NATIONAL INSTITUTE OR STANDAROC \& TECHNOLOGY
Research information Center Gaithersburg, MD 20898

NBSIR 88-3806

Fire Environment in Counterflow Ventilation (The In-flight Cabin Aircraft Fire Problem)

B. J. McCaffrey

University of Maryland
Baltimore, MD 21228

W. J. Pinkinen

U.S. DEPARTMENT OF COMMERCE

National Eureau of Standards
National Engineering Laboratory
Center for Fire Research
Gaithersburg, MD 20899

Sponsored in part by:
Federal Aviation Administration
Atlantic City International Airport, NJ 08405

FIRE ENVIRONMENT IN COUNTERFLOW VENTILATION (THE IN-FLIGHT CABIN AIRCRAFT FIRE PROBLEM)

B. J. McCaffrey

University of Maryland
Baltimore, MD 21228
W. J. Rinkinen
U.S. DEPARTMENT OF COMMERCE

National Bureau of Standards
National Engineering Laboratory
Center for Fire Research
Gaithersburg, MD 20899

June 1988

Sponsored in part by:
Federal Aviation Administration
Atlantic City International Airport, NJ 08405

U.S. DEPARTMENT OF COMMERCE, C. William Verity, Secretary NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director

Table of Contents

Page
List of Tables iv
List of Figures v
Abstract 1
1.0 Introduction 2
2.0 Experimental 6
3.0 Results 9
3.1 Effect of Ventilation Rate and Position on Gas Ceiling, and Wall Temperature 15
3.2 Effect of Seats 19
3.3 Effect of Fire Size 20
3.4 Ceiling Heat Transfer 29
3.5 Stratification 32
4.0 Discussion 34
5.0 Conclusions 34
6.0 Acknowledgements 36
7.0 References 37
Appendix 38

List of Tables

Page
Table 1. Experiment Parameters 10
Table 2. Ceiling Temperature Correlation Parameters 25
Table 3. Upper Gas Level Temperature Correlation Parameters 27

List of Figures

Page
Figure 1. Interior View of One Half of Symmetric Enclosure 60
Figure 2. Typical Seat 61
Figure 3. Time Histories TC Tree A Fl202 62
Figure 4. Time Histories TC Tree B F1202 63
Figure 5. Time Histories TC Tree C Fl202 64
Figure 6. Time Histories TC Tree C F1202 65
Figure 7. Exhaust Gas TC Histories F1202 66
Figure 8. Ceiling Temperatures Histories F1202 67
Figure 9. Interior Wall TC Traces F1202 68
Figure 10. Exterior Temperature Rise and Heat Flux Histories Fl202 69
Figure 11. Exterior Temperature Rise and Heat Flux Histories F1202 70
Figure 12. Ventilation Flow and Cabin Differential Pressure Histories F1202 71
Figure 13. Gas Temperature-Time Traces. TC Tree D, 30kW Fire 2 min Rate 72
Figure 14. Gas Temperature-Time Traces. TC Tree D, 30kW Fire 4.5 min Rate 73
Figure 15. Ceiling Temperature-Time Traces. 4 Positions, 30kW Two Ventilation Rates 74
Figure 16. External Wall Temperature, Heat Flux-Time Plots. $30 \mathrm{~kW}, 2$ min Rate 75
Figure 17. External Wall Temperature, Heat Flux-Time Plots. 30kW, 4.5 min Rate 76
Figure 18. Exhaust Flow TC Readings. Two Ventilation Rates, Two per run 77
Figure 19. ERFC-Iike Curve Fits to Ceiling Temperature Data. Tl 78
Figure 20. ERFC-Iike Curve Fits to Ceiling Temperature Data. T2 79
Figure 21. ERFC-like Curve Fits to Ceiling Temperature Data. T3 80

```
List of Figures (continued)
```

Page
Figure 22. ERFC-Iike Curve Fits to Ceiling Temperature Data. T4 81
Figure 23. Ceiling Thermal Characteristics, ΔT_{m} and h.vs Q and r / H 82
Figure 24. ERFC-like Curve Fits to Gas Temperature Data. B1 83
Figure 25. ERFC-like Curve Fits to Gas Temperature Data. Cl 84
Figure 26. ERFC-like Curve Fits to Gas Temperature Data. A2 85
Figure 27. ERFC-like Curve Fits to Gas Temperature Data. Dl 86
Figure 28. Ceiling and Gas Thermal Characteristics and Heat Transfer Coefficient vs. position 87
Figure 29. Calculated Ceiling Heat Transfer Decay for 30kW Fire at $\mathrm{r} / \mathrm{H}=0,1$ 88
Figure 30. Normalized Solution and Small Time Approximation 89
Figure 31. Gas Temperature-Time Trace, TC Tree D, 40kW Fire 90
Figure 32. Vertical Temperature Profiles (selected times) 91
Figure 33. Normalized Temperature Profile 92

Fire Environment In Counterflow Ventilation
 (The In-flight Aircraft Cabin Fire Problem)

B.J. McCaffrey and W.J. Rinkinen

Abstract

Using propane gas burning in a diffusive mode, fire sources up to the equivalent heat release rate of a fully involved seat were simulated in an approximately $1 / 2$-scale closed section of a ventilated wide-body aircraft cabin. The ventilation flow direction was as in commercial practice-counter to that of the buoyancy driven fire gases, i.e., fresh air was forced in at the top of the enclosure and drawn out at the bottom. Results for the $1 / 2$. scale system indicate that for nominal ventilation rates, significant enthalpy exchange through ventilation in times corresponding to a few airchanges is limited. That is, only a small proportion of the energy release rate of the fire is getting exhausted. These results will depend on time, it may not be a general conclusion. Also the time response of the aircraft cabin material may be different than this experimental facility, and a complete dimensionless variable analysis might suggest different time scales, full to $1 / 2$ scale. Correlations of thermal conditions in the enclosure as a function of time, heat release rate of the fire, and position in the cabin are presented. Semiinfinite transient conduction models appear adequate in capturing the essential features of the fire plume-ceiling thermal interaction. Reduced
data for the entire test series will be made available for future cabin modelling purposes. Data from one typical experiment is included in the appendix of the present report. The others will be made available through NTIS and for the near term on the CFR Electronic Bulletin Board. (CFRBBS: 24 hrs/day, 7 days/wk, 301-921-6302)

1.0 Introduction

The effects of normal aircraft ventilation on the growth of an incipient inflight fire as well as on the spread of smoke and toxic products in the cabin are at present not known to any reliable, empirically-based degree. Because of the lack of good information no guidelines are available to a flight crew concerning possible mitigative actions to be initiated regarding cabin ventilation when they are confronted with an on-board fire incident. In an effort to establish the necessary data base the Federal Aviation Administration has recently begun studies both at their laboratories and through contracts with various fire research organizations aimed at elucidating the phenomena and gaining the required scientific understanding. Not only will these studies offer near-term benefit, for example, insight for recommendations and guidelines for crew action in the event of fire, but they should in addition offer the rational basis for estimating the possible benefits of proposed future design changes, for example, emergency venting of smoke.

One such study, the subject of this report, is taking place at the Center for Fire Research (CFR), National Bureau of Standards. This study involves an experimental program in a $1 / 2$-scale section of a wide body simulated aircraft, exactly addressing the effects of ventilation on the fire environment. (Aircraft cabins are generally ventilated from top to bottom. Fresh air is forced in at the ceiling of the fuselage and exhausted near the floor. Fires create hot gases with buoyant forces which are in the opposite direction from that of the ventilation flow. The inability to analytically characterize the resulting large scale eddy mixing process is responsible for the uncertainty surrounding the fire question.)

This report looks at the major thermal effects and addresses the following tasks:
i) the design and instrumentation of a test article simulating the interior and ventilation pattern present in commercial aircraft;
ii) the collecting of the necessary data required to thoroughly determine the effects of "counterflow" ventilation on fire growth and spread;
iii) heat transfer to the ceiling of the test article. It became apparent soon after the initiation of the study that a major portion of the energy release rate of the fire was not getting exhausted through the floor vents. Rather, the energy was
being transferred to the ceiling, and hence it was necessary to study carefully the implications of that heat transfer.

A description of the test article will be presented along with the results of a systematic study of the thermal environment resulting from a constant heat release rate fire in a closed chamber ventilated in a counterflow direction, i.e., from top to bottom, at air exchange rates equivalent to those encountered in a commercial aircraft. (Throughout this study it must be kept in mind that only trends and phenomena are being investigated. Caution must be exercised in interpreting the small scale measurements. For example in the case of exchange rates, Froude number scaling analysis would yield differences of $\sqrt{ } 2$ in event times between model and full scale. See Quintiere (1978) for a full discussion of this point.)

Surprisingly in the past there have been few studies which have attempted to predict the fire enviroment in a moderately sealed enclosure for any sort of forced ventilation. For aircraft specifically, Sarkos and Hill (1985) noted substantial differences in hazard histories at different points throughout the cabin between a controlled ventilation, in-flight fire scenario case (the present configuration) compared with the postcrash tests where the cabin was ventilated naturally through fuselage openings. Apparently because of mixing the former tended to distribute the seat fire hazards throughout the airplane, i.e. hazard conditions existed at a station as much as 12 m (40 ft) from the source at an elevation as low as 1.7 m (5 ft 6 in) prior to flashover. In contrast hazardous conditions were limited to the ceiling layer in the naturally ventilated, post crash test up until the point of flashover.

Up until very recently calculations involving numerical solutions of the conservation equations with radiation and elaborate turbulence models, quite successful in reasonably high velocity, forced convective flows, have not yielded the same kinds of successes for highly buoyant, low speed flows. The large scale structure responsible for the major share of the mixing has not been properly modelled. DeSouza, Yang and Lloyd (1985) in a two-dimensional calculation show that flows with velocities equal to $0.1 \mathrm{~m} / \mathrm{s}$ have little effect and flows at $1 \mathrm{~m} / \mathrm{s}$ have drastic effects on the stability of the hot upper layer. Unfortunately, there are non-negligible three-dimensional effects associated with the flow field and the actual aircraft flow velocities fall precisely between these two extremes. Mitler (1984) has attempted forced ventilation calculations using zone models and indicates clearly the weaknesses of that approach because of the lack of a good mixing algorithm for the incoming stream. Finally, using a well-stirred reactor analysis Eklund (1984 a,b) has shown the importance of ventilation with regard to fire hazard development including visibility.

One experimental study of fire growth in a sealed container with ventilation, worth noting, is that of a nuclear containment vessel at the Lawrance Livermore National Laboratory, the resulting correlations presented by Foote, Pagni, and Alvares (1986). In that study the representative upper level gas temperature rise varied with the ventilation flow rate to a not immodest -0.36 power. Cox, Kumar, and Markatos (1986) were able to do a reasonable job in reproducing some of these results using more modern three-dimensional field modelling techniques. Unfortunately however, their ventilation flow direction
was in the same direction as the buoyant flow, i.e., in at the bottom and out at the top, the same direction as the normally generated flows due to the fire - the hot gases simply get pushed along by the vent flow.

There appears to be no systematic study in the literature of the desired configuration. Evidence suggests that mixing of the upper layer is significant (Sarkos and Hill 1985) and for the reversely ventilated (in at the bottom-out at the top) case the thermal environment is medium to strongly dependent on the ventilation rate. For the counterflow situation, the direction of interest here, little guidelines exist - the present experimental program was carried out to fill this void.

2.0 Experimental

A view of one-half of the test article is shown schematically in Fig. 1. It is constructed of two symmetrical chambers built on a raised frame with wheels so that the interior could be accessed easily, and with the two halves clamped together forms a reasonably sealed enclosure. Each chamber is approximately 2.4 m long by 2.4 m wide by 1.2 m high ($8 \times 8 \times 4 \mathrm{ft}$) thus simulating to approximately $1 / 2$-scale a closed section of aircraft $9.8 \mathrm{~m}(32 \mathrm{ft})$ long by 4.9 m (16 ft) wide by $2.4 \mathrm{~m}(8 \mathrm{ft})$ high. The skin is of 24 gauge (0.7 mm thick) galvanized sheet and the frame was constructed of $38 \times 38 \mathrm{~mm}$ and $51 \times 51 \mathrm{~mm}$ angle and channel members 3.2 mm thick of hot rolled, AISI C-1020 metal. The skin was riveted to the frame, and the joints, generally overlapped sheet, were sealed with high temperature silicone adhesives. High temperature gasket material was used in the clamped butted joint where the two chambers were
connected. The reproducibility of the seal after movement of the chambers could be determined by checking the pressure transducer reading at a given ventilation flow rate. Windows in the walls provided visual observation of the fire behavior.

The floor and ceiling were composed of sheets of calcium silicate board ("marinite") which, positioned approximately 10 cm off the skin, formed a plenum with slit openings to provide for the airflow, as shown in figure 1. Fresh air is pumped from the laboratory into a top center aperture in both halves of the box. It fills the plenum and flows out more or less uniformly, since the slit area is a small fraction of the plenum cross section. The air flows out of the two slits in the marinite for either of the two configurations 'wall' or 'central' into the cabin proper. At the floor the air flows out through the slits into the lower plenum and is collected through two apertures in the bottom skin and continues out of the building through ducting. The two apertures in the bottom skin are exact replicas of those in the top skin. Fans located upstream of the top aperture provide flow and positive pressure in the box. The building exhaust system provides slight negative pressure near the outlet of the ducts leading from the bottom apertures.

The table in the Appendix provides the complete list of instruments and the correspondence with locations and instrument type can be determined from Figure 1. Not shown on the figura are the inlet airflow velocity measurements, cabin pressure relative to the laboratory, gas sampling instruments and smoke meters.

For the work reported here both fire size (a steady flow of $\mathrm{C}_{3} \mathrm{H}_{8}$ through a 0.15 m diameter glass bead burner located at the floor. Fig l) and ventilation were steady in time. The procedure was quite straightforward. The ventilation fans were started and flow rates selected and several minutes were allotted before steady conditions were assured. At that point the computer was started, instructing the data scanner to begin reading the various channels and writing the data to memory. After about one minute of data taking the ignition system was activated and the propane flow rate was set to the desired constant heat release rate value. The remainder of the experimental procedure consisted in simply waiting for the desired run duration time to elapse.

Most of the initial study consisted of experiments performed in an empty enclosure. In order to evaluate the effect of additional thermal energy storage capacity in the cabin simulated seats were constructed and placed symmetrically in the cabin since it turned out that a large fraction of the fire heat release was not being exhausted. In addition the effects on the environment of any large scale fluid motion could possibly be evaluated since blockage due to the presence of the seats would provide a different cabin flow pattern. They were 32 in number and consisted of bent sheets of aluminum with the seat and back composed of 13 mm thick sheets of marinite (Fig. 2). If required, material with different thermal capacitance could be accommodated.

3.0 Results

Table 1 presents the set of experiments for the thermal environment portion of the study and gives condition of ventilation in terms of time for one air exchange, i.e., $4.9 \times 2.4 \times 1.2 \mathrm{~m}^{3}$; ceiling ventilation position, either at the wall or at positions 0.6 m in from the wall (see Fig. l); heat release rate and seating configuration.

The complete set of reduced data for one run, F1202 is shown in the Appendix. Data in the same form i.e. 2-D arrays of time in seconds, and instrument output, reduced to appropriate engineering units, is available for the entire test series. Since the experimental set-up regarding ventilation direction in a closed space is rather unique this data ought to be valuable regarding future modelling efforts, especially in validating three dimensional turbulent mixing schemes that are designed for handing large coherent eddy structures.

The results will show first the effect of ventilation rate on the environment in the cabin for a fixed fire size and vent location. The vent position will then be changed and the effect noted. The next section contains the work relating to the effect of the fire size for a fixed ventilation rate and contains considerable analysis of ceiling heat transfer rates in order that the results may be generalized to different materials and scale. Finally a section on stratification completes the thermal portion of the study.

Ventilation rates varied from 2 to $41 / 2$ minutes as the time for one volume airchange. Keep in mind any scale factor when interpreting these rates for
full scale. These are consistent with specification values for the commercial fleet. It was not necessary to vary the rate (nor the inlet position) beyond these limits because of the nature of the results - the buoyancy forces of the fire were dominating over ventilation as regards exhausting enthalpy. The extent of mixing however may depend on the venting rate and position.

Heat release rates varied from 6 to 60 kW in the experiments or if Froude number scaling is assumed, 30 to 350 kW . This would correspond to full scale heat release rates of 2 raised to the $5 / 2$ power. The 350 kW fire is representative of about a fully involved seat fire.

Table 1: Experiment Parameters

	Ventilation Exchange Time (min.)	Ventilation Inlet Location	Heat Release Rate (kW)	Seating Configura tion
		WALL		
F0402	2.0	WALL	30	None
F1102	2.0	WALL	30	None
F1202	2.4	WALL	30	None
F1902	4.5	CENTRAL	None	
F2502	2.4	CENTRAL	30	None
F0403	2.4	CENTRAL	30	None
F0503	2.4	CENTRAL	20	None
F1203	2.4	CENTRAL	10	None
F1803	2.4	CENTRAL	6	None
F1903	2.4	CENTRAL	40	None
F2603	2.4	CENTRAL	60	None
F0206	2.4		30	32 Seats

The set of graphs of the data, contained in the appendix, is typical for all the tests. They are for F 1202 , an intermediate fire size and ventilation level, flow being through the "wall" and there are no seats. The first four
figures Fig. 3 - 6, are for the thermocouple trees or gas temperature around the cabin. They rise rapidly as the fire is turned on, somewhere near the 60 s point, and except for their level the behavior in time of all the trees is nearly identical - no transit delay time could be ascertained. (The TC's are visually protected from any flame radiation by their angular location relative to the support rod.) The front of the thermal wave is moving at meters per second and hence only if the TC's were being sampled at a rate such that the time between scans is less than one second could transit times be picked up. Obviously in a real situation where the aspect ratio could involve the entire length of the aircraft, spatial variation will become a factor. Phenomenologically however this should not create a problem - the same things will be happening at later times downstream.

The actual level of temperatures in different parts of the cabin will be discussed in the section on the effect of fire size. Not surprisingly the TC closest to the ceiling reaches the highest temperature and the furthest away or lowest reaches the lowest temperature with the remainders ranked accordingly. The glaring exception, TC $1 \& 2$ on tree A, can be explained by structural blockage (see section on upper level gas temperatures). This is an important point. In spite of the external ventilation which will cause mixing and stirring, the upper layer is perfectly stratified; $d T / d z$ is everywhere positive. From the figures $3-6$ it can be seen that as the fire is turned off the high to low ranking remains in spite of the fact that the ventilation is running. The ventilation can not overcome the residual buoyancy in the gases - the cabin is still stratified. One however can argue that the difference between high and low in that case may not be very significant.

The point of all this speculation about stirring has to do with the ability of the ventilation system to flush out adequately smoke and hot gases from the cabin during a fire situation. Recall the exhaust is going out at the floor level. If the buoyancy of the fire gases is such that only relatively cool and clean air is remaining near the floor then the system cannot be expected to perform adequately. What size of buoyant forces, or fire condition can overcome the plane's ventilation system will need to be addressed. A small smoldering fire (like a whole group of smokers) can obviously be handled by the present system, however it is not clear whether or not toxic products associated with the fire-cabin scenario seen on Figs. 3- 6 could be adequately flushed from the cabin in a reasonable amount of time using the same ventilation system.

Fig. 7 shows the temperature of the thermocouples located in the two ventilation exhaust lines and confirms the contention made above that only cool gas is being removed in times of interest for this case. The level has hardly reached $50^{\circ} \mathrm{C}$ at 450 seconds, when the fire has been turned off. (Fig. 7 and the previous figures indicate significant thermal stratification, in themselves however they cannot indicate the level of mixing of conserved species.) The much more gradual rise in time vs the gas temperature behavior in Fig. 7 indicates the delay in "filling" the entire cabin from the top down before any warm gas appears in the exhaust.

Next, on Fig. 8, are the time history of the ceiling TC's which like the gas temperature show a rapid rise in temperature. These are TC's peened into the
marinite ceiling and offer a reasonable measure of surface temperature rise with time. The level of temperature attained will vary inversely with distance from the fire. They are exposed to the full brunt of the fire plume gases and will be critical in determining heat transfer rates later in the analysis.

Fig. 9 contains the traces of the output of four TC's mounted on the inside walls at various positions around the cabin. The time histories are notably different from the gas and ceiling time history in regards rapid temperature rise and exhibit more the characteristic of the exhaust gases but at higher temperature levels. These TC's are fastened to the metal walls with screws and their slower response vs the ceiling ought to be attributed to the lower convective coefficient due to lower gas velocities on the sidewalls, a finite filling time to bring hot gases to the lower position on the walls and finally the high thermal conductivity of the wall material. Additionally, for the "wall" ventilation configuration the flow field is rather complex with the cold jet running down the side along with a portion of the ceiling jet which due to sufficient momentum has made the turn and starts heading downward adjacent to the measuring station. The last effect can be checked with the results of a "central" ventilation run which ought to present a different local flow velocity to the probe. Comparison of Fig. 9 with its counterpart for run F0403, identical to F1202 except for location of the vent inlet, shows little difference in temperature signal.

Wall temperature and heat transfer from exterior measurements can be seen on Figs. $10 \& 11$ which show on the same scale, gauge heat flux in $\mathrm{kW} / \mathrm{m}^{2}$ and
temperature rise above ambient. There is a pair of signals for each of the four stations, the smoother of the two is the thermopile temperature output. Note before the fire is turned on there are some non-zero signals. Prior to this run, an experiment took place and even after the period of time allowed for cooling, the box still retained some small differential energy. For single runs in a day these transducers registered negligible initial signal. The time histories seen on Figs. $10 \& 11$ are similar to those seen on the interior thermocouples, Fig. 9. The data seen on Figs. $10 \& 11$ can be used for validating heat transfer model calculation for these wall flows.

Fig. 12 shows the output of the velocity measuring transducers in the inlet ventilation ducts converted to volumetric flowrate and the static differential pressure measurement, cabin to laboratory. The velocity profile across the duct has been measured and documented and the use of a single centerline measurement corrected accordingly. The non-uniformity of the flow signals represent asymmetry between the two halves of the enclosure as do the two exhaust temperature measurements on Fig. 7.

The behavior of the enclosure regarding pressure is interesting. As the fire is turned on the spike in pressure signal due to expansion is clearly evident. As heat is added continually at a constant rate it takes quite a while for the cabin to equilibrate back to the initial, prior to fire, value. During other tests with smaller fires and hence longer running times that equilibration was assured to a high degree of accuracy. There is no doubt as to when the fire is turned off as a mirror image of the process occurs. There are analyses available which predict pressure rise in closed vessels due to the onset of a
fire using simple First Law Thermodynamic concepts. Fig. 12 may be used to validate those with "small leaks" for pressure equilibration.

The above offers a sampling of the kinds of data that have been obtained and is available for modelers interested in this configuration. The remainder of the report presents detailed analyses appropriate to the problem at hand, namely the effect of aircraft ventilation on the fire environment.

3.1 Effect of Ventilation Rate and Position on Gas
 Ceiling, and Wall Temperature

At a fixed fire size (30 kW) there results little change in either gas temperature (Figs. $13 \& 14$) or in ceiling or wall temperature (Figs. $15,16 \&$ 17) due to changes in the air exchange rate from $4 \frac{1}{2}$ min to 2 min per airchange. (Note that unlike Figs. 3 through 12, for the remaining graphs the identification numbers on the right hand side of the curves do not necessarily correspond to the channel numbers). In fact the wall heat transfer rates (Fig. 16, 17) are just slightly higher in the higher exchange rate case perhaps due to better contact of the hot gases with the wall surface. The bulk gas temperatures (Fig. 13, 14) themselves however, appear to follow the more intuitive direction, i.e. higher level temperature for lower flow rates.

Fig. 18 shows the exhaust flow thermocouple readings for the high and low flow rates. There are two exhaust positions and hence two traces per experiment. One can easily do a quick calculation of the enthalpy leaving in the exhaust gases. The enclosure volume is $4 \times 8 \times 16 \mathrm{ft}^{3},\left(14.5 \mathrm{~m}^{3}\right)$ or for the 2 min .
exchange rate, the volume flow rate is $14.5 / 2 / 60=0.12 \mathrm{~m}^{3} / \mathrm{s}$. At about 540 s , as the fire is turned off, the maximum temperature rise for the 2 min. case is about 25 K . Hence

$$
\mathrm{Q}=\dot{\mathrm{V}} \rho \mathrm{C}_{\mathrm{p}} \Delta \mathrm{~T}=0.12 \mathrm{x} 1.2 \times 1 \times 1 \times 25=3.6 \mathrm{~kW}
$$

(using properties of room air, $\rho=1.2 \mathrm{~kg} / \mathrm{m}^{3} ; \mathrm{C}_{\mathrm{p}}=1 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K}$). For the 4.5 min. case, the flow is $0.054 \mathrm{~m}^{3} / \mathrm{s}$, the temperature rise is about 18 K and hence the enthalpy leaving at about 500 s is $.054 \times 1.2 \times 1 \mathrm{x} 18=1.2 \mathrm{~kW}$. Note the falloff of the temperature signal compared to the gas or ceiling temperatures when the fire is extinguished. In the latter cases the temperature drops immediately. For the exhaust flow temperature only slight decreases are noted as the gases containing stored energy in the enclosure continues to flow out. Note also in the rising portion of the traces the much more slowly rising signal than, for example, the gas or ceiling traces. That is, the 3.6 and 1.2 kW figures, representing 12% and 4% respectively, of the energy source, will continue to rise with time much more so than the more asymptotically looking gas temperature traces.

Instead of comparing the two cases at approximately the same absolute time perhaps it would be more appropriate to compare the signals at comparable characteristic flow times. For example 540 s for the 4.5 min . case is about 1.8 flow times $[(540-60) /(4.5 \times 60), 60 \mathrm{~s}$ before fire is ignited] or equal to somewhere around 280 s for the 2 min . case $(1.8 \times 2 \times 60+60)$. That ΔT would be closer to 15 K or about 2.2 kW or 7% of heat release rate. At times corresponding to a few airchanges, only a small amount of energy is being carried down and out through the ventilation.

The amount of energy through the metal side walls can be estimated using the measurements of wall heat flux seen on Figs. $16 \& 17$. Heat flux values from Fig. $16 \& 17$, and here no difference between the two cases will be assumed, bunch around 0.2 to $0.3 \mathrm{~kW} / \mathrm{m}^{2}$ for three of the sensors and for the remaining one, 0.7 to $0.8 \mathrm{~kW} / \mathrm{m}^{2}$. Assume that the wall area can be divided into a hot upper central region ($3 \mathrm{~m}^{2}$) to go with the high flux and the remainder of the area ($15 \mathrm{~m}^{2}$) for the lower values. The total flux through the walls at the time the fire is turned off is

$$
Q=q^{\prime \prime} \times A=0.75 \times 3+0.25 \times 15=6 \mathrm{~kW}
$$

or about 20% of the total heat release rate of the fire. Like the ventilation thermocouples, the signals on Figs. 16 \& 17 fall gradually after the fire is turned off. This indicates significant dissipation of a lot of stored energy.

The above indicates that approximately 30% of the total energy created by the fire leaves through the walls and ventilation flow in times equal to several airchanges. Therefore, 70% must remain. In the configuration without seats only the floor and ceiling have the capability to store energy. These internal components are separated by plenums from the actual metal floor and ceiling skin. Over these times, the external metal floor and ceiling skin do not get very warm. Therefore, their energy transfer paths have been ignored. (The metal skin above the marinite ceiling is exposed to the incoming cool
air. The rise of the metal floor interior temperature will be reflected in Fig. 18.)

Considering then that the floor and ceiling are the primary absorbers, the thermal capacity is equal to

$$
\mathrm{mC}_{\mathrm{p}}=(8 \times 16 / 12) /(3.281)^{3} \times 700 \times 1.1=233 \mathrm{~kJ} / \mathrm{K}
$$

(where $700 \mathrm{~kg} / \mathrm{m}^{3}$ and $1.1 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$ are representative of the density and specific heat of the material). If the heat transfer rate was assumed constant over the 540-60 $=480$ s time that the fire was turned on and assuming 70% of the 30 kW was being stored then an average temperature rise of the interior would be $21 /(233 / 480)=43 \mathrm{~K}$.

Observation of the ceiling surface temperature as the fire is turned off on Fig. 15 indicates that a 40 K rise in ceiling temperature is not an unreasonable number. To transfer all the energy the $12 \mathrm{~m}^{2}$ ceiling would require an average heat flux of $21 / 12=1.8 \mathrm{~kW} / \mathrm{m}^{2}$. Derived heat transfer coefficients (see Ceiling Temperature section) are in the range . 02 to .07 $\mathrm{kW} / \mathrm{m}^{2} \mathrm{~K}$ making the average temperature difference between gas and ceiling 25 to 90 K - a reasonable number, not unlike the more detailed calculation result. Obviously a more accurate partitioning of energy around the interior requires the more detailed result, suffice it to say here that since a large fraction of the energy does not get removed in the present configuration knowledge of the thermal characteristic of the enclosure will be very important.

The conclusions reached above appear to be independent of the position of the inlet "slit" at least as regards the "wall" and "central" configurations. Experiment F1202, the "wall" ventilation case discussed earlier can be compared to $F 0403$ which is an identical run except for position - this is a "central" case. To first approximation the results are identical - the graphs of all the variables can be superimposed within the noise or normal fluctuation of the signal. Some very minor differences are perceptible, e.g. the ceiling temperature "T2" on Fig. 1 is on the order of ten degrees higher for the wall ventilated case, as are the upper TC's on trees D\&B slightly higher. One might postulate a cooling curtain effect in the central case. Again however these are very small changes and it would take considerably more analysis of the data to quantify the precision of these differences. The data is available to do precisely that if later models were dictating such differences. For purposes here however, and to reasonably high confidence the position of the vent had little effect on the measurements recorded.

3.2 Effect of Seats

The effect of seats is to exacerbate the problem of trying to exhaust hot gases by the normal ventilation, i.e. out the bottom. Either through additional energy transfer to the seats or by the blockage of large scale flows the gas temperature in the lower regions is cooler and more stratified, i.e. the gradient of temperature is larger. And this is reflected in the level of exhaust gas temperature. For a given case, FO206 with seats vs F0403 without seats, everything else identical, there is about a factor of two decrease in the differential temperature of the exhaust gases between the
configuration with seats opposed to that without seats at comparable flow times. The remaining transducers are not greatly affected with some minor differences e.g. exterior wall heat transfer in the lower regions is somewhat less in the with-seat configuration. Upper level gas \& ceiling temperatures are similar in the two cases.

3.3 Effect of Fire Size

Gas, wall and ceiling as well as exhaust gas temperatures all vary significantly with heat release rate. The generalization, details, etc. of these findings are contained in the following.
i) Ceiling Temperatures (T1-T4)

An excellent fit of the temperature rise - time data of the ceiling thermocouple signal is:

$$
\begin{equation*}
\frac{\Delta T}{\Delta T_{\max }}=1-\exp \left[h^{2} \frac{t}{\rho c k}\right] \cdot \operatorname{erfc}\left[h ل \frac{t}{\rho c k}\right] \tag{1}
\end{equation*}
$$

which is the solution for the surface temperature history for one-dimensional heat conduction through a semi-infinite slab exposed at $t=0$ to a large mass of fluid of temperature $\mathrm{T}_{\mathrm{max}}$. Surface resistance is indicated through the, assumed constant, film coefficient, h. The governing differential equation is the familiar diffusion equation with the given initial and boundary conditions:

$$
\begin{align*}
& \frac{\partial T}{\partial t}=\alpha \frac{\partial^{2} T}{\partial x^{2}} \tag{2}\\
& t \leq 0 \quad T=T_{0} \tag{3}\\
& t>0, \quad x=0 \quad-k \frac{\partial T}{\partial x}=h\left(T_{\text {max }}-T\right) \tag{4}
\end{align*}
$$

The adequacy of Eq. (1) as a fit to a typical data set can be judged by observation of Figs. 19 through 22. They show temperature rise-time data for the four ceiling positions with the best least squares fit determined by Eq. (1) shown by the smooth curves. Note the data set includes only that portion with the fire "on". The point here is to generalize the data and perhaps garner something of the physics of the fire-ceiling interactions. Eq. (I) is essentially a two parameter data-fit expression. The parameters are $\Delta T_{m a x}$ and $h \bullet(\rho c k)^{-\frac{1}{2}}$. We do a least squares fit of the data to the Eq. (1) form and derive the best constants. Using the simple semi-infinite transient conduction model, Eqs. (1)-(4), one can associate or relate the derived $\Delta T_{\text {max }}$ with the measured fluid or gas temperatures determined independently by the thermocouple trees; the $\rho c k$ portion with the thermal properties of the given "inert" ceiling material; and finally, the derived or best h, an effective heat transfer coefficient, with the thermo-fluid mechanical environment experienced by the ceiling.

It is an "effective" coefficient because of the simplicity of the thermal model, i.e. no reradiation through the hot layer to the colder floor, the loss of the semi-infinite approximation at longer times (small fires) due to the finite thickness of the ceiling material and also the transient nature of the gas temperature rise, to name just a few restrictions.

Having now a reasonable "model" for fire-ceiling inceraction or at least a reasonable analytical fit to the data, one is able to see how these parameters change as a function of fire size. The results of least squares fitting of all the ceiling temperature data for a fixed configuration in the form of Eq. (1) led to several observations. For a fixed fire size, $Q, \Delta T_{\text {max }}$ and h varied considerably with position or location relative to the fire. At a fixed position $\Delta T_{\text {max }}$ varied almost linearly with fire size and h varied much more weakly with Q .

In order to systematize the data analysis more easily a functional form of the h variation with Q was chosen. Because of the nature of Eq. (1) and the data sets, a range of $\Delta T_{\text {max }}$ and h values could yield similarly accurate least squares fits. On a plot of the sum of the squares of the differences between calculated values and actual data values vs h, the minimum of the curve (which will be the best value for the fit) was rather broad. A very sharp minimum would have dictated a unique pair. Therefore a range of h and corresponding $\Delta T_{\text {max }}$ values would all give statistically similar results. Visual examination of the plots could not differentiate which pair within the range yielded better results.

The effective film coefficient h, was chosen to vary with Reynolds number to the $1 / 2$ power. This dependence is characteristic of an extremely wide range of geometries from convective heat transfer studies. Velocities from buoyant plumes and real fires vary with heat release to the $1 / 3$ power, and hence h will be allowed to vary with Q to the $1 / 6$ power, a result totally consistent within the experimental data scatter. (A larger Reynolds number exponent
could have been chosen if the lower portion of the flame zones where the dependence on fire size becomes weaker, i.e. $1 / 5$ in the intermittent and 0 in the continuous flame, were controlling the phenomena. Irrespective of what model is chosen the data dictates a weak h dependence on Q, which must be satisfied.)

The efficacy of choosing a fixed power for the $h-Q$ variation can be demonstrated by considering the $\Delta T_{\text {max }}$ vs Q data before and after fixing the $1 / 6$ power for h vs. Q. The correlation coefficients for the power fits of $\Delta T_{m a x}$ vs Q in four ceiling positions ranged from 0.89 to 0.98 in the arbitrary situation. By letting h vary with $Q^{1 / 6}$, going back to the fitting routines and obtaining the new $\Delta T_{\text {max }}$ it turns out that those $\Delta T_{\text {max }}$ vs Q fits now have all four correlation coefficients greater than 0.99 !

The results of all the curve fittings are contained in Table 2 and illustrated in Fig. 23 which shows how ΔT_{m} (open symbols) and C or h (filled symbols) vary with position in the cabin. Note that $C / Q^{1 / 6}$, i.e. the film coefficient, ($C=$ $h / J \rho c k$) varies inversely with position from the fire, a not unexpected result given that the fire generated gas flow velocities will be decreasing as one moves further from the fire. The same is true, in general, as regards ΔT_{m}. Except for position $T 1$ which is slightly further from the fire than position T2 and for all the central ventilation data (square symbols) exhibits higher temperatures. With ventilation at the edge or wall position, Tl drops below T2 following the trend of cooler regions being further from the fire (triangle symbols). The curtain of cool air falling between the fire and the positions of $T 4$ and $T 2$ in the former case may provide disturbance to a decreasing
thermal stress with distance from the fire trend, that is, if one can ignore the enclosure asymmetry to begin with. The hash marks on the figure indicate the length and breath of the compartment. Perhaps T3 and T1 ought to be compared separately from T4 and T2 for the central configuration cases.

The lower part of Fig. 23 yields for the present center ventilation configuration a film coefficient h of between about 5 and $80 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$. The lower number is typical for free convection with the higher value ($r / \mathrm{H} \rightarrow 0$) well into the forced convective range for gases. The data also bounds that found by Quintiere (1978) for a ceiling in a corridor just outside a burn room.

To construct figure 23, an average n equal to 0.933 was chosen from Table 2. The $\Delta T_{m}=A Q^{n}$ was recalculated to yield a new A and compared to the temperature levels at each position irrespective of slight changes in Table 2 values of n. Note the triangles on the figure, these are for the one data set with wall ventilation and therefore have not gone through the extensive analysis that the central ventilation or squares have, i.e. $h \propto Q^{1 / 5}$. Quite large decreases in h could result in small increases in ΔT_{m} and still preserve the goodness of the least squares fit. In other words the impression that h for the wall ventilation case is twice that for the central ventilation may not be a correct one. To convert C to h a value of $\rho c k=0.1\left(\mathrm{kw} / \mathrm{m}^{2} / \mathrm{K}\right)^{2} \cdot \mathrm{~s}$ was chosen for the ceiling material. How well the derived bulk "bath" temperatures, $\Delta \mathrm{T}_{\mathrm{m}}$, compare to actual measured gas temperatures will be presented in the next section.

TABLE 2: CEILING TEMPERATURE CORRELATION PARAMETERS ${ }^{1}$

		T3		T4		T2		T1	
RUN I.D.	Q (kW)	$\Delta \mathrm{T}_{\mathrm{m}}(\mathrm{K})$	$C\left(s^{-\frac{1}{2}}\right)$	$\Delta T_{\text {m }}$		$\Delta T_{\text {m }}$	C	$\Delta \mathrm{T}_{\mathrm{m}}$	C
F0403	30	221	. 166	136	. 109	128	. 0363	162	. 0226
F0503	20	140	. 155	93	. 101	93	. 0339	115	. 0211
F1203	10	73.5	. 138	48.3	. 0904	47.6	. 0302	57.5	. 0188
F1803	6	44	. 127	25.2	. 0830	28	. 0278	35.3	. 0173
F1903	40	259	. 174	172	. 114	164	. 0381	200	. 0237
F2603	60	378	. 186	248	. 122	237	. 0408	273	. 0253
		$C / Q^{1 / 6}$. 0942		$\overline{.0616}$		$\overline{.0206}$. $\overline{0128}$
	$\Delta T_{\text {m }}=A Q$	A	8.43		4.74		5.61		7.34
		n	0.937		0.978		. 919		0.897

[^0]ii) Upper Level Gas Temperatures (A2, B1, C1, D1)

Time histories of the uppermost thermocouple (TC) temperature rise for the four TC trees are shown in Figs. 24-27. (Note for tree "A" that the second TC is used since, due to blockage by a structural rib on the ceiling, the topmost TC on that pole was somewhat shielded from the hottest gases and consistently recorded a temperature slightly less than the second from the top.) For want of any other particular method the data was correlated using the semi-infinite erfc function analysis used previously. Observation of Fig. 24-27 seems to indicate that it is adequately representing the data. The ΔT_{m} and C 's shown on the traces are the determined least squares fit of Eq. (1).

Table 3 contains the results of the curve fitting analysis for the other five fire sizes. The results of the variations with fire size or heat release rate, Q, were similar to the ceiling analysis. That is, ΔT_{m} varied, nearly linearly with Q; while C, scattering considerably, varied very weakly with Q. As before, to systematize the data analysis, C was made to vary with $Q^{1 / 6}$, and the analysis fitting was repeated to obtain the best ΔT_{m} for that new C. (Here the similarity to an actual convective film coefficient may be more tenuous since gas or rather the $T C$'s are being heated, not a semi infinite plate). An example of exactly how things change by this manipulation is to consider Fig. 24-27. The ΔT_{m} and C's shown on the figures are the "raw" or best values. Those in the table have been "processed", e.g., ΔT_{m} for Dl went from 206 to 205 K while C increased from .085 to $.0897 \mathrm{~s}^{-1 / 2}$, etc. Meanwhile the sum of the squares of the deviations does not change appreciably. The big

TABLE 3: UPPER GAS LEVEL TEMPERATURE CORRELATION PARAMETERS ${ }^{2}$

2 Least Squares Fit to $\Delta T / \Delta T_{m}=1-e^{C^{2} t}$ erfc $C ل t$ (No seats, central ventilation, $2.4 \mathrm{~min} \cdot$)
difference again came about when considering ΔT_{m} vs Q. In all cases the correlation coefficient increases to over 0.99 with the formalized C-Q ${ }^{1 / 6}$ variation.

From Table 3 the mean power for gas variation, 0.836 is measurably lower and the data is less scattered than the ceiling temperature rise variation, i.e. $\mathrm{n}=0.933$. Fig. 28 shows the radial variation of $\Delta \mathrm{T}_{\mathrm{m}} / \mathrm{Q}^{.836}$ with again the numbers reworked using the constant n. For comparison the ceiling variation with distance using 0.933 is also shown. Heat transfer to the ceiling as a function of position (as well as with time) can be determined from the plot. Additional information required is contained in figure 28 which shows C/Q ${ }^{1 / 6}$ for the gas as well as the ceiling. Here they are left in the "C" form, a simple data fitting constant, as opposed to conversion of the ceiling value to h as on Fig. 23.

The gas values of C appear to be less dependent on position than those of the ceiling. For the ceiling C increases significantly as one gets closer to the fire indicating a smaller time constant or smaller time to reach ΔT_{m}. Here the analog with a film or heat transfer coefficient makes sense - the plume velocities will be highest in the stagnation - turning region of the ceiling.

We now have the ceiling temperature rise as well as a representative upper level gas temperature rise due to a fire in a cabin ventilated from above. As a function of time,

$$
\begin{equation*}
\Delta T=\Delta T_{\max }\left[1-\exp \left(C^{2} t\right) \cdot \operatorname{erfc}(C ل t)\right] \tag{5}
\end{equation*}
$$

with

$$
\begin{equation*}
\Delta T_{\max }=A_{1}(r / H) Q^{n_{i}} \tag{6}
\end{equation*}
$$

for

$$
\begin{align*}
& i=\text { gas } n_{i}=.836 \\
& i=\text { ceiling } n_{i}=.933 \\
& C=B_{i}(r / H) Q^{1 / 6} \tag{7}
\end{align*}
$$

where $A_{i}(r / H)$ and $B_{i}(r / H)$ are contained on the upper and lower portions of Fig. 28 respectively.

3.4 Ceiling Heat Transfer

At any radial position the heat transfer rate, gas to ceiling, is from the simple model

$$
\begin{equation*}
\dot{q}^{\prime \prime}=h_{c}\left(T_{\text {max }}-T_{\text {CEIIING }}\right) \tag{8}
\end{equation*}
$$

For the film coefficient, h_{c}, derived using the semi-infinite analysis, $T_{\text {max }}$ was assumed to be the constant bath temperature into which one side of the ceiling was suddenly exposed. In reality the gas temperature itself is rising. Additionally from Fig. 28 the independent experimentally derived $\Delta T_{\text {m }}$ for the gas is somewhat higher. It will be useful to see the effect on heat transfer of using the higher and transient gas temperature.

Using the data representation, Eq. (1), the above becomes

$$
\begin{equation*}
\dot{q}^{\prime \prime} / h_{c}=\Delta T_{m g}-\Delta T_{m c}\left[1-\exp \left(C_{c}^{2} t\right) \cdot \operatorname{erfc}\left(C_{c} \downarrow t\right)\right] \tag{6}
\end{equation*}
$$

where the additional subscripts g and c indicate gas and ceiling respectively. Note that if the ceiling maximum temperature (the semi-infinite approx.) is used for the bath or gas temperature then Eq. (9) reduces to

$$
\begin{equation*}
\left.\dot{q}^{\prime \prime}=h_{c} \Delta T_{m c} \exp \left(C_{c}^{2} t\right) \cdot \operatorname{erfc}\left(C_{c} \downharpoonleft t\right)\right] \tag{10}
\end{equation*}
$$

or at short times, say to 30 seconds for C_{c} of order $0.05 \mathrm{~s}^{-1 / 2}$, we can approximate the erfc expression and obtain the convenient

$$
\begin{equation*}
\dot{q}^{\prime \prime}=h_{c} \Delta T_{\mathrm{mc}}\left(1-C_{c} \downharpoonleft t\right) \tag{11}
\end{equation*}
$$

The complete solution can be expressed as (Abramowitz and Stegun 1965):

$$
\begin{aligned}
& \dot{\mathrm{q}} " / h_{c}=\left(\Delta \mathrm{T}_{\mathrm{mg}}-\Delta \mathrm{T}_{\mathrm{mc}}\right)+\Delta \mathrm{T}_{\mathrm{mc}}\left(\mathrm{a}_{1} \mathrm{t}_{\mathrm{c}}+a_{2} t_{c}{ }^{2}+a_{3} t_{c}{ }^{3}\right) \\
& \text { where } t_{c}=\frac{1}{1+\mathrm{p} C_{c} \sqrt{t}}
\end{aligned}
$$

and $a_{1}=.3480242, a_{2}=-.0958798, a_{3}=.7478556, p=.47047$

Note the first term, a sort of compensation for weaknesses in the semi-infinite model since the experimental gas temperatures always come out higher than the bath temperature of the model, represents a value of order 10% or less of the second term for times of interest here and hence Eq. (10) (and Eq. (11) for short times) ought to be adequate in predicting heat transfer to the ceiling. That is, even though from Fig. 28 the gas temperatures are
higher than the derived ceiling temperature the effect on ceiling heat transfer is small.

The maximum value, i.e. when $t \rightarrow o$, is from (11):

$$
\begin{equation*}
q^{\prime \prime}=h_{c} \Delta T_{\mathrm{mc}} \tag{13}
\end{equation*}
$$

From Fig. 23 or Table 2 we can find the variation of q " with fire size, i.e. $1 / 6+.93$, not a great deal different from direct proportionality. This is a significant finding. It is of interest to determine the partitioning of energy throughout the various modes independent of fire size since perfect scaling will not have been obtained in simulation. That is, it is important to know that, for example, the enthalpy leaving through the lower vents represents some particular fraction of the heat release over the whole range of possible fire sizes and not, for example, just for small or just for large fires. Proportionality insures that the ceiling heat transfer, representing a large fraction of the energy, does indeed scale with fire size.

From Fig. 23 the variations with position are seen to be, not surprisingly, very significant. If one extrapolates the four central ventilation points for h and the two more-central ΔT_{m} points (T_{3} and T_{1}) to $r / H \rightarrow 0$, the maximum values of ceiling heat transfer may be estimated.

$$
\begin{align*}
& h / Q^{1 / 6}=0.043 \tag{14}\\
& \Delta T_{\square} / Q^{93}=9.5 \tag{15}
\end{align*}
$$

in kW, K, and m .

For the 30 kW heat release rate example, Eq. (13) will yield $.043 \times 9.5 \times 30^{1.1}=$ $17 \mathrm{~kW} / \mathrm{m}^{2}$. At $\mathrm{r} / \mathrm{H}=1$ this reduces to about $7 \mathrm{~kW} / \mathrm{m}^{2}$ and so on, decreasing strongly with distance from the fire. With heat transfer rates of this order it is quite plausible for the approx. 70% figure of the energy to be absorbed by the ceiling.

How the heat transfer rate falls in time can be seen on Fig. 29 which shows the above example case, the 30 kW fire, for the two r / H positions. Initially there is quite a dramatic reduction. Things begin to level off approximately at times corresponding to when the exhaust TC'S are beginning to sense warm air coming out. (Fig. 18).

The generalized form of the solution of the semi-infinite model Eq. (10) is shown on figure 30 where the non-dimensional heat transfer rate $\dot{q} " /\left(h_{c} \Delta T_{m}\right)$ is plotted vs. dimensionless time, $\mathrm{C} J$. The early times solution Eq. (11) is also shown for convenience. The quantities, h and C, are related according to $C=h / \downharpoonleft \rho c k$.

3.5 Stratification

Fig. 31 shows eight traces of thermocouple readings, top-to-bottom, for tree D during a 40 kW , central ventilation, 2.4 min rate, no seat test configuration. At arbitrary times one can look at the distribution of temperature with
elevation. Fig. 32 presents six such profiles at times equal to 30 s through 460 s after ignition. Obviously, hotter gases are at the top with the entire profile rising in time.

The question now arises as to how to generalize such a plot. The easiest method is to normalize each trace to some value that is representative of that time. Since all the information has been gathered and correlated for the top or maximum reading thermocouples, the trace of that thermocouple would be the obvious choice. Using the erfc model (Fig. 24-27) and the parameters from Table 3 we can, first subtracting out the initial ambient temperature, divide each of the readings of the profiles by the calculated maximum temperature for that time.

Fig. 33 shows the normalized profiles, the fraction of the maximum temperature at the time, that maximum being calculated via Eq. 1 using $\Delta T_{m}=205 \mathrm{~K}$ and $C=0.0897 \mathrm{~s}^{-1 / 2}$. At long times a somewhat universal profile is achieved. The level of scatter is about $\pm 10 \%$ at the top. However we do clearly see the enclosure "filling" as the 30 s profile falls much lower than the one at 60 s which is lower than that at 120 s . The 120 s profile is beginning to approach the longer time result where temporal non-uniformity tends to disappear, and the whole bulk of gas or each strata moves upward in temperature simultaneously. Before this point is reached, times less than 120 s , the upper gases get hotter quickly and the lower gases slowly - there is definite temporal non-uniformity - the rates of rise are different in the upper and lower ragions.

Regarding safety, how the 30 s and subsequent profiles on Fig. 33 "swing" up to the hotter universal profile will be extremely important. The ventilation effects (rate, position, other characteristics) on the universal profile and the "swing" will be required to be documented. That data are available as are the conserved species measurements including $\mathrm{CO}_{2}, \mathrm{CO}$ and O_{2} and will be available in a forthcoming publication.

4.0 Discussion

As well as further data analysis of the kind just indicated above, certain other tasks, the importance of which have become clearer during this study, ought to be pursued further. The thermal environment as a function of heat release is known and various scaling schemes are available which would give confidence to ones ability to generalize these results. Therefore the question as to what size or lower limit of heat release rate will be handled to some prescribed criteria by present ventilation can be posed and a quantitative answer provided.

5.0 Conclusions

The conclusions for the thermal field portion of these studies are as follows: Within times of interest, i.e., a few airchanges, the bulk of the fire produced energy was not being exhausted through the normal floor ventilation. The hot gases were accumulating close to the ceiling and except for some local mixing, were hardly affected by the incoming cold stream. As time progressed and the cabin began to fill from the top downward and heat transfer rates
decreased as the ceiling and walls heated, only then did significant temperature levels begin to appear in the outflow stream.

In the present apparatus most of the energy of the fire is transiently being stored in the "marinite" ceiling. The results have been generalized in terms of a semi-infinite slab model exposed to a high temperature constant bath, a function of fire size, through a constant convective film coefficient, h, dependent on position in the cabin and weakly on fire size. Heat transfer to the cabin ceiling was found to scale with fire size through almost direct proportionality thus insuring the generality of the present experiments. The behavior of different ceiling materials ought to be reflected through different $\rho c k$ values. Different geometries ought to be reflected by the variation of h through different Reynolds and Grashoff numbers as well as with the heat release rate variations of plume theory. All these effects have been documented and await further analytical data manipulation and experimental verification.

6.0 Acknowledgements

Dan Madrzykowski with some help from Bob Vettori converted a conceptual design into a very durable excellently operating experimental apparatus in the form of the $1 / 2$ scale, simulated wide body aircraft cabin used in the present and proposed future studies. Without their friendly cooperation and hard work this task could not have been completed. Thanks are also due the technical coordinator at FAA, Dr. Thor Eklund, who from the broader view of the entire cabin fire problem was able to guide this work effectively suggesting which and how best to approach each of the problems.

1. Cox, G., Kumar, S., Markatos, N.C., (1986) "Some Field Model Validation Studies, Fire Safety Science-Proceedings of the First International Symposium", Hemisphere Publishing Corp. p. 159.
2. DeSouza, B.P., Yang, K.T., Lloyd, J.R., (1985) "Numerical Simulations of the Effect of Floor and Ceiling Venting on Fire and Smoke Spread in Aircraft Cabins", NBS-GCR-84-479, National Bureau of Standards, Gaithersburg, MD.
3. Eklund, T.I., (1984 a) "Effects of Ventilation and Panel Properties on Temperature Rise from Aircraft Fires", DOT/FAA/CT - TN 83/63 FAA Technical Note, Technical Center, Atlantic City.

Eklund, T.I., (1984 b) "An Analysis for Relating Visibility to Smoke Production and Ventilation", DOT/FAA/CT-TN 84/22.
4. Foote, K.L., Pagni, P.J., Alvares, N.J., (1986) "Temperature Correlations for Forced-Ventilated Compartment Fires, Fire Safety ScienceProceedings of the First International Symposium", Hemisphere Publishing Corp. p. 139.
5. Mitler, H.E., (1984) "Zone Modeling of Forced Ventilation Fires", Combustion Science and Technology 39, 83.
6. Quintiere, J., McCaffrey, B.J., and Kashiwagi, T., (1978) A Scaling Study of a Corridor Subject to a Room Fire, Combustion Science and Technology 18, pp 1-19.
7. Sarkos, C.P. and Hill, R.G.(1985), "Evaluation of Aircraft Interior Panels Under Full-Scale Cabin Fire Test Conditions", AIAA 23rd Aerospace Sciences Meeting, Reno.
8. Abramowitz, M. and Stegun, I.A., Handbook of Mathematical Functions, National Bureau of Standards Applied Math Series 55, 1965.

```
APPENDIX
```

Chamel No.
0
1
2

3

Description
IC North Wall, Interior

Tree A
(centerline, 1.22 m from east wall)
(centerline, 1.22 m from east wal1)
(centerline, 1.22 m from east wall)
Ventilation Exhaust
Tree B
(. 61 m from east and south
walls)
(. 61 m from east and south walls)
(. 61 m from east and south walls)
(. 61 m from east and south walls)
(. 61 m from east and south walls)
(. 61 m from east and south
walls)
Ventilation Exhaust

Tree D
(1.83 m from east, 30 m from south walls)
(1.83 m from east, .30 m from south walls)
(1.83 m from east, .30 m from south walls)
(1.83 m from east, .30 m from south walls)
(1.83 m from east, 30 m from south walls)
(1.83 m from east, 30 m from south walls)
(1.83 m from east, 30 m from south walls)
Tree C
(centerline, 0.3 m from east
wal1)
(centerline, 0.3 m from east wal1)
(centerline, 0.3 m from east
wal1)
(centerline, 0.3 m from east wall)
icenterline, 0.3 mirom east

Location
0.3 m above floor, 0.3 m east of cabin centerline
.0413 m from ceiling
.0889 m from ceiling . 152 m from ceiling . 216 m from ceiling . 292 m from ceiling .397 wfom ceiling . 518 m from ceilins

West End
.0413 m from ceiling
.0889 m from ceiling
.152 m from ceiling
.216 m from ceiling
. 292 m from ceiling
.397 mfom ceiling
.518 m from ceiling
East End
.0413 m from ceiling
.0889 m from ceiling
.152 m from ceiling
.216 m from ceiling
. 292 (1) from ceiling
.397 mf from ceiling
. 518 m from ceiling
.590 m from ceiling
.0413 m from ceiling
.0889 m from ceiling
152 m fram ceiling
.216 m fran ceiling
. 292 m from ceiling
.397 mfom ceiling

nnel No.	Descr	ion	Location
31	IC	(centerline, 0.3 m from east wal1)	518 m from ceiling
32	TC	(centerline, 0.3 m from east wall)	. 690 m from ceiling
33	IC	Ceiling "Il" Centerline	0.61 m from east wall
34	IC	Ceiling "I2" 0.30 m from north	0.91 from east wall
35	TC	Ceiling "I3" Centerline	1.83 m from east wall
36	TC	Ceiling "T4" 0.30 m from north	1.83 m from east wall
37	IC	East Wall. Interior 0.61 m above floor	0.3 m north of centerline
38	TC	North Wall, Interior 0.30 m below ceiling	0.3 m east of cabin centerline
39	IC	North Wall. Interior 0.76 m above floor	0.76 m from east wall
40	HF	North Wall, Exterior 0.17 m below ceiling	2.15 m from east wall
41	$T C_{H F}$	North Wall, Exterior 0.17 m below ceiling	2.15 m from east wall
42	[${ }^{\text {F }}$	North Wall, Exterior 0.22 m above floor	2.16 m from east wall
43	$I C_{B F}$	North Wall, Exterior 0.22 m above floor	2.16 m from east wall
44	GF	North Wall, Exterior 0.22 m above floor	0.30 m from east wall
45	$I C_{G F}$	North Wall, Exterior 0.22 m above floor	0.30 m from east well
46	HF	North Wall, Exterior 0.21 m below ceiling	0.32 m from east wall
47	$T C_{B F}$	North Wall, Exterior 0.21 m below ceiling	0.32 m from east wall
48	V	Inlet flow velocity, east half	
49	V	Inlet flow velocity, west half	
50	Δp	Cabin Static Pressure Differential	
51	0_{2}	Cabin O_{2} Concentration	various locations
52	CO	Cabin CO Concentration	various locations
53	CO_{2}	Cabin CO_{2} Concentration	various locations
54	O_{2}	Echaust gas O_{2} Concentration	

Location

IC - thermocouple chromel-alumel 0.25 um D wire (on trees - TC's faced away from fire)

HF - foil type heat flow sensors (RdF Corporation 20480-3)
IC ${ }_{\text {HF }}$ - copper constantan thermocouples (integral part of heat flow sensor)
V - linearized, temp. compensated hot film anemometer (Omega FMA 603V) cross section was traversed at various fan settings in order to convert singie, centerline velocity value into a flow rate. (Profile fitted nicely into $1 / 7$ power. $\operatorname{Re} \rightarrow 10^{4}$ for all conditions).

The following sheets contain the reduced data for run F1202. See preceding table in Appendix for detailed descriptions of channel numbers, locations from Figure 1 and Appendix, units from axes on remaining figures.

TIME CHANNEL

(3)	1	2	3	4	5	6	7
0	27	27	27	26	26	26	26
10	27	27	27	26	26	26	26
20	27	27	27	26	27	26	26
30	27	27	27	26	26	26	26
40	27	27	27	26	26	26	26
50	27	27	27	26	26	26	26
60	27	27	27	26	26	27	26
70	27	27	27	27	27	29	27
80	59	73	43	32	31	35	28
90	71	99	70	46	40	44	32
100	82	111	79	55	48	52	39
110	94	124	78	62	55	54	45
120	93	124	87	65	58	58	50
130	93	122	90	70	61	60	54
140	99	127	89	71	64	61	58
150	102	134	93	73	66	63	59
160	109	136	91	74	67	66	61
170	103	127	109	86	70	68	63
180	113	145	104	80	71	69	65
190	102	124	107	85	74	71	68
200	109	148	120	88	78	76	70
210	111	130	115	97	82	76	71
220	122	154	126	92	80	78	73
230	108	142	118	93	82	81	74
240	121	141	123	101	88	78	78
250	123	149	119	97	84	81	75
260	119	140	123	101	87	81	77
270	132	158	121	98	85	82	78
280	113	139	118	98	88	85	79
290	127	157	133	103	89	82	80
300	115	134	117	95	86	84	79
310	125	155	128	101	89	83	81
320	128	156	133	99	86	83	81
330	123	141	123	99	86	82	81
340	117	144	122	98	87	85	81
350	129	158	125	102	91	84	81
360	128	144	129	109	90	86	82
370	126	154	128	108	92	86	83
380	129	155	126	105	92	87	84
390	136	163	135	102	92	87	86
400	126	144	120	99	90	88	84
410	135	159	123	102	93	88	85
420	139	168	135	103	94	88	86
430	126	142	123	102	92	88	86
440	125	149	121	104	92	90	87

TIME

$\begin{aligned} & \text { TIME } \\ & \text { (s) } \end{aligned}$	CHANNEL 9	10	11	12	13	14
0	27	27	27	27	27	27
10	27	27	27	28	27	27
20	27	27	27	27	27	27
30	27	27	27	28	27	27
40	28	27	27	28	27	27
50	28	27	27	27	27	27
60	27	27	27	27	27	27
70	28	28	28	28	28	27
80	52	46	42	37	33	32
90	65	62	59	53	42	39
100	74	71	69	57	49	48
110	81	77	77	60	53	51
120	84	81	80	63	57	54
130	88	86	82	69	60	57
140	90	86	85	70	62	60
150	93	89	85	71	65	61
160	93	89	86	73	66	63
170	95	92	89	79	71	67
180	99	95	89	82	74	69
190	93	92	91	82	74	71
200	97	94	91	89	82	74
210	94	96	96	91	82	77
220	102	99	95	94	84	79
230	99	96	95	89	81	77
240	109	105	103	94	86	79
250	105	101	98	93	87	80
260	108	104	103	95	87	82
270	110	105	100	94	86	83
280	101	100	98	94	84	81
290	111	107	105	100	90	85
300	103	100	98	92	85	82
310	110	105	101	97	91	85
320	112	108	104	99	91	84
330	109	107	103	96	88	84
340	106	102	99	93	88	83
350	113	108	107	99	92	86
360	110	110	106	96	91	86
370	114	111	106	96	90	86
380	113	112	112	100	91	86
390	120	117	112	100	92	88
400	111	110	107	95	89	86
410	116	113	111	101	95	89
420	121	115	113	104	92	89
430	112	111	106	99	90	88
440	113	109	106	99	92	87

TIME						
(3)	9	10	11	12	13	14
450	121	114	114	104	93	88
460	121	117	115	110	95	90
470	113	110	108	101	93	88
480	119	115	112	108	104	94
490	107	104	99	95	92	86
500	91	90	88	85	83	81
510	82	81	81	78	77	77
520	78	77	76	74	74	72
530	73	73	72	71	70	67
540	70	69	69	67	66	64
550	68	67	66	64	63	62
560	65	64	63	62	62	60
570	62	62	61	61	60	58
580	61	60	60	59	58	58
590	59	59	58	57	57	56
600	58	57	57	56	56	54
610	58	56	56	55	54	53
620	57	55	55	54	53	53
630	55	54	54	53	53	52
640	54	54	53	53	52	51
650	54	53	52	52	51	50
660	53	52	51	51	51	50
570	53	51	51	51	50	49
680	53	51	50	50	49	49
690	52	51	50	50	49	48
700	52	50	50	50	49	48
710	51	50	49	49	48	48
720	50	49	49	49	48	47
730	50	49	49	49	48	47
740	50	49	49	49	47	47
750	50	49	49	48	47	46
760	49	48	48	48	47	46
770	49	48	48	48	46	46
780	48	48	48	48	46	45
790	48	47	47	47	46	45
800	47	47	47	47	46	45
810	47	47	47	47	46	45
820	47	47	46	46	46	45
830	48	46	46	46	46	45
840	47	46	46	46	45	45
850	48	46	46	46	45	44
860	46	46	46	46	45	44
870	46	45	46	46	45	44
880	46	45	45	46	45	44
890	46	45	45	45	45	43

TIME CHANNEL

(3)	17	18	19	20	21	22	23
0	28	28	28	28	28	28	27
10	28	28	28	28	28	28	27
20	28	28	28	28	28	28	27
30	28	28	28	28	28	28	27
40	28	28	28	28	28	28	27
50	28	27	28	28	28	28	27
60	28	27	28	28	28	27	28
70	46	38	34	30	29	28	28
80	83	80	64	41	31	30	30
90	98	96	79	53	41	37	33
100	111	108	81	59	48	44	40
110	121	116	90	64	53	51	46
120	126	122	88	66	58	56	52
130	130	121	90	69	61	60	55
140	135	128	93	72	64	62	58
150	136	130	97	76	67	65	61
160	132	129	98	75	69	67	64
170	134	130	104	83	72	69	66
180	141	137	118	87	74	71	68
190	130	127	113	88	76	72	69
200	135	132	112	92	80	74	71
210	132	132	117	94	81	75	73
220	146	138	115	93	83	77	74
230	137	130	117	96	84	79	76
240	138	135	118	99	88	82	77
250	143	141	125	101	87	82	78
260	142	140	121	105	89	82	79
270	147	143	126	105	87	82	79
280	139	135	124	99	88	84	81
290	152	151	139	104	90	85	81
300	145	136	117	97	88	85	82
310	142	137	117	98	89	87	83
320	153	148	130	99	89	86	83
330	155	151	131	103	89	88	83
340	140	135	123	102	92	87	83
350	152	149	134	106	93	88	84
360	161	156	130	109	92	88	84
370	147	142	127	112	92	89	86
380	155	149	126	102	93	89	85
390	166	160	130	107	93	89	86
400	154	146	113	101	94	89	85
410	152	148	129	105	93	90	87
420	164	157	137	114	95	90	87
430	157	146	119	106	95	90	87
440	154	143	123	103	94	90	87

$\begin{aligned} & \text { TIME } \\ & \text { (s) } \end{aligned}$	17	18	19	20	21	22	23
450	160	154	129	103	95	91	88
460	158	150	125	113	97	92	90
470	154	149	120	105	96	92	89
480	158	154	137	110	99	93	90
490	120	118	109	99	94	89	86
500	103	101	95	91	88	84	81
510	93	91	87	82	80	75	74
520	86	84	81	77	76	72	71
530	80	78	75	73	71	68	67
540	76	74	72	70	68	66	65
550	73	71	69	67	65	63	62
560	71	68	66	64	63	61	60
570	68	66	64	62	61	59	58
580	65	64	62	60	60	58	57
590	63	62	60	59	58	57	56
600	61	61	59	58	57	55	55
610	61	60	59	56	56	54	54
620	60	59	57	55	55	54	53
630	59	58	56	55	54	53	52
640	58	56	55	54	53	52	52
650	57	56	55	53	52	52	51
660	56	55	54	52	52	51	50
670	56	54	53	52	51	50	50
680	56	54	53	51	51	50	50
690	55	53	52	51	50	49	49
700	53	52	51	50	50	49	48
710	53	52	51	50	49	48	48
720	53	51	51	49	49	48	48
730	53	50	51	49	49	48	48
740	52	50	50	49	48	48	47
750	51	50	49	49	48	47	47
760	52	50	49	48	48	47	47
770	52	49	49	48	47	47	47
780	51	49	49	48	47	47	46
790	51	48	49	48	47	47	46
800	50	48	48	47	47	46	46
810	50	48	48	47	47	46	46
820	50	48	48	47	47	46	46
830	49	48	47	47	46	45	45
840	49	47	47	46	46	45	45
850	49	47	48	46	46	45	45
860	50	47	47	46	46	45	45
870	49	47	47	46	46	45	44
880	49	46	47	46	46	45	44
890	49	46	46	46	45	45	44

24	$\begin{aligned} & \text { TIME } \\ & \text { (s) } \end{aligned}$	CHANNEL 25	26	27	28	29	30
27	0	27	27	27	27	27	27
27	10	27	27	27	27	27	27
27	20	27	27	27	27	27	27
27	30	27	27	27	27	27	27
27	40	27	27	27	27	27	27
27	50	27	27	27	27	27	27
27	60	27	27	27	27	27	27
28	70	28	28	28	27	27	27
31	80	52	51	49	42	37	33
33	90	69	66	62	52	43	38
36	100	78	76	71	59	49	43
40	110	84	82	82	65	53	47
44	120	87	86	82	66	57	52
49	130	89	89	88	73	59	55
52	140	90	93	90	72	60	57
54	150	95	95	93	73	62	60
57	160	97	96	95	74	65	62
59	170	94	96	94	79	68	64
61	180	98	98	98	89	74	66
63	190	95	96	97	85	73	68
65	200	104	104	106	93	78	70
67	210	97	99	99	91	79	72
69	220	103	106	105	98	84	75
70	230	109	107	104	97	84	76
70	240	102	104	103	97	84	77
72	250	110	111	111	101	91	77
73	260	105	108	106	97	85	78
73	270	112	113	112	100	86	79
74	280	115	110	108	100	87	80
76	290	110	112	111	101	89	82
76	300	104	106	104	96	85	80
76	310	112	112	111	101	88	83
77	320	115	113	113	100	87	83
78	330	107	113	110	98	87	83
78	340	116	115	111	103	90	84
79	350	117	118	114	103	89	84
80	360	110	113	111	102	90	83
80	370	116	115	113	106	92	85
80	380	121	119	116	104	91	86
81	390	115	118	116	105	91	85
81	400	112	113	112	100	89	85
81	410	119	118	115	105	95	86
82	420	121	124	121	105	93	86
82	430	111	115	112	102	91	86
83	440	123	118	117	108	93	86

	TIME						
24	(3)	25	26	27	28	29	30
83	450	123	121	117	105	94	87
84	460	117	120	118	108	93	87
85	470	112	114	112	105	96	87
84	480	121	121	122	113	98	90
80	490	104	104	102	96	89	85
77	500	91	91	90	87	83	80
72	510	83	83	83	81	78	76
69	520	78	78	77	76	74	71
65	530	75	74	73	72	70	68
63	540	71	70	69	69	67	65
61	550	68	67	66	66	65	52
59	560	66	65	64	64	62	60
58	570	64	64	63	62	61	59
57	580	63	63	62	61	59	57
56	590	61	60	60	59	57	55
55	600	60	59	58	58	56	54
54	610	58	58	57	57	55	53
53	620	58	57	56	56	54	53
53	630	57	56	55	55	54	52
52	640	56	55	54	54	53	51
51	650	54	54	53	53	52	51
51	660	53	53	52	53	51	50
50	670	52	52	52	52	50	49
50	680	53	52	51	51	50	49
49	690	52	51	51	51	50	48
49	700	52	51	51	50	49	48
48	710	51	50	50	50	48	48
48	720	51	50	49	49	48	47
48	730	50	49	49	49	48	47
47	740	49	49	48	48	47	47
47	750	49	48	48	48	47	46
47	760	49	48	48	48	47	46
47	770	49	48	48	48	47	46
47	780	49	48	47	47	46	45
46	790	48	47	47	47	46	45
46	800	48	47	47	46	46	45
46	810	48	47	47	46	45	45
46	820	47	47	46	47	46	45
45	830	48	46	46	46	45	45
45	840	47	46	46	46	45	44
45	850	47	46	46	46	45	44
45	860	47	46	46	46	44	44
45	870	47	46	46	46	44	44
44	880	46	46	45	45	44	43
45	890	46	45	45	45	44	43

		TIME	CHANNEL			
31	32		33	34	35	36
27	26	0	27	28	29	29
26	26	10	27	28	29	29
26	26	20	27	28	29	29
27	26	30	27	28	29	29
26	26	40	27	28	29	29
27	26	50	27	28	29	29
27	26	60	27	28	29	29
28	27	70	30	34	112	58
30	28	80	38	49	132	83
33	30	90	45	62	161	93
40	34	100	50	66	166	103
44	39	110	56	71	164	108
49	45	120	57	77	169	116
51	48	130	58	78	172	121
55	51	140	60	79	187	120
58	54	150	62	80	184	120
61	56	160	63	83	183	123
62	58	170	61	80	160	114
63	61	180	65	85	157	109
65	61	190	63	80	155	134
67	65	200	69	88	175	121
69	65	210	65	82	182	127
70	68	220	68	86	150	111
72	68	230	68	87	205	135
73	71	240	66	83	169	113
72	71	250	72	91	202	120
75	73	260	69	87	192	124
75	73	270	73	87	155	115
76	72	280	74	95	204	143
77	74	290	73	90	158	120
75	73	300	72	91	170	148
78	75	310	74	95	189	143
78	75	320	75	95	201	125
78	75	330	73	88	154	116
79	76	340	74	99	217	145
79	77	350	77	99	182	126
79	77	360	75	89	172	119
80	76	370	77	97	214	142
81	78	380	78	99	225	146
81	79	390	78	94	177	132
81	77	400	77	96	176	138
83	79	410	78	101	247	148
82	80	420	81	100	188	127
81	79	430	77	93	171	130
83	80	440	81	102	217	150

TIME $\text { (} 3 \text {) }$	37	38	39	0	$\begin{aligned} & \text { TIME } \\ & (\Omega) \end{aligned}$	40
0	23	24	25	25	0	3.070
10	23	24	25	25	10	2.218
20	23	24	25	25	20	1.706
30	23	24	25	25	30	1.535
40	23	24	25	24	40	3.241
50	23	24	24	25	50	2.900
60	23	24	24	25	60	2.729
70	23	24	25	25	70	4.776
80	25	25	27	26	80	8.700
90	26	25	28	27	90	9.552
100	27	27	30	28	100	12.111
110	29	28	32	30	110	13.305
120	30	29	34	31	120	20.299
130	32	30	36	33	130	25.246
140	33	32	38	34	140	20.469
150	34	33	39	35	150	24.734
160	36	34	41	37	160	26.440
170	37	36	43	38	170	26.610
180	38	37	44	39	180	31.045
190	39	38	47	40	190	43.668
200	41	39	49	41	200	34.286
210	42	41	51	42	210	51.174
220	43	42	52	43	220	41.792
230	44	43	54	44	230	56.803
240	45	44	55	45	240	39.915
250	45	45	57	46	250	49.638
260	47	46	58	47	260	54.756
270	48	47	59	47	270	44.180
280	49	48	61	48	280	55.609
290	50	49	62	49	290	54.244
300	51	50	63	49	300	60.044
310	51	50	63	50	310	71.984
320	52	51	64	51	320	82.901
330	53	52	65	51	330	65.332
340	53	52	66	52	340	62.091
350	54	53	66	52	350	61.408
360	55	54	67	52	360	60.385
370	55	54	68	53	370	67.549
380	56	55	68	53	380	76.249
390	56	55	68	54	390	73.861
400	57	56	69	54	400	75.055
410	57	56	69	54	410	80.343
420	58	57	70	55	420	68.231
430	58	57	70	55	430	82.731
440	59	57	71	55	440	0.1938

$\begin{aligned} & \text { TIME } \\ & (s) \end{aligned}$				TIME		
	37	38	39	0	(s)	40
450	59	58	71	56	450	82.901
460	60	58	71	56	460	91.260
470	60	58	72	56	470	79.490
480	61	59	72	57	480	84.095
490	60	58	71	56	490	73.178
500	60	58	69	55	500	65.332
510	59	57	68	54	510	65.161
520	58	56	66	53	520	59.873
530	57	56	65	52	530	65.332
540	56	55	63	51	540	55.097
550	55	54	62	50	550	53.391
560	54	53	60	49	560	53.391
570	54	52	59	48	570	54.415
580	53	51	58	48	580	55.097
590	52	50	56	47	590	38.551
600	51	49	55	46	600	43.839
610	50	49	54	45	610	41.109
620	50	48	53	45	620	40.257
630	49	47	52	44	630	44.009
640	48	46	51	43	640	38.551
650	48	46	50	43	650	32.581
660	47	45	49	42	660	34.286
670	46	45	49	42	670	33.092
680	46	44	48	41	680	29.169
690	45	43	47	41	690	32.922
700	45	43	46	40	700	24.904
710	44	42	46	40	710	25.928
720	44	42	45	39	720	32.581
730	43	41	44	39	730	30.192
740	43	41	44	39	740	22.005
750	42	41	43	38	750	20.811
760	42	40	43	38	760	19.617
770	42	40	42	38	770	21.493
780	41	39	42	38	780	18.593
790	41	39	41	37	790	20.128
800	40	39	41	37	800	23.369
810	40	38	41	37	810	26.781
820	40	38	40	36	820	20.128
830	39	38	40	36	830	17.228
840	39	37	40	36	840	15.011
850	39	37	39	36	850	15.011
860	38	37	39	36	860	23.540
870	38	37	39	36	870	15.352
880	38	36	38	35	880	13.135
890	38	36	38	35	890	22.858

		TIME			
41	42	43	(9)	44	45
2	1.896	0	0	1.046	0
2	1.896	0	10	1.046	0
2	3.102	0	20	1.394	0
2	2.930	0	30	1.220	0
2	2.585	0	40	1.917	0
2	2.585	0	50	1.743	0
2	2.413	0	60	2.440	0
2	2.930	0	70	1.220	0
4	3.619	0	80	1.743	0
6	3.964	1	90	1.917	0
8	5.170	1	100	2.265	0
10	6.032	2	110	2.788	0
12	6.377	3	120	3.311	0
15	6.549	4.239	5	130	3.834
17	70	140	4.356	1	
20	10.341	9.479	7	150	3.659
22	10	160	5.228	1	
25	10.858	8	170	6.099	2
27	11.892	9	180	5.925	3
30	10.858	10	190	7.144	3
32	15.167	11	200	6.273	4
34	14.133	12	210	7.144	5
36	13.960	13	220	5.750	5
38	19.476	14	230	10.107	6
40	17.924	15	240	7.841	7
42	16.373	16	250	9.235	8
43	16.890	17	260	14.115	9
45	19.476	18	270	12.546	10
46	22.233	18	280	15.160	11
48	17.924	19	290	13.418	12
49	20.510	20	300	14.463	13
51	24.646	21	310	19.342	13
52	24.818	22	320	18.471	14
54	23.267	23	330	15.334	15
55	23.784	24	340	15.334	15
56	28.955	24	350	14.637	16
57	24.474	25	360	22.130	17
58	28.782	26	370	25.093	18
59	29.127	26	380	20.388	18
60	25.163	27	390	20.039	19
61	28.265	28	400	17.425	20
62	28.265	28	410	15.857	20
63	27.748	29	420	20.388	21
64	28.782	30	430	24.918	21
64	31.368	30	440	30.494	21

		TIME			
41	42	43	$(\mathrm{~s})$	44	45
66	32.574	31	450	30.146	22
66	30.161	31	460	26.487	22
67	29.299	32	470	21.782	23
67	33.781	32	480	21.956	23
67	33.091	32	490	21.782	24
65	28.782	33	500	23.350	24
64	33.264	32	510	30.843	24
62	30.506	32	520	27.881	24
60	38.951	32	530	25.441	24
59	27.748	32	540	26.312	23
57	27.231	31	550	18.994	23
55	24.474	31	560	19.168	23
53	23.612	30	570	20.039	23
51	26.370	30	580	21.956	22
49	26.887	29	590	21.782	22
48	22.923	29	600	20.213	21
46	27.576	28	610	21.956	21
44	21.716	28	620	23.350	21
42	23.957	27	630	23.524	20
41	22.405	26	640	22.653	20
39	34.642	26	650	19.691	19
38	19.820	25	660	16.554	19
37	22.578	25	670	19.516	19
35	24.474	24	680	14.986	18
34	23.440	24	690	12.546	18
33	20.165	23	700	15.857	17
32	19.648	23	710	17.425	17
31	23.612	22	720	17.251	17
30	20.682	22	730	18.297	16
29	21.027	21	740	19.865	16
28	16.029	21	750	15.334	16
27	16.546	20	760	16.554	15
26	23.440	20	770	16.206	15
25	17.235	19	780	16.380	15
25	17.063	19	790	12.372	14
24	18.958	18	800	14.812	14
23	15.684	18	810	14.115	14
23	15.856	18	820	16.728	13
22	13.788	17	830	10.630	13
21	15.511	17	840	12.546	13
21	14.305	17	850	14.812	12
20	13.788	16	860	9.235	12
20	14.650	16	870	12.721	12
19	12.237	16	880	11.849	12
19	14.133	15	890	11.501	12
					10

TIME
46
47

2.737	1
3.592	1
1.710	1
2.395	1
2.566	1
2.052	1
2.052	1
3.250	1
3.079	2
3.250	2
4.789	2
4.447	3
4.276	3
4.789	4
5.815	5
9.407	5
6.157	6
6.157	7
7.697	8
8.723	8
8.723	9
9.065	10
11.973	11
13.683	12
9.407	12
9.749	13
11.802	13
14.025	14
10.262	14
10.947	15
13.170	16
12.315	16
15.223	17
16.078	18
14.196	19
12.657	21
16.249	18
22.577	19
14.025	19
16.249	19
18.472	1
14.367	1
20.012	19
19.670	1
20.012	1

(S)

48
49 50

0	0.502	0.510	0.240
10	0.527	0.528	0.244
20	0.536	0.510	0.241
30	0.556	0.487	0.244
40	0.504	0.532	0.251
50	0.510	0.480	0.246
60	0.512	0.517	0.279
70	0.532	0.501	0.536
80	0.468	0.518	0.451
90	0.447	0.512	0.419
100	0.516	0.496	0.390
110	0.508	0.530	0.395
120	0.497	0.483	0.360
130	0.479	0.485	0.334
140	0.481	0.505	0.328
150	0.501	0.486	0.331
160	0.527	0.507	0.322
170	0.500	0.499	0.363
180	0.479	0.508	0.337
190	0.550	0.482	0.290
200	0.479	0.468	0.306
210	0.533	0.489	0.339
220	0.517	0.553	0.293
230	0.518	0.467	0.293
240	0.504	0.504	0.309
250	0.486	0.521	0.282
260	0.482	0.510	0.297
270	0.489	0.514	0.273
280	0.508	0.428	0.289
290	0.508	0.486	0.250
300	0.543	0.461	0.240
310	0.486	0.507	0.299
320	0.530	0.468	0.296
330	0.511	0.458	0.299
340	0.521	0.473	0.297
350	0.519	0.486	0.279
360	0.515	0.515	0.293
370	0.500	0.508	0.275
380	0.535	0.460	0.268
390	0.516	0.496	0.273
400	0.519	0.514	0.247
410	0.536	0.491	0.307
420	0.538	0.476	0.289
430	0.532	0.464	0.266
440	0.531	0.493	0.293
10			
10			

TIME

19.670	22
20.867	22
21.038	22
20.867	23
20.525	23
22.920	23
26.169	23
19.328	23
22.064	22
22.406	22
23.433	22
16.762	21
16.762	21
18.301	21
18.643	20
20.012	20
20.183	19
14.881	19
14.710	18
12.657	18
17.617	18
12.999	17
16.762	17
12.315	17
14.710	16
17.959	16
21.209	16
12.315	15
15.907	15
14.710	15
13.512	14
17.446	14
11.631	14
12.144	14
9.749	13
11.460	13
13.170	13
10.434	13
9.065	13
12.486	12
11.631	12
10.776	12
13.854	12
11.631	11
9.749	

450	0.532	0.502	0.278
460	0.518	0.497	0.262
470	0.515	0.505	0.292
480	0.520	0.513	0.058
490	0.522	0.512	0.112
500	0.527	0.504	0.140
510	0.499	0.511	0.159
520	0.526	0.501	0.177
530	0.500	0.514	0.191
540	0.508	0.511	0.201
550	0.540	0.513	0.212
560	0.473	0.542	0.219
570	0.513	0.492	0.220
580	0.530	0.514	0.226
590	0.534	0.518	0.232
600	0.523	0.493	0.234
610	0.501	0.508	0.239
620	0.510	0.532	0.242
630	0.514	0.494	0.244
640	0.510	0.475	0.245
650	0.505	0.504	0.245
660	0.521	0.483	0.248
670	0.516	0.476	0.249
680	0.534	0.480	0.251
690	0.560	0.483	0.255
700	0.515	0.477	0.251
710	0.507	0.524	0.254
720	0.510	0.476	0.253
730	0.537	0.488	0.254
740	0.489	0.537	0.253
750	0.471	0.461	0.256
760	0.499	0.545	0.256
770	0.487	0.511	0.253
780	0.523	0.513	0.255
790	0.534	0.461	0.252
800	0.479	0.503	0.256
810	0.531	0.509	0.257
820	0.544	0.517	0.257
830	0.534	0.531	0.259
840	0.525	0.482	0.257
850	0.517	0.501	0.257
860	0.490	0.511	0.258
870	0.524	0.532	0.259
880	0.551	0.494	0.259
890	0.561	0.514	0.261

1) Interior View of One Half of Symmetric Enclosure.
2) Typical Seat.
3) Time Histories TC Tree A F1202
4) Time Histories TC Tree B F1202
5) Time Histories TC Tree C F1202
6) Time Histories TC Tree D F1202
7) Exhaust Gas TC Histories F1202
8) Ceiling Temperatures Histories F1202
9) Interior Wall TC Traces F1202
10) Exterior Temperature Rise and Heat Flux Histories F1202
11) Exterior Temperature Rise and Heat Flux Histories F1202
12) Ventilation Flow Rates and Cabin Differential Pressure Histories F1202
13) Gas Temperature-Time Traces. TC Tree D, 30 kW Fire 2 min Rate
14) Gas Temperature-Time Traces. TC Tree D, 30kW Fire 4.5 min Rate
15) Ceiling Temperature-Time Traces. 4 Positions, 30kW, Two Ventilation Rates.
16) External Wall Temperature, Heat Flux-Time Plots. 30kW, 2 min Rate
17) External Wall Temperature, Heat Flux-Time Plots. 30kW, 4.5 min Rate
18) Exhaust Flow TC Readings. Two Ventilation Rates, Two per run.
19) ERFC-like Curve Fits to Ceiling Temperature Data. T1
20) ERFC-Iike Curve Fits to Ceiling Temperature Data. T2
21) ERFC-1ike Curve Fits to Ceiling Temperature Data. T3
22) ERFC-like Curve Fits to Ceiling Temperature Data. I4
23) Ceiling Thermal Characteristics, ΔT_{m} and h vs Q and r / H.
24) ERFC-like Curve Fits to Gas Temperature Data. B1
25) ERFC-like Curve Fits to Gas Temperature Data. CI
26) ERFC-like Curve Fits to Gas Temperature Data. A2
ERFC-like Curve Fits to Gas Temperature Data. DI28) Ceiling and Gas Thermal Characteristics and Heat TransferCoefficient vs. position.
27)

Calculated Ceiling Heat Transfer Decay for 30 kW Fire at $\mathrm{r} / \mathrm{H}=0,1$
30) Normalized Solution and Small Time Approximation.
31) Gas Temperature-Time Trace, TC Tree D, 40 kW Fire
32) Vertical Temperature Profiles (selected times)
33)

Interior View of One Half of Symetric Enclosure.


```
\Perp ๓ J !! 0 N
```

$$
\text { O) } \quad \begin{array}{lllll}
0 & H & \ddagger & \downarrow
\end{array}
$$

（0）ヨヒกคVยヨコWヨ」

㖞 믓 ©

(0) ヨunㄴuยdiwヨ
$\begin{array}{llll}m & \nabla & \Gamma & \cdots \\ m & m & \cdots & i\end{array}$

ก

（コ）$\exists 甘 \cap \perp \forall も \exists d W \exists \perp$

```
O F% M %
```


(Oโ*S/E**W) MOT』 ($4-(O D) d 0$


```
F}\becausem\mp@code{|
```

(200

Ventilation Rates
-8

$$
-8
$$

$$
0_{0}^{L}
$$

CEILING THERMOCOUPLES
FIG. 15 Ceiling Temperature-Time Traces. 4 Positions, 30kW, Two
(0) Jj ก ค $\forall \cup \exists d W E \perp$


```
F}N\mp@code{r
```


（0）ヨยกคฟยヨヨWヨค
F1903T1
DTm=200 c=. 0237
 time (s)
FIG. 19 ERFC-like Curve Fits to Ceiling Temperature Data Tl
($(\underset{)}{ }$ ヨsiy $3 y \cap \perp \forall y \exists d W \Xi \perp$

(x) 3Si4 3yกVํㅋdW3น

(y) 3SIy 3yกซyヨdWヨ

FIG. 23

F1903A2

F1903D1

(y) 3sia 3yกVy3dw3

$(1 * 4) / 6$

```
F}\because\mp@code{m}\nabla\mp@code{~
```


（0）ヨunVUヨヨdWヨ

xロu10 do NOIISVyd

U.S. DEPT. OF COMM. BIBLIOGRAPHIC DATA SHEET (See in struction s)	1. PUBLICATION OR REPORT NO. NBSIR-88/3806	2. Pepforming Organ	3. Publication Date June 1988
4. TITLE AND SUBTITLE Fire Environment In Counterflow Ventilation (The In-flight Aircraft Cabin Fire Problem)			
5. AUTHOR(S) B.J. McCaffrey and W.J. Rinkinen			
6. PERFORMING ORGANIZATION (If joint or other than NBS. see instructions) NATIONAL BUREAU OP STANDARDS U.S. DEPARTMENT OF COMMERCE GAITHERSBURG, MD 20699 University of Maryland Baltimore, MD 21228			7. Contracu Grant No.
9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street. City. Stote, ZIP) Federal Aviation Administration Atlantic City International Airport, NJ 08405			

10. SUPPLEMENTARY NOTES

Document describes a computer program; SF-185, FIPS Software Summary, is attached.
11. ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a significant bibliography or literature survey, mention it here)
Using propane gas burning in a diffusive mode, fire sources up to the equivalent heat release rate of a fully involved seat were simulated in an approx. 1/2-scale closed section of a ventilated-wide-body aircraft cabin. The ventilation flow direction was as in a commercial practice-counter to that of the buoyancy driven fire gases, i.e., fresh air was forced in at the top of the enclosure and drawn out at the bottom. Results indicate that for nominal ventilation rates the potential for significant enthalpy exchange through ventilation in times corresponding to a few airchanges is limited. That is, only a small proportion of the energy release rate of the fire is getting exhausted. Correlations of thermal conditions in the enclosure as a function of time, heat release rate of the fire, and position in the cabin are presented. Semi-infinite transient conduction models appear adequate in capturing the essential features of the fire-ceiling thermal interaction. Reduced data on PC-readable floppy disks for the entire test series will be made available for future cabin modelling purposes.
12. KEY WORDS (Six to twelve entries; alphabetical order; capitalize only proper names; and separate key words ty semicolons) aircraft fires; heat transfer; scale models; simulation; ventilation; seats
13. AVAILABILITY

Unlimited
For Official Distribution. Do Nor Release to NTIS

- Order F

20402.

\# Order From National Technical Information Service (NTIS). Springfield, VA 22161
14. NO. OF

PRINTED PAGES
99
15. Price
$\$ 13.95$

[^0]: 1 Least Squares Fit to $\Delta T / \Delta T_{m}=1 \cdot e^{C^{2} t}$ erfc $C \sqrt{t}$ (No seats, central ventilation, $2.4 \mathrm{~min} \cdot$)

