF standard is ISO 8073 Transport Layer Service
Protocol [21] Class 4. The class distinctions restrict transport
services, and thereby complexity, according to the degree of
simplicity and reliability provided by the lower layers. The
AMRF multi-network environment mandates class 4 services - the
highest class, which assumes little reliability in the lower
layers - but, because it is a local area network, very few of the
extended options. This is essentially identical to the MAP
transport protocol selection.

While this protocol is implemented on several of the AMRF
stations, it is not currently in use. This is because of the
"multiple transport protocols" problem indicated above.

2.3.2 Interim Standard Transport Protocol

The interim standard is the Transmission Control Protocol for
Defense Networks (TCP), MilSpec-1778 [7]. This protocol is not
strictly a "transport" protocol in the OSI model sense, since, in
addition to transport functions, it contains a limited session
management protocol and a primitive application selection
protocol (which used to be thought of as a session-layer
function) as well.

IV - 8

AMRF Network

This standard is used in the AMRF network only on those hosts
which use this protocol as part of a large class of distributed
services offered by the manufacturer and do not support any other
protocol (simultaneously) over the principal network. Use of
this protocol, and thus the principal network, affords efficient
communication among these stations, while use of the alternative
serial asynchronous links (where the other protocols may be
supported or implementable

)
affords very poor communication

services. At least one primary network station must implement
this, as well as the AMRF standard protocols in order to enable
interchange between these stations and all the stations
implementing the standard protocols.

2.3.3 Interim Local Transport Protocol

The interim transport protocol currently in use on serial links
and some Ethernets is a 1982 AMRF design providing the common
transport services, originally intended as an interim until a

standard should be developed. It has outlived all expectations,
largely because of difficulties encountered in implementing and
acquiring implementations of the ISO standard protocol. This
protocol is defined in detail in Appendix G.

2.4. Session Layer

The AMRF network has a nominally "void” session layer. Unlike
the few existing ISO application layer standards, the operating
AMRF application layer service (common-memory mapping) is a

station-to-station service which is itself a multiplexer. That
is, the single mapping-service to mapping-service connection may
(unwittingly) carry any number of logically separate
communications. Thus the "session" layer is subsumed.

2 . 5 Presentation Layer

The AMRF network currently has a "void" presentation layer. All
control interchanges are in some form agreed to by the parties
involved. It is expected that the incorporation of the
distributed data protocols in a future version of the network
architecture will result in the standardization of some
interchange form for all message units, which may obviate
presentation layer protocols indefinitely.

2 . 6 Application Layer

The AMRF network currently provides only one "application
service" at all stations: the "memory mapping service". The
memory mapping service is the means by which the "common-memory"
concept is extended to multiple computer systems

.

The common memory architecture is described in Section III and
the mapping protocol is defined in Appendix H of this document.

IV 9

AMRF Network

3. NETWORK INTERFACE PROCESS (NIP)

3.1. General Description

The Network Interface Process (NIP) is the software element of
the AMRF network that logically interfaces the processes at one
physical station to the AMRF network and any other process on it.

The "direct" interface between any two processes in the AMRF,
regardless of residence, is referred to as a "mailbox": The
writer inserts a message into the mailbox, and the reader
retrieves the message from it. The mailboxes used by a process
are always physically located somewhere on the station where the
process itself resides. When a message must be transferred
between processes residing on two different network stations, the
NIPs at the two stations cooperate to copy the message, via the
network, from the writer's mailbox to the reader's mailbox. The
sole purpose of the NIP is to implement these transfers. All of
the individual NIP functions are simply components of this task.

The general rule is that every mailbox has exactly one writer,
although it may have several readers. The NIP itself is the
writer for every local mailbox which is to be filled by a process
elsewhere on the network, and the reader for every local mailbox
which is to read by a process elsewhere on the network.

The NIP acquires its knowledge of which mailboxes to receive and
which to transfer from the network manager and keeps this
information in an internal data structure called a mail delivery
table. It also reports, to the network manager, any problems
encountered in maintaining these connections. (Section IV.

4

describes the network manager in detail.)

The NIP uses local mailboxes according to direction from the
network manager. It is not involved in the assignment of
mailboxes; the assignment of mailboxes is a function of the
network manager and the local Mailbox Manager.

The NIP is divided into two sections: the Networking section,
which handles the networking device and the network protocols,
and the Interfacing section, which handles the local mailboxes
and the connection table.

The NIP is designed to effect the transfer of messages between
mailboxes on the network in a fashion totally invisible to the
other processes on the station. User processes must be able to
communicate with each other without knowing whether they are on
the same station or different stations. Therefore the contents
of a mailbox must not be altered in any way by its transit
through the network.

IV - 10

AMRF Network

The NIP communicates directly only with the other elements of the
communications system: the network manager and the local Mailbox
Manager. User programs do not deal directly with the NIP; they
communicate with the network manager and the network manager
communicates with the NIP.

3 . 2 Network Device Driver

The NIP operates the network interface device on each station.
It initializes and maintains the device, directs the device to
receive all network packets intended for this station, and
directs the device to transmit each packet outbound from this
station

.

3.3. Protocol Implementation

The NIP executes the link, network and transport protocols at
this station, with the assistance of the device firmware. It
implements an access control protocol, with the assistance of its
firmware interface, in which it competes for authority to
transmit. It constructs network packets for outbound messages,
and extracts inbound messages from network packets. It
acknowledges successfully received packets and ignores corrupted
ones. It implements transport controls to handle receive buffer
shortages at either end of a connection.

3.4. Session Control

The NIP maintains an internal connection table specifying:

(1) which local (common-memory) mailboxes are to be
transmitted

(2) to which address on the network and under what conditions

(3) which local mailboxes the NIP will fill from messages on
the network and from which address those messages will
come

.

This table is initialized to contain only NIP to network manager
mailboxes. Additional entries in the connection table are made
under the direction of the network manager.

The NIP obtains control of the station at station reset and
initializes the network interfacing process and the local mailbox
manager at that time.

When the NIP receives a message, it looks up the address of the
sender in its connection table and places the message into the
local mailbox specified in the connection table entry.

IV - 11

AMRF Network

During its processing cycle, the NIP examines each of the local
mailboxes for which it has a transmission entry in its connection
table, determines whether the mailbox is eligible for
transmission and if so, sends it out on the network to the
destination identified in the connection-table entry.

3.5. Error Reporting

The NIP informs the network manager of any network performance
anomaly it detects. There are three kinds of error reports:

(1) Device Error: reported when the network interface device
indicates that a local error has occurred, or fails to
respond to an operation;

(2) Link Error: reported when the remote station fails to
acknowledge a message after the configured maximum number
of retries, even though the interface device did not
indicate a failure;

(3) Remote Error: reported when the NIP successfully receives
a message for which it has no connection table entry, and
therefore no mailbox to put it in.

3.6. Configuration Parameters

Each NIP must have the following information parameterized in its
source code and set at compilation or binding time:

1. the Local Station Address. The NIP must know its own
address so that it can initialize its network interface
to match messages intended for it.

2. the Station Address and Subaddress of the network
manager

.

3. the Local Subaddress for Manager-to-NIP transmissions,
always one (1). Effectively, this is the "command input"
mailbox for the NIP.

4. the Local Subaddress for NIP-to-Manager transmissions,
always zero (0). Effectively, this is the "status
output" mailbox for the NIP.

5. the mapping algorithm for translating between network
subaddresses for this station and local mailbox
identifications

.

The network manager interface parameters are required for proper
initialization of the NIP connection table via directives from
the network manager. The related "internal" mailboxes are not
required to be implemented in the same fashion as the rest of the

IV - 12

AMRF Network

local mailbox architecture. These mailboxes are used for
information transfer only between elements of the NIP itself and
are local storage to the NIP. They are required to appear to be
mailboxes only because they are visible subaddresses on the
network and every subaddress corresponds to a "mailbox"

.

3.7. Connection Table Entries

Connection table entries have the form:

Local Mailbox,
Remote Address,
Mode

,

where Local Mailbox is a number specifying which local
interchange mailbox or common-memory buffer is to be used; Remote
Address is the network station address and subaddress to be
attached to that mailbox; Mode specifies whether the local
mailbox is to be written from messages received with the given
Remote Address or transmitted to the given Remote Address
whenever it changes

.

Connection table entries are constructed by directives from the
network manager.

3.8. Directives

NIP directives consist of instructions for connection table
maintenance: Add-Entry, Delete-Entry. These directives come from
the NIP'S initialization procedure and from the network manager.

3.9. Mailboxes To Be Transmitted

Mailboxes to be transmitted must have the local standard form of
interprocess communication mailboxes (common-memory buffers,
etc.). In each case, the contents of the mailbox must in a
standard way indicate whether the mailbox contents has changed
since the last time it was read by the NIP. A standard location
in every mailbox text must provide a sequence number which is
updated each time the mailbox has a "new" content.

3.10. Network Packets

Incoming data are in the form of packets on the network which
comprise a mailbox message, packaging and integrity check
envelopes, and a routing envelope. The routing envelope contains
the destination address which decodes into a station and
subaddress. The subaddress, in association with a corresponding
connection table entry, identifies the local mailbox.

The NIP will extract the message from incoming network packets
and write it into the corresponding local mailbox via the

IV 13

AMRF Network

appropriate local mailbox protocol. The text delivered into the
mailbox will be the image of the source mailbox contents; there
are no additions or substitutions made by the NIP.

Network Packets will be constructed from outbound local mailbox
messages, by addition of a routing envelope per HDLC (ANSI
X3. 70-1978), giving station and subaddress from the connection
table entry for the local mailbox, and a link envelope per SDLC.

3.11. Initially-Given Mailbox Connections

Every process is started with at least two given mailboxes, which
are the command and status (response) mailboxes for communication
with the network manager. In an implicit transfer system, these
are associated with fixed user buffers; in an explicit system
these are associated with fixed user mailbox identifier
variables. For this document, they will be designated NIP_CMD
and NIP_STS respectively.

Additionally, a mail delivery table entry is made to connect the
NIP__CMD mailbox to the network manager system. This mailbox
serves a "bootstrap" function for the NIP, since all further
CONNECT commands arrive in it, including the command to connect
the NIP_STS mailbox for output to the network manager system.

4. NETWORK MANAGER (NETCMD

)

4.1. Description

NETCMD is not a true network manager. Instead, it is an operator
interface designed to allow the human network manager to examine
and modify the configuration and status of the network. The
operator enters commands in a legible syntax. NETCMD converts
these into the required data structures and enters the resulting
NIP commands into the correct mailboxes for the Network Interface
Processes

.

4.2. The Network Manager Display

This display shows the current status of the network, giving a

formatted display of the NIP status for each NIP, as last
reported by that NIP (Figure IV-l).

4.3. Network Manager Commands

4.3.1. CONNECT And DISCONNECT Mailboxes

The format for the CONNECT and DISCONNECT commands is shown in
Figure IV-2. The command encoding scheme is described below.

IV - 14

AMRF Network

VAX HWS HMC HMB HRC HGP

NIP status UP UP UP UP UP UP

MDT entries 44 8 4 4 8 6

cmd #/status 45/ 1 =0 K 8/1 4/1 4/1 8/1 6/1

t i me since 00m :00s 0000 0000 0000 0000 0000

to stat ion HWS HMC HMB HRC HGP VAX VAX VAX VAX VAX

status NORM NORM NORM NORM NORM NORM NORM NORM NORM NORM

error code 0 0 0 0 0 0 0 0 0 0

mgrams in 156 135 1419 164 110 936 14 17 29 7

mgrams out 936 14 17 29 7 155 134 1417 162 109

retransmit 0 0 0 1 0 0 1 14 3 4

po 1 1 count 0 0 0 0 0 0 0 0 0 0

I0A 400 766 311 455 677 033 666 122 533 755

xport state XMIT

Command:

Figure I
V-

1

. Network Status Display

Where the command fields in Figure IV-2 are separated by one or
more blank characters, some sort of delimiter must be used. This
can be white space, a tab, or a comma. The significance of each
field of the command is described below, identified by its "field
number"

.

1. The first field indicates the station to which the command is
to be send. If the command is CONNECT, an entry will be made
in that stations mail delivery table (assuming the remaining
fields are valid). Likewise, if the command is DISCONNECT,
an existing entry will be flagged to indicate that the
connection no longer exists. The station name corresponds to
the site identifier found in source code listings netgen.c68,
netcmd.c and *def.a68.

2. This is the first part of the action field. It specifies
whether to '

c
' onnect or 'd'isconnect the specified mailbox.

IV 15

AMRF Network

1— name of station to which this cmd is directed
I

I

|

2— Connect or Disconnect
I I

I I

i |

3— Input, Output or Duplex (both)
I I I

I I I

! | i

4—ma i I bo.x nameIII IIII I

! ! ! !

5— swap flag (if the bytes areIII | j
in Intel order put an * here)

V V V V V
dst { C !

D } {
I ! 0 J

D } mbx [swap] I ength [type] station sockid [addr]

/\ /\ /\ /\ /\
I II II
I II II

length of the ma i Ibox —6
! ! ! !II IIII II

mailbox type (if NIP CMD/STS mbx) —7
j j j

i i i

i i i

name of remote station —8
! |

! I

I I

socket ID (identifies connection) —9
!

i

i

address of mailbox (if applicable) —10

Figure IV-2 . NETCMD Command Structure for Connecting and

Disconnecting Mai Iboxes.

3. This tells the NIP whether the connection is '

i
' nbound

,

'o’utbound or both ('d'uplex, bidirectional)*

4. The mailbox name must be placed in this field. This is
expected to be the same on both sides of a connection.

5. The swap flag, an asterisk, is placed at the beginning of the
length field if the bytes on the station where the mail
delivery table entry is being made stores its integers with
the bytes in Intel order. Note: the VAX uses Intel order.

6. Length of the mailbox.

7. This is an optional field which indicates the mailbox type or
structure if the mailbox functions for NIP command and
status. The network software only understands two types of
NIP mailboxes: nip_cmd (1) and nip_sts (2).

IV - 16

AMRF Network

8. The name of the station on the other end of the mailbox
connection

.

9. This field contains the label (socket or session
identification label) that uniquely identifies the connection
between the two stations and is associated with the specified
mailbox name. See Appendix C for instructions on creating
these labels.

10. The address field is used when entering an entry into any
site's table except the site which has the network manager
(NETCMD

)
on it. It has meaning only on systems which have

direct memory mapped mailboxes. On those systems, it is used
as the starting address of the mailbox described in this
entry

.

4.3.2 Other commands:

Table IV- 1 lists the remaining NETCMD operator commands. Those
identified as "unsupported" are currently not implemented.
Detailed description of commands are given below.

Comments are for readability in command files. When "!" is used
the comment will be displayed by netcmd while the commands are
being executed. Comments with periods are not displayed.

A "?" or "H" will cause all the commands to be displayed, even
the unsupported ones.

A "@" will cause what immediately follows to be interpreted as a

file containing netcmd commands to be executed. VMS paths will
be interpreted correctly when included in the file name.

"K" <station> will cause the VAX NIP to disconnect all its
mailboxes to the specified station.

Use "Q" to quit netcmd.

The "Z" command will zero out the command mailbox for that
station. It sets all the fields except the sequence number to
zero. The syntax for the command is <station> Z.

A "(Ctrl) L" will rewrite the screen, this is an important
feature when running netcmd on a non-VTIOO screen.

"(ctrl) M" or <CR> causes netcmd to update the data on the
display. This is useful when watching the "time since" field for
a station.

IV - 17

AMRF Network

! comment (displayed) supported

• comment (not displayed) supported

? help listing supported

@<f i lename> read cmds from f i lename supported

H help listing supported

{K
|

L} <station> disconnect or reconnect

link to stat ion

semi-supported

P send no-op command to nip unsupported

Q quit netcmd supported

R direct nip to resume bus

operat ion

unsupported

S direct nip to suspend bus

operation

unsupported

X direct nip to hait/exit unsupported

z clear nip command ma i Ibox

(except sequence number)

supported

A
L refresh screen supported

A
M update display supported

Table I
V-

1

. NETCMD Operator Commands. Single-character

commands can occur in either upper or lowercase.

4.4. Communications To The NIP

The network manager communicates with the NIPs using the standard
mailbox interface. NIP commands are mailgrams inserted by the
network manager into its local common-memory and delivered by the
local NIP to the intended recipient NIP. Each NIP reports its
status into a local mailbox. That mailbox is delivered to the
network manager by the NIP according to a local mail delivery
table entry.

IV - 18

AMRF Network

4.4.1. Command Structure

The command structure is as follows:

Length: 2-byte
Seqno: 2-byte
Time: 4-byte
Command: 1-byte

Filler: 3-byte
MDTent: 48-byte
Node: 32-byte

integer - length of this mailgram in bytes;
integer - command (mailgram) sequence number;
integer - mailgram time stamp;
character - nature of command, values:
"C" = Connect
"D" = Disconnect
"N" = No Operation
character - ignored, used to align fields
structure - skeleton mail delivery table entry;
character - name of network node in ASCII;

Except for No Operation, the NIP looks up the "node" name in its
local port identification table and substitutes the corresponding
internal port identification into the "network address" field of
the "MDTent" structure and clears the dynamic fields of the
MDTent structure to logically complete the structure.

4.4.2. Status Structure

The status structure is as follows:

Length

:

Seqno

:

Time

:

CmdSeq

:

Status

:

Ecode

:

MDTect

:

Nports

:

Pstat

:

2-byte integer -

2-byte integer -

4-byte integer -

2-byte integer -

2-byte character
"OK" = command
"NG" = command

4-byte integer -

2-byte integer -

table

;

2-byte integer -

16-byte structure

length of this mailgram;
mailgram sequence number;
mailgram time stamp;
sequence nr of last command received;
- completion status of last command:
completed successfully

;

in error - not completed;
code for type of error in last command;
number of entries in the mail delivery

nr of ports for which status reported;
for each port, comprising:

Portid

:

Channel

:

InStat

:

OutStat

:

Mode

:

2-byte character
2-byte integer -

for the line;
2-byte integer -

operation;
2-byte integer -

operation;
1-byte integer -

values

:

0 = DISC -

1 = INIT -

2 = NORM -

3 = SYNC -

4 = SHUT -

- port/line identification;
local system identification

status code for last input

status code for last output

operational mode of the link,

disconnected
initializing
normal
waiting for output completion
shutting down

IV 19

AMRF Network

Iseq

:

Aseq

:

Oseq

:

PollCt

:

Noise

:

RcvSts

:

XmtSts

:

AckReq

:

PollReq

:

DataReq

:

XmtCmd

:

PollWt

:

XmtAct

:

5 = ERR - error on link
6 = NRSP - no response, too many polls
7 = CREJ - remote refused connection
8 = NOSY - noisy line, too many packet

errors
1-byte integer - next input sequence number
expected on link;
1-byte integer - last acknowledgement sequence
number received;
1-byte integer - next output sequence number to
be used;
1-byte integer - count of consecutive
unanswered polls sent;
1-byte integer - count of consecutive bad
packets received;
1-bit logical - receiver status:

0 = local receiver ready
1 = local receiver not ready

1-bit logical - transmitter status:
0 = remote receiver ready
1 = remote receiver not ready

1-bit logical - 1 if acknowledge must be sent
1-bit logical - 1 if poll must be sent
1-bit logical - 1 if data waiting to be sent
1-bit logical - 1 if transmitting a command
1-bit logical - 1 if waiting for poll response
1-bit logical - 1 if transmitter active

4.5. Interface To VAX Common Memory (MBHAND

)

4.5.1. Description

As currently written, the NETCMD program on the DEC VAX 11/785
utilizes a mailbox handling interface utility, called MBHAND, to
exchange mailgrams with common memory. The purpose of the
interface is to allow processes which have to wait on external
events, e.g. terminal activity, to access common-memory mailboxes
without stalling other, higher-speed processes. Only NETCMD uses
MBHAND

.

The mechanism of communication between NETCMD and MBHAND is the
VAX/VMS interprocess mailbox MBX_HANDLER . NETCMD inserts
commands into MBX_HANDLER . In general, there is no status
feedback. In the case of the Mailbox Read command, one of the
command fields associates another VMS mailbox to receive the
current mailgram in the designated AMRF mailbox. NETCMD
determines which VMS mailbox is to be used.

4.5.2. MBHAND Commands

The following subsections describe the MBHAND commands.

IV 20

AMRF Network

4. 5. 2.1. Mailbox Connect

indicates a Mailbox
Command structure:

type: 1-byte character, value "C"
Connect command;

dir: 1-byte character, values:
"I" = input mailbox
"0" = output mailbox
"S" = input/output mailbox

size: 2-byte integer - size in bytes of the mailbox to be
connected

;

name: 32-byte character - name of the mailbox to be connected;
vmbx : 32-byte character - name of the VMS mailbox to receive

the contents of the designated common memory
mailbox

.

The common memory mailbox identified by "name" is opened for
input or output per the "dir" field with the specified "size".
The common-memory variable need not be a mailbox. If "dir" is
"I" and "vmbx" is non-null, MBHAND attaches the VMS mailbox
designated by "vmbx" and associates it to the common memory
mailbox designated by "name". A common memory mailbox should be
connected before it is referenced in a Mailbox Read or Mailbox
Write command, in order to correctly set the size of the mailbox
and direction of reference. If a common memory mailbox has not
been referenced by a Connect command, MBHAND will open it on the
first reference, using the size and direction specified in the
first reference.

4. 5. 2. 2. Mailbox Write

Command structure:
type: 1-byte character, value "W" - indicates a Mailbox

Write command

;

dir: 1-byte character, value <NULL> - not used;
size: 2-byte integer - size in bytes of the mailgram

to be written;
name: 32-byte character - name of the common-memory

mailbox to be written;
text: up to 520-byte data structure - mailgram

to be written.

"Size" bytes of the specified "text" are written to the common
memory mailbox identified by "name" . If the mailbox was not
previously connected, it is opened for output by MBHAND.

\IV 21

AMRF Network

4.5.2. 3. Mailbox Read

Command structure:
type: 1-byte character, value "R" - indicates a Mailbox

Read command;
dir: 1-byte character, value <NULL> - not used;
size: 2-byte integer - size in bytes of the mailgram

to be read;
name: 32-byte character - name of the common memory

mailbox to be read;
vmbx : 32-byte character - (optional) name of the VMS

mailbox to receive the contents of the
designated common memory mailbox.

"Size" bytes of the specified common memory mailbox identified by
"name" are written to VMS mailbox designated by "vmbx". If the
mailbox was previously connected with "vmbx" specified, "vmbx"
may be null, and the VMS mailbox associated by the Connect
command will be used. Otherwise "vmbx" is required. If the
variable was not previously connected, it is opened for input by
MBHAND

.

5 . SUBNETWORKS

Subnetworks are used within the AMRF for two reasons:

(1) To maximize response time (the only traffic on the
subnetwork is the traffic common to those stations).

(2) To minimize network loading (no unnecessary traffic
echoed throughout the cable plant and generating
unnecessary loading.)

Two subnetworks are identified in Figure IV-3:

(1) at the Inspection Workstation (serial RS232), and
(2) at the Horizontal Workstation (Ethernet).

Real-time control dialogue can overload the plant network. The
purpose of the subnetworks is to isolate large volumes of local
traffic from the primary network pathways. This has the
advantage of enhancing overall communications performance.

The subnetworks are connected into the main plant network through
" gateways .

"

IV - 22

AMRF Network

Figure

1V-3

.

The

Topology

of

the

1986

AMRF

Network

AMRF Network

6 . SECONDARY COMMUNICATIONS SYSTEMS

Some point-to-point connections that do not implement AMRF
network protocols are used to provide interim communication links
between the local common memory of controllers that are not on
the AMRF network and the global AMRF common memory* These
temporary communication services will soon be replaced with a MAP
broadband interface and direct links to the AMRF global common
memory and Integrated Manufacturing Data Administration System
(IMDAS)

.

6.1. PC-to-Sun (CELL and MHS

)

Two temporary interfaces are currently implemented to link the
CELL and material handling system (MHS) PCs to the global AMRF
common memory through a local common memory interface resident on
a Sun microcomputer workstation. This temporary interface
consists of a serial asynchronous module that communicates with
the respective PC and a TCP module that uses sockets to
communicate with the local common memory server.

In the future, as appropriate software and hardware become
available, this temporary interface will be replaced. A common
memory system and network interface process (NIP) providing
direct access to the AMRF MAP network and the AMRF global common
memory will be installed on each of the PC-based controllers.

6.1.1. TCP Communications

The TCP communications architecture has already been described in
Section III. 2. 2.1. Programmers reference information is
available in Section V.1.2.

6.1.2. The Serial Communications Link

The transfer of messages across the serial link is coordinated
using a master-slave relationship between the communications
module on the Sun and the communications module on the respective
(CELL or MHS) PC. The PC is designated as the master and the Sun
is designated as the slave. The master has the time critical
process running on it, and thus determines when message traffic
can be sent over the link.

The master and slave serial port servers coordinate the transfer
of messages by a protocol which depends on sending. The protocol
is composed of byte counts, communications control blocks, and
data message blocks. The byte count is used to tell the system
on the other side of the link the number of bytes to read from
the port. The receiving system echoes the byte count to indicate
that it is ready to receive the next message.

IV - 24

AMRF Network

6.

1.2.1.
Message Structure

A communications control message is typically five bytes in
length. It is used to set system mode to send or receive all
data message blocks, indicate end of mode (i.e., all incoming or
outgoing message blocks have been sent), acknowledge or negative
acknowledge a valid message was received (i.e., initiate
retransmission of bad blocks), etc.

The communications control blocks and data message blocks have
the same four byte header consisting of a checksum, a message
length, a mailbox number, and a message block number.
Communications control blocks have a one byte text field that
indicates a change in communications mode, or an acknowledge or
negative acknowledge for the last block. Data message blocks
have a one to 240 byte text field that may contain a whole
message or one block in a chain that together comprise a whole
message

.

6. 1.2.

2.

Module States

The different stages in the communications cycle are implemented
as finite state machines. When the communications module is
activated by the system supervisor module, it cycles through the
state machine performing communications functions until an EXIT
state is reached.

6. 1.2. 2.1. Check Status State

When the communications module is activated, it first determines
whether or not it is time to send or receive messages. Message
transmission is currently set to occur on 7.5 second intervals
for performance reasons. Because of the 9600 baud serial link to
the Sun computer and the relative infrequency of traffic at the
cell level in the AMRF hierarchy, this interval seems to be
satisfactory. When the direct network link is established on the
CELL controller, traffic will probably be processed on a much
more rapid control cycle basis.

6 . 1 . 2 . 2 . 2

.

SEND State

If it is time to transmit messages, one of the following actions
is taken. If the communications management module is activated
in SEND mode, it checks a counter on each mailbox to determine
whether or not it contains new outgoing mail. Each mailbox has a

pointer to the chain of ready message blocks that make up the
mailgram. Each message block has a four byte binary header and
between one and 240 bytes of text. The header includes a

checksum, a block length, a mailbox number, and the number of the
particular block within the mailgram.

IV 25

AMRF Network

Pointers to all READY message blocks are entered into a READY
blocks table. The communications manager places the
communications server on the Sun microcomputer in RECEIVE mode.
Message blocks are subsequently transmitted and acknowledged.
The servers at both ends of the serial link automatically handle
some error recovery and retransmission of garbled messages. The
messages are transferred from the mailboxes internal to the
server on the Sun computer to the Sun common memory areas by TCP
subroutine calls. Once mailgrams reach this memory area they are
accessible to the AMRF network and all other systems within the
AMRF that are connected to the network.

6. 1.2. 2. 3. RECEIVE State

If the communications manager is in RECEIVE mode, it uses the
local protocol to place the server running on the Sun into SEND
mode. The Sun communications server follows a procedure similar
to that outlined above (Section 6. 1.2. 2. 2) to transfer new
mailgrams that it has obtained from common memory on the Sun. As
each message is received on the PC, the communications module
obtains a data block from a free list, copies the incoming bytes
into the block, reads the header, performs checksum calculations,
chains error-free blocks into the specified mailbox, and updates
the appropriate data sequence numbers. If necessary, it will
request retransmission of garbled blocks.

6 . 1 . 2 . 2 . 4

.

EXIT State

Once all messages from the Sun have been received, the
communications module enters the EXIT state and control is
returned to the system supervisor so that other CELL functions
may be performed.

IV 26

AMRF Network

V. PROGRAMMER REFERENCE SECTION

In many cases, the common memory interface is tightly coupled
with the NIP interface, and it is difficult to discuss one
without concurrently discussing the other. The following
sections describe the interfaces to common memory and the NIP.
The description for the various implementations is presented in
the respective separate section ONLY if there is a logical
separation in the services provided. Where no logical separation
exists, the descriptions for both are located in the NIP section.

It is assumed that the individual reading through this material
is familiar with structured programming languages such as "C" and
Pascal. The NIPs are primarily written in "C" (for all systems
except the IWS

)
and Pascal (only the IWS) . However, due to

system language or service limitations, some code on virtually
all systems had to be written in assembly language.

This material is to be used for reference information, and
assumes that the reader is referring to a NIP source listing.
The Multibus version of the network interface program is the most
representative of all NIPs, since most other NIPs are derived
from it. Likewise, the VAX common memory [14, 15, 16] is the
most representative common memory implementation.

Since most NIPs are identical, no attempt has been made to
provide a complete list of function calls, arguments, and
returned values for the individual NIPs. Again, the reader is
encouraged to examine the Multibus section for representative NIP
information (the VAX TCP NIP shows representative interfaces for
this other version of the NIP), and reference [15] for common
memory interfaces. The remaining implementation descriptions
identify program coding or structural differences from these
original implementations.

1. COMMON MEMORY

1.1. DEC VAX 785 Implementation

The VAX common memory implementation is based entirely upon the
work performed on the Hierarchical Control System Emulator
(HCSE) . All interface specifications are documented in the
respective references [14, 15, 16].

1.2. Sun Microsystems Implementation

1.2.1. Introduction

This system emulates a shared memory system and is loosely based
on the common memory implemented for the VAX through the
Hierarchical Control System Emulator (HCSE) . User processes can
reside on the same computer system as their local common memory.

V - 1

AMRF Network

or they can be distributed throughout a number of other remote
computer systems accessible thru the TCP/IP-based local area
network. Likewise, the shared memory system can reside entirely
within a single computer system or can be distributed across
several computers linked in the same way. A server, the common
memory manager, handles requests to manipulate shared variables.

The Sun common memory emulation was originally designed for the
purposes of providing communication between hierarchically
controlled processes. There are a small number of functions
specifically for the purpose of making communication of such
style easier, but the emulator is certainly not restricted by
this and, thus, it also provides communications between processes
with arbitrary relationships.

The Sun common memory is implemented as memory private to the
common memory manager, which it reads and writes in response to
requests by clients (i.e., a centralized access control). The
HCSE uses a distributed form of control, depending on each
process to pass access control to the next. A defect of
distributed control is that the unexpected death of a process
halts the emulation when access control is passed to the dead
process during the next cycle. By centralizing access control,
the unexpected death of any user process will not halt the
emulation. The common memory manager can be monitored and any
another process can take over the responsibilities of a deceased
process

.

1.2.2. Required Processes

There is only one special process that must always be running
before a user application attempts to attach to common memory:
the common memory manager. The existence and/or activation of
auxiliary processes such as front-ends, debuggers, and editors is
not necessary for operation of the common memory and does not
affect a user application attaching to common memory.

The common memory manager handles requests from processes to
read/write common memory variables. Various other requests are
possible such as dynamically changing the size, type or writer of
a variable. This last function is very useful when a process
agrees to directly take over a resource that can be passed around
between processes.

1.2.3. How To Use The Common Memory System

The common memory manager emulates a shared common memory with
specific features for supporting communication between
hierarchically controlled processes. However, communicating
processes need not be hierarchically controlled.

V - 2

AMRF Network

This document describes how to use the current implementation on
the Sun Workstation (running Sun UNIX 1.x, 2.x and 3.x). It has
also been ported to the Silicon Graphics Iris. Sample calls are
shown for both "C" and Lisp.

1.2. 3.1. Process Identification

Before any other calls to the common memory system, the process
should identify itself to the system:

int rc = cm_process_name ("HWS "
,
" cmm_host " , 0) ; /* C */

(cm_process_name "HWS" "cmm_host" 0) ; Lisp

Here, we have declared ourselves as "HWS". This name need not be
unique, however when debugging, you will find it helpful if you
have chosen different names for your cm users.

The second parameter to cm_process_name
()

is the name of the host
on which the common memory manager is running. Note that while
there may be a common memory manager running on the local
machine, this function call permits you to select a specific
local or remote common memory for attachment. The local machine
may be designated either by its name or by a null string.

The third parameter to cm_process_name
()

is an integer which
indicates the debugging level. 0 indicates no debugging. Larger
values request more debugging information. For example, 2 will
give you information about messages sent and received. 5 will
generate information about individual common memory values being
manipulated. With 10, you will get a veritable flood of
information (that you almost certainly don't want) including
things like memory allocation, variable copying, etc.

cm_process_name(
)
also performs some necessary initialization of

CM client data structures. cm_process_name
()

returns 0 if
successful. Anything else is an error. A common error is that
the common memory manager is not running.

Before a second (or any further calls to) cm_process_name
()

call,
cm_exit() should be called. cm_exit() tells the common memory
manager that you have exited the common memory environment. It
also cleans up various data structures internal to the cm system.

cm_exit
()

;

(cm exit)

V - 3

AMRF Network

1.2. 3.2. Using Common Memory Variables

The following subsections describe the interfaces to common
memory as well as the sequence for accessing a common memory
variable

.

1.2. 3. 2.1. Declaring Variables

All variables must be declared before use. cm_declare() is used
to declare common memory variables.

date = cm_declare("date" , CM_TYPE_STRING,CM_ROLE_XWRITER,
CM_PERIOD_FOREVER)

;

(setq date (cm_declare
"date"
CM_TYPE_STRING
CM_ROLE_WRITER
CM_PERIOD_FOREVER)

)

cm_declare() returns an object that can be used when referring to
this variable in the future. This object can be stored into a
variable declared as type cm_variable. If cm_declare(

)
returns

CM_BAD_OBJECT , the declaration has failed (an error message will
be printed out explaining why). Declarations can fail for a
variety of reasons (bad or conflicting arguments, no space left
to store values, etc.).

Once cm_declare() has returned an object, this object should be
used whenever referring to the variable. In the case of
cm_declare, the first argument is almost always a string, while
in all other functions, the variable identifier is almost always
an object. cm_declare(

)
also allows an object as its first

argument. This is for the purpose of redeclaring (for example,
the type of) a variable during runtime.

In the example above, "date" is declared to be a string. From C,
all the built in types are available. Only one C structure is
usable, to support arbitrary sized pieces of memory. (More on
this below.) From Lisp, only strings and vectors can be passed.
This will be expanded in the future. For more information, see
Section V. 1.2. 3.2.2. below.

The third argument of cm_declare specifies access rights. The
available access rights are:

CM__ROLE_NONXWRITER or CM_ROLE_NONEXCLUSIVE_WRITER
CM_ROLE_XWRITER or CM_ROLE_EXCLUSIVE_WRITER
CM_ROLE_READER
CM ROLE WAKEUP

V - 4

AMRF Network

These access rights can be combined by ORing. For example, the
wakeup right is always combined with at least one of the others

.

"wakeup" causes the common memory manager to wake the process up
whenever the variable is written by someone else.

Conflicting combinations should be avoided. If one process has
declared a variable CM_ROLE_XWRITER , other processes are
prohibited from any kind of write access to that variable. These
are the only restrictions on variable access.

The fourth variable in cm_declare() provides for a timeout on
each variable. This is only meaningful when a variable is being
written. A variable times out if it has not been written in the
last p time units, where p is the period. Once a variable has
timed out, it can be redeclared by any other process (typically
for changing the access to writable) . Timeouts are meaningless
for non-exclusively-written variables.

Periods are defined easily by the function, set_period
(

)

.

#include <sys/time.h>

struct timeval period;

set_period (^period , seconds , milliseconds)

;

Two predefined periods exist for convenience. period_infinite is
an infinite period of time. period_zero is no time at all.

1.2. 3.2.2. Variable Types

1.2. 3. 2. 2.1. Predefined Types

The following types can be used:

CM_TYPE_INT
CM_TYPE_FLOAT
CM_TYPE_DOUBLE (or TYPE_REAL

)

CM_TYPE_STRING
CM_TYPE_LIST
CM_TYPE_CHAR
CM_TYPE_BIT (or TYPE_BOOLEAN

)

CM_TYPE_SIZED

Even though some of these types are stored identically internally
(e.g. CM_TYPE_INT and CM_TYPE_FLOAT) , they are used differently
when machine-to-machine conversion occurs, therefore, it is
important that they be used precisely.

CM_TYPE_LIST is for communicating with Lisp programs. Lists are
stored like strings internally, however they have formatting
rules that must be followed in order for the data to be

V 5

AMRF Network

meaningful in the Lisp environment. Data generated by Lisp will
appear in dotted pair notation. For example, the list (a (b c))
in dotted pair notation is (a . ((b . (c . nil)) . nil).
Similarly, you must specify expressions in this dotted pair
notation

.

CM_TYPE_SI ZED provides for raw bytes that are to be transmitted
without interpretation. In this case, the data must include a
size, so that the cm system knows how big the object is.
Structure psiz_data is used for this.

struct psiz_data { /* pointer-to-sized data */
char *data;
unsigned short msize; /* size of malloc'd space */
unsigned short size; /* size of used space */

}

If msize is 0, the common memory system will allocate space using
malloc whenever the common memory system passes a value to the
user. Further, if msize is ever smaller than the incoming value,
the pointer will be realloc ' d and msize increased appropriately.

Note, however, that languages such as Lisp which do not believe
in malloc, will not be able to use the autoexpansion feature,
since the CMS may attempt to free a Lisp object, which would be a

serious mistake. To thwart such attempts, psiz_data should be
initialized to point at a data block that is as large as will
ever be necessary. msize should be the size of this space.

The address of the psiz_data object is passed as a cm_value and
may be used as an argument to cm_set_value and its relatives.

The structure psiz_data is predeclared in Lisp (via c-declare)
along with corresponding access functions. For example, to
declare and set the size element of the psiz_data structure
called "foo":

(setq foo (make-psiz_data
)

)

(setf
(
psiz_data->size foo) 17)

1.2. 3. 2. 2. 2. User-Defined Types

The original common memory design was to support user-defined
types, but experience with other common memory systems have
taught us that this is "a bad thing". There is no reason why the
common memory should know the type of the data that it is
storing

.

V - 6

AMRF Network

In practice, types other than CM_TYPE_SIZED are rarely, if at
all, used. Variables are then encoded and decoded in accordance
with ASN.l (X.409). This provides for structured types which are
machine independent.

1.2. 3. 3. Reading And Writing Variables

Variables may be read and written with the following calls:

cm_get_value (variable , value)

;

cm_set_value (variable , value)

;

(setq value (get_value variable))
(cm_set_value variable value)

Variable must be an object that has been returned by declare().
Value is the address of a value of the appropriate type for the
variable. For example, to store a date in the date variable
declared above, we would say:

cm_set_value (date , "Wed Dec 5 13:45:55 EST 1984");

(cm set value data "Wed Dec 5 13:45:55 EST 1984");

Several specific functions exist for handling handshaking between
superior and subordinate processes in a control hierarchy.
Specifically, variables can be used for command or status.
Status variables are identified by the system with command value
they are associated with.

Variables which are command variables should be read and written
with the following routines:

cm_set_new_command_value (variable , value)

;

cm_get_new_command_value (variable , value)

;

(cm_set_new_command_value variable value)
(cm_get__new_command_value variable value)

One utility routine is available for determining whether a new
command has been received. cm_new_command_pending

()
returns TRUE

or FALSE depending on whether a new command has been received.

maybe = cm_new_command_pending (command_variable)

;

(setq maybe (cm_new_command_pending command_variable
)

)

When a new command has been received, cm_new_command_pending will
return TRUE until cm_get_new_command_value

()
has been called,

after which it will return FALSE. cm_get_new_command_value
(

)

V - 7

AMRF Network

also returns TRUE or FALSE, depending upon whether it has
detected a new command.

Status variables must be written with the routine,
cm_set_status_value

(
)

.

cm_set_status_value (command , variable , value
)

;

(cm_set_status_value command variable value)

Status (and any other) variables may be read with the routine
cm_get_value

(
)

.

Two predicates are available that are of use to the superior
process in determining which command a subordinate process'
status is in response to.

maybe = cm_status_equal (cmd_var , stat_var , s_value)

;

maybe = cm_status_synchronized (cmd_var , stat_var)

;

(setq maybe (cm_status_equal cmd_var stat_jvar s_value)

)

(setq maybe (cm_status_synchronized cmd_var stat_var))

cm_status__equal
()

returns TRUE or FALSE, depending on whether or
not the status variable, stat_var, has the value, s_value, and is
in response to the command specified by cmd_var«

cm_status_synchronized
()

returns TRUE or FALSE, depending on
whether or not the status variable, stat_var, is in response to
the command specified by cmd_var. This is very helpful to the
superior process in finding out whether the subordinate process
is responding to the command.

1.2. 3.4. Synchronization

Since the common memory and user processes are actually
unsynchronized processes, it is necessary to synchronize them
occasionally. The idea of calling cm_sync(), is to force all
variables common to the user and common memory manager processes
to have the same value.

cm_sync (behavior)

;

(cm_sync behavior)

cm_sync(
)
takes one argument that allows several behaviors by the

common memory manager. There are two sets of options.

The first specifies whether cm_sync() should wait for at least
one set of variable updates (or any response from the common
memory manager). The default is CM__WAIT. To poll and return
immediately, use CM_NO__WAIT.

V - 8

AMRF Network

The second option allows one the ability to examine the one set
of variable updates before it has (possibly) been overwritten by
an immediately following set of updates. This is very useful if
you have a variable which you expect to be written by multiple
processes

.

Selecting CM_WAIT_AT_MOST_ONCE allows you to read a variable's
value before it is overwritten by yet another value from the
common memory manager. This is useful, for server processes,
which take requests off a queue. The default is CM_WAIT_FOR_ALL
which simply returns the most recently written value.

These options should be combined with a bitwise OR operation.
For example, to poll for at most one new set of variable values:

cm_sync (CM_NO_WAIT | CM_WAIT_AT_MOST_ONCE)

;

However, it is expected that most clients will simply want to
use

:

cm_sync (CM_WAIT)

;

cm_sync returns either 0 (normal completion) or negative numbers
denoting an error (see the cm.h source file).

1.2. 3. 5. More About Variables

Variables are more structured than in the VAX HCSE. This allows
easier control of variables. For example, handshaking between
two levels of the hierarchy is automatically handled by command
associations embedded in the variable structures. Variables are
also tagged with their type, length, etc...

Common memory variables have the following attributes:

/* handshake. h */
char name [MAXVARIABLENAMELENGTH]

;

unsigned int type;
unsigned long count; /* nth definition of this value */
unsigned long old_count; /* -- ditto -- when last read */
unsigned short size; /* size (bytes) of uninterpreted data */
struct timeval ^period; /* how long data is good for */
struct timeval *time_stamp; /* when last written */
command_association command_association; /* command with which

this variable is associated */
command_association old_command_association; /* when last

read */
char *data; /* uninterpreted data */

V 9

AMRF Network

Variables also have the following attributes (which are strictly
internal to the common memory manager).

char xwriter [PROCESSNAMELENGTH]

;

struct {

unsigned reader : 1;
unsigned writer : 1;
unsigned wakeup : 1;
unsigned new : 1;

} role [PROCESSES]

;

/* exclusive writer */

/* written since read */

1.2.4. Compiling (or interpreting) CM Code

Two libraries are necessary for using common memory. cmlib.a is
the common memory client code. This uses a lower-level library,
libstream.a, which provides connection and packet service on top
of TCP. Both libraries normally live in /usr/local/lib

.

Thus, to link common memory programs:

cc foo.c -1cm -Istream

Include files reside in /usr/iocal/include/cm . Normally, it is
necessary only to include /usr/include/sys/time . h and
/usr/local/include/cm/cm_user . h as follows:

#include <sys/time.h>
include <cm/cm_user . h>

.lisp files are in /usr/loca-l/lisp. There is one file provided
to initialize common memory from lisp, cm_user . lisp . Thus to use
common memory, you should execute the following:

(load ' cm/cm_user . lisp

)

1.2.5. Starting The Common Memory Manager

In the AMRF, the common memory manager executable program is
located in directory /usr/local/bin . The common memory manager
should be started before any processes are started. Anyone can
start the common memory manager (i.e. you do not have to be root
or have the same uid as any other users of the common memory
manager). Just type:

/usr/local/bin/cmm

Normally, nothing else is required, however the common memory
manager can take some arguments to modify the default behavior.

V 10

AMRF Network

ARGUMENT -d [0-9]
•

This argument will cause the common memory manager to print out
debugging information. Higher numbers evoke greater amounts of
output, since the debugging information displayed includes all
output generated by the lower numbers. Current debug level
assignments are:

0 means no debugging
3 refers to message handling
6 refers to slot (message contents) handling
9 refers to most buffer/byte/string coping.

ARGUMENT -t seconds

This argument blocks waiting for up to this time period, if the
client's kernel queue is full while the common memory manager is
trying to send a message to the client. After the time out
expires, the common memory manager goes on and will retry later.
This typically implies that the client is hung, but is not always
the case. The default time out period is 5 seconds.

ARGUMENT -p port_number

The initial connection port that the common memory uses may be
changed by specifying the port number. The default is 1525.
This is useful if you want to have multiple separate common
memories on a single computer.

The common memory manager does not require a controlling terminal
to run. Note, that if the common memory manager is killed, all
the processes using it will terminate if they are writing at the
moment that the common memory manager is killed. This is due to
a SIGPIPE being sent to each of the clients. If you do not want
this behavior, you should surround your calls to cm_sync with a
setjmp/longjmp alarm, just the way one normally does with
blocking writes. (The common memory manager does this internally
to protect itself from the client's dying. You can look at it in
man.c.) In typical use, however, people do not do this, since
the common memory never dies of its own accord.

Once the common memory manager is running, you can start the user
processes. Specifically, the common memory manager process
should be started before the first cm_process_name

()
is executed.

If a common memory manager process is started while one is
already active, the second manager process will detect the
presence of the first one, display a message reporting this fact,
and exit.

V 11

AMRF Network

1.2.6. Additional Lisp Notes

In Lisp, all functions ate identical to their C counterparts.
Common sense dictates usage differences. A small Rosetta stone
is presented:

For C

:

date = cm_declare(......);
foo = cm_declare (, CM_ROLE_READER , CM_TYPE_LIST

,

CM_PERIOD_FOREVER)

;

cm_sync (WAIT)

;

cm_set_value (date ,
" 12 Dec ...");

cm_get_value (foo , foolist)

;

For Lisp:
(setq date (cm_declare 'date CM_ROLE_XWRITER

CM_TYPE_STRING CM_PERIOD_FOREVER
)

)

(setq foo (cm_declare 'foo CM_ROLE_READER CM_TYPE_LIST
CM_PERIOD_FOREVER)

)

(cm_sync WAIT)
(cm_set_value date "12 Dec...")
(setq foo (cm_get__value foolist))

Note that uppercase values denote constants that should be
evaluated before use (i.e. unquoted). For example, to check if
cm_declare() returns without failure the code would look like:

(cond ((eq CM_BAD_OBJECT (cm_declare)) nil)
1 1

1

)

)

1.2.7. Using Sun Common Memory With VAX Common Memory

The following section is only appropriate to people using the
VAX's HCSE code under VMS.

It is possible to run the same code on the Sun (Sun CM) and the
VAX (HCSE CM) if certain steps are taken.

An interface library is supported that effectively replaces the
Sun CM user calls with calls into the HCSE library. This library
is currently available in ~libes/cm/src . 5v

.

Code using the UNIX CM library with HCSE should add the following
parameters to the link command (in a .opt file)

userl
:

[libes . cm . src$5n5v] suncmlib/lib

,

cm__library : cmlib/lib,
psect=cm_shrmem

,
page

V - 12

AMRF Network

Versions of the code compiled for debugging are available by
specifying:

userl: [libes.cm. src$5n5v] suncmlib_debug/lib

,

cm_library : cmlib_debug/lib

,

psect=cm_shrmem
,
page

1.2. 7.1. Restrictions

1 . 2 . 7 .

1

. 1

.

Types

The type systems in both the Sun system and the HCSE system are
quite different. The HCSE types are based on Praxis. Primarily
this means that they have user-definable types. Secondly, there
are no arbitrarily-sized data objects.

Two extra parameters on the cm_declare statement exist in the Sun
CM to get around this. The first is a maximum size. The second
is a pointer to a type structure. If the type structure pointer
is zero, the size is used to automatically select a type
structure. For more information about creating type structures,
see the HCSE programmer's reference manual [15].

A typical call that would be portable to both the Sun and VAX
systems looks like the following:

if (!
(date = cm_declare ("data" , CM_TYPE_SIZED

,

CM_ROLE_XWRITER , CM_PERIOD_FOREVER
ifdef VAX11C

end if
, 1000,0

))) (

printf ("declare of var failed\n"
)

;

exit (-1)

;

When compiled by the DEC C compiler, the additional two
parameters will be included.

1.2. 7. 1.2. No Queued Updates

The HCSE CM does not support queuing of variable updates. This
means that if one process goes to sleep while a second process
writes a variable several times, if the first process then wakes
up, it will see only the last values written by the second
process, not all the intermediate ones.

A different explanation of this phenomena is that there is no
difference between specifying CM_WAIT_AT_MOST_ONCE and
CM_WAIT_FOR_ALL in cm_sync

(
)

.

V 13

AMRF Network

1.2. 7. 1.3. No Command Associations

The third difference is that the HCSE does not store command
associations with variables in the common memory manager itself.
(In fact, they are just dropped on the floor). Therefore,
routines like cm_status_equal

()
don't work.

If you need command associations or their effect (and most people
do), you must stuff in a number in front of every variable
indicating how many times this variable has been written. Then
create a new variable that holds the old value of the number
which you can use to compare it against.

A package that implements this along with current mailbox types
in use in the AMRF lives in k : -network/mailbox . An example using
these functions is in the cm source directory in vws . c . vws.lisp
is a Lisp version of the same thing.

1.2.8. Unusual Types

Most types have the obvious meanings. Unusual types will be
discussed here. The following is planned but unimplemented

.

CM_TYPE_SEMAPHORE is a type for performing synchronization. The
only operations defined on a semaphore variable are wait() (p)
and signal () (v)

.

They have the standard meanings as shown
below. Note that use of either wait() or signal () forces common
memory to be accessed (on the spot).

cm_wait (sem

)

{

wait until sem>0;
s—

;

}

cm_signal (sem

)

{

s++

;

}

V

AMRF Network

1.2.9. Basic Limitations of This CM Implementation

Certain limitations exist in the common memory manager. It is
possible to change any of these and recompile. Changeable
limitations (and their defaults as the system is distributed
are

)
:

/* cm.h */
CM_ MSGSIZE 100000 /*

CM SLOTSIZE 20000 /*

PROCESSNAMELENGTH 20 /*
VARIABLENAMELENGTH 20 /*

/* cm man.h */
CM_ MAXVARIABLES 50 /*

CM__MAXPROCESSES 20 /*

Maximum size of any single set of
variable updates between the
common memory manager and a user */
Maximum size of any single variable */
Maximum length of the process name */
Maximum length of any variable name */

Maximum number of variables local to
the common memory manager */
Maximum number of processes that can
to the common memory manager
simultaneously

.

Absolute maximum of 32 (or number of
user file descriptors) under 4.2BSD.*/

/* cm_user.h */
#define MAXUSERVARIABLES 100 /* Max number of variables local

to a user */

1.3. Multibus Implementation

The Multibus common memory interface is tightly coupled with the
NIP software, and is presented in Section V.2.I.3., below.

For descriptions of the user interface, the interested reader is
referred to the appropriate Robot Control System documentation.

1.4. Hewlett-Packard 9000 Series 200 Implementation

The NIP interface to common memory is documented in the NIP
reference section. For descriptions of the user interface, the
interested reader is referred to the appropriate Inspection
Workstation documentation.

V - 15

AMRF Network

2. NETWORK INTERFACE PROCESS (NIP)

2.1. Serial Asynchronous NIPs

The following subsections describe the various asynchronous NIPS.

2.1.1. DEC VAX 785 Implementation

The VAX NIP is virtually identical to the Multibus
implementation, but takes advantage of a significant number of
system calls available through VMS to provide timer, dispatcher
and asynchronous trap (AST) service. The interested reader is
referred to the VAX NIP listing for examples of the incorporated
VMS system calls, and to the Multibus documentation for program
module documentation.

2.1.2. Sun Microsystems Implementation

The Sun NIP is a port of the 68000 (Multibus) NIP. The following
subsections identify different problems that had to be overcome
in developing the Sun implementation from the Multibus NIP.

2. 1.2.1. Implementation Approaches

There were two approaches possible for the implementation of the
Sun NIP:

(1) do what we had done previously, and install a board with
the NIP software into the UNIX computer systems, and

(2) port the NIP software into UNIX directly.

Approach (1) looked more difficult for several reasons:

(a) Our UNIX systems came in all shapes and sizes, and we
lacked the support to keep up with the rapid influx of
new hardware. Software support seemed easier.

(b) Buying boards for the numerous systems was expensive,
whereas UNIX processes are free.

(c) We estimated that the software effort to port the NIP as
user code was less than writing a special driver to
support the NIP on a board.

V - 16

AMRF Network

Having decided to implement the NIP directly into the UNIX
environment, several recent additions to 4.2 BSD UNIX were
critical

:

(a) software interval timer with accuracy of milliseconds,

(b) asynchronous input/output, and

(c) software signal facilities.

2. 1.2. 2. Shared Data Structures

Several data structures were shared between the cooperating
processes of the NIP. While 4.2 BSD promised shared memory, it
failed to deliver in this respect, so we decided to try
simulating multiple processes in a single UNIX process. This
would give us the ability to have shared data structures:
something which is essential to the original design of the NIP.

In order to accomplish this, we retained the original overall
design of the NIP as a minimal operating system. We included the
original scheduler and dispatcher (with some minor modifications)
from the stand-alone NIP, along with the original processes as
subroutines

.

The main route was then rewritten to look like

main
() {

fg
(
process_l)

;

bg
(
process_2 , 10)

;

bg
(
process_3 , 17)

;

dispatch
()

;

}

The second argument of bg (background) specified that this
process (subroutine) was to be run after that many time units
(milliseconds, here).

Processes could start up other processes after the dispatcher had
started, if desired.

While the subroutine/processes were viewed as co-routines, the
only way to return control to the dispatcher was to explicitly
return

(
) . All background tasks were expected to return at a

convenient but brief interval of execution time. The tasks were
then rescheduled for execution. During re-execution, each task
started by examining a state vector and continued processing from
where it had stopped earlier.

V 17

AMRF Network

A more sophisticated solution would have been to provide separate
execution stacks for each subroutine started by bg

(
)

.

Of course,
this leads into the complex topic of scheduling. Auxiliary
arguments to bg

()

,

such as maximum time quantum, priority, etc.,
would be useful. Our solution took the easy way out, at a small
expense in user coding effort.

2 . 1 . 2 . 3

.

Timers

The stand-alone NIP made use of a MC6840 timer chip to generate
timer interrupts at a known interval (10msec). At each
interrupt, a queue was examined for expired timers.

We knew 4.2 BSD supported subsecond interval timings, however we
were unsure how much of a load constant 10 msec interrupts would
place on the system. Here, each interrupt was to be processed by
a user interrupt handler, meaning that at least one context swap
would occur at each interrupt. To reduce this interrupt
overhead, we decided to continually schedule the next interrupt
for the next shortest timer (which was presumably longer than 10
msec)

.

This made the timer code slightly more complex than the original.
For example, when adding a timer the original code simply added a

timer entry. The 4.2 BSD code had to check first if the new time
out was shorter than the timer currently being waited for. If
so, the time out was cancelled and rescheduled.

Because the timer was not scheduled at a regular interval, we
expected a skewing of time, as our own code to handle the timers
after they have occurred (or were cancelled) but before the next
one is scheduled takes time to execute. Since accurately
predicting measurements of user code in real-time is impossible
in UNIX, this is corrected by occasional comparisons against the
time-of-day clock.

2 . 1 . 2 . 4

.

Input/Output

Because the Sun NIP ran on top of UNIX, there was no need to
provide device drivers at the physical layer. All access to
devices went through the UNIX device drivers. This had both
advantages and disadvantages.

The obvious advantages were that we did not have to worry about
supplying devices and their low-level drivers. All UNIX devices
were accessible at the system call level. This immediately leads
to the primary disadvantages.

The I/O system used by the stand-alone NIP was heavily based on
the VMS model. VMS provides very complex options for I/O, such

V 18

AMRF Network

as functions to be called at I/O completion (or timeout), not
supported by typical UNIX drivers.

UNIX provides asynchronous I/O but with an extremely crude
interface through fcntl, select and read/write. If I/O is
attempted when such an operation would block, the system call
returns EWOULDBLOCK . If partial reads or writes can be done, the
number of bytes transferred is returned, and the I/O must be
rescheduled again until completed or EWOULDBLOCK is returned.

In order to avoid blocking, a signal (SIGIO) can be requested to
be delivered upon the ability to read or write without blocking.
In order for this to be useful, I/O operations were attempted
immediately and queued if not (or partially) successful. A SIGIO
handler was written that called select () to determine where I/O
was pending. By comparing it to the queue of user requests, it
was able to match against I/O operations of interest, and return
or resume the I/O request. At I/O completion, the user
completion routine was called.

Timeouts were handled by declaring a background process (using
bg) that would trigger once after the appropriate interval,
deleting the I/O entry and calling the user's function that
indicated the I/O had failed by timeout.

We used the serial ports on the Suns. However, their primary
drawback was that the Sun drivers were quite limited in the
amount of throughput. They were quite slow, and had limited
input buffering capability (approximately 256 bytes). Receiving
packets larger than the device driver's input buffer size or
receiving them too quickly back-to-back would put the driver into
a hung state.

2.1.3. Multibus Implementation

These sections describe the NIP, as written for implementation on
the Omnibyte and Pacific Micro 68000 boards installed in the
Multibus-based systems (all controllers of the Horizontal and
Turning Workstations). Individual modules are identified and
discussed

.

The NIP is an event driven system. The general operation is:

(1) interrupt routines service devices and set event flags,

(2) asynchronous traps (ast) are triggered by the event flags
but operate at a main processing level (not at an
interrupt level) which do most of the data movement and
protocol

,

V - 19

AMRF Network

(3) background routines run the least time sensitive
activities such as updating mailboxes and putting out the
status of the NIP.

The software is written almost exclusively in ' C', with the
exception of a startup routine (ISRVEC) and some system specific,
defined variables (<station>DEF) . The modules are broken up
along OSI lines mostly, although Copymail performs both the
application interface function and the session function, and the
link modules have a conceptually messy interface.

Control travels through the protocol stack generally by direct
calls down and ast calls up (the routines in the next higher
level to be called by ast were specified by the higher level
earlier). When appropriate, a status will be returned to the
caller (when accessing a device or indexing a table), otherwise a

desired value can be returned. It is also possible that nothing
will be returned

.

The code is completely contained within ROM on the boards. At
startup the code and static tables are copied into RAM and the
initialization sequence is executed.

2. 1.3.1. COPYMAIL

COPYMAIL is the main process in the Network Interface Process.
It establishes mailbox connections, services those connections
(by checking for changes in outbound mailboxes and updating
incoming ones), and executes commands and reports status through
the NIP command mailboxes. This runs in the background
processing mode.

The users on these systems see the network as memory areas that
they read and write to. The memory areas are structures of
variable length, the actual structure and protocol for use of
which is listed in Appendix A of this document.

2 . 1 . 3 . 2

.

XPORT

XPORT (transport) is called by copymail to get guaranteed, error
free communication service. This done by having all packets
acknowledged by its peer xport entity. If after a significant
time the packet remains unack-nowledged then an error signal is
sent up to copymail. Details of this protocol and structures
used for it are in Appendix G.

2 . 1 . 3 . 3

.

NETWORK

This module provides routing services for the NIP. An identifier
which is ROMed onboard and can be found in <station>def . a68 (see
below) as _defnadd or is determined by querying the Ethernet
board for its address, is the network address and is used to

V - 20

AMRF Network

index into a table (NETGEN
)
for gaining information about the

local node and possible routes to other nodes. Whenever a

connection is desired, the goal site name is passed through to
network and it is used to find an entry into the table in NETGEN
which has the routing information. NETWORK then uses this
information to build the 8473 network header and request the
appropriate link service to send the packet to the next node in
the route.

2.1. 3.4. MLINK

MLINK provides link services using devices that can send to
multiple nodes (ie. Ethernet). It accepts I/O requests from the
network and queues them. It establishes a table of open links
and keeps track of the links' status.

2. 1.3. 5. SLINK

The function of SLINK is similar to MLINK but for serial
communications interfaces. However, since the serial lines do
not have any implicit packetization method, packetization must be
done here also. The packet format is derived from HDLC , but the
control information is used only to determine the length of the
packet and its validity.

2 . 1 . 3 . 6 . 10

The 10 module is an I/O dispatcher, it provides a single
interface through which all the user services can access I/O
channels. Through 10 the user can: initialize a device (really
meant to be used to reset a device that has gotten into a weird
state); open a device for a particular function: read, write,
both or neither; post a read, write or both; request an id
(currently, this is an Ethernet address from an interface board);
close a device.

The following is a description of the I/O calls that a user might
want to know:

\V 21

AMRF Network

CALL

PURPOSE

ARGS

CALL

PURPOSE

ARGS

RETN

_open(dev, func, chan)

to open a communications device for specified
function

dev- a pointer to a two character ASCII word where
the first character specifies the device type by an
A-F and the second specifies the device number 0-F.
Device type determines which entry into the table
in CONFIG will be used to select driver routines to
be called

.

func- a constant which specifies how the device
will be used: IO_W, IO_R, IO_RW and IO_NRW (used for ID)
These can be found in IODEF.H68.

chan- is a pointer space where the routine will put a

two byte signed integer channel number.

_close (chan , dev

)

to turn off an I/O device and free
an I/O table entry

chan-the 16 bit integer value which had been
passed to the user when he did an _open(

)

dev-a pointer to space for the routine to put
the two character device specifier that was used to
open the device.

returns a 32 bit signed integer status which was
returned from the driver or NOCHAN if the chan
argument was bogus

.

i

v 22

AMRF Network

CALL

PURPOSE

ARGS

RETN

CALL

PURPOSE

ARG

_io(func, chan, buffer, length, option, status,
ast, arg)

this is the tool with which the user can get access to an
active channel. The user posts a request for the desired
action and _io returns a status as to the success of the
request. The action will be done by the driver through
interrupt and ast level processing and the result of the
action will be returned to the user through the ast he
passed to _io

(
)

.

func- is an action specified by a constant in
IODEF ; the possibilities are:

IO_R read
IO_W write
IO_ID used to get net address from Excelan.

chan- 16 bit int specifying channel number
buffer- pointer to memory area to manipulate data in
length- length of the message to be read or written
option- variable; the interpretation of which

depends on the device being used. It is
usually used as a timer length field. When
it is found not to be zero, the driver
starts a timer for 'option' ticks after
which the 'ast' will be triggered,

status- a pointer to the status block to be used
for this transaction

ast- routine to be called after transaction is
completed by I/O device.

arg- argument to be used when calling the ast
routine

.

a 32 bit integer indicating the success of posting
the I/O request. Valid values for this status are
in IODEF.

_inidev (dev

)

this allows the user to reinitialize the device
when it gets in a hung state.

dev- two character ASCII string indicating
device type and number.

V 23

AMRF Network

2 . 1 . 3 . 7

.

EXCELAN

EXCELAN is the device driver for the Ethernet board. It exposes
a packet oriented interface to its user. The user requests a
service such as a read or a write with corresponding buffers and
I/O status blocks (which include a transfer count and a status
variable), the driver works with the number of bytes requested of
it and returns the buffer and a status to the user.

2.1. 3.8. ACIDVR

This provides much the same services as above, except that link
packets have to be built by the user before being received by
ACIDVR.

2.1. 3.9. Special Modules

2 . 1 . 3 . 9 . 1

.

NIPMAIN

NIPMAIN performs the following functions:

(1) run the initialization routines for all modules,
(2) start the background process copymail()
(3) start the background process loader ()

(4) start the background process tester ()

2 . 1 . 3 . 9 . 2

.

CMBUFMGR

CMBUFMGR manages buffers which are used for actual data. While
there are three types of buffers (small, normal and large)
defined in cmbuf.h, only two types are managed: medium and large

Small buffers are used for exchange of control information
between peer protocol layers and are usually a part of the
control block of the module for that layer.

The manager controls the repository of normal and large buffers.
The user interacts with the buffer manager through the routines
cm__getb, cm__putb, cm_waitb and the analogous large buffer
routines cm_getl , cm_waitl

.

Function descriptions:

V - 24

AMRF Network

CALL cm getb(func)

PURPOSE to get a buffer from the manager

ARG func = INPUT or OUTPUT, what the buffer is to be
used for. This is because buffers for input are

RETN

given priority. When the buffer pool is low, only
input buffers will be issued.

a pointer to a normal buffer (type = cmbuf)

CALL cm putb(buf)

PURPOSE to give a buffer back to the manager

ARG buf is a pointer to the buffer to be returned

RETN void

CALL cm waitb(call, arg)

PURPOSE to wait for a buffer when there aren't any available

ARGS call is a pointer to the routine to be called when
there are buffers available

arg is the argument to be passed to the routine call

CALL cm getl(func)

PURPOSE to get a large buffer from the manager

ARG func = INPUT or OUTPUT, what the buffer is to be
used for

RETN a pointer to a normal buffer (type = cmbuf)

V - 25

AMRF Network

CALL cm_waitl (call , arg)

PURPOSE to wait for a large buffer when there aren't any
available

ARGS call is a pointer to the routine to be called when
there are buffers available

arg is the argument to be passed to the routine call.

2 . 1 . 3 . 9 . 3

.

CONFIG

CONFIG has links to device driver routines corresponding to I/O
channels

.

2 . 1 . 3 . 9 . 4

.

DISPATCH

The dispatcher controls all non-interrupt level processes after
nipmain(

)
relinquishes control at start up. It does this by

maintaining a list of processes to be executed. These processes
come in two varieties: AST level and simple background process
level

.

The dispatcher checks for pending ASTs (set event flags) first.
When it finds one it removes it from the table and excecutes it.

When finished with the ASTs , the dispatcher will move on to
processes. If it finds one pending, it will execute it, then
check for ASTs again. A process will stay in the table until the
user removes it, and the dispatcher does not turn off the event
flag (which shows that a process is pending)

.

Dispatch. c68 also contains routines for creating and canceling
ASTs, and logging events into a trace area in memory.

CALL _dclast (uevt , uast, uarg)

PURPOSE put an ast entry into the process table

ARGS uevt- event flag to be checked by dispatcher
which indicates that an AST is pending

uast- pointer to routine to be called when the
dispatcher finds that the AST is pending

uarg- argument to be passed to the uast routine

RETN void

V - 26

AMRF Network

CALL _dclpro (uevt , upro, uarg)

PURPOSE to add a background process entry to the process list

ARGS uevt- pointer to the event flag which indicates to
the dispatcher to call the process

upro- pointer to the process to be called

uarg- argument to be passed to the process

CALL canast(uevt, urtn, uarg)

PURPOSE to remove an AST entry from the process table

ARGS uevt- pointer to event flag which is used to
compare against table entries

urtn- routine that would have been called if the
AST had ever been pending

uarg- argument that would have been passed to the
AST routine had it ever been pending before being
cancelled

CALL _disptr (uast

)

PURPOSE to record the address of a routine in the trace
area on board. The trace area is a circular buffer

ARG

therefore it will eventually overwrite earlier
entries

.

uast is the address of the routine the use of which
is to be logged. Note that one could put any 32
bit number here.

2 . 1 . 3 . 9 .

5

. ERROR

This module provides the routines necessary to open and use an
RS-232 port for error reporting. The defined constant ERRDEV
determines which device will be used for this purpose. At the
moment it is hardcoded to use port 1 (this is the second port)

.

It only supports strings and looks like this:

err_out ("<error report>")

V 27

AMRF Network

2 . 1 . 3 . 9 .

6

. LOADER

This module is used to testing the network. Routines in this
module create a mailbox with a nonsense but unique ASCII message
and increment its sequence number. This makes it very easy to
create a large load by connecting to this mailbox through
whatever link one wants to load. All that has to be done to use
this is to connect out to load_mbx. It is always active. There
is another pre-established mailbox for testing purposes called
test_mbx. The NIP doesn't do anything to it, but the space and
name are reserved.

2. 1.3. 9. 7. MBXIO

This module contains routines for reading and writing to
mailboxes

.

2 . 1 . 3 . 9 . 8

.

SFUNCS

SFUNCS is a collection of very simple utilities which are used
for string manipulation and word order conversion.

CALL bcpy (s , d , n

)

PURPOSE copies n bytes from s to d

ARGS s- a pointer to the start of the source array
d- a pointer to the start of the destination array
n- number of bytes to be copied

CALL scpy (s , d

)

PURPOSE copies bytes from s to d until a 0 is copied

ARGS s- pointer to 0 ended source string
d- pointer to beginning of area to put copied string

CALL bcmp (a , b , n

)

PURPOSE compares two n-byte strings, a and b, and returns
-1 if a<b, 0 if a=b, +1 if a>b

ARGS a- pointer to first byte of first string to be compared
b- pointer to first byte of second string to be compared
n- number of characters of the strings to be compared

V - 28

AMRF Network

CALL scmp (a, b)

PURPOSE compares two O-terminated strings, a and b, and
returns -1 if a<b, 0 if a=b, +1 if a>b
The shorter string is extended on the right by Os.

ARGS a- pointer to first byte of string to be compared
b- pointer to first byte of second string to be compared

CALL cvtup (s

)

PURPOSE converts a lower case ASCII character to upper.

ARG s- a pointer to an ASCII character

CALL slen (s

)

PURPOSE finds length of a O-terminated string pointed to by S

ARG s- a pointer to a O-terminated string

CALL cpswp (a , b , lb

)

PURPOSE copies 16-bit word from a to b swapping bytes

ARGS a- pointer to word to be copied
b- pointer to place for copying swapped word

CALL wcpy (s,d,n)

PURPOSE copy n bytes as words from s to d

ARGS s- pointer to first word to be copied
d- pointer to place to copy words to
n- number of words to be copied

V 29

AMRF Network

CALL word bswap(w)

PURPOSE swap the two bytes of the word at W and return word

ARG w pointer to the beginning of a word

RETN byte swapped words

CALL int4 lswap(lw)

PURPOSE invert the four bytes of the longword at Iw and return
the word

ARG lw- pointer to the beginning of long word to be swapped

RETN swapped long word

2.1. 3.9.9. SYSINI

SYSINI is called from isrvec to initialize the dispatcher, the
clock and io(the system) and start the dispatcher.

2.1.3.9.10. TESTER

TESTER is a null function slot for adding optional test routines.

V - 30

AMRF Network

2.1.3.9.11. TIMER

This module incorporates both the timer device driver and the
routines for providing the user with time oriented functions such
as setting an event flag after a specified number of ticks or
calling a routine (at the highest level of maskable interrupt)
after a specified number of ticks.

CALL _setimr (intval , event, ast, arg)

PURPOSE put an entry into the timer list and activate an AST
after the specified number of ticks

ARGS intval- number of ticks to wait before setting the
event flag on the AST

event- pointer to event flag to be set when
interval has expired

ast- the routine to be called at end of timer

arg- argument to be passed to the ast routine

V 31

AMRF Network

2.1.3.10. Assembly Language Components

2.1.3.10.1. *DEF Files

These files are actually of the form <station>def . a68 where
<station> is a node name such as HWS . This is where all the
station specific configuration information is supposed to be
stored. Typically, it will contain the Multibus I/O address of
off-board I/O devices, number of I/O device types (for instance,
two for a station with a serial port and an Ethernet board),
external ram access address of onboard memory, station id, and a

network address. This module is part of the static tables copied
into RAM with the code.

For example, the following code is the station specific
definition file for the Horizontal Workstation Controller
(HWSDEF . a6 8)

:

exclpor:* I/O port address for Excelan
. long OxffOOdO * Ethernet board, 32 bit integer

iomaxd:* number of device types on this
. long 0x000002 * system

ramof f

:

* the RAM starting address on
. long 0x300000 * this board as seen over the bus

station

:

* station identifier
"HWS"
. byte 0

def nadd

:

* station network address
. byte 0x08 * (also Ethernet address)
. byte 0

. byte 0x14

. byte 0

. byte 0x39

. byte 0x66

V - 32

AMRF Network

2.1.3.10.2. ISRVEC

This module does the preliminary set up on board at reset: it
fills the interrupt vector entries, sets the stack pointer and
sets up for calling "C" routines. There is also a routine in
this file to set the interrupt mask.

CALL spl(levelSR)

PURPOSE to set the interrupt mask level

ARG value the user wants to set the 68000's status
register to. The format for this is 2X00 where x
is the value of the interrupt priority.

RETN the value the status register had before calling spl

2.1.4. Hewlett-Packard 9000 Series 200 Implementation

The IWS version of the AMRF network software was created
primarily by translating the existing C version for the 68k
Multibus systems into HP Pascal. Both languages are block
structured with many of the same control features, which made
such a direct translation possible.

2. 1.4.1. HP Pascal Extensions and Imported System
Modules

2. 1.4. 1.1. Imported System Modules

$SYSPROG$
system programming language extensions such as
TRY ... RECOVER , anyvar, anyptr, sizeof, etc.

$USCD$
ucsd version of pascal extensions

import sysglobal, sysdevs
enables direct programming of system devices such as
internal clock, timers and keyboard

import iocomasm
provided bit manipulation functions such as BINIOR,
BINAND, BIT_SET , etc.

2. 1.4. 1.2. Pointer Variables

In the rush to complete the translation/development, things such
as Pascal's "pass by reference", etc., were not used everywhere
they could have been. Instead, the HP extension of

V 33

AMRF Network

pointers was employed to support direct translation from C
pointer variables to HP Pascal pointers.

2. 1.4. 1.3. Translating The C "RETURN" Statement

Pascal has no equivalent of the "return" statement in C. Indeed
there is no need for such a statement, as one can always
restructure code to avoid its use. In translating the use of
"return" statements to Pascal, we made use of the Pascal "goto"
statement instead of restructuring the code. "Goto 999" is used
wherever C code had used "return" as a premature exit from a
procedure. Label 999 is typically at the end of the procedure.
"Goto" was used for several reasons: 1) sometimes restructuring
code to not use "return" makes it much more difficult to read and
follow , and 2) we were in a big hurry to get the IWS software
running, and keeping the Pascal code looking similar to the
original C code speeded up the debugging process.

In retrospect, the ucsd extension "exit" could have been used to
replace the "return" statements quite nicely.

2. 1.4. 2. Pascal Strings Versus C Strings

Pascal stores strings as a byte count character (0-255) followed
by that number of characters. All of Pascal's inherent string
functions depend on this string structure. C stores strings as a
null-terminated string (i.e., the string followed by a NULL
character). Strings are handled in the IWS network code
internally as Pascal-type strings. However there are a few
instances where communications with other network systems in the
AMRF require the use of C-style strings. One case is the sending
of string information to and receiving of string information from
"netcmd". In these cases, special functions were included in the
sfuncs module to translate between the two string types.

2. 1.4. 3. Pascal Type Checking And Intermodule Dependency

Pascal is more rigorous than C in checking data types,
function/procedure usage , etc. For this reason, the IWS network
software adds many new data type definitions that are not in the
C version. These are data types that are not in the C version
because C permits one to do dangerous things like mix pointer
types, usage of function return values, etc.

In addition, module dependency relationships are required to
be more explicitly defined in Pascal than in C. In several
cases, modules had to be modified because a straight translation
of the C code implied that two or more modules depended upon each
other or otherwise created a "dependency loop". For example,
module A depends on module B, module B depends on module C, and
module C depends on module A. This type of situation is not
directly supported in HP Pascal. In these cases, one direction

• V - 34

AMRF Network

of dependency is eliminated by passing the required information
at run time instead of link time. For example, xport calls
"net_sethooks " at run time to tell the network layer the
procedures to call when it has information to send to the
transport layer, i.e. the upwards "hooks” into the transport
layer. This way transport could depend on network layer, but
there was no longer a need for network to depend on transport
layer

.

2. 1.4. 4. Debug Variables Added

Debug variables were added to each module to allow the user to
track the network operation via print statement to the terminal
screen. Each module has a debug variable that can be set by the
operator at startup time. Default is zero. Non-zero values
trigger print statements.

2. 1.4. 5. Interaction With The IWS Common Memory System

The network software's main responsibility is to pass common
memory variables between the local common memory system and the
network. All common memory variable requirements are known ahead
of time (before starting up the IWS). Therefore all variables
are declared at startup time by the user program, and not
dynamically at run time by the network software as in other
systems such as the VAX and SUNs . When copymail receives a

command to connect a common memory variable, it merely checks the
common memory system (CMS) to make sure that the variable exists
and corresponds to the desired attributes of name, size,
direction of transfer, source/destination sites, etc. If the
check is unsuccessful, a message is printed on the console.

In addition to the standard INPUT and OUTPUT mailbox types, a new
type called "PASSTHRU" was invented. This was required due to
the configuration of the IWS network (IWS as the central hub in
a star configuration with CMM, SRI and RCS at the end of each
link). All information to/from each of the auxiliary stations
had to go through the hub IWS station. Since the existing
network layer software has no provision for relaying messages at
the internet layer, it was decided to do the message relaying at
the application layer. PASSTHRU mailboxes only exist on the IWS
system. Their special characteristic is that they may be
connected both as INPUT and OUTPUT, and may be connected to
multiple remote AMRF sites. Although this was previously
possible to do with the network software, the IWS CMS had no
previous provisions for multiple directions for one common memory
variable

.

V 35

AMRF Network

2. 1.4. 6. User Control During Time-Critical Periods
•

Subroutine extensions were added to the network software to allow
the IWS controlling software to manipulate the allocation of CPU
time to network software during certain critical time periods.
These routines are:

enable_nip
(

) /disable_nip
()

and
enable_clock () /disable clock ()

2. 1.4. 7. List Of Modules

Following is a list of the NIP modules on the IWS with some
commentary on some of them. Basically they fall into three
categories

:

(a) those that
additions

)

(b) those that

(c) those that

2 . 1 . 4 . 7 . 1

.

are straight translations (with maybe some
from the corresponding C version,

differ radically from the C version, and

were not in the C version

Modules that are Straight Translations

bufmgr . tex
cmbuf_h .tex
cmlkst_h . tex
config . tex
copymail.tex - modified to include the optional generation of

mailboxes locally via the netcmd module. The operator of
the IWS workstation controller has the option of
generating the mailboxes locally via script files driving
the netcmd module or by accepting commands from the
network manager running on the remote host "VAX"

Checks made on incoming mailbox connect commands:

1)
that it is common memory

2) that the size request matches that of the CM variable
3) that the direction of transfer matches that of the CM

variable. In the case of the new PASS__THRU variable
type, either INPUT or OUTPUT would pass this test.

The Boolean variables copy__done and copy_enabled were
created and used to enable higher level software (ECS) to
lock out network access to common memory during critical
times or to speed up processing during critical time
periods such as robot movement.

V - 36

AMRF Network

dispatch.tex - The procedure nullproc() was added since null
procedure pointers could not be sent, as arguments.
Dispatch is run from the ECS kernel. Copymail is a

process run every time through the dispatcher. An event
flag mask was added beyond the C version to accommodate
problems with reading the dual-port ram on the Async I/O
card

.

errors_h . tex
io . tex
iodef_h . tex
mbx_h. tex
mbxio.tex - read/write locks taken out of mailbox i/o since there

is only one processor and all i/o is completed before
leaving the task. The "one processor" attribute is
expected to remain since HP has no multiprocessor version
of the same computer and there is no expectation to
insert a specialized NET processor into the HP bus.

mbxmgr_h . tex
net. tex - net_sethooks

()
created so transport layer module could

import network module and still be able to dynamically
(run time) set the hooks (i.e. addresses of procedures)
for network to call for the cases of sending "signals" to
transport and queuing the input packets up to transport
layer. net_sethooks

()
is called at initialization time

by transport (from xp_ini) . This way, network sets up
its hooks to transport only once at startup and the hooks
to transport are valid for all network connections.

net_ini() in turn calls sl_sethooks
()

so that the link
layer can similarly set its upward hooks to network layer
for signals and input queuing.

net_h . tex
netgen.tex - we added the site identification code here. This

code identifies the IWS station (IWS , CMM , IRC, SRI) by
its switch value on the I/O card

nipini.tex - we added the initialization of debug variables
here. There is a debug variable for each module in the
network software. The operator is asked at startup time
to set any desired non-default values. Default value for
all debug variables is zero.

params_h . tex
sfuncs.tex - Extensions were added here beyond the C version.

c°py_name_to_str and copy_str_to_name convert between
C-style null-terminated strings and Pascal-style byte
counted strings. This was necessary since all internal
string processing was done using the native Pascal
strings and string operations, but there remained a
need to communicate string information to/from (among
others) netcmd which understood only null-terminated
strings

.

V - 37

AMRF Network

Function gettoken was added for use in parsing
user-entered ASCII strings. Used in net-cmd and nipini.

slink . tex
timer_h . tex
types_h . tex
xport . tex

xp_ini calls net_sethooks procedure so network layer can
set it's procedure variables for procedures to call for

a) queuing input packets to the transport layer and
b) sending signals to the transport layer

otherwise xport is a faithful translation of the C code

2. 1.4. 7. 2. Modules that Differ Radically

acidvr.tex - driver for the 98691 asynchronous smart i/o card.
Written in the same format as other C version drivers,
but obviously had to be written hardware dependent for
the HP microcomputers. Driver also includes the Z80
assembly language interface software written to execute
on-board the I/O card.

timer.tex - also strongly resembles the C version with many of
the same calls performed as direct translations (canast
dclast setimr, etc). However, the actual programming of
the HP's hardware clock and handling of interrupts had to
be changed for this hardware.

We added clkclose procedure which merely stops the clock
hardware from interrupting and restores the system's
original clock handling routine as the clock interrupt
vector. This is to be called when the ECS exits
and returns control to the console.

We added enable_clock and disable_clock procedures.
These temporarily enable and disable the hardware
interrupts of the clock and are called to lock out the
interrupts during certain critical periods of real-time
operation by the robot controller and the SRI system.

2. 1.4. 7. 3. New Modules

netcmd.tex - This code is a translation of a subset of the
netcmd software from the VAX. It enables the creation of
mailboxes locally without the aid of netcmd running on
another system.

Copymail was slightly modified to accommodate this
feature. Script file structure is identical as for the
VAX network manager.

station_h.tex - include file used by netcmd.

v 38

AMRF Network

2.2. Ethernet (TCP/IP) NIPS

2.2.1. DEC VAX 785 Implementation

2. 2. 1.1. Introduction

The VAX TCP Interface to the AMRF network is a set of routines
written in the C Language which allow the calling program to
connect, disconnect, read, write and get status via the TCP
transport protocol over the ethernet.

These routines are used by the AMRF Emulation Program, Copymail,
which was originally written for the AMRF Serial Interface. In
order to incorporate the TCP Routines into Copymail, the
following changes to Copymail were made:

(1) All XP_ calls were replaced by TP_ calls.
(2) The SERVICE routine was rewritten.
(3) The return from a connection request was rewritten.
(4) Output is blocked unless fully connected.
(5) A debug option (d) at execution time was added.
(6) A port number option (t) at execution time was added.
(7) A bug was fixed in the connection code.
(8) A number of other small changes were made.

The resultant program is called TCPNIP and resides with the TCP
Routines, TCPLIB.C, in USER1 :[NETWORK . TVAXV1

]

In order to communicate through the TCP Transport layer these
routines open two kinds of sockets:

(1) SERVER - A public socket whose port number is available
to all TCPNIP' s. Used to initiate connections.

(2) CLIENT - A private socket assigned to a each particular
client (or site) when a connection is accepted.

All data transmission takes place through the client sockets.

Modules called by the main application program, TCPNIP, begin
with TP_ and modules called internal to the TCP routines begin
with TCP_ . Communication from TCPNIP to the TCP routines are
through the TP_ function calls. These calls are used to request
services from the TCP routines. Control is returned immediately

I

to TCPNIP and the services are performed asynchronously.
Communications from the TCP routines to the TCPNIP are through
the SERVICE module located in TCPNIP and specified with the
connection request (ssap argument).

Communication with the TCP Transport Layer is done through VMS
communication channels using VMS system calls SYS$QIO and
SYS$QIOW. The channels are obtained and released using the VMS

v 39

AMRF Network

system calls SYS$ASSIGN and SYS$DASSGN. Reception and trans-
mission as well as connection requests are done asynchronously
using SYS$QIO. Other services such as creating a socket and
shutting down a socket are done synchronously using SYS$QIOW.

NETGEN is a module which generates the network site names and
addresses. This step should not be necessary since there are
standard TCP routines from the vendor to supply all network
addressing and site naming information. However, these routines
have not worked in non-UNIX environments.

2. 2. 1.2. TCP Control Table

The TCP routines must keep a record of each open connection.
The status of the open connections are kept in a TCP control
table with one entry for each open connection. Each entry in the
TCP control table will be referred to as a TCP control block or
TCPCB

.

A TCPCB is initiated when a connection is requested either by the
local TCPNIP or the remote TCPNIP. A TCPCB is removed upon a

disconnect request from the local TCPNIP or a disconnect request
from the remote TCPNIP when the local TCPNIP never requested the
connection. A TCPCB is retained upon a disconnect from the
remote host if the local TCPNIP is connected. The TCP control
table entry is defined by the structure TCPCB:

[SITENAME]
Records the name of the remote site.

[CONN] Records the connection number (CID) (the index
into the TCP control table entries + 1) . A
connection number of zero indicates an empty or
deallocated TCPCB and a non-zero connection number
indicates an allocated TCPCB.

[OUTQ] Output queue holds the messages waiting to be
transmitted to the remote site.

[INCNT

]

[OUTCNT

]

[STATE]

[INSIZE]

[OUTSIZE]

Keeps count of the number of messages received.

Keeps count of the number of messages sent.

Records the connected, half connected or shutting
down condition. Equals zero or disconnected when
the TCPCB is deallocated.

Records the number of character received during a

reception

.

Records the number of character transmitted during
a transmission.

V - 40

AMRF Network

[CHAN] Records the number of the I/O channel bound to
the client socket. All I/O is done through this
channel

.

[RIOSB

]

Used to return status and length information when
input completes

.

_ [WIOSB

]

Used to return status and length information when
output completes

.

[SSAP

]

Points -to the module in the calling program which
is executed when an event such as connection or
input or output completion occurs

.

[REMOTEADDR

]

Records the internet address of the remote site.
It is obtained from the tables built by NETGEN

.

[IB] Points to a communication buffer where the
incoming data and the communication information is
to be written. If no I/O is active, the pointer
is null.

[OB] Points to a communication buffer where the
outgoing data and the communication information is
found. If no I/O is active the pointer is null.

2. 2. 1.3. State Of A Connection

The STATE item in the TCP control table specifies whether the
site is fully connected, half connected, disconnected or shutting
down. Table V-l lists the possible STATES and the logical names
that are used in the program and in this description of the
programs

.

V 41

AMRF Network

Table V-1. VAX TCP NIP Connection States

GICAL NAME TCP STATE DESCRIPTION

TCPDISC Disconnected No entry in TCP control table.

TCPCONN Connected Both hosts actively connected.

TCPHLOC Half Connected

Local

Only local host has requested a

connection or remote host has

disconnected from a connected

state.

TCPHREM Half Connected

Remote

Only remote host has requested a

connection.

TCPSHUT Shutting Down Local host has requested a

disconnect while I/O is active.

The STATE of an TCPCB changes upon a connect or disconnect
request and in one case upon I/O completion. This case occurs
when a disconnect has been requested for a site with output
queued or input active (TCPSHUT). When the last I/O completes,
the state changes to disconnected (TCPDISC) . Table V-2 lists the
events that cause a change in STATE.

V 42

AMRF Network

Table V- 2. VAX TCP NIP: Events Causing A Change Of State

DESCRIPTION

Local host requests a connection.

Remote host requests a connection.

Local host requests a disconnection.

I/O error.

Input completion while shutting down.

Final output completion while shutting

down.

Table V-3 lists the changes in STATE as a function of EVENTS.
SAME indicates no change in STATE and NA (Not Applicable)
indicates a condition that never occurs. Note: The change in
STATE may depend on whether there is queued output (Q)

.

Table V-3. VAX TCP NIP: Change Of State As A Function Of

Events.

INITIAL FINAL

STATE STATE

LOCAL

CONN

REMOTE

CONN

LOCAL

DISC

REMOTE

DISC

READ

COMPL

WRITE

COMPL

TCPDISC TCPHLOC TCPHREM NA NA NA NA

TCPCONN(Q) SAME SAME TCPSHUT TCPHLOC SAME SAME

TCPCONN SAME SAME TCPDISC TCPHLOC SAME SAME

TCPHLOC SAME TCPCONN TCPDISC SAME NA NA

TCPHREM TCPCONN SAME TCPDISC TCPDISC SAME NA

TCPSHUT TCPCONN TCPHREM SAME TCPDISC TCPDISC TCPDISC

TCPSHUT(Q) TCPCONN TCPHREM SAME TCPDISC SAME SAME

EVENT

LOCAL CONNECT

REMOTE CONNECT

LOCAL DISCONNECT

REMOTE DISCONNECT

READ COMPLETION

WRITE COMPLETION

V 43

AMRF Network

2. 2. 1.4. TCP Modules Called From TCPNIP

These modules are used to request services from the TCP routines.
Control is returned immediately and the services are performed
asynchronously. Communication from the TCP routines to the
TCPNIP are through the SERVICE routine specified with the
connection request (ssap argument). These six routines are
called to either start the server program (TP_START) , request a
connection (TP_CONN) or a disconnect (TP_DISC)

,
queue messages

for transmission (TP_OUT), get status (TP_STAT
) or get connection

number (TP_ID)

.

CALL TP START (ssap, port

)

ARGS ssap - in - pointer to a module: specifies the default
module to be called when an unrequested connection or
unrequested input is received

.

port - in - integer: specifies the server port number.

FUNC Generates the network tables and opens a server socket
through which other sites can initiate a connection.

Calls NETGEN to generate all network site names and
addresses

.

Records a default SERVICE routine to be called when a
remote site requests a connection before TCPNIP requests
a connection (TCPHREM)

.

Records the local port number which was obtained either
by a preset default port number agreed upon by all
TCPNIPs or a port number set using the "t" option when
the calling- program was initiated.

Calls TCP BIND to create a socket and bind it to the
requested port.

If the BIND was successful, calls TCP_LISTEN to listen
for a connection request from a remote site. The listen
is asynchronous I/O and returns control to the program
before any connection requests arrive.

Returns status of the LISTEN I/O request or the status of
the BIND request if the BIND failed.

RETN Status returned by either TCP_BIND or TCP_LISTEN.

REFS NETGEN, TCP BIND, and TCP LISTEN

V 44

AMRF Network

CALL TP_CONN(ssap, site, conn)

ARGS ssap - in - pointer to a module: specifies the module
located in the calling program to be called when a

noteworthy event occurs such as input completion or a

connect or disconnect.

site - in - pointer to a character: specifies the name of
the site to which the connection is requested.

conn - out - connection number (Connno) : returns the
connection number (CID)

.

FUNC Requests a connection to the specified site.

Checks to see if the site is already known
(TCP_FIND_SITE

)
i.e. already has a TCPCB

.

If fully connected (TCPCONN) or half connected locally
(TCPHLOC) , stores the connection number (CID) into
argument conn, and returns the current STATE.

Allocates a TCPCB (TCP_GET_ENT
)

if this is a new
connection.

Obtains the remote address (TCP_GET_ADDR)

.

Records SERVICE routine, connection number (CID) and
remote address. Stores the connection number (CID) into
argument conn.

Returns fully connected (TCPCONN) if connection with
remote site has already been made (TCPHREM)

.

Calls TCP_CONNECT to make new connection. The connection
is made asynchronously, i.e. returns immediately, before
the connection completes

.

Returns status returned by TCP_CONNECT, either half
connected (TCPHLOC) STATE or connection failed (TCPFAIL)

.

At a later time when the connection completes, the
calling program is informed via the SERVICE routine (ssap
argument). If the connection is refused, the STATE
remains in half connected locally (TCPHLOC) and remains
there until the remote site connects at which time the
calling program is informed via the SERVICE routine.

RETN STATE of connection or TCPFAIL.

REFS TCP FIND SITE, TCP GET ADDR , TCP CONNECT

V 45

AMRF Network

CALL

ARGS

FUNC

RETN

REFS

CALL

ARGS

FUNC

RETN

REFS

TP_OUT (buffer

)

buffer - in - pointer to a communication buffer (cmbuf):
specifies the buffer containing the communication
information as well as the text of the output message

Queues a communication buffer for output.

Checks the validity of the requested site, returns NO if
not valid.

Adds the address of the communication buffer to the
output queue for the CID requested in the communication
buffer

.

Initiate output (TCP_WRITE) and returns YES.

YES or NO.

TCP WRITE

TP_STAT (conn , buffer)

conn - in - connection number (Connno): specifies the
connection number (CID) of the site for which status is
requested

.

buffer - in - pointer to a status buffer (cmlkst):
specifies the buffer to receive the status information.

Supplies the status of the requested site.

Checks the validity of the requested site, returns NO if
invalid

.

Copies site name, STATE, input count, output count and
flags into status buffer. Copies zeros if TCPCB is
deallocated

.

Returns YES if the TCPCB is allocated and NO if the TCPCB
is deallocated.

YES or NO.

None

V 46

AMRF Network

CALL

ARGS

FUNC

RETN

REFS

CALL

ARGS

FUNC

RETN

REFS

TP_DISC(conn)

conn - in - connection number (Connno): specifies the
connection number (CID) of the site for which a

disconnect is requested.

Requests a disconnect from a site.

Checks the validity of the requested connection number
(CID) and returns NO if not valid.

Switches to shutting down STATE (TCPSHUT) if either input
or output is active and returns YES.

If no I/O is active, calls TCP_DISCONNECT to perform the
actual disconnect and returns YES.

YES or NO.

TCP DISCONNECT

TP_ID(site)

site - in - pointer to a character: specifies the site
name for which the connection number is requested.

Obtains the connection number (CID) of the requested site
or 0 if there is no TCPCB for the site.

Connection number (CID) or 0.

TCP FIND SITE

V 47

AMRF Network

2. 2. 1.5. Internal TCP Modules

2. 2. 1.5.1. Connects And Disconnects

These modules' names all begin with TCP_ and are only called
within
server

the TCP Routines. The routines are used to make the
connection and the client connections and disconnects.

CALL TCP_CONNECT
(p

)

ARGS p - in - pointer to a TCPCB.

FUNC Creates a socket and attempts to connect to a remote
site. Called from TP_CONN.

Gets an I/O channel.

Creates a socket and binds the channel number to the
socket

.

Issues a connect request to the site whose address is
specified in the TCPCB. This request is asynchronous and
returns control to the program immediately. The module
TCP CLIENT is designated to receive the connection
completion at a later time.

Returns half connected locally (TCPHLOC) if successful,
otherwise returns TCPFAIL and deallocates the TCPCB
(TCP_PUT_ENT)

.

RETN TCPHLOC or TCPFAIL.

REFS TCP_PUT_ENT, TCP_CLIENT (asynchronous) and SYS$QIO

V 48

AMRF Network

CALL TCP_CLIENT
(p)

(asynchronous)

ARGS p “ in “ pointer to a TCPCB.

FUNC Receives control asynchronously when a connection request
made by TCP_CONNECT completes

.

Checks the status and takes the following appropriate
action.

Status = SS$_NORMAL , then enters connected state
(TCPCONN) , informs TCPNIP of connection via the SERVICE
module (ssap) and posts a read on the channel (TCP_REAB)

.

Status = ECONNREFUSED, then deassigns the channel, sets
chan in TCPCB to 0 and leaves STATE as half connected
locally (TCPHLOC)

.

Status = [All Others], then deassigns the channel, prints
error message, informs the TCPNIP of the connection
failure (TCPFAIL

)
via the SERVICE module (ssap) and

deallocates the TCPCB (TCP_PUT_ENT)

.

REFS TCP PUT ENT, TCP READ and SYS$DASSGN

CALL TCP^DISCONNECT
(p

)

ARGS 2 - in - pointer to a TCPCB

.

FUNC Disconnects an active socket

.

Shutdown the socket (TCP_SHUTDOWN
)
unless in half

connected locally mode (TCPHLOC) in which case there is
no socket to shutdown.

Deallocate the TCPCB (TCP_PUT_ENT)

.

RETN Void

REFS TCP SHUTDOWN, TCP PUT ENT

V - 49

AMRF Network

CALL TCP_BIND()

ARGS None

FUNC Creates a server socket and binds to the requested port.

Assigns a server channel.

Creates a socket using the IO$_SOCKET function.

Sets the socket option using the IO$_SETSOCKOPT function.
The options set are:

SO_KEEPALIVE
SO_DONTLINGER
SO_REUSEADDR

Binds the socket to the address specified in the TCPCB
with the IO$_BIND function.

Specify the maximum queue length for a listen using the
IO$_LISTEN function. Currently this is zero and can
service one client at a time.

If any of the above I/O operations fail, the channel is
deassigned, an error message is printed and the bad
status returned.

If all goes well, normal status is returned.

RETN Status of the last I/O operation completed.

REFS SYS$ASSIGN, SYS$DASSGN, SYS$QIOW

V - 50

AMRF Network

CALL TCP_LISTEN()

ARGS None

FUNC Listens on the server channel for clients to request
connection.

Performs an asynchronous I/O on the server channel using
the IO$_ACCEPT_WAIT function, setting TCP_WAIT as the
module to be activated when a connection request is
received

.

Checks status of the accept_wait and, if bad, prints an
error message and deassigns the server channel.

Returns status of I/O.

RETN I/O status

REFS TCP_WAIT (asynchronous), SYS$DA'SSGN, SYS$QIO

CALL TCP_WAIT
()

(asynchronous

)

ARGS NONE

FUNC Called asynchronously when a connect request is seen for
the server port.

Checks the status of the I/O completion and if bad
status, prints an error message, posts another listen
(TCP_LISTEN) and returns.

Assigns a new channel for the client socket.

Performs an asynchronous accept of the connect request
using the IO$_ACCEPT function, with which it specifies
the server channel, the client channel, address of a
location to receive the internet address of the remote
station, and a module to be activated when the IO$_ACCEPT
completes (TCP_ACCEPT)

.

Checks the status of the I/O and if bad, prints a
message, deassigns the client's channel and posts another
listen (TCP_LISTEN)

.

REFS TCP_LISTEN , TCP_ACCEPT (asynchronous

)

SYS$ASSIGN , SYS$DASSGN , SYS$QIO

V 51

AMRF Network

CALL TCP_ACCEPT ()
(asynchronous

)

ARGS None

FUNC Processes a completed connection on the server channel.

Checks the status of the IO$_ACCEPT and, if bad, prints
an error message, deassigns the client's channel, and
exits

.

Searches the TCP control tables for an entry with the
internet address just received (TCP_FIND_ADDR

)
and

activates a new TCPCB if not found (TCP_GET_ENT)

.

If the STATE of this TCPCB is half connected locally
(TCPHLOC) , then the connection is now complete. Change
STATE to connected (TCPCONN) , inform the TCPNIP via the
SERVICE routine (ssap), record the client channel number
and the internet address of the client in the TCPCB,
initiate a read (TCP_READ)

and a write (TCP_WRITE) on the
client channel, and exit. The write is initiated in case
the site had been fully connected earlier, had
disconnected leaving queued output, and now has
reconnected

.

If the STATE is shutting down (TCPSHUT), enter half
connected remote (TCPHREM)

,
post a read (TCP_READ

)
and

exit

.

If the STATE is fully connected (TCPCONN) or half
connected remote (TCPHREM)

,
get a second TCPCB for this

client and print a message warning of the second TCPCB
for this client.

If this is a new TCPCB, set STATE to be half connected
remote (TCPHREM), record channel number, default SERVICE
routine (as set in TP_START), internet address of the
client, and sitename of the client (TCP_GET_SITE) . Post
a read on the client's channel.

REFS TCP__LISTEN,
TCP^READ

,

SYS$DASSGN,

TCP_FIND_ADDR

,

TCP_WRITE,
SYS$QIOW

TCP_GET_ENT

,

TCP GET SITE,

V 52

AMRF Network

2. 2. 1.7. Reads And Writes

All data communications to the TCP Transport layer are performed
asynchronously. By agreement with the other TCPNIPs, all
transmissions are preceded by the size of the data about to be
transmitted. This size is transmitted as four bytes of binary
data in network order, i.e. high order byte first. Since the VAX
expects data in host order or low order byte first, all size data
must be converted on the VAX.

On input, the size is read first followed by successive reads
until all the data has been received. On output the size is
transmitted first followed by successive writes until all the
data has been transmitted. This requires three routines to
accomplish each reception. The first routine posts a read of
four bytes (TCP_READ) . The second routine is activated when the
reception of the four bytes completes. It posts a read to
receive the indicated amount of data (TCP_READ_SIZE) . The final
routine is activated when the data reception is complete and
calls itself asynchronously until all the data has been received
(TCP_READ_DATA) . A similar three routines are required for the
transmission of size and data.

When an I/O error is encountered, it is assumed that the remote
site has disconnected and appropriate action is taken
(TCP_IO_FAIL

)
.

The input buffers are obtained from a pool of buffers using
CMBUFMGR . Output buffers are returned to this pool. Completed
buffers are transferred to the calling program via the SERVICE
Routine specified at connection time. Output buffers are
obtained from the calling program and queued via the TP_OUT
routine

.

v 53

AMRF Network

CALL TCP_READ
(p

)

ARGS p - in - pointer to a TCPCB.

FUNC Posts a read for the first four bytes of incoming data*

Checks the status of the TCPCB. Returns if the channel
number is zero or input is already active.

Posts a read to the channel using IO$_READVBLK for four
bytes of size and specifying TCP_READ_SIZE as the module
to be activated when complete.

Checks the status of the read request and, if bad, prints
an error message calls TCP_IO_FAIL to terminate the
connection.

RETN Void

REFS TCP__IO_FAIL , TCP_READ_SIZE (asynchronous) , SYS$QIO

V 54

AMRF Network

CALL TCP_READ_SIZE
(p)

(asynchronous)

ARGS p - in - pointer to a TCPCB.

FUNC Checks the status of the size reception and starts the
data reception.

Checks status of size reception and, if bad, writes an
error message and calls TCP_IO_FAIL to terminate the
connection.

Checks number of bytes received. If not the correct
amount (four bytes), prints an error message and calls
TCP_IO_FAIL to terminate the connection

.

Converts size to host order.

Checks size of data coming. If size is greater than the
largest buffer, prints a message and posts another read.

Gets an input buffer from the buffer pool (either CM_GETB
or CM_GETL).

Sets the number of characters received to zero.

Posts a read using the IO$_READVBLK function, specifying
the address of the text portion of the input buffer and
the length of data expected, and specifying the
TCP_JREAD_DATA routine to be activated when the reception
completes

.

Checks the status of the input request and, if bad,
writes an error message and calls TCP_IO_FAIL to
terminate the connection.

REFS TCP_IO_FAIL, TCP_READ_DATA (asynchronous),
TCP READ, SYS$QIO

V 55

AMRF Network

CALL TCP_READ_DATA
(p)

(asynchronous

)

ARGS p - in - pointer to a TCPCB.

FUNC Checks the status of the data reception and either
transfers the message to TCPNIP or continues the
reception as needed.

Checks status of data reception and, if bad, writes an
error message and calls TCP_IO_FAIL to terminate the
connection.

Adds the number of bytes received to the total previously
received (set to zero in TCP_READ_SIZE)

.

Checks number of bytes received and takes the following
appropriate action:

Greater than Expected : Prints warning message.

Equal or Greater than Expected : Subtracts length of
the header (old transport header) from the total
length. If shutting down STATE (TCPSHUT) and no
output is pending, calls TCP_DISCONNECT to finish
the disconnect and exits. Increments the incoming
message counter (INCNT) , records the connection number
(CID) in the communication buffer, passes the
communication buffer to TCPNIP via the SERVICE
routine, sets the pointer to the communication buffer
in the TCPCB (IB) to zero, posts another read
(TCP_REAB) and exits.

Less than Expected : Post a read using the IO$_READVBLK
function, specifying the address of the next character
position in the input buffer and the length data still
expected and specifying the TCP_READ_DATA routine to
be activated when the reception completes . Checks the
status of the input request and, if bad, writes an
error message and calls TCP_IO_FAIL to terminate the
connection.

REFS TCP_IO__FAIL , TCP_READ_DATA (asynchronous), TCP_READ,
TCP DISCONNECT, SYS$QIO

V 56

AMRF Network

CALL TCP_WRITE(p)

ARGS p - in - pointer to a TCPCB.

FUNC Removes messages from the output queue and start
transmission of the message size.

Checks the status of the TCPCB. Returns if the channel
number is zero or output is already active.

Removes an entry from the output queue and if null, exits
after checking to shutting down mode (TCPSHUT) . If
shutting down and input is inactive, calls TCP__DXSCONNECT
to finish the disconnect.

Converts length of message to network order.

Posts a write to the channel using XO$_WRITEVBLK of the
four bytes of size and specifying TCP_WRITE_SIZE as the
module to be activated when complete.

Checks the status of the write request and, if bad,
prints an error message calls TCP_IO_FAIL to terminate
the connection.

RETN Void

REFS TCP__XO_FAIL , TCP_WRXTE_SIZE (asynchronous)
TCP DISCONNECT, SYS$QXO

V 57

AMRF Network

CALL TCP_WRITE_SIZE
(p)

(asynchronous)

ARGS p - in - pointer to a TCPCBo

FUNC Checks the status of the size transmission and starts the
data transmission.

If the channel is zero or output is inactive, exits.

Checks status of size transmission and if bad writes an
error message and calls TCP_IO_FAIL to terminate the
connection

.

Checks number of bytes transmitted. If not the correct
amount (four bytes), prints an error message and calls
TCP__IO_FAIL to terminate the connection.

Converts size back to host order.

Sets the number of characters transmitted to zero.

Posts a write using the IO$_WRITEVBLK function,
specifying the address of the text portion of the output
buffer and the length data to transmit, and specifying
the TCP_WRITE_BATA routine to be activated when the
transmission completes.

Checks the status of the output request and, if bad,
writes an error message and calls TCP_IO_FAIL to
terminate the connection.

REFS TCP_XO_FAIL, TCP_WRITEJDATA (asynchronous), TCP_WRITE,
CM GETB ,

• CM GET, SYS$QIO

V 58

AMRF Network

CALL TCP_WRITE_DATA
(p)

(asynchronous

)

ARGS p - in - pointer to a TCPCB.

FUNC Checks the status of the data transmission and either
returns the buffer to the buffer pool or continues the
transmission as needed.

Checks status of data transmission and, if bad, writes an
error message and calls TCP_IO_FAIL to terminate the
connection.

Adds the number of bytes actually transmitted to the
total previously transmitted (set to zero in
TCP_WRITE_SIZE)

.

Checks number of bytes transmitted and takes the
following appropriate action:

Greater Than Expected : Prints warning message.

Equal Or Greater than Expected : Increments the outgoing
message counter (OUTCNT), informs TCPNIP of the output
completion via the SERVICE routine, returns the output
buffer to the buffer pool (CM_PUTB), sets the pointer
to the communication buffer in the TCPCB (OB) to zero,
posts the next write (TCP_WRITE) and exits.

Less Than Expected : Posts a write using the
IO$_WRITEVBLK function, specifying the address of the
next character position in the output buffer and the
length data still to be transmitted, and specifying the
TCP_WRITE__DATA routine to be activated when the
transmission completes. Checks the status of the output
request and if bad writes an error message and calls
TCP_IQ_FAIL to terminate the connection.

REFS TCP_IO_FAIL , TCP_WRITE_DATA (asynchronous), TCP_WRITE,
CM PUTB, SYS$QIO

V - 59

AMRF Network

2 . 2 . 1 . 5 . 3

.

SERVICE

CALL TCP_IO_FAIL
(p

)

ARGS p - in - pointer to a TCPCBo

FUNC Handles the condition when the I/O has failed and we
assume that the remote TCPNIP has disconnected.

If output is active, re-queue the output buffer for later
transmission if the remote TCPNIP reconnects.

If input is active, return input buffer to buffer pool
(CM_PUTB)

.

If fully connected (TCPCONN) , shutdown the connection
(TCP_SHUTDOWN

)
and change to half connected locally

(TCPHLOC)
STATE. Inform the TCPNIP of the remote

disconnect via the SERVICE routine (ssap), print a
warning message, and exit.

If shutting down (TCPSHUT) or half connected remote
(TCPHREM) , disconnect completely (TCF_DISCONNECT)

.

RETN Void

REFS TCP SHUTDOWN, TCP DISCONNECT, CM PUTB, SYS$QIOW

CALL TCP_SHUTDOWN
(p

)

ARGS p - in - pointer to a TCPCB.

FUNC Shuts down a socket.

Issues an I/O request using the IO$_SHUTDOWN function
forbidding any future sends or receives.

Checks the status of the I/O request and, if bad, prints
a warning message.

Deassigns the client's channel.

Sets the channel recorded in the TCPCB to zero and
returns

.

RETN Void

REFS SYS$QIOW , SYS$DASSGN

V 60

AMRF Network

CALL TCP_GET_ENT
(p

)

ARGS p - out - pointer to a pointer to a TCPCB.

FUNC Gets an available TCPCB from the TCP control table.

Searches the TCP control table for an TCPCB with a

connection number (CID) of zero.

Sets the connection number (CID) in the first available
TCBCB to the index of the TCBCB in the control table + 1

.

Sets the argument p to the address of the TCPCB and
returns YES

.

Prints an error message and returns NO if no TCPCBs are
available

.

RETN YES or NO

REFS None

CALL TCP_PUT_ENT
(p

)

ARGS p - in - pointer to a TCPCB.

FUNC Deallocates a TCPCB in the TCP control table.

If input and/or output is active, returns the
communication buffer to the buffer pool (CM_PUTB).

Empties the output queue and returns all buffers to the
buffer pool (CM_PUTB)

.

Deassigns the I/O channel.

Sets the connection number (CID), input count, output
count, state, channel, remote address, pointer to input
and output buffers and the SERVICE routine (ssap) to
zero

.

Sets the site name to all blanks.

RETN None

REFS SYS$DASSGN

V 61

AMRF Network

CALL

ARGS

FUNC

RETN

REFS

CALL

ARGS

FUNC

RETN

REFS

TCP_FIND_ADDR (addr
, p

)

addr - in - struct sockaddr_in and specifies the internet
address of remote TCPNIP.

p - out - pointer to a pointer to a TCPCB.

Searches for a TCBCB with the requested internet address

.

Searches through the TCP control table for the requested
address (addr argument).

If found, sets pointer p to the address of the TCBCB and
returns YES

.

If not found, returns NO.

YES or NO

None

TCP_FINB_SITE (sit@,p)

site - in - pointer to a character. Specifies the site
name of the remote TCPNIP.

2 - out - pointer to a pointer to a TCPCB.

Searches for a TCBCB for the requested TCPNIP.

Searches through the TCP control table for the requested
sitename (site argument).

If found, sets pointer p to the address of the TCBCB and
returns YES.

If not found, returns NO.

YES or NO

None

V 62

AMRF Network

CALL TCP GET ADDR (site, add r)

ARGS site - in - pointer to a character. Specifies the site
name of the remote TCPNIP.

addr - out - pointer to integer which specifies the
internet address of remote TCPNIP.

FUNC Finds the internet address of the requested site.

Searches the table SITENAME which was set up by NETGEN in
TP START, for the requested sitename.

If found, sets the argument addr equal to the address of
the internet address found in the table ADDRESS, also set
up by NETGEN, at the same index as the requested
sitename. Returns YES.

If not found, prints an error message and returns NO.

RETN YES or NO

REFS None

CALL TCP GET SITE (addr , site)

ARGS addr -in - integer and specifies the internet address of
remote TCPNIP.

site - out - pointer to a character. Specifies the site
name of the remote TCPNIP.

FUNC Finds the sitename for the requested internet address.

Searches the table ADDRESS which was set up by NETGEN in
TP_START , for the requested internet address.

If found, sets the argument site equal to the address of
the sitename found in the table SITENAME, also set up by
NETGEN, at the same index as the requested address.
Returns YES.

If not found, prints an error message and returns NO.

RETN YES or NO

REFS None

V - 63

AMRF Network

2.2.2. Sun Microsystems Implementation

The Sun version of integrating TCP/IP network software into the
AMRF Network Interface Process (NIP) was created by replacing the
existing NIP software from the transport layer down (transport,
network, link and physical layers) with calls to the UNIX 4.2 BSD
system-provided TCP network services. The layers above transport
were not affected (copymail).

2. 2 .2.1. Comparison With The Sun NIP Serial Version

As noted above, the TCP/IP protocol used over Ethernet logically
corresponds to the serial NIP'S physical through transport
layers. In developing the TCP/IP version, efforts were made to
keep all common modules betwee'n the two versions identical. This
was not always possible, and some minor differences exist. In
summary:

Modules in serial NIP that are not in TCP NIP:
io . c
loader .

c

ml ink .

c

net c c
netgen .

c

slink .

c

Modules common to both NIPs that are identical:
cmbufmgr .

c

timer .

c

dispatch.

c

sfuncs c c

Modules common to both NIPs that are NOT identical:
copymail. c - The differences here are trivial and the two

could (and should) be made identical.
However there are two differences. The
following line has been commented out of the
getcmd() routine in the serial version:

if (cmd.cmd_len == 0) cmd.cmd_act = NIPNOP;

The TCP version prints out a message to the
standard error if it receives a mailgram for
which it has no entry in the mail delivery
table. This is quite helpful in flagging
bugs that would otherwise go undetected.

V 64

AMRF Network

nipmain.c -

1) The TCP version is primed to receive it's •

NIPCMD commands from the station "TVAX"
instead of "VAX”. This was done since there
will be two separate NIPs running on the AMRF
VAX

.

2) The default TCP NIP server port number (1526)
can be changed by entering the -t option on
the command line.

3) commented out of the tcp version are:
- ability to set def_nadd[] from the

command line ... it doesn't apply here
- calls to io_ini(), net_ini

(

)

- calls to initialize the loader. c routines
... they weren't used here.

2. 2. 2. 2. Possible Integration With Sun Serial NIP To
Create A Single Sun NIP

This version could be combined with the serial link version of
the Sun NIP by inserting a "transport interface" layer under
copymail and having it (the transport interface layer) determine
which transport, AMRF transport or TCP, should be used. Other
things that would have to be done in order to effect this
transport interface layer:

1) Transport interface layer will keep track of connection
numbers and map to/from a connection number that is
meaningful to the particular transport layer. The
transport interface layer will also keep track of
connection states in the simplest context. This is to
keep track of live connections, clear its table when a
disconnect occurs, when errors occur, etc.

Alternatively, one could put a "transport type" field in
the mail delivery table entry in copymail and reference
that in order to determine which transport layer to call.
One must be careful in this case to not confuse the cid
of one transport layer with the cid of the other
transport layer. Check the use of cid throughout copymail
and check for the necessity to also use check on
"transport type" to keep mailboxes pointing to the right
transport layer. This approach modifies copymail but does
not create an intermediate "transport layer interface"
layer. Unfortunately, this also requires changing the MDT
entry structure, and mdtent is an integral part of the
mailbox manager (mgrcmd) data structure from netcmd

.

Therefore when copying from the mgrcmd copy to the mdtent
copy, we will have to do it one field at a time when
making new MDTENTS in the table (MDTCONN)

.

V 65

AMRF Network

2) A combined version of SIGIO signal handler interrupt
handler will have to be created. It will decide (based
upon the file descriptor) whether the "serial link"
handler should be called or whether the "TCP" handler
should be called or BOTH!

Have TCP and xport(or io.c) export a Boolean that is TRUE
if that module has file descriptors open and only call
the sigio handler if the variable is TRUE for that
module

.

i.e. sigio_handler
() {

if (serial_link_fds_active
)
serial_sigh()

;

if (tcp_fds_active) tcp_sigh()

;

}

2 c 2 . 2 . 3

.

TCP Stream Sockets Used

TCP stream sockets provided by Berkeley Unix are used as the
transport mechanism. These provide a reliable byte stream path of
communication between the two transport endpoints. In addition,
the stream library (/usr/lib/libstream. a)

provided initport() is
used for opening and initializing the sockets. The sized_io.c
routines of sized_read() and sized_write

()
are not used directly

from the library for reasons that are pointed out later.

2. 2. 2 .4. Algorithm for Establishing a TCP Connection

2. 2. 2. 4.1. Socket Connections And Client/server
Relationships

TCP sockets, once established, are bi-directional, full-duplex,
and balanced. However, the connection setup procedures are not
balanced but follow a client/server model. In this model, the
server provides a certain service to client processes. Therefore
for purposes of establishing the TCP connection, one process must
be the server and the other process must be the client.

In the client/server model, a server process typically passively
listens for connection requests at a "well-known" port address.
The client actively connects to the "well-known" server address
to establish the connection. The problem with this model is that
is doesn't fit the AMRF NIP architecture. Two NIPs communicating
in the AMRF are equal entities and communicate in a symmetric
manner

.

We overcome this problem by assuming the client role in
connection establishment. If the active connect attempt fails, we
switch and become the server waiting for a connection request
from the remote system. Upon startup, the NIP begins listening
for connection requests from other NIPs at a "well-known" NIP

V 66

AMRF Network

server socket number (NIP_PORT). If a connection request arrives
at the socket from a known host it is accepted and entered into
the transport connection table. When instructed by session layer
to make a new connection, the NIP will first check to see if the
desired connection is already in the transport table. If so, that
socket is used. If not, transport will attempt to create a

connection to the host by connecting as a client to the remote
NIP'S server port. If successful great. If unsuccessful due
to the host not being up (ETIMEDOUT) or the server not active
(i.e. it's NIP isn't running — ECONNREFUSED) , transport makes
the table entry anyway assuming the remote host will eventually
come up and do an active connect to the local host upon direction
of it's session layer. In this case, we pass DONE back to
session and for all it knows, the connection is complete. If the
local connection attempt is unsuccessful due to other problems,
the' error is passed back to session and the entry is not made in
the table.

This method can be used due to the nature of how session layer
connections (mailboxes) are made. Both hosts are explicitly told
via their NIPCMD mailboxes to make each mailbox and therefore,
each transport connection. If the session layer changes it's
connection procedures, the TCP connection algorithm may have to
be changed also.

2. 2. 2. 4. 2. TCP Connect Timeout

When a client attempts to connect to a station where the NIP
server is not running, connect () will return immediately with
errno == ECONNREFUSED. But if a client attempts to connect to a
station that is down, the connect must timeout before it returns
with errno == ETIMEDOUT. The timeout period for connection
attempts in TCP is 45 seconds. Sun Microsystem does not provide
the user with the flexibility to change to default timeout value.
One cannot get hold of the system's socket structure to make the
change. Sun claims that a nonstandard timeout value for TCP make
it "not TCP".

Attempts were made to get around this by checking to see if the
remote station was up by use of (among other things) the up(

)

routine in the ping.c module. This code was patterned after the
ping(8) utility in the UNIX manual. No attempt proved totally
successful. Therefore the 45 second timeout remains for the time
being ... a minor annoyance.

2. 2. 2. 5. TCP Socket Disconnection

Unfortunately, the Sun TCP does not provide unambiguous
notification when the remote system closes (disconnects) the
socket. This is confusing because it does not provide the

V 67

AMRF Network

programmer with the ability to distinguish between the cases when

a) the remote host actively disconnects the socket and
b) the remote host process died in some very bad manner,

such as a system crash.

When the remote site disconnects or dies, the local NIP notices
it by either

1) a -1 return on read,
2) a 0 return on read or
3) a broken pipe error on writing.

Since there is no way to distinguish bad from good closes of a
transport socket, all of these cases are treated as active (good)
disconnections by the remote NIP.

2. 2. 2. 6. Configuration Table

The configuration table that is used to map the AMRF site name to
the TCP recognized host name is kept in tcp.c along with the
protocol code. Logically this is a replacement for the old
config.c configuration tables in the serial version of the NIP.
It has been proposed that the use of the "yellow pages" service
on the Suns could provide this mapping via the host alias
capability. This would eliminate the need for the configuration
table host_tab[] and the mapping routines host_to_site

()
and

site_to__host
()

. The AMRF network configuration responsibilities
would then fall partially on the Sun system administrator to
maintain the yellow pages directory.

2 . 2 . 2 . 7

.

NIP Status Packet Remains Unchanged

The NIP status structure was kept the same as in the old serial
NIP to maintain compatibility with every other NIP in the AMRF
and with what the network manager process NETCMD expects to
receive. In particular, some of the fields of the link status
(cmlkst) structure have no application in the TCP NIP but are
retained and filled with zeroes.

2. 2. 2.

8.

TCP CONNECTION STATES

Following are the states of the TCP connections. The state is
really kept as a composite of two state variables:

(1) the actual TCP connection to the remote host (R) and
(2) the state of the connection as viewed by the local

session layer software (L)

.

Both variables may be in either the connected state (C) or the
disconnected state (D). In addition, the remote state variable
may be in the shutdown (S) state when flushing output data prior
to disconnecting. Therefore there are five composite states:
D/D, D/C, C/D, C/C and D/S expressed in <Local>/<Remote> format.

V 68

AMRF Network

Note that D/D signifies that both local and remote variables are
in the disconnected state which is equivalent to a nonexistant
connection (i.e., there is no entry in the connection table if
D/D is the IN state and the entry is deleted if D/D is the OUT
state). The "?" state is a don't care in the table below.

Table V-4. Sun TCP NIP: Change Of State As A Function Of

Events.

IN / OUT

STATES STATES

Event L/R Action/Comments L/R

User conn D/D Attempt to connect to remote

host is successful

C/C

User conn D/D Attempt to connect to remote

host is unsuccessful

C/D

User conn C/D Return "DONE". No action taken. unchged

User conn C/C Return "DONE". No action taken. unchged

User conn D/C Connection is now complete. C/C

User conn D/S Keep the connection after all. C/C

Remote conn D/D Accept connection D/C

Remote conn C/D Accept connection C/C

Remote conn ?/C ERROR. Ignore or refuse. unchged

Remote conn D/S ERROR. Ignore or refuse. unchged

User disconn C/C No output is queued.

Disconnect from remote.

D/D

User disconn C/C Output data is queued.

Enter "SHUTDOWN" state until

output is all transmitted.

D/S

User disconn D/? ERROR. unchged

Remote Disc C/C Keep table entry. No notification

sent to session.

C/D

V 69

AMRF Network

Table V-4 -- Concluded

Remote Disc D/C Delete entry. D/D

Remote Disc D/S Send OUTCAN to session for the

data buffers not transmitted.

D/D

Remote Disc ?/D Impossible event. —
User data C/C Send the data to the remote unchged

User data C/D Queue the data to the remote unchged

User data D/? Attempt to send an unconnected unchged

transport. Send OUTCAN to session.

Remote data C/C Send the data to the session unchged

Remote data D/C data is queued in the pipe by unchged

not reading it yet

Remote data D/S ignore incoming data from remote unchged

Remote data ?/D Impossibie event. —
last data

xmitted from

output queue D/S output finished draining D/D

V - 70

AMRF Network

VI . Operator. Reference Section

This section identifies and describes the steps that must be
followed in order to start up and shut down the AMRF network.
Although these steps are accurate for the network topology
existent during 1986, it is expected that changes in shop floor
equipment and upgrades in network interfaces will result in a

modified operators guide. Do not assume that the instructions in
the following sections are applicable to the "current" network
topology

.

1. THEORY OF OPERATIONS

1.1. Selecting The Network Configuration

The specific steps that must be performed to activate the network
are determined by the network configuration that is to be run.
Figure VI-1 shows the current network topology. Table VI-2
identifies the connections between workstations and the network
services necessary to support them.

In the current network topology (Section II. 3.1), there are two
basic subnetwork environments: the asynchronous RS232 subnetwork,
and the Ethernet TCP/IP subnetwork. The Ethernet TCP/IP
subnetwork environment is further divided into the VAX-based
environment and the front end common memory-based environment
(labeled "SUN-FE", below). If the anticipated node-to-node
interactions (i.e., the configuration to be tested) are solely
within a single environment, then there is no need to activate
nodes in any of the other environments. Table VI-1 lists the
workstations connected through these environments.

Network connections between any two of these environments assume
the existence of common memory in each of these environments. In
virtually all implementations, except one, the common memory area
automatically exists before the network attempts to access it.
It is either created when the user process starts (VAX and HP-
based implementations), or it exists in hardware (multibus-based
implementations). The exception is the Sun Microsystems-based
implementations, where the common memory is implemented as a
separate process (i.e., program) that must be run before the NIP
is started.

VI 1

AMRF Network

Table VI-1 .

SUBNETWORK

RS232

ETHERNET

Workstations - Listed By Subnetwork Connection

SUBSET WORKSTATIONS

ATC, CMM, HGP, HMB, HMC,

HRC, HVS, HWS, IRC, !WS,

SRI, TWS, VAX

SUN-FE COWS, CELL, MHS, PPL, VWS

VAX VAX

VI 2

AMRF Network

Table VI-2 . Table Of Network Linkages And Required Network
Services

ATC CDWS CELL CMM HGP HMB HMC HRC HVS HWS IRC IWS MHS PPL SRI TWS VAX VWS

ATC — • • .

CDWS —
CELL B B

CMM —
HGP —
HMB —
HMD ...

HRC D/F —
• o • • « 0 o e o • o • • o o .eo . o o ooo o e o • • •

HVS 1
—

HWS BGD D/F D/F D/F D/F ---

IRC —
• • o O • c e c o co. e e • oe. . . ,

IWS BGD

'

DEH DEH —
MHS BC DGC DGC —
PPL

SRI DEH . . .

TWS D BGD

,

VAX E AG FB D 0 D D D D D D D E FA D E — . .

.

VWS B FA

Key to Services:

A - Common memory active on front end processor
B - 'A' + communication process to CELL PC
C - 'A' + communication process to MHS PC
D - Serial NIP connection (s)

to/thru VAX
E - Serial NIP connections between nodes
F - Ethernet NIP connections between nodes
G - Ethernet NIP connection to VAX
H - Serial NIP Connections go through IWS
I - Direct, non-network connection

VI 3

AMRF Network

1.2. Determining The Required Network Services

Once you have determined the stations that you wish to
interconnect in the network configuration, you must now determine
how the interconnection will occur. Table VI-2 identifies the
network services that are required in order to establish a link
between any two stations in the network. (The commands necessary
to connect the mailboxes are not identified, but will be
discussed in Section VI . 1 . 3

.

)

Some examples of determining the required network services are
listed below:

EXAMPLE 1: determine what is needed to support a link between
the Cleaning and Deburring Workstation (CDWS) and the CELL.
Figure VI-1 indicates that the CELL and the CDWS are both
attached to the same front end Sun Microsystems common memory
server. Table VI-2 indicates that the required configuration
supporting the links between these two systems consists of:
creating the common memory with which and thru which both systems
exchange data, and running the CELL communications process that
interfaces the CELL to the common memory.

EXAMPLE 2: determine what is needed to support a link between
the Inspection Workstation Controller (IWS) and the IMDAS (on the
VAX)

.

Figure VI-1 indicates that IWS and the VAX are remotely
located, so network services (NIPs running on each computer
system) are required to create the point-to-point connection
between the VAX and the IWS. Per the previous discussion about
common memory activation (Section VX.l.l.), nothing needs to be
done to specifically activate either of these common memories.
Table VI-2 agrees with this diagnosis: it indicates that NIPs
have to be active on both the IWS and the VAX.

EXAMPLE 3 : determine what is needed to support a link between
the IWS and the CELL. Figure VI-1 indicates that the data path
would extend from the IWS through the VAX (using asynchronous
RS232 connections) and over the ethernet links to the common
memory front end. This immediately indicates that network
services are necessary between IWS and the VAX, and between the
VAX and the front end common memory server to which CELL is
attached. Table VI-2 indicates that common memory must be active
on the CELL'S front end system, the CELL communications program
must be active in order to link the CELL to its common memory,
the Ethernet NIPS must be active on the front end machine and the
VAX, and the serial NIPS must be active on the IWS and the VAX in
order to provide end-to-end connectivity.

VI 4

AMRF Network

03

CD

The

Topology

of

the

1988

AMRF

Network

AMRF Network

1.3. Script Files

1.3.1. Purpose of Script Files

Once the NIPs have been started and the network manager program
(NETCMD

)
is running, it is desirable to connect specific common

memory mailboxes between one or more systems. This is done by
issuing CONNECT commands to NETCMD. These commands have a
specific structure that is not especially easy to type. Although
the network connections can be dynamically made (and broken), we
tend to make the same connections over and over. In order to
expedite the network connection process and reduce the potential
for operator error, we use an editor to create a series of
CONNECT (or DISCONNECT) commands in a file, and then reference
the file name when building the network connections.

1.3.2. Script File Naming Conventions

The file names follow a general convention that uses a two-part
name. The first part of the name is descriptive of the function
of the file contents and also identifies the workstation or
service to which it pertains. The second part of the name,
termed the "file name extension", is always set to "NET" to
distinguish it as a network connection file. The first part of
the file name is separated from the second part with a period.
EXAMPLE : IWSbase.net

[NOTE: File names on the VAX, where the primary network manager
program (NETCMD) is installed, are case insensitive. That is, it
does not matter if they are stored or accessed in UPPER or
lowercase on the VAX. However, NETCMD on the Sun Microsystems
computer IS case sensitive: all names must be entered in
lowercase

.

]

The network connections fall into two major categories:
connections to NETCMD, and connections to other stations or
services (e.g., IMDAS)

.

Each station that has an operating NIP must connect to NETCMD
before it attempts to make connections to other stations or
services across the network. These initial connections are basic
to the operation of the station and serve as a conduit through
which the additional connections are made. Script files that
contain these basic CONNECT commands have the word "base" as part
of their file name. EXAMPLES: IWSbase.net, TWSbase.net, etc.

Script files that contain CONNECT commands for mailbox
connections between two workstations (or a workstation and a

remote service) identify both ends of the connection in the file
name, and place the identification of the initiator of the inter-
station dialogue first. Some examples are:

VI 6

AMRF Network

HRCHGP.net indicates this file contains one or more
commands connecting HRC to HGP . HRC
initiates the ^dialogue between the two.

CELLIWS.net indicates this file contains one or more
commands connecting CELL to IWS. CELL
initiates the dialogue between the two.

IWSDB.net indicates this file contains one or more
commands connecting IWS to the IMDAS (on
the VAX) . IWS initiates the dialogue
between the two.

2. STARTING THE NETWORK

The following subsections detail the startup procedure used to
bring up all or a portion of the AMRF workstations and services.
The procedure is presented in two formats:

(1) A discretionary procedure. This format provides a more
detailed description of the specific steps in the
procedure, and identifies points where the operator must
make a decision that depends on the specific network
configuration being booted.

(2) A streamlined procedure. It optimizes the sequence of
the steps to bring up the network configuration as
rapidly as possible. It assumes that the entire network
is to be booted, and that you are fully familiar with the
display screens and terms used in the boot process.

Other network startup procedures have been used during the
evolution of the AMRF. Their use is determined by the
availability of other computers, other circuit routing. They are
only used if the VAX is unavailable. Using the VAX provides the
easiest, most cohesive network startup, so only the VAX procedure
is described below.

These sections assume that the operator is reasonably familiar
with the Digital Equipment Corporation VAX/VMS operating system
command language (DCL) , with UNIX, and the Sun Microsystems
computers (hereafter referred to as 'Suns'), including their
windowing environment.

The terms 'DEMO', 'VAX' and 'window' are used throughout the
procedure. 'VAX' refers to the AMRF VAX 11/785 operating under
the VMS operating system. DEMO refers to the Sun Microsystems
computer functioning as the front end common memory server
identified in Figure VI-1, operating under the (4.2 BSD) UNIX
operating system. 'Window' refers to a delineated portion of the
Sun video display screen that functions as a "terminal screen"

VI 7

AMRF Network

for the application active within that delineated portion of the
screen, much the same as the standard terminal screen.

The login procedure and the mailbox connection procedure assume
that the user will ALWAYS use the DEMO Sun. That is, DEMO will
be used to connect the clientele for which it serves as a common
memory front end, or it will be used (additionally or in place
of) as a terminal interface to the VAX computer.

2.1. The Discretionary Startup Procedure

Use this procedure if you only want to boot a subsection of the
AMRF network, or if you want additional details of the network
startup process.

An attempt has been made to make this procedure sufficiently
descriptive so that decision points (where you have options that
depend on the network configuration that is being booted) are
clearly identified.

2.1.1. Login

(1) Login to DEMO from the console keyboard with user name
AMRFTEST (no password is required). The login procedure
checks if you are operating from the DEMO console
keyboard, and, if so, issues command "SUNTOOLS VAXNET "

.

This sets up the windows for s

CELL

MHS

NETCMD

CMM
TCPNIP

SCRATCH

for the communications process that links
the PC-resident CELL and the local common
memory

.

for the communications process that links
the PC- resident MHS and the local common
memory

.

for login to the VAX and display of a very
wide window into which all network status
displays will fit (192 characters wide),
for the local common memory process,
for the local network interface process
that operates over the ethernet TCP/IP
link to the VAX.
for optional, discretionary use.

It also starts the local common memory manager (CMM) and
the TCPNIP. The wide NETCMD window has been programmed
to perform a TELNET to the VAX, so use the mouse to place
the arrow into that window and get ready to login to the
VAX when the "Usernames " prompt is displayed. Login with
user name AMRFINT1 (password is available on a "need to
know basis" from the AMRF configuration manager.)

VI 8

AMRF Network

Login to the VAX in the NETCMD window only if you are
about to configure a network that requires the use of the
VAX to initiate mailbox connections (and to act as a

router link between remote systems). If you do not login
to the NETCMD window before the VAX times out the user
login, the window will close (disappear). If you need to
bring back the window, use the mouse to display the
Suntools menu, select the network manager submenu, and
select the "NETCMD" option. The window will be recreated
and the automatic VAX "Username:" prompt will appear as
before

.

(2) If you are starting the entire AMRF network, or if you
are configuring network connections that utilize the VAX,
login, on a nearby VT100 terminal to the VAX, as AMRFINT1
and follow the prompt to the [AMRFINT1.NET] subdirectory.

2.1.2. Establish The Environment

(1) If you are configuring network connections in the 'A'

category, as identified in Table VI-2, then you are
finished

.

(2) If you are configuring network connections that require
the addition of category 'B 1 (CELL communications link),
as identified in Table VI-2, then, in the CELL window,
issue commands

(a) if the debugger is NOT required (i.e., you are not
looking for program errors):

su - wenger
cd cmcell/cell
cell
<an extra carriage return>

(b) if the debugger is required:
su - wenger
cd cmcell/cell
dbx sun_tty01
run 17 0

<an extra carriage return>

(3) If you are configuring network connections that require
the addition of category 'C' (MHS communications link),
as identified in Table VI-2, then, in the MHS window,
issue commands

(a) if the debugger is NOT required:
su - wenger
cd cmcell/mhs
mhs
<an extra carriage return>

VI 9

AMRF Network

(b) if the debugger is required:
su - wenger
cd cmcell/mhs
dbx sun_tty02
run 17 0

<an extra carriage return>

2.1.3. Start The NIPs

The network interface processes (NIPS) for all of the computers
in the Inspection Workstation cluster (IWS, CMM , SRI, IRC) and
the front end common memory computer, called DEMO, (for VWS, PPL,
CDWS , CELL and MHS

)
will automatically be started when the

station software is executed, and therefore require only some
coordination between the network operator and the workstation
operator to indicate that the workstation has been initialized
before the network boot process can continue.

The remaining NIPs require some manipulation by the network
operator in order to make them operational and able to process
network packets. This manipulation is detailed in Section
VI. 2. 4.1. of this document. You may proceed to initialize those
NIPs, assuming they are required for your network configuration,
without waiting for the IWS initialization process to complete.
However, a general rule is: a workstation NIP must successfully
complete initialization before a command is issued to NETCMD
requesting a mailbox connection through that NIP.

2.1.4. Connect Common Memory Mailboxes

In DEMO's NETCMD window, issue the following commands (without a
leading ' sign):

NETNAMES
NETSTART

TCPNIP

NETCMD 200

(establishes the network logical names)
(starts MBHAND and the SERIAL NIP in the
background; log file created)
(used only if DEMO will be connected,
runs the NIP in the foreground; displays
status of all TCP NIP transactions;
requires dedicated use of the terminal)
(brings up the network manager display in
anticipation of mailbox connections)

2. 1.4.1. Complete Set Of Mailbox Connections

Script files (see Section VI . 2 . 1 . 3

)

have been created to simplify
and expedite the mailbox connection and network startup process.
The following list identifies the names, syntax and sequence in
which the script files must be submitted to NETCMD. Subsequent

VI 10

AMRF Network

script files assume that the previous script files have been
processed normally.

Enter these script files (with the "@" sign prefixed) at the
NETCMD "Command:" prompt.

NOTE: ALWAYS issue the xxxBase.net script file BEFORE any other
script files for that station. If two stations are to be
interconnected, BOTH of their .xxxBase.net script files must be
processed before any of their other mailboxes can be connected.

@vwsbase
Qhwsvall
Qtwsvall
@hvsbase

@iwsbase
@iwssri
@iwscmm
@iwsirc

or use @IWSALL .NET to get
these IWS script files at
time

all
one

@hwsdb
@hmcdb
Qhrcdb
@twsdb
@ppldb
@atcdb
@dwsdb
@vwsdb
Qiwsdb
@hvsdb

(NOTE: these files are only
used if the IMDAS is to
accessed

.

)

or use @ALLDB . NET to get all
these IMDAS script files at
one time

@cellhws (NOTE: these files are only
@celltws used if the Cell is to be
@celldws included in the active
@cellvws configuration.

)

@celliws
.... or use 0CELLALL.NET to get all

these CELL script files at one
time

@mhshvs
@mhshmb

VI 11

AMRF Network

2. 1.4. 2. Discretionary Mailbox Connections

Appendix E lists all (currently) available script files.
Section VI . 1 . 3 .

2

describes the script file naming convention.
With that information, an operator can start any network
configuration

.

Just a reminder: ALWAYS issue the xxxBase.net script file BEFORE
any other script files for that station. If two stations are to
be interconnected, BOTH of their xxxBase.net script files must be
processed before any of their other mailboxes can be connected.

2.2. The Streamlined Startup Procedure

Use this procedure only if you intend to boot the entire network
configuration or if you are looking for shortcuts to expedite
your network boot process.

If you desire more detailed information for the boot procedure,
read Section VI . 2 . 1

.

This procedure optimizes the sequence of the steps to bring up
the network configuration in order to accomplish it as rapidly as
possible. It assumes that the entire network is to be booted,
and that you are fully familiar with the display screens and
terms used in the boot process.

Perform the following steps in sequence. Subsequent steps (with
the exception of steps 1 and 2) assume the completion of all
preceding steps.

(1) Login to DEMO from the console keyboard with user name
AMRFTEST (no password is required). The login procedure
issues command "SUNTOOLS VAXNET " for you and sets up
the windows for CELL , MHS , NETCMD , CMM , TCPNIP, and a
spare window for optional use.

The local common memory manager (CMM) and the TCPNIP will
start automatically. The wide NETCMD window will TELNET
to the VAX, so use the mouse to place the arrow into that
window and get ready to login to the VAX when the
"Username:" prompt is displayed. Login with user name
AMRFINT1 (password is available on a "need to know basis"
from the AMRF configuration manager.)

(2) While you are waiting for step (1) to get to the
"Username:" prompt in the NETCMD window, use a nearby
VT100 terminal and login to the VAX as AMRFINT1 . At the
first prompt, enter "NET". This will place you into the
[AMRFINT1.NET] subdirectory.

VI 12

AMRF Network

If the "Username:" prompt appears in the NETCMD window
before you finish your login on the VT100, be sure and
stop what you are doing on the VT100 and login in the
NETCMD window and then resume on the VT100. If the
NETCMD login times out (you have approximately 30
seconds), then NETCMD window will close and you will have
to regenerate it using the Suntools menu (select the
NETMGR submenu and then the NETCMD option)

.

(3) On the VT100 terminal, issue the following commands
(without a leading sign):

NETNAMES
NETSTART
TCPNIP

(4) Press the RESET buttons for all HWS and TWS controllers,
(i.e., HWS, HMB , HMC, HRC , HGP , HVS , TWS, and ATC)

(5) On DEMO, in the NETCMD window, issue the following
commands (without a leading '(§' sign):

ALLDOWN (performs sequential @DOWNs

)

"ALLDOWN" performs an @DOWN on all the stations of the
AMRF . You will see the name displayed for the station
whose NIP you are being asked to start. Press RETURN or
ENTER before entering the boot commands in order to see
if the controller interface is active. You should see a
">" in response to pressing RETURN.

For HWS, HMC, HRC, HGP, and HMB the sequence is
(uppercase only):

CAL FE2000
GO

For HVS the sequence is (uppercase only)

:

CAL FE2000
SR 2700
PC 1000
GO

a

For TWS and ATC, the sequence is:

g980000
r2
2700
r3
1000
go

VI 13

AMRF Network

If one (or more) of the controller NIPs does not respond
to your RETURN, then verify that the circuit is
operational and fix it, if inactive (Section VI . 2 . 3

.)

,

and get a response to RETURN before continuing. If the
circuit is operational, then exit from that @DOWN and
continue with the remainder. Come back to the failed
controller and try it again, individually (c.f.. Section
VI .2.4.1.

)
.

If you receive a message of "TRAP ERROR" after entering
the "GO" command, then the problem is the multibus
backplane. Ask the workstation manager to reset the
station and re-enter that station's boot instructions.

Exit each "@DOWN" in the ALLDOWN sequence by pressing

and continue with the next station. DO NOT allocate the
device before the ALLDOWN or @DOWN.

(6) Once all the NIPS have been started and all workstation
managers report that their stations are operational and
ready for connections, resume booting the network.

On DEMO, in the NETCMD window, start the network manager
process : issue command

NETCMDW 200

Finally, submit the following script file names in
response to the network manager's "Command:" prompt, in
the order given.

@vwsbase
@hwsvall
Qtwsvall
@hvsbase
@IWSALL
@ALLDB
0CELLALL
Omhshvs
Omhshmb

(7) While NETCMD is processing the mailbox commands contained
in the script files, you can go ahead and connect the
CELL and MHS PCs to their common memory front end using
their respective communications processor.

VI 14

AMRF Network

In the CELL window, issue commands: .

su - wenger
cd cmcell/cell
cell
<and press an extra RETURN>

In the MHS window, issue commands:

su - wenger
cd cmcell/mhs
mhs
<and press an extra RETURN>

When these commands are completed, the CELL and MHS
processes can be started on the respective PC.

(8) After the last script file has been processed (step 6)
and the NETCMD "Command:" prompt reappears, and step 7

has been completed, the network is fully operational and
ready to carry user data between systems.

2.3. How To Verify That Network Circuits Are Operational

This is only performed for serial RS232 and ethernet TCP/IP
circuits that utilize the local broadband token bus network
called AMRFnet

.

2.3.1. Ethernet TCP/IP Circuits

Use the TCP/IP Telnet service to login to a remote computer host
that accepts remote logins across the (TCP/IP) network path that
you require to support your network configuration. If you are
successful in your login, then the network path is operational.
If you are unable to login, then it is possible that the AMRFnet
Ethernet bridge is not operating properly: contact the AMRFnet
network manager for further analysis and/or repair.

2.3.2. Serial RS232 Circuits

The operability of serial circuits across the AMRFnet can be
established by determining whether their status is "SESSION IS
ACTIVE" or "SESSION IS NOT ACTIVE". To do this, you must use a
local asynchronous terminal and connect to a control port on the
AMRFnet. Once connected, you must know the port number for the
connection you are checking on. Table VI-3 lists all currently-
assigned ports.

VI 15

AMRF Network

Table VI-3 . Pertinent AMRFnet Port Assignments

Workstation AMRFnet Port

ATC

HGP

HMB

HMC

HRC

HVS

HWS

IWS

TWS

01 3e01

0dd03

0dd04

OddOl

0dd02

0dd05

OddOO

OlcOI

013e00

The following procedure can be used to determine whether a
station connection is ACTIVE. Press ENTER or RETURN at the end
of each of your responses to menu prompts.

(1) Find a terminal that is connected to the AMRFnet (has the
AMRFnet menu displayed).

(2) Press 'A' to make a connection.

(3) Press '

B
' to connect by address (you will be prompted for

an address)

.

(4) Enter *0609101' as the address to which you wish to be
connected

.

(5) When you see the "Connected" status message appear, press
ENTER or RETURN several times. You should see several
iterations of the "Invalid Choice" and "Selection:"
messages from the AMRFnet. Press 'G* to perform network
management functions

.

(6) You will be prompted for a password. This password must
be obtained from the AMRFnet network manager, and not
disseminated to unauthorized individuals. Enter the
password

.

(7) You will now be prompted with "Enter Command:". Issue
command "LIST xxx", where "xxx" is one of the addresses
from Table 2, and the network will tell you the status of
the connection. For example, "LIST OlcOI" to determine
the status of the connection for the IWS.

(8) If the status is "SESSION IS ACTIVE", then remedial
action is unnecessary. Check any other connections you
wish. Continue with step (10) when you're done.

VI 16

AMRF Network

(9)

If the status is "SESSION IS NOT ACTIVE", then issue
command "DISABLE nnn" , where "nnn" is the name of the
workstation. For example, "DISABLE IWS" . Wait
approximately 5 seconds, .then issue command "ENABLE nnn".
Wait approximately 5 seconds, then continue with step (7)
to recheck the connection status. If you have done this
several times without seeing status "SESSION IS ACTIVE",
then contact the AMRFnet network manager for assistance.

(10) Once you have checked all network connections, exit from
network manager mode by entering command "RETURN" . This
prohibits an unauthorized user from accessing the control
functions

.

(11) Disconnect your terminal from the remote control port by
pressing the transition character to get back the local
menu (usually, this is the BREAK key), then select the
appropriate menu option to ABORT the connection ('

E
'

)

and
confirm the action by pressing •

Y
* when requested.

2.4. How to Start Individual NIPs

2.4.1. Multibus Systems

All communication boards for the multibus-based systems have
board RESET buttons installed in Control Room 2 that connect to
the RESET function on the respective workstation. The boards
occasionally are in a "strange" state when power is applied to
the multibus units, or may occasionally require RESETS for other
reasons. Whenever the term RESET is used in the following
procedures, it refers to pressing the respective workstation's
RESET button. The anticipated result in response to pressing the
RESET button is an indication that the board has been reset. For
the boards installed in the systems of Section VI . 2 . 4 . 1 . 1

.

and
Section VI. 2. 4. 1.2., "MACSBUG" is displayed. For the boards
installed in the systems of Section VI . 2 . 4 . 1 . 3 .

,

"Pacific Micro
...." is displayed. Each of these displays is followed by the
">" prompt indicating that the board is ready for further
instructions

.

If you don't see the appropriate message in response to RESET,
then:

(1) check the respective AMRFnet circuit and make sure that
the session is active. TThe necessary steps are detailed
in Section VI . 2 . 3 . 2

.

(2) if #1 doesn't work (session is already active), then
press to exit the DOWNload program and try the
entire @DOWN procedure again. Sometimes, for reasons
currently undetermined, this "trick" works.

VI 17

AMRF Network

2. 4. 1.1. HWS, HMC, HBD, HRC , HGP

On the terminal (or in the window) connected to the VAX, issue
the following set of commands for each of the above-named
workstations that is to be included in the configuration

.

(1)
@DOWN xnnn

where 'x' is mandatory, and ' nnn' is the 3-letter
controller acronym. For example, 'xHRC' is the
appropriate entry for the HRC. This command invokes a
specially-written terminal communications interface to
the VAX terminal port connected to the controller's
serial interface. Do not ALLOCATE the port before
executing this step: the DOWNload procedure will
allocate and deallocate the port itself. This avoids
"hanging" the port and inadvertently causing a NIP crash
on the VAX.

(2) Press the respective controller's RESET button and wait
for the "Macsbug ..." prompt.

(3) Enter the following commands in uppercase at the ">"

prompt

:

CAL FE2000
GO

(4) After you enter command "GO", you will see a repeating
pattern of characters on the screen. Depending on
whether you are using a VTXOO-type terminal or a window
on DEMO, you will either hear the BELL or see the window
go into reverse video momentarily approximately every 3

seconds. This is the normal behavior that you can expect
to observe if the NIP has started properly.

If, instead, you get an error message of "TRAP ERROR",
then there is a multibus bus error: ask the workstation
operator to reset the controller, and resume with step 3,

above, when the reset has been completed.

(5) After you have verified that the NIP is operating
properly, enter

to exit the DOWNload program. Resume with step (1),
above if additional workstation controllers are to be
included in the network configuration.

VI 18

AMRF Network

2 . 4 . 1 .

2

. HVS

To start the NIP for the vision system, simply follow the same
steps outlined in the previous section (VI . 2 . 4 . 1 . 1

.)

,

however,
substitute the following commands in step (3)

:

CAL FE2000
SR 2700
PC 1000
GO

2 . 4 . 1 . 3

.

TWS , ATC

On the terminal (or in the window) connected to the VAX, issue
the following set of commands for each of the above-named
workstations that is to be included in the configuration.

(1)
@DOWN xnnn

where 'x' is mandatory, and ' nnn' is the 3-letter
controller acronym. For example, ' xTWS

'

is the
appropriate entry for the TWS. This command invokes a
specially-written terminal communications interface to
the VAX terminal port connected to the controller's
serial interface. Do not ALLOCATE the port before
executing this step: the DOWNload procedure will
allocate and deallocate the port itself. This avoids
"hanging" the port and inadvertently causing a NIP crash
on the VAX.

(
2)

Press the respective controller's RESET button and wait
for the "Pacific Micro ..." prompt.

(3) Enter the following commands (in upper or lowercase) at
the ">" prompt:

g980000
r2
2700
r3
1000
go

(4) After you enter command "GO", you will see a repeating
pattern of characters on the screen. Depending on
whether you are using a VTlOO-type terminal or a window
on DEMO, you will either hear the BELL or see the window
go into reverse video momentarily approximately every 3

seconds. This is the normal behavior that you can expect
to observe if the NIP has started properly.

VI 19

AMRF Network

If, instead, you get an error message of "TRAP. ERROR",
then there is a multibus bus error: ask the workstation
operator to reset the controller, and resume with step 3,
above, when the reset has been completed.

(5) After you have verified that the NIP is operating
properly, enter

to exit the DOWNload program. Resume with step (1),
above, if additional workstation controllers are to be
included in the network configuration.

2.4.2. Non-Multibus Systems

The network interface processes (NIPS) for all of the computers
in the Inspection Workstation cluster (IWS, CMM , SRI, IRC) and
the front end common memory computer, called DEMO, (for VWS, PPL,
CDWS , CELL and MHS

)
will automatically be started when the

station software is executed, and therefore require only some
coordination between the network operator and the workstation
operator to indicate that the workstation has been initialized
before the network boot process can continue.

If any of the NIPs of the IWS cluster must be restarted, then the
respective controller program must be restarted.

If the NIP on DEMO must be restarted, first make sure that the
old NIP has been aborted (or abort it yourself). Then, use the
mouse to call up the suntools menu, select the NETMGR submenu,
and select the TCPNIP option to restart the NIP.

2.4.2.I. The VAX's TCPNIP

To execute TCPNIP without options enter:

RUN TCPNIP

TCPNIP can also be initiated with options.

d - turns on debug statements
t - specifies an alternative port number

In order to specify options when the program is initiated, a

logical symbol must be defined:

TCPNIP :== $USER1[NETWORK. TVAXV1] TCPNIP

VI 20

AMRF Network

TCPNIP can then be started with or without options as follows:

TCPNIP
TCPNIP d
TCPNIP d tl590

2.5. If a Restart is Necessary

If it becomes necessary to restart the network configuration, all
previously-connected NIPs must be RESET and restarted.
Additionally, it is important to purge two common memories: the
one on the VAX, and the one on DEMO.

The DEMO common memory is purged by aborting the common memory
process in the CMM window and then restarting it. It is
restarted by calling up the suntools menu, selecting the NETMGR
submenu, and specifying the CMM option. Once it restarts, all
client process (VWS, PPL, CDWS, CELL and MHS

)
must reconnect to

it

.

The VAX common memory is purged by aborting the VAX NIP(s),
MBHAND , and any other process attached to it: notably, the IMDAS
processes. Abort the network processes by

(1) exit NETCMD in the NETCMD window on DEMO with command '
q

'

(2) on the terminal on which the TCPNIP is running, press
control-C to abort the TCPNIP process

(3) on the same terminal, issue command NETKILL to terminate
the serial NIP and MBHAND

(4) have the IMDAS operator exit all IMDAS operations

(5) after all of the above steps have been completed, restart
the network in accordance with the instructions of
Section VI . 2

.

If the common memory is not purged, it is very likely that the
new NIPs will attempt to execute the command still remaining in
the (old) common memory, and will result in a deadlocked status
from which that NIP is unable to recover.

3. OPERATING THE NETWORK

3.1. Managing Mailbox Connections

3.1.1. Making (New) Mailbox Connections

The network architecture enables us to make mailbox connections
dynamically; that is, while the network is operational. To make
a connection, it is only necessary to insert an entry for the

VI 21

AMRF Network

specific connection into the NIP'S mail delivery table. The only
stipulations are:

(1) Both ends (NIPs) of the connection must be operating.

(2) There must be room for the specified mailbox at each
network node where the connections are to be made.

(3) There must be room in the NIP'S mail delivery table for
the entry of an additional connection.

Once all these stipulations are met, the connection can be made
by submitting the appropriately-formulated command to NETCMD

.

Refer to Section III. 2. 4. 3.1. for the command structure format.

Since the purpose of the connection is to transfer data FROM one
mailbox TO another, you must connect the input side before the
output side. As soon as the output connection is made, the
network attempts to make a mailgram delivery. For example, the
following two CONNECT commands first connect the input side and
then the output side.

hmb ci h_mbd_cmd, 248 hws, 4FD1 040000
hws co h_mbd_cmd, 248 hmb, 4FD1 040400

3.1.2. Breaking Mailbox Connections

The network architecture enables us to break mailbox connections
dynamically. That is, while the network is operational. To
"break" a connection, it is only necessary to remove the
appropriate entry from the NIP'S mail delivery table. The only
stipulations are:

(1) The NIP, at the node where the connection is to be
broken, must be operating.

(2)
The OUTPUT connection must be broken before the INPUT
connection. This avoids having the NIP at the output
node expending a lot of time attempting to deliver a
mailgram that will not be accepted (or acknowledged).

NOTE: If the output NIP is no longer operational, then
the OUTPUT connection should not be broken or it can
cause the NIP to hang.

Once all these stipulations are met, the connection can be broken
by submitting the appropriately-formulated command to NETCMD.
Refer to Section III. 2. 4. 3.1. for command structure format.

VI 22

AMRF Network

For example, the following two DISCONNECT commands first break
the output side and then the input side.

hws do h_mbd_cmd, 248 hmb, 4FD1 ”040400
hmb di h_mbd_cmd, 248 hws, 4FD1 040000

3.2. Removing Stations From The Active Configuration

3.2.1. Station Is Active

To remove an active station from the active network
configuration, all you need to do is to disconnect all of that
station's mailbox connections. After the last mailbox connection
has been disconnected, the workstation is no longer included in
the active network configuration.

It is important to disconnect the mailboxes in the REVERSE ORDER
in which they were originally established. That is, to
disconnect the output side of a connection before disconnecting
the input side. This, of course, must be done from the
perspective of the station being removed.

EXAMPLE: The following commands connect the HWS to the HRC thru
the VAX using the serial network links:

! Connect HWS NIP links
vax co hws__nip_cmd

,

vax ci hws_nip_sts,
hws co hws_nip_sts

,

! Connect HRC NIP 11
vax co hrc_nip_cmd

,

vax ci hrc_nip_sts

,

hrc co hrc_nip_sts

,

! Connect cmd and status mailbox links from HWS to HRC

*68,1 hws. 001
*212,2 hws

,

000
212,2

s

vax

,

000

*68,1 hrc

,

001
*212,2 hrc

,

000
212,2 vax

,

000

vax ci h res _cmd

,

*248 hws

,

4FB1
hws co h res'_cmd

,

248 vax

,

4FB1 040200
hrc ci h res' cmd

,

*248 vax

,

4FB1 0F6000
vax co h res'_cmd

,

*248 hrc

,

4FB1
vax ci h_[res'_sts

,

*248 hrc. 4BF1
hrc co h res _sts

,

*248 vax

,

4BF1 0F6200
hws ci h [res _sts

,

248 vax

,

4BF0 040300
vax co h res' sts

,

*248 hws

,

4BF0 0F6200

If we wanted to remove the HRC from this network configuration,
we would submit all of its mailbox connection commands, in
reverse order, as DISCONNECT commands, and carefully disconnect
all OUTPUT mailboxes before disconnecting the INPUT mailboxes.
The NIP command and status disconnects are performed last.

VI 23

AMRF Network

! Disconnect HRC-HWS status mailbox links
hrc do h res _sts, *248 vax

,

4BF1 0F6200
vax di h res'_sts, *248 hrc

,

4BF1
vax do h res" sts, *248 hws

,

4BF0 0F6200
hws di h res" sts, 248 vax

,

4BF0 040300
! Disconnect' HRC-HWS command mailbox links
hws do h res cmd, 248 vax

,

4FB1 040200
vax di h res'_cmd, *248 hws

,

4FB1
vax do h res" cmd, *248 hrc. 4FB1
hrc di h res" cmd, *248 vax

,

4FB1 0F6000
! Disconnect HRC NIP links
hrc do hrc_nip_sts , 212,2 vax, 000 0

vax di hrc_nip_sts, *212,2 hrc, 000
vax do hrc_nip_cmd, *68,1 hrc, 001

3.2.2. Station Is No Longer Active (Crashed)

If a station crashes, it is only necessary to cancel the
connections on the other stations still active. The same
guidelines should be followed, as if the station were still
active. That is, the (remaining) connections should be broken in
the reverse order in which they were made.

Using the network configuration given at the start of the example
of Section VI . 3 . 2 . 1 .

,

if the HWS crashes, the resulting
disconnect commands would be

i Disconnect HWS command & status mailbox links
vax do h__rcs_sts, *248 hws , 4BF0 0F6200
vax di h_rcs_cmd, *248 hws, 4FB1
! Disconnect HWS NIP links
vax di hws_nip_sts, *212,2 hws, 000
vax do hws_nip_cmd, *68,1 hws, 001

3 c 3 . Inserting Stations Into The Active Configuration

3.3.1. New Stations

New stations can be added to the active configuration at any time
by following these steps:

(1) Determine if the supporting network circuit already
exists. That is, if you are going to add one of the IWS
components (CMM , SRI, or IRC), then IWS must be active
first; if you are going to add one of the clients of the
front end common memory server (CELL, MHS , PPL, VWS,
CDWS

)
to exchange data with the VAX or nodes that

communicate through the VAX, then the TCP/IP Ethernet NIP
must first by active. In other words, the supporting
NIP(s) must be active.

VI 24

AMRF Network

If the supporting network circuit doesn't already exist,
establish it first, in accordance with the directions of
Section VI . 2

.

(2) Submit the mailbox connection commands to the network
manager in the appropriate order. "xxxBase.net", if it
exists, must precede any other connection commands.
"xxx" identifies the workstation acronym: an example is
TWSBase.net

[NOTE: PPL, VWS , CELL, MHS and CDWS all use the same
"xxxBase.net" file, namely VWSBase.net. This basic
script file must only be invoked once for the entire
front ended group. If invoked more than once, then
multiple NIP mail delivery table entries will be made,
resulting in multiple deliveries of mailgrams . This is
not necessarily fatal, but will burden the network with
unnecessary traffic.]

3.3.2. Previously-Removed Stations

Stations that have been previously removed from the active
network configuration, and have had all their mailboxes
disconnected, are reinserted into the active network
configuration by following the same procedure as for NEW
stations

.

3.3.3. Stations That Crashed And Were Rebooted

An attempt to reinsert a station whose mailboxes have not been
totally disconnected can be very difficult or impossible,
depending on the contents of those mailboxes: particularly the
xxx_NIP_CMD output mailbox on the VAX. Likewise, it is often
impossible to determine or recall which mailbox connections had
been successfully established.

The recommended procedure is to:

(1) Disconnect all existing mailbox connections. No harm is
done if you issue a mailbox DISCONNECT command to a NIP
that currently doesn't have that connection in its mail
delivery table.

(2) Restart the station as a NEW station inserted into the
active network configuration.

3.4. Monitoring Operation Status

Refer to Section III. 2. 4. 2. for detailed functional descriptions
of particular NETCMD display fields. However, in order to
monitor the status of any network connection, it is only
necessary to watch the rows labeled as follows:

VI 25

AMRF Network

MDT Entries - keeps track of the number of mailbox
connections made for that station. This
number should increase as a CONNECT
command is processed, and decrease as a
DISCONNECT command is processed.

TIME SINCE - indicates how long ago since the NIP sent
its status. The NIP is programmed to
automatically report its status every 30
seconds. By pressing the RETURN key (with
the Sun mouse arrow in the NETCMD window)
at the "Command:" prompt several times,
you will get immediate NETCMD display
updates of this status field. Although
these numbers will increase, they should
eventually (within 1-2 minutes) return to
00 seconds. [NOTE: some stations, notably
IRC, deny the NIP access to the CPU for
periods of time longer than 30 seconds, so
it is "normal" if the time exceeds 30
seconds, but abnormal if it approaches 5

minutes
.

]

NIP STATUS - Indicates whether the NETCMD thinks the
remote NIP is UP or DOWN. NETCMD changes
the NIP'S status to DOWN if it has not
received a status report in more than 60
seconds, and changes it back to UP when a
status report is received in response to a
POLL or other command.

3.5. Configuration Shutdown

3.5.1. Orderly Shutdown

An orderly shutdown of the network requires that each individual
mailbox connection established during network operation be
disconnected (in reverse order) before workstation controllers
are powered off. However, this is seldom the case in practice.
The "panic" shutdown procedure is used, instead.

3.5.2. Panic Shutdown

The panic shutdown consists of:

(1) If the network is to be shutdown permanently, then power
all the workstation controllers OFF.

Logout of the VAX (on both the VT100 and the NETCMD
window), then logout of DEMO.

VI 26

AMRF Network

(2) If the network is to be shutdown for an immediate reboot,
then purge common memory on DEMO and the VAX and restart
all NIPs. (See Section VI . 2 . 5 .

)

VI 27

'

'

.

AMRF Network

VII . LESSONS LEARNED

1. COMMON MEMORY

Libes [8] chronicles our experiences with common memory, and
provides suggestions for a minimal implementation to guide future
implementors. Summarizing, some things to avoid are statically-
sized variables and typed variables. Additionally, there is a
need to make the common memory interface in multi-user systems
sufficiently robust to preclude the death of a single user
process from blocking common memory access. (Such blocking is
possible with the VAX common memory, but is precluded in the Sun
common memory)

.

The concept of global common memory with transparent network
services can create problems that arise from that transparency.
If a problem occurs in the local common memory, the network, the
remote common memory, or the remote process, it looks like a
local common memory problem to the (local) user. This means that
a large number of people can be involved in debugging a problem,
and people have to be convinced that the problem actually lies
with their part of the system. More flexible diagnostic tools
are necessary to simplify this process.

2 . NETWORK

2.1. I/O Using TCP Stream Sockets

2.1.1. Stream Sockets

The TCP version of the Sun NIP uses the stream type sockets
provided by Berkeley UNIX. Stream sockets provide for the bi-
directional, reliable, sequenced and unduplicated flow of data
without record boundaries. Because record boundaries are not
preserved across the network when using stream sockets, this must
be done by the two communicating NIPs

.

2.1.2. Connection Establishment

The establishment of TCP connections is asymmetric with one
process acting as the server and the other process as the client.
The algorithm for determining the role of each process in the
connection process is described earlier (Section V.2.2).
However, once the connection is established, the client/server
model is no longer valid and the socket is treated as a
symmetrical connection by the two NIPs

.

VII 1

AMRF Network

2.1.3. Record Length And Stream Sockets

Since stream sockets do NOT preserve the record length of the
write to the remote process, this is handled by the two
cooperating NIPs . We used the sized_io routines from the stream
library /usr/lib/libstream. a . These work quite simply by
prefixing the record with the length in bytes of the record. That
is, the format is

+ +
I |

record size == N
(4 bytes

)

+ +
I l

This worked well until we discovered the write deadlock problem
in using TCP stream sockets in blocking mode. We solved the
problem by implementing the same record structure on non-blocking
sockets (see below). The write deadlock problem also became
apparent in the Sun common memory system sockets

.

2.1.4. Socket Configuration

Upon opening a socket, it is configured for both asynchronous and
non-blocking I/O. When in asynchronous I/O mode, the system
delivers a system signal whenever new data arrives on the socket.
In non-blocking mode, read and write calls on the socket never
block but instead return errno=EWOULDBLOCK when no data is
available on a read or the socket is full on a write.

Asynchronous mode is used so a system will deliver a signal
(interrupt) when new data arrives at the socket. This is much
preferred over continuously polling the socket for new data.

Non-blocking mode was used to avoid write deadlocks on the
socket. Sockets are implemented with an internal limit of 4096
bytes. That is, if the number of unread bytes in the socket
reaches 4096, the socket is full and further writes will block
until there is space available in the internal socket buffers.
Sockets are full duplex. Therefore if both processes
simultaneously attempt to write to the socket more than a
combined total of 4096 bytes, they will both block and not
complete their writes (i.e., a deadlock).

This was all brought about by the fact that we could not
implement the actual physical read of the socket in the SIGIO
interrupt handler code. We could not do this since we first look
at the size of the incoming packet via a read before getting the
buffer from the buffer manager to read into. You cannot access
the buffer pool in interrupt code since this runs the risk of
confusing the free buffer list, etc. Therefore, we had to run

record data .

.

(N bytes)

VII 2

AMRF Network

the actual reads outside the interrupt code. Since we had to be
able to read when the sockets got full (in order to avoid
deadlocks) we had to make the sockets non-blocking.

As a final side effect we discovered that in non-blocking mode,
output text length must not be too large (the limit is somewhere
between 2000 and 3000 bytes, I suspect 2048). If it is too
large, you get errno=EMSGSIZE and the packet is NOT sent. You
cannot use ioctl (SIGCGHWAT)

to see how much space there really is
since it isn't supported yet in Version 3.0 of Sun Unix.
Therefore large output is written a chunk at a time. I chose
1000 bytes as the chunk size. (TCPMSGSIZE == 1000 bytes)

All this was discovered late in the development, in retrospect
things would have been implemented quite differently. For
example, not getting the buffer in the actual read routine but
instead somehow having one ready all the time would have
eliminated the need for non-blocking I/O... or somehow allowing
access to the buffer pool from interrupt code. Using a socket
pair for communications would double the available buffer space
before the deadlock occurs, but does not eliminate the need to
perform the actual socket read in the interrupt handler routine.

Using two unidirectional sockets per connection would eliminate
the need to use non-blocking I/O, and would also eliminate the
socket full problem in both the NIP application of sockets and
the SUN common memory system. Asynchronous mode would still be
used so that the SIGIO signal would be delivered.

2.2. Network Manager Functions

The use of a human network manager was extremely beneficial
during the development of the network services. However, as both
the number of systems to connect and the number of
interconnections have increased, it has become obvious that some
additional method must also be developed. It is our intention to
support user-directed connections, whereby a user process can
send a command to its local NIP and request that a connection be
established (or broken) with some remote system. This will
necessitate making all local connection statically available to
the user, and the network functions will no longer be totally
transparent to the user process. These later services will be
provided on all systems, and will not preclude the use of the
current network management functions (NETCMD)

.

2.3. Computer-Dependent Byte Ordering

Libes [23] thoroughly discusses the problems encountered when
transferring byte sequences between computers that have differing
internal byte order sequences. In order to avoid data
representation/interpretation errors, it is necessary to specify
a standard byte sequence representation. All communicating

VII 3

AMRF Network

computer systems, no matter what their internal byte sequencing,
must convert to this standard representation before transferring
data to another host, and must expect to receive data in the
standard representation from other hosts . The International
Standards Organization (ISO) has announced such a standard [24].

2.4* Commercially-Available Networking Products

Now that MAP and TOP networking products are becoming
commercially available, it is our intention to begin their phased
integration into the AMRF for evaluation* We expect that,
eventually, all of our locally-developed networking software will
be replaced with commercial products. Only common memory will
remain, and we will have to develop new software to link it to
the new underlying network.

VII - 4

AMRF Network

Appendix A

AMRF Interprocess Communication in Multibus Systems

This appendix describes the standard implementation of AMRF
mailboxes for multimaster (IEEE 796) Multibus-based microcomputer
systems, using standard bus controls and having at least one
bus-accessible (common) memory area.

It is of particular note that the NBS Robot Control System, in
its current implementation, uses an additional access control
protocol and does not fall under the provisions of this document.

Section references herein are to the main document - AMRF
Interprocess Communication Standards, unless they begin with the
letter A.

A . 1 . REPRESENTATION OF MAILBOXES

Multibus mailboxes follow the structure and rules for mailbox
management described in Section III.l.

A. 1.1. Mailbox Structure

The form of the mailgram is as specified in Section III. 1.2. The
mailbox contains an 8-byte header to support variable-length
mailgrams, to provide change indication and to allow arbitration
of simultaneous accesses to the mailgram data in a multiprocessor
environment. The access control header has the following form:

Byte 1-2 3-4 5-6 7-8

Write Lock Read Lock Sequence Length

where

:

Write_lock is a 2-byte integer containing either a 1 (locked) or
a 0 (unlocked), set and cleared by the process which
writes in that mailbox.

Read_lock is a 2-byte integer containing the number of processes
currently engaged in reading information from that
mailbox

.

Sequence is a 2-byte integer which is changed by the writer to
indicate an update to the contents.

Length is a 2-byte integer giving the length of the current
mailgram in the mailbox.

The use of the access control header is explained in section A. 2.

A - 1

AMRF Network

A. 1.2. Mailgram Flow

Since the Multibus environments will almost universally be
multiprocessor systems, interchanges between processes must
comply with the guidelines on flow control specified in
Section III. 1.1. 4.

In this environment, no synchronization can be expected between
the sender and the receiver (s) o'f any mailbox for which flow
control is not applied. Receivers will, of course, always get the
current mailgram in the mailbox, but they may read the same one
several times (because there is no guarantee that the sender on
another processor will have completed an update cycle in the
interim), or they may miss several intervening mailgrams (because
the sender may have completed more than one update cycle while
the receiver was busy)

.

Even when the cycle times of the sender and receiver are known to
have a one-to-one or one-to-n relationship, but the sender and
receiver are on different processors, the physical flow of the
mailgrams is somewhat unpredictable. What occurs in these cases
is known as a "race condition": whether the interchange works as
expected depends on whether processor A gets to a particular
instruction or memory cell before processor B does.

A . 1 • 3 • Mailbox Data Representation

The Intel 8086/8088 stores integers in binary, two's complement,
least significant byte first.

The Motorola 68000 stores integers in binary, two's complement,
most significant byte first internally, but the bytes may be
inverted (that is, least significant byte first) on presentation
to the Multibus

.

Character strings are 7-bit ASCII with the high-order bit being
zero

.

The communications software is aware of the byte order of the
originating processor for the header fields, and stores values
compatible with that byte-order. It is not aware of the areas in
which byte-order is significant within the mailgram, so that
mailgram text areas are required to obey other AMRF conventions.
At this writing, the AMRF standard is most significant byte first
for integers.

A 2

AMRF Network

A. 2. ACCESS

A. 2.1. Connection

Currently all mailboxes are "given", that is, they are
preconstructed and preallocated for the control and data
management processes. Control processes, therefore, associate an
address (in bus-accessible memory) with each mailbox structure
and reference it directly while following the protocols described
below.

The communications system at this time has a "given" network
mailbox table, specifying which local mailboxes should be
transmitted over the network, and to where, and which local
mailboxes should receive incoming network mailgrams.

A. 2. 2. Sending Mail

Sending mail is conceptually just a matter of storing into the
various fields of a particular given mailbox. In order to assure
integrity of a mailgram, however, one must guarantee that no
process reads the mailgram while the sender is modifying it. This
is the purpose of the "lock" words.

The standard write-access algorithm (expressed in Pascal) is:

mailbox .write_lock := 1;
while mailbox . read_lock > 0 do wait;

{modify mailbox contents)
® o ©

mailbox .write_lock := 0;

If the processor (not the control process, but the CPU it uses)
can afford to wait for all of the receiver processes to finish,
then "wait" is no-operation, i.e. the processor loops testing the
read__lock. If the processor time is needed elsewhere, in
particular, if it is possible for a receiver running on the same
processor to have been interrupted while operating on the
mailbox, hanging the CPU in a loop is unacceptable. In this case,
"wait" becomes the appropriate system call to relinquish the CPU.

A. 2. 3. Receiving Mail
A

Receiving mail is conceptually just a matter of fetching from the
various fields of a particular given mailbox. In order to assure
integrity of a mailgram, however, one must guarantee that the
sender is not in the process of modifying the mailgram when this
reader retrieves it. This is the purpose of the "lock" words.

A 3

AMRF Network

The standard read-access algorithm (expressed in Pascal) is:

repeat
mailbox . read_lock := mailbox . read_lock + 1;
v := mailbox .write_lock;
if v = 1 then begin

mailbox . read_lock := mailbox . read_lock - 1;
wait;
end {if};

until v = 0;
(fetch fields from mailbox}

c c «

mailbox. read lock : = mailbox. read lock - 1;

Notes

:

1 . Incrementing and decrementing the read_lock are somewhat
sensitive operations in multiprocessor systems. Unless all of
the receiving processes are on the same processor (which is
true in the case of only one receiver), the memory cell being
incremented (or decremented) must be locked against intrusion
by another processor while the read/modify/write memory
cycle(s) of the incrementation occur.

If the incrementation takes more than one cycle and there is
no such protection, the following may occur:
1. Processor A fetches the read__lock, currently zero.
2. While processor A is incrementing the value to one,

processor B fetches the read_lock, still zero.
3. Processor A replaces the read__lock, now one, while

processor B is incrementing its copy from zero to one.
4. Processor B replaces the read_lock, again one.
The result is that although two processes are actively reading
the mailgram, the read_lock only shows one. When either
process finishes and decrements the read_lock, the value will
be a zero and a write may occur, even though the other process
is still reading.

By comparison, if there is only one processor (and one
instruction), or processor A can lock the Multibus when it
fetches and processor B must use the Multibus to access the
memory a

cell, step 2 cannot occur - processor B cannot fetch
the read_lock while processor A is incrementing it; processor
B cannot fetch the read_lock until processor A replaces the
incremented value and unlocks the bus

.

2. If the processor (not the control process, but the CPU itself)
can afford to wait for the sending process to finish, then
"wait" is no-operation, i.e. the processor loops testing the
write_lock. If the processor time is needed elsewhere, in

A 4

AMRF Network

particular, if it is possible for a sender running on the same
processor to have been interrupted while operating on the
mailbox, hanging the CPU in a loop is unacceptable. In- this
case, "wait" becomes the appropriate system call to relinquish
the CPU. In many cases, the "wait" may be just a "return",
allowing the old value of the mailgram to be used.

A 5

-

, .

'

AMRF Network

Appendix B

Error Conditions And Messages

The following sections identify error messages that the operator
or network manager may encounter while running the communications
network. Error messages that are used for^debugging purposes are
not identified.

B.l. NETWORK MANAGER (NETCMD

)

minimum width xxx
An attempt was made (when starting NETCMD) to set the
screen width less than the minimum screen width

error from NIP detected
command file aborted
last line executed: xxx

The NIP (network interface process) has returned an error
to the network manager in response to a command issued
from a network script file. Further processing from the
script file has been aborted, and the file has been
closed. The last line executed was "xxx". The actual
NIP error is displayed as the status on the
"cmd #/status" line of the network manager display
(Figure IV-1). The NIP errors are identified in Section
B.2.1, below.

i XXXXXX XX xxxx
NETCMD echoes any command it encounters (entered at the
keyboard or read from a network script file) that starts
with an exclamation point.

can't read files recursively!
An attempt has been made to access a second network
script file from within the current network script file.

unknown command : xxx
<self-explanatory>

abandoning command file due to error
<self-explanatory> The error that resulted in this
message will have been identified by other diagnostic
messages

.

bad direction: xxx
The "direction" specified in command "xxx" must be Input,
Output, or Duplex.

bad mailbox name: xxx
<self-explanatory>

B 1

AMRF Network

no length: xxx
Command "xxx" does not include a mailbox length
specification .-

bad mailbox length: xxx
Command "xxx" has an invalid mailbox length
specification

.

no station: xxx
Command "xxx" is missing a station name. This may either
be the source or the destination name, or both.

bad syntax identifier: xxx
Command "xxx" does not parse properly. Check that it is
in the correct format.

no address: xxx
Command "xxx" does not contain an address field entry.
This should be the actual memory address for the
Multibus-based systems, and zero (0) for all others.
Numbers are hexadecimal.

bad address: xxx
Command "xxx" does not contain a valid address. This
should be the actual memory address for the Multibus-
based systems, and zero (0) for all others. Numbers are
hexadecimal

.

B.2. NETWORK INTERFACE PROCESS (NIP) MESSAGES

B.2.1. General Observations

With the exception of the network interface processes (NIPs)
resident on the AMRF VAX computer, the NIPs do not perform any
activity logging. The VAX NIPs generate a line of output for
each mailbox transaction. This information is used for debugging
purposes, and can either be displayed on a terminal screen during
the operation of the network, or sent to a logging file for later
examination

.

Each NIP has some additional instructions coded in to support
enhanced diagnostics and operation monitoring. The execution of
these instructions is effected by either specifying an argument
on the command line that starts the NIP, or by setting an
internal flag and recompiling and relinking the source code. The
significance of these debugging messages is specific to the
section of program code involved, and is not necessarily relative
to the overall network architecture. These messages are not
described herein.

B 2

AMRF Network

There is a set of error messages common to all NIP'S. These are
identified and described in the next section.

B.2.2. Messages Common To All NIP'S

In general, the NIP will not attempt to display an error message
at the host system on which it is operating. Instead, the NIP
will return a status code in its status mailbox (xxx_NIP_STS)

.

The following messages are displayed in the status field of the
"cmd #/status" line of the network manager display (Figure IV-l)
to report the NIP status.

The numeric codes that are displayed in this manner identify
errors that may have occurred at any level of the network model.
Each error is displayed as a four digit hexadecimal code, and the
leftmost digit specifically identifies network layer, as

0x1000 - physical layer (device) errors
0x2000 - link layer errors
0x3000 - network layer errors
0x4000 - transport layer errors
0x5000 - session layer errors
0x7000 - application layer errors

General guidelines for the interpretation of error codes:

odd = unusual (but normal) occurrence at xxx level
even = real error at xxx level
0x00 = out of space in the xxx control tables
0x10 = no find in the xxx control tables
0x01 = normal completion state to be reported up from xxx
OxOF = action deleted state reported up from xxx

Link layer error codes:

0x2000
0x2010
0x2020
0x2030
0x2019
0x2801
0x280F
0x2803

no link control block available
link is not open
unrecoverable checksum errors
no buffer for receive
link is disconnected
output completed on buffer
output cancelled on buffer
input completion

Network layer error codes:

0x3000
0x3010
0x3030

no network control block available
site name not in network table
no distribution control block available

B 3

AMRF Network

Transport layer error codes:

0x4000
0x4010
0x4801
0x480F

no transport control block available
no transport connection open
packet acknowledged
packet never acknowledged

Session layer error codes:

0x5000
0x5010
0x5020
0x5040
0x5011
0x5019

no MDT entry available
no active session with matching MDT entry
unknown syntax identifier
illegal size
transport connected
transport disconnected

Application layer error codes:

0x7000 = no such command

B.2.3. Messages Common To TCP/IP NIP'S

The TCP/IP NIPs have additional diagnostic code within them to
report TCP/IP error conditions that are not shared by the other
NIP's. The specific diagnostic messages will not be detailed
here , since they deal with specific TCP/IP rather than
operational or architectural errors. In general, the
significance of the error will be immediately obvious (eg,
"Unable to connect to host xxx")

.

The meaning of more obscure
errors is detailed in the appropriate TCP/IP reference manual.
This manual is specific to the respective host and TCP/IP vendor.
For example, the AMRF Suns use Sun Microsystems TCP/IP product,
so the appropriate Sun documentation should be referred to. On
the other hand, the AMRF VAX uses The Wollongong Group WIN/TCP
product, and its reference material would be appropriate for
TCP/IP error messages generated by the VAX's TCP NIP.

B . 3

.

COMMON MEMORY ERROR MESSAGES

B.3.1. General Comment About Common Memory Messages

There are no common memory error or diagnostic messages for any
implementations except for the Sun and VAX. The VAX common
memory implementation has been described completely [14,15], and
will not be repeated here. The Sun common memory errors are
identified and described below.

B.3.2. Sun Common Memory Errors

Most types of errors are reported at the user program. Some
messages cannot be reported back to the user, and are reported at

B 4

AMRF Network

the common memory process itself. Some errors are serious enough
that they are reported at both the user and common memory
process

.

Most user errors can be fixed when identified. For example,
writing into a variable declared to be read-only would be a

user-error

.

Since user errors indicate a user-programming .error , the common
memory system usually prints out a message indicating the
problem. It also returns an -error code if possible. It is
sometimes not possible to do this. For instance, the above
example would not be detected until after cm_set_value returned.
The actual message would be printed by cm_sync when it is
processing incoming messages from the common memory manager.
Most types of errors are detected by cm_sync.

System errors are caused by limitations in the common memory
system itself, the environment it is running in and the user
demands upon the system. Often, these cannot be avoided. For
example, if the user attempts to send too much data to the common
memory at once, the maximum message size can be exceeded.

In order to make it easy for the user to identify the error and
its associated corrective action, the following section lists all
known Sun common memory error conditions, their associated
message, and corrective action.

B. 3.2.1. Listing of Error Messages

cm_init

:

returns E_CM_INIT_FAILED
initport (client) : Connection refused
Problem: common memory manager is not running.

cm_sync

:

failed to send msg to common memory manager. Common
memory manager disappeared?
Problem: common memory manager died. Detected while
writing to it.

cm library (version #) is older/newer than common memory
manager (version #)
Problem: common memory manager is a different version
than the libraries your code is compiled with. This can
also be caused by a corrupted message. The is usually
identifiable by wildly different version #s.

B 5

AMRF Network

bad slot encountered ... aborting msg
user_decode_slot : unknown slot type (#)... msg aborted
Problem: corrupted message or internal error in common
memory system.

Common memory manager: error processing variable <name> -

error message
Problem: common memory manager detected error "error
message" in processing "name". See below.

get_slot_read_response : <name> unknown (sent from common
memory manager)
Problem: corrupted message or internal error in common
memory system

too much data for msg!

!

output msg size = # slotsize = #

Problem: User value is too large for common memory system
configuration. Either user error, or message size limit
should be increased.

cm_sd_free(
)
called on nonmallocable object?

Problem: internal error in common memory system

*

.

o

error: bcopy src/dest is null ptr
Problem: internal error or user error. If user error,
check elements of cm_value structures to see that they
are consistent.

common memory manager:
b±nd() failed
initport (server) : Address already in use
failed to initialize connection socket
Problem: another common memory manager is running, or a
process already has the common memory manager connection
socket open.

get_variables (name
)
failed

Problem: too many variables in common memory manager.

process <name> is being antisocial on fd #

Problem: process has requested wakeup service but
is not listening to common memory manager updates.

B 6

AMRF Network

slot bad
Problem: corrupted message or internal error in common
memory system

slot error in <name> type # - error message
Problem: corrupted message or internal error in common
memory system or user error. See error message. This
message is sent back to the user. See below.

Error messages generated by the common memory manager and sent
back to the user:

version
Problem: version mismatch. See above.

bad slot type
Problem: corrupted message or internal common memory
system error.

not enough common memory to declare variable
Problem: too many variables stored at common memory
manager

.

cannot get nonexclusive write access
Problem: a process has already received exclusive write
access to this variable.

undeclare of undeclared variable
Problem: a nonexistent variable is being undeclared.

variable has not been declared
Problem: attempt to read/write variable not yet declared.

not declared as writer
Problem: attempt to write variable declared as read-only.

get_slot_write : cm_flat_to_sd
()

failed! no space?
Problem: common memory manager ran out of memory trying
to read user message. Indicates lack of system resources
or user sent value that was too large.

B 7

AMRF Network

not declared as reader:
problem: attempt to read variable declared as write-only.

There are several places in the common memory system where memory
is dynamically allocated. These may fail with an error such as

func: failed malloc (obj ect , size

)

or

resized failed! - out of space

where "func" is the Common memory system function calling malloc,
"object" is the object being malloc'd and size is the size of the
object.

These errors typically indicate that either:

1) the user is storing or receiving incredibly lengthy
values (probably by mistake) , or

2) the system is running out of internal space

B 8

AMRF Network

Appendix C

Mailbox Label Assignment

Conventions for the Network Session (Mailbox) Labels in the
interim AMRF network are as follows:

Command form:

C<dir> <mailbox-name> , <length> <station> , <label> <address>

The station names are: VAX, HWS, ATS, HMC , HRC , etc

The <label> is three or four hex digits, specifying:
[workstation], source-process, destination-process, and
function respectively.

Process identifiers are:
0 = Network (NIP)
1 = Data Manager
2 = Cell
3 = Material Handling Workstation
4 = Horizontal Workstation
5 = Turning Workstation
6 = Inspection Workstation
7 = Vertical Workstation
8 = Cleaning & Deburring Workstation
9 = undefined
A = machine tool control
B = robot control system
C = second RCS (or gripper)
D = material buffering
E = vision/sensors
F = workstation control

Function codes are:
0 = Status
1 = Command
2 = Data
3-F = undefined

C 1

.

AMRF Network

Appendix D

Interface Specifications

D.l. COMMON MEMORY

D.1.1. Systems With Fixed Memory Allocation

The multibus-based implementations of common memory depend upon
accessing the common memory location by address, rather than by a

mailbox name. Since these implementations do not support dynamic
memory allocation, each common memory mailbox has its address,
size, and name predefined. This information is advertised to
other processes and processors within the multibus environment in
order to avoid unintentional reassignment or reuse of mailbox
memory areas. Consequently, these common memory areas always
exist, and only their (network) links are created dynamically.

Remote links to these common memory areas are created through a

dialogue between the network interface process (NIP) in the
multibus system and network manager located on another computer
system and using a separate NIP, as described in Section III. 2. 4.
Once the links are established, the mailgrams can be propagated
to other local or remote mailboxes.

D.l. 2. Systems With Dynamic Memory Allocation

The VAX, Sun, and HP implementations of common memory take
advantage of their host operating system support for the dynamic
allocation of memory. The mailbox (memory allocation) is made at
the time the mailbox is declared, and dissolved (memory
deallocated) at the time the mailbox is undeclared.

D 1

'

.

-

AMRF Network

Appendix E

List of All NETCMD Script File Names

ALLDB . NET ;

2

ATCBASE.NET;

2

ATCDB . NET ;

3

CELLALL . NET ;

1

CELLDB . NET ;

1

CELLDWS . NET ;

2

CELLHWS . NET ;

7

CELLIWS.NET;

9

CELLMHS . NET ;

1

CELLTWS.NET; 10
CELLVWS.NET;

2

HGPBASE.NET;

2

HMBBASE.NET;

3

HMBDB.NET;

9

HMCBASE . NET ;

2

HMCDB . NET ;

2

HRCBASE.NET;

2

HRCDB.NET; 11
HRCHGPV . NET ;

2

HVSBASE.NET;

4

HVSDB.NET; 11
HWSALL . NET ;

5

HWSBASE.NET;

2

HWSDB.NET;

5

HWSHMBV . NET ;

1

HWSHMCV . NET ;

1

HWSHRCV . NET ;

2

HWSVALL.NET;

2

IWS . NET ;

1

IWSALL.NET;

3

IWSBASE.NET; 18
IWSCMM.NET; 10
IWSDB.NET;

9

IWSIRC.NET;

2

IWSSRI.NET; 14
MHSHMB . NET ;

2

MHSHVS . NET ;

3

PPLDB.NET; 10
TWSATCV . NET ;

5

TWSBASE.NET;

2

TWSDB.NET; 13
TWSVALL . NET ;

2

VWSBASE.NET;

2

VWSDB.NET;

3

E 1

AMRF Network

Appendix F

Network Hardware and Software Components

The following sections identify the hardware and software
installed to support networking in each of the major processor
categories: VAX, Sun, Hewlett-Packard, and Multibus.

F.l. MULTIBUS HARDWARE CONFIGURATION

F.1.1. Components of the Horizontal Workstation

The Horizontal Workstation is composed of the HWS, HMC , HRC , HGP

,

HBD , and the HVS. (The HVS also provides vision support to the
Turning Workstation.

)
Each of these components has network

service provided at two levels: a serial connection .to the VAX,
and an Ethernet connection to other nodes within the Horizontal
Workstation.

The hardware to support these services is composed of an 0B68K1A
single board computer from Omnibyte Corp. and an EXOS/101
Ethernet controller card from Excelan, Inc. The OB68K1A CPU
board is built around a Motorola MC68000 and is used for all
protocol handling above the link layer. The CPU board also
provides the RS232C ports for the serial links to the VAX.

The Excelan board provides a link layer interface to its host
(the OB68K) across the Multibus backplane.

The OB68K1A comes with the MACSBUG monitor program. The monitor
is used to interact with the network interface process (NIP) on a
"debug" level during development. During standard operations,
the monitor is simply used to start the NIP. The release level
of the monitor is MACSBUG (OB68KMACS

)
1.32.

F.l. 2. Components of the Turning Workstation

The Turning Workstation is composed of the TWS and the ATC, with
vision input from the HVS. Both the TWS and the ATC have serial
service to the VAX. (There is no Ethernet communication between
the component systems of the Turning Workstation.

)
The

single board computer used to provide this service is a PM68D
from Pacific Micro Computers. Like the OB68K, the PM68D is based
on MC68000 but it has the capability to support RS449 high speed
serial links (which may be used in the future)

.

The PM68D comes with the Prom monitor program. The monitor is
used to interact with the network interface process (NIP) on a

"debug" level during development. During standard operations,
the monitor is simply used to start the NIP. The release level
of the monitor is Prom Monitor Version 1.5/1.

F 1

AMRF Network

F.2. THE VAX COMPUTER SYSTEM

The AMRF VAX operates with the VMS Operating System (v4.5). No
special alterations were made to the operating system or the
hardware in order to accommodate the network programs (NETCMD and
NIP'S).

The VAX uses both Ethernet and serial RS232 NIP communications.
The serial ports used by the serial NIP are configured with the
following parameters:

Terminal: xxxxx: Device_Type: Unknown Owner: No Owner

Input: 9600 LFfill: 0 Width: 132 Parity: None
Output: 9600 CRfill: 0 Page: 24

Terminal Characteristics:
Interactive No Echo
No Hostsync TTsync
No Wrap Scope
No Broadcast No Readsync
No Modem No Local echo
No Brdcstmbx DMA
No Line Editing Overstrike editing
No Secure server No Disconnect
No SIXEL Graphics No Soft Characters
No ANSX_CRT No Regis
No Edit_mode No DEC_CRT

No Typeahead No Escape
Lowercase No Tab
No Remote No Eightbit
No Form Fulldup
No Autobaud No Hangup
Altypeahd Set speed
No Fallback No Dialup
No Pasthru No Syspassword
No Printer Port Numeric Keypad
No Block mode No Advanced_video
No DEC CRT

2

The Ethernet communications are supported via an Ethernet
communications controller obtained from Micom-Interlan and the
TCP/IP software suite obtained from The Wollongong Group (we are
currently using version 3.0)

.

F . 3 . THE SUN (DEMO

)

All Ethernet-based communications used in support of the NIP are
entirely derived from the hardware and software bundled with each

F 2

AMRF Network

Sun. No special configuration changes were made to support the*

NIP, nor was any additional software purchased.

F.4. THE INSPECTION WORKSTATION

The Inspection Workstation uses several Hewlett-Packard 9000
Series 200 (HP 9000) microprocessors. The network interface
process (NIP) utilizes a RS232 serial interface for network
communications

.

In order to offload interrupt processing from the main processor,
and to enable an eventual programming change that would result in
most network software being resident on the interface card, a
model 98691A Programmable Datacomm Interface was installed in
each HP 9000

.

Special software was developed for the Z80 processor on the board
to perform the necessary I/O functions and perform data transfers
between the HP 9000 memory and the Z80 memory. A special
software interface (ACIDVR) was written for the HP 9000 to
facilitate communications between the two processors.

F 3

.

'

'

-

AMRF Network

Appendix G

Local Transport Protocol

The transport protocol implemented in the AMRF is derived from
the ANSI/ISO High Level Data Link Control Procedure (HDLC

) [4],
although the framing conventions and integrity checking
procedures are deleted, because they are deemed proper to the
data link layer (from which the protocol comes) but not to the
transport layer. In addition, a segmentation service has been
added, in order to accommodate large information units with
limited packet sizes.

G . 1 TRANSPORT LAYER SERVICE INTERFACES

The transport layer expects to provide services to some "upper"
layer of communications activity, which we designate as the
"user". It also expects to use a "lower" layer of communications
services to accomplish the actual delivery of data units to a

remote station. At the remote station, the transport layer
expects to communicate with a "peer" transport which implements
the protocol herein described.

G.1.1 User Interface .

The transport layer accepts the following requests from its
users

:

a) Connect request: a request to open a new connection
to some remote host.

b) Disconnect request: a request to break an existing open
connection;

c) Data request: a request to send a data unit on an
open connection.

It provides the following "indications" to its users, through a
procedure designated by the user as its "service access point":

a) Connection confirm: a request to open a connection
has completed, successfully or unsuccessfully;

b) Disconnect confirm: a request to break a connection
has completed;

c) Disconnect indication: the remote station has requested
that the connection be broken;

d) Data indication: a data unit has been received on an
open connection;

e) Data confirm: a transmitted data unit has been
acknowledged by the remote host;

f) Abort indication: a formerly open connection has been
broken by the local transport without request, usually
because of an underlying problem or nonresponsiveness
of the remote host.

G 1

AMRF Network

G.1.2 Network Interface

The transport layer expects the following services from the
"network" layer:

a) Connect request: transport presents a request to
open a link to some remote host;

b) Connect confirm: network reports successful completion
or failure of a connect request;

c) Disconnect request: transport presents a request to
close an open link;

d) Disconnect confirm: network reports completion of a
disconnect request;

e) Data request: transport presents a data unit for
transmission on an open link;

f) Data indication: network presents a data unit received
on an open link;

g) Abort indication: network reports unrequested closure
of a formerly open link, because of remote action or
failure of an underlying service.

The existing transport- implementation also uses the following
service provided by the network layer implementation:

h) Data confirm: network reports successful transmission
or transmission abort for every data unit presented
in a data request.

Note that the implementation of connect/disconnect in the network
layer may be nil or may involve some link layer activity,
depending on the nature of the physical connection.

G.2. ELEMENTS OF THE PROTOCOL

The term "protocol data unit (pdu)" comes from the OSI model and
means a string of bits which, taken together, form the basic unit
of communication between peer services in a given layer of the
model. Each transport pdu in the AMRF transport protocol
comprises a type byte, a segmentation byte and an optional text
data unit. In discussion of the protocol, pdu types are
identified by their mnemonic code. Details of the representation
are found in section G.3.8.

There are three general classes of pdus which can be transmitted:
information pdus (I-pdus), which contain data, supervisory pdus
(S-pdus), which control the transfers, and unnumbered pdus
(U-pdus), which are used to initialize and shutdown the
connection

.

PDUs are further divided into "commands" and "responses".
Information pdus are always commands; supervisory pdus can be
either - a bit in the type byte determines whether a given S-pdu
is a command or a response. U-pdus have individual types, and
each U-pdu type is either always a command or always a response.

G - 2

AMRF Network

The two stations implementing a connection are considered equals
(i.e., there is no master/slave relationship). Both stations can
send all types of commands and each is required to respond to
commands issued by the other station.

G.3. DETAILS OF THE PROTOCOL

G.3.1. Initial Connection

Initially, all connections are in the "disconnected state": a

physical connection exists, but the network link is logically
uninitialized. If a SABM pdu is received on a connection in the
disconnected state, the host responds with a UA and places the
connection in the normal operation state. If any other pdu is
received on a connection in the disconnected state, the host
responds with a. DM and leaves the connection in the disconnected
state

.

When the "user" requests a connection to a particular remote
host, the connection request is passed from the transport layer
to the network layer, so that whatever connection activity is
required for the designated host can be initiated. Then the
connection to that host enters the "initial connection" state.

When a connection is in the "initial connection" state, the host
transmits a SABM and waits for the receipt of a UA. When it
receives the UA, it informs the user of the connection completion
and goes to the normal operation state.

If a host receives a SABM on a connection in initial connection
state, it transmits a UA, informs the user of connection
completion, and enters the normal operation state.

If a host receives a DM on a connection in an initial connection
state, the host must assume that the connection request is
refused, report the failure to the user, and return the
connection to the disconnected state.

If in this state some other pdu is received, the host transmits a
DM on the connection, followed by retransmitting the SABM.

If in this state the connection times out, having received no UA,
the host retransmits the SABM and waits to receive a UA. After
the maximum number of retransmissions without receipt of a UA,
the host aborts the connection attempt, sends the user an abort
indication, and returns the connection to the disconnected state.

G.3.2. Data Transmission

When a user presents a data request on an open connection, the
transport service queues the requested "service data unit" (sdu)

G 3

AMRF Network

for transmission to the designated host. If the length of the
sdu is within the maximum transport packet size, the sdu is
copied into a single packet buffer with the EOM (end of message)
bit set to ONE and the segment number set to zero. Otherwise,
the sdu is partitioned into several packet buffers, of which the
first has segment number zero, the second has segment number one,
and so on, and all but the last have the EOM bit set to ZERO.
All packet buffers for the sdu are then queued for output (become
"data waiting") in the order of construction.

When a connection is in normal operation state, the host may
transfer information pdus whenever it has "data waiting" . Each
I-pdu corresponds to a single packet buffer and the segment byte
of the I-pdu contains the segment number and EOM flag from the
packet buffer. In addition, in the type byte, every I-pdu
contains a sequence number (called N(S) in the representation).
I-pdus are numbered sequentially on each connection, beginning
with zero and repeating modulo 8, i.e. the sequence number after
7 is 0 . Each I-pdu must be acknowledged by the receiver; the
sender does not treat the transmission as complete until the
remote host has acknowledged it (See G.3.4). A host may transmit
up to 7 I-pdus before receiving acknowledgment. The limit of
seven prevents ambiguity in the sequence numbers of outstanding
I-pdus. A given implementation may elect to require
acknowledgment after a much smaller group of I-pdus has been
transmitted

.

Requiring acknowledgment, also referred to as "polling", uses a
flag contained in every command pdu, called the P-bit. Normally
the P-bit is ZERO on I-pdus, and is set to ONE only when the
transmitting host is demanding acknowledgment of this pdu (and
all preceding pdus) before it can continue transmitting. Once a
pdu is sent with P=l, the connection enters the "polling" state,
and no other command pdu can be sent until the outstanding poll
is cleared, i.e. until the connection re-enters the "normal
operation" state. The transport may send response pdus while in
the polling state; in fact, it may be required by the protocol to
send response pdus in this state.

An outstanding poll is cleared, and the connection re-enters
normal operation state, when the polling host receives any U-pdu
(which will usually result in an immediate transition to some
other state) or a response S-pdu with the F-bit set to ONE. If a

poll is not cleared in some fixed length of time, it is said to
"time out", and a timeout state is entered.

G.3.3. Data Reception

A receiving host examines each incoming pdu to verify that the
pdu has a known pdu type. If the pdu is of an unknown type, it
is erroneous and the receiving host simply discards it. Once the
type is determined, the action taken depends on the type.

G 4

AMRF Network

G.3.3.1 Information PDUs

If the pdu is an 1-pdu, the type byte is processed for
acknowledgment (see G.3.4). Then the sequence number is examined
to verify that the pdu is in sequence, i.e. that N(S) matches the
current "expected sequence number". If the pdu is out of
sequence, or the receiver is "not ready" (see G.3.5), the pdu is
discarded at this point.

If the pdu is in sequence, the I-pdu is "accepted". The segment
byte is then examined and the following dispositions are
possible

:

a) the EOM bit is ONE and the segment number is zero:
In this case, the text unit is a complete sdu; the text
unit is presented to the user as an incoming data
indication.

b) the EOM bit is ZERO and the segment number is zero:
In this case, the text unit is the beginning of an
incomplete sdu. An sdu assembly is begun and the text
unit becomes the beginning of the sdu.

c) the EOM bit is ZERO and the segment number is not zero:
In this case, the text unit is the continuation of an
incomplete sdu. The text unit is appended to the sdu
being assembled.

d) the EOM bit is ONE and the segment number is not zero:
In this case, the text unit is the end of segmented sdu.
The text unit is appended to the sdu being assembled, the
assembly is completed, and the sdu is presented to the
user as an incoming data indication.

When an I-pdu is accepted by the receiver, it must be
acknowledged. The current "expected sequence number" is replaced
by the sequence number of the new I-pdu incremented by one: N(S)
+ 1. If the receiving host has data waiting on this connection,
then the new expected sequence number goes into the N(R) of the
next outbound I-pdu; otherwise the host must send a response
S-pdu with the new expected sequence number in N(R) (see G.3.5).
In either case, the transmission of the new expected sequence
number constitutes acknowledgment (See G.3.4). It is not
necessary to send an acknowledgment for each I-pdu received -

acknowledging the most recent I-pdu at the first opportunity
implicitly acknowledges all of its predecessors.

G.3.3.2 Supervisory PDUs

When a S-pdu is received, the type byte is processed for
acknowledgment (see G.3.4). Then the ready status of the
transmitter is set from the Ready/Not-Ready bit (see G.3.5) and
the pdu is discarded.

G 5

AMRF Network

G.3.3.3 Unnumbered (Control) PDUs

When a SABM is received on a connection which is in normal
operation state, the host interprets this as a "reset", sets N(S)
and the next expected sequence number to zero, requeues any
unacknowledged transmissions, transmits a UA, and enters the
normal operation state.

When a SABM is received in any other state, the receiving host
(re) initializes the connection as described in section G.3.1.

When a DISC is received, the receiving host breaks the connection
as described in section G.3.7.

When a UA is received in a connecting or disconnecting state, the
action taken is described in sections G.3.1 and G.3.7. When a UA
is received in a normal operation state, the UA is ignored.

When a DM is received on a connection in any state, it is an
indication that the remote half of the connection is not open.
If it is received in a disconnected or disconnecting state, it is
ignored. If it is received in an initial connection state, the
action taken is described in section G.3.1. If it is received in
any other state, the host must present an abort indication to the
user and close the connection.

G o 3 . 4 . Acknowledgment

The type byte of an I-pdu or an S-pdu contains the P or F bit and
the then-current value of the remote host's expected sequence
number, hereafter referred to as N(R)

.

The sequence numbers of unacknowledged pdus transmitted on this
connection can be ordered as:

[first-transmitted, last-transmitted + 1 (modulo 8)].
If N(R) is not in this interval, an error has occurred: nothing
is acknowledged. If N(R) is equal to first-transmitted, nothing
is acknowledged. If N(R) is in the interval and after
"first-transmitted", then it implicitly acknowledges every I-pdu
with a number between first-transmitted and N (R) -1 inclusive.

If the type byte indicates a response S-pdu and the F-bit is ONE,
and there is an outstanding poll from this host, then N (R

)

implicitly acknowledges pdus as above, and any I-pdu which has
been transmitted and not acknowledged is implicitly rejected.
Note that the transport operation is full-duplex, so
transmissions of the two parties can overlap. The failure of a

received pdu to acknowledge a recent transmission may be an
accident of timing, unless it is the explicit response to a

"poll". When the receiver determines that an unacknowledged
I-pdu has, in fact, been rejected, it must set its transmission
sequence number (N(S)) back to the N(R) value appearing in the

G - 6

AMRF Network

last remote acknowledgment, and retransmit all unacknowledged
I-pdus on that connection.

If the type byte indicates a command pdu and P=l, the remote
transport is demanding acknowledgment and the receiver must, at
its earliest opportunity, send a supervisory response pdu with
F=1 and an N(R) equal to the next expected sequence number as of
receipt of the poll.

G.3.5. Use of Supervisory PDUs

There are two types of supervisory pdus: RR (receiver ready) and
RNR (receiver not ready), either of which can be a command or a

response

.

Normally, when a host is required to acknowledge an I-pdu and has
no data to transmit, it sends a RR response with F=0 and the
appropriate N(R).

Normally, when a host is required to answer a poll, it sends an
RR response with F=1 and the appropriate N (R)

.

When a host receives an in-sequence I-pdu and is unable to
process it for want of buffers or whatever, or at any time a host
determines that it does not want to receive I-pdus, it sends an
RNR with N (R)

appropriate to the last processed I-pdu and F=0

.

This identifies the host as "not ready". Once in this state, the
transport acknowledges I-pdus with RNR responses with N(R)
appropriate to the last accepted I-pdu. When answering a poll in
this state, it sends an RNR response with F=1 and N(R) equal to
the current expected sequence number. When a connection returns
to the "ready" state, it sends a RR command with appropriate N(R)
and P=0 or P=1 according to its desire to poll.

Accordingly, when a host receives a RNR, it should halt
transmission of I-pdus, although it may still send supervisory
pdus, until it receives a RR, indicating the clearing of the
not-ready condition. Because of unpredictable timing, the
presumption that any transmitted I-pdu which was not acknowledged
by the RNR must be lost is not always true, and the practice is
to poll on receipt of an RNR if there are unacknowledged I-pdus
outstanding

.

G.3.6. Timeouts

Whenever a transport in normal operation state issues a command
with the P-bit set, it starts a timer. If the poll is not
answered before the timer runs out, the transport issues a
supervisory poll and reenters the polling state. The host counts
successive polls and, if some reasonable maximum is exceeded,
initiates a disconnect and enters the "disconnecting" state.

G 7

AMRF Network

Note that waiting for an answer to a poll is independent of all
other activity on the connection; the transport may be actively
receiving and acknowledging pdus and still timeout the polling
wait

.

G.3.7. Deactivating the Connection

When the user requests a disconnect, or the transport initiates a
disconnect because of some problem, the transport sends a DISC
command pdu

.

When a host receives a DISC, it answers it at its earliest
opportunity with a UA response and cleans up its buffers, resets
its counters, enters "disconnected mode" and presents a
"disconnect indication" to the user.

When the transport which originates the DISC receives the UA
response, it enters disconnected mode and presents a "disconnect
confirmation" or "provider abort" to the user, depending on who
initiated the disconnect, and enters the "disconnected" state.
If the originator fails to receive a response to the DISC within
the usual time limit, it repeats the DISC and restarts the timer.

If no response is received after some reasonable maximum number
of retries, the originator proceeds as if the UA had been
received. Once a DISC has been issued, no transmissions, except
repeating the DISC or acknowledging a remote DISC command, are
permissible

.

G.3.8. Frame Formats

For this protocol, the pdu format is as follows^
Type, Segmentation, Text

where

:

Type is one byte designating the pdu type (see
below)

;

Segment is one byte conveying the segment number and
end-of-message indicator;

Text is a variable-length field of user information,
appearing in information pdus only;

G 8

AMRF Network

Format of the PDU Type byte:

Information (I) pdu:

0 N (S

)

P N (R

)

7 6 5 4 3 2 1 0

where

:

bit 7

bits 4-6
bit 3

bits 0-2

= 0 , designates an 1-pdu
= N(S) is the sequence number of this pdu
= P, the poll bit
= N(R

)

is the next sequence number expected
from the opposite host when this pdu
was transmitted (i.e. N(S) from the last
received I-pdu plus 1

)

Supervisory (S) pdu:

1 0 R P/F N (R

)

76543210
where

:

bits 6-7
bit 5

bit 4

bit 3

bits 0-2

10 designates an S-pdu
0 for RR (receiver ready)
1 for RNR (receiver not ready)
0 for response (bit 3 = F)
1 for command (bit 3 = P)
P/F, the Poll/Final bit
N (R)

,

the next expected sequence number,
as in the I-pdu above.

Unnumbered (U-)pdu:

1 1 Ml M2 P/F M3 M4 M5

7 6 5 4 3 2 1 0

where

:

bits
bits

6-7
0-2

= 11 designates
and 4-5 are the

a U-pdu
function

bit 3 is the Poll/Final bit; it is always
ONE in SABM , DISC and UA, and always
ZERO in DM.

G - 9

AMRF Network

values of the U-pdus,in hexadecimal, are:
FC = SABM (set asynchronous balanced mode)

command: initialize connection
FO = DM (disconnected mode)

response: no active connection
CA = DISC (disconnect)

command: break connection

CE = UA (unnumbered acknowledge)
response: acknowledge SABM or DISC

Format of the Segment Byte:

E -

0
M

Segment Number

7 6 5 4 3 2 10
where

:

bit 7 = EOM , the end-of-message (i.e. end of sdu)
indicator;

bits 0-6 = segment number, value 0 is the initial
segment of an sdu.

G 10

AMRF Network

Appendix H

Common-Memory Mapping Protocol

The common-memory mapping protocol is used by the application
layer common-memory mapping service to communicate with a peer
mapping service.

H.l SERVICE DEFINITION

The function of the service is to copy local common-memory
variables which are written by some local control or sensory or
service process to any remote common-memory variables which map
to these "original" variables.

The true mapping information is maintained by the network manager
and distributed to the mapping service on each station as needed
for implementation of that station’s subset of the mappings. The
network manager communicates to any given mapping service both
the list of variables which it must transmit (and the associated
receiving sites) and the list of variables which it will receive
(and the associated transmitting sites). All of the logical
connections are thus created by the network manager.

The operating connections are created by the individual mapping
services on directive from the network manager. These
connections are created through the transport connection service.
As currently built, the AMRF network stations have only one
application service, namely the memory mapping service, so no
session or application selection is even performed.

As a consequence, the service has only two types of data:

a) outbound data, which is the contents of a local variable
which is being copied to a remote memory; and

b) inbound data, which is the contents of a remote variable
which is being copied to a local variable.

H . 2 ELEMENTS OF THE PROTOCOL

This protocol has only one class of "protocol data unit" (pdu),
called the "variable value".

The form of the variable-value pdu is:
Label, Sequence, Length, Value

where

:

Label is a two-byte identifier assigned to the "global
data unit" represented by some pair of local
and remote common-memory variables;

H 1

AMRF Network

Sequence is a two-byte value indicating in some way
the "version" or "instance" of the variable'
value contained in this pdu. (This value
is obtained from the local common-memory and
merely copied by the service.)

Length is a two-byte integer (most significant byte
first) indicating the length in bytes of the
value field of the pdu.

Value is a variable length field comprising the
(binary) value of the variable. The actual
structure of this value depends on the
"global data unit" being conveyed.

H . 3 PROTOCOL SPECIFICATION

The mapping service maintains a list of "outbound" variables and
a list of "inbound" variables according to directives of the
network manager. Each list element identifies the local
variable, the "global identifier" and the source or destination
host

.

When a variable in the "outbound" list changes value, as
determined by a change in its "sequence" attribute, however
locally implemented, the service constructs a variable-value pdu
and presents it as a "data request" to the transport service for
the connection associated with the destination host. The Label
is the "global identifier" associated with the variable; the
Sequence is the local sequence attribute value; the Length is the
length in bytes of the significant text of the variable, however
determined; and the Value is the literal binary value of that
variable as locally stored.

It is not a requirement that every change to a local "outbound"
variable be reflected in the remote variables. The rule is that
the local service must transmit a variable-value pdu for this
variable when the network service permits and only if the value
has changed since it was last transmitted to that destination.
This is a "best-effort" rule based on the AMRF common memory
philosophy

.

This rule permits the local service to minimize network overheads
by utilizing the transport "data confirm" indication. Once a pdu
for a given variable has been "transmitted" to its destination,
no more pdus sending that variable to that destination will be
constructed or transmitted until the preceding transmission is
confirmed. This prevents a rapidly changing local variable from
filling up network queues when there is a problem or a slow link.

When a mapping service receives a variable-value pdu, it attempts
to locate a "global identifier" in its inbound list which matches
the Label in the pdu. If no such match is found the pdu is
discarded. Otherwise, the Length bytes of the Value field (or as

H 2

AMRF Network

many bytes as the local variable will accommodate if that is
fewer) replace the current value of the matching local variable.
The length and sequence attributes of the local variable are
updated accordingly.

H 3

.

.

.

AMRF Network

Appendix I

Source Code Listings

Listings for all common memory and network interface programs are
available in hardcopy or computer readable form. Address your
request, specifying which software and media, to:

AMRF Program Manager
National Bureau of Standards
Building 220, Room Bill
Gaithersburg, MD 20899

I T

.

--

AMRF Network

GLOSSARY

activate- a term used interchangeably with "boot" to connote the
act of starting the network services.

ATC - Turning Workstation Automated Turning Center controller

boot - a term used interchangeably with "activate" to connote
the act of starting the network services.

CDWS - Cleaning and Deburring Workstation

CELL - cell controller

CM - an abbreviation for "common memory"

CMM - Coordinate Measuring Machine, a component of the
Inspection Workstation.

common memory variable - a term used interchangeably with
"mailbox" throughout the document.

DEMO - refers to the Sun Microsystems computer functioning as
the front end common memory server identified in
Figure II-6, operating under the (4.2 BSD) UNIX
operating system.

HCSE - Hierarchical Control System Emulator

HGP - pedestal controller of the Horizontal Workstation. It
works in cooperation with the Horizontal Workstation's
Robot Control System (RCS, also known as HRC in this
document)

.

HMB - material buffer controller, a component of the
Horizontal Workstation. Also refered to as the
Material Buffering Controller (MBC)

.

HMC - machine tool controller, a component of the Horizontal
Workstation

.

HRC - robot control system, a component of the Horizontal
Workstation

.

HVS - Vision System, support both the Horizontal Workstation,
and the Material Handling Workstation.

HWSC - Horizontal Workstation Controller.

Glossary - 1

AMRF Network

IMDAS - the Integrated Manufacturing Data Administration System
is the distributed data system which provides common
interfaces to the AMRF ' s user programs and underlying
databases

.

IRC - robot controller, a component of the Inspection
Workstation

.

IWS - Inspection Workstation controller.

mail delivery table - an data structure internal to the NIP, It
contains the list of names for mailboxes that are to be
received or transferred by the NIP.

mailbox -- logical storage area where messages (called
"mailgrams"

)
are placed by the sender process and

picked up by one or more receiver processes.

mailgram - a collection of contiguous bytes, stored in a mailbox.

MBC - Material Buffering Controller (see also HMB , above).

MHS - Material Handling System (also known as the MHWS - the
Material Handling Workstation)

.

NIP - Network Interface Process

pdu - (see protocol data unit, below)

PPL - Process Planning workstation

Praxis - a strongly-typed structured language developed by Bolt,
Beranek & Newman, Inc. A precursor to ADA.

protocol data unit - (pdu) comes from the OSI model and means a
string of bits which, taken together, form the basic
unit of communication between peer services in a given
layer of the model

sdu - service data unit

SRI - surface roughness instrument

Sun - refers to a Sun Microsystems computer system. Within
the AMRF network services, it refers primarily to the
common memory front end system, called DEMO, although
the network interfaces to CDWS, VWS, PPL, CELL, and MHS
are all operating Sun systems.

Glossary - 2

AMRF Network

Suntools menu - refers to the list of options displayed on the
Sun screen when the rightmost mouse button is pressed.
Select an entry from that list by moving the mouse
arrow to the desired option (it will be displayed in
reverse video) and either releasing the mouse button OR
clicking the leftmost mouse button while continuing to
concurrently hold down the rightmost button

TWS - Turning Workstation

variables - when used in association with the phrase "common
memory", it refers to common memory mailboxes.

VAX - The VAX 11/785 supports the IMDAS and network manager
functions of the AMRF. The operator interface assumes
the use of the DEC VAX/VMS operating system.

VT100 - a descriptive term used to identify a general class of
computer terminal equivalent in function and capability
to the Digital Equipment Corporation VT100 terminal.
Such a terminal is available from a large number of
sources, including Qume, MicroTerm, etc.

VWS - Vertical Workstation

Window - refers to a delineated portion of the Sun video display
screen that functions as a "terminal screen" for the
application active within that delineated portion of
the screen, much the same as the standard terminal
screen

.

Glossary - 3

-

“

-

m

AMRF Network

REFERENCES

[1] Barbera, A. J., Fitzgerald, M. L., Albus, J. S . , "Concepts
for a Real-Time Sensory Interactive Control System Architecture",
Procedings of the Fourteenth Southeastern Symposium on System
Theory, April 1982, pp 121-126.

[2] Mitchell, M. and Barkmeyer, E., "Data Distribution in the
NBS Automated Manufacturing Research Facility", Procedings of the
National Symposium on Advances in Distributed Data Base
Management for CAD/CAM, NASA Publication 2301, April 1984.

[3] Barbera, A. J., Fitzgerald, M. L., Albus, J. S., and Haynes,
L. J., "RCS: The NBS Real-Time Robot Control System", Proceedings
of the Robots VIII Converence, Detroit, Michigan, June 1984.

[4] "Advanced Data Communications Control Procedures", ANSI
X3. 66-1978, American National Standards Institute, New York,
1978 .

[5] "Data Processing - Open Systems Interconnection - Basic
Reference Model", ISO Standard 7498, International Standards
Organization, Geneva, 1981.

[6] Carrier Sense Multiple Access with Collision Detection
(CSMA/CD) , IEEE Std 802.3-1985 (ISO/DIS 8802/3), The Institute of
Electrical and Electronics Engineers, Inc, New York, 1984.

[7] Department of Defense, "Military Standard Transmission
Control Protocol", MIL-STD-1778 , August 1983

[8] Libes, D., "Experiences with a Communications Paradigm:
Common Memory", in preparation.

[9] Logical Link Control , IEEE Std 802.2-1985 (ISO/DIS 8802/2),
The Institute of Electrical and Electronics Engineers, Inc, New
York, 1984.

[10] Holt, R. C. , Graham, G. S., Lazowska, E. D. , and Scott,
M. A., Structured Concurrent Programming with Operating Systems
Applications , Addison-Wesley Publishing Company, Reading, MA,
1978, p25

.

[11] Furlani, C. , Kent, E. , Bloom, H. , McLean, C. , "The
Automated Manufacturing Research Facility of the National Bureau
of Standards", Proceedings of the Summer Simulation Conference,
Vancouver, B.C., Canada, July 1983.

[12] Leffler, S., Fabry, R., Joy, W. , "4.2BSD Interprocess
Communications Primer", Computer Systems Research Group, U.C.
Berkeley, 1983.

Reference - 1

AMRF Network

[13] Libes, D . , "User-Level Shared Variables", Tenth USENIX
Conference Proceedings, Summer 1985.

[14] Furlani, C.M., Editor, "Hierarchical Control System
Emulation User's Manual", NBS-IR-85-3156 , January 1985, 130 pp.

[15] Furlani, C.M., Editor, "Hierarchical Control System
Emulation Programmer's Manual", NBS-IR-85-3157 , January 1985,
45 pp.

[16] Johnson, T.L., Milligan, S.D., Fortmann, T.E.,
"Hierarchical Control System Emulation Applications Guide",
NBS-GCR-82-410 , October 1982, 115 pp.

[17] Electronic Industries Association, EIA Standard RS-232-C,
Washington, D.C., 1969.

[18] Token-Passing Bus Access Method and Physical Layer
Specifications , IEEE Std 802.4-1985 (ISO/DIS 8802/4), The
Institute of Electrical and Electronics Engineers, Inc, New York,
1984.

[19] Electronic Industries Association, EIA Standard RS-449
Washinton, D.C.

[20] Department of Defense, "Military Standard Internet
Protocol", MIL-STD-1777 , August 1983.

[21] International Organization for Standardization, "Connection
Oriented Transport Protocol", DP 8073, 1983

[22] Fletcher, J. "An Arithmetic Checksum for Serial
Transmissions", IEEE Transactions on Communications, January
1982.

[23] Libes, D., "Byte Ordering", in preparation.

[24] International Organization for Standardization,
"Information Processing - Open Systems Interconnection -

Specification of Abstract Syntax Notation One (ASN.l)",
ISO 8824/8825, 1984

[25] Libes, D., Barkmeyer, E., "The Integrated Manufacturing
Data Administration System (IMDAS

)
— an overview", Int. J.

Computer Integrated Manufacturing, Vol. 1, No. 1, pp. 44-49.

[26] Furlani et al, "The Integrated Manufacturing Data
Administration System (IMDAS)", to be published as an
NBSIR , 1988.

Reference - 2

READER COMMENT FORM

Document Title: AMRF Network Communications

This document is one in a series of publications which document
research done at the National Bureau of Standards' Automated
Manufacturing Research Facility from 1981 through March, 1987.

You may use this form to comment on the technical content or
organization of this document or to contribute suggested
editorial changes.

Comments

:

If you wish a reply, give your name, company, and complete

mailing address:

What is your occupation?

NOTE: This form may not be used to order additional copies of
this document or other documents in the series. Copies of AMRF
documents are available from NTIS.

Please mail your comments to: AMRF Program Manager
National Bureau of Standards
Building 220, Room B-lll
Gaithersburg, MD 20899

'

NBS-1 14A (REV. 2-8C)

U.S. DEPT. OF COMM.

4.

BIBLIOGRAPHIC DATA
SHEET (See instructions)

1. PUBLICATION OR
REPORT NO.

NBSIR 88-3816

2 . Performing Organ. Report No.l 3.

TITLE AND SUBTITLE

AMRF Network Communications

Publ ication Date

JUNE 1988

5. AUTHOR(S)

Rybczynski, S., Barkmeyer, E.J., Wallace, E.K, Strawbridge, M. L. , Libes, D.E., Young, C

6. PERFORMING ORGANIZATION (If joint or other than NBS, see in struction s) 7. Contract/Grant No.

NATIONAL BUREAU OF STANDARDS
DEPARTMENT OF COMMERCE 8. Type of Report & Period Covered

WASHINGTON, D.C. 20234

9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street, City , State, ZIP

)

10. SUPPLEMENTARY NOTES

[|

Document describes a computer program; SF-185, FIPS Software Summary, is attached.

11. ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a significant
bi bliography or literature survey, mention it here)

This document discusses the 1986 version of the factory data communications component
of the National Bureau of Standards’ Automated Manufacturing Research Facility. The
underlying architecture, protocols, hardware, software and manual procedures are
detailed.

12. KEY WORDS (Six to twelve entries; alphabetical order; capitalize only proper names; and separate key words by semi colon s)

AMRF, networking, communications, common memory, shared memory

13. AVAILABILITY 14. NO. OF
PRINTED PAGES

|
X

1

Unlimited

|

'

:

For Official Distribution. Do Not Release to NTIS 206

|

Order From Superintendent of Documents, U.S. Government Printing Office, Washington, D.C.
20402. 15. Price

\%2 Order From National Technical Information Service (NTIS), Springfield, VA. 22161

f

$24.95

USCOMM-DC 6043-P80

.

