
A 11 IDE 7flflT71

NBSIR 88-3787

NBS

PUBLICATIONS

IMPLEMENTATION OF THE
EXECUTION CONTROL SYSTEM
OF THE INSPECTION WORKSTATION

May 19, 1988 By:

Howard T. Moncarz

IHHHMMi II
hmBHmhHim nmmm

vn._.jSsj^aoxqS^L

i—amniMill

:>JSo:dx©gg§gg?g!jjlwHwaBi!

III 100
v‘v‘v:v>x^v::::::::v

f
v - U 5 6 mmmmmrnmmm

11 #88-3787
•IvXW

1988
&S& r.

c-Z

'

'alFliwrt iiif# I ferybnd

Research Information Center

National -Bureau of Standards

Gaithersburg, Maryland 20899

/ r

IMPLEMENTATION OF THE
EXECUTION CONTROL SYSTEM

OF THE INSPECTION WORKSTATION

Howard T. Moncarz

May 19, 1988

This publication was prepared by United States Government
employees as part of their official duties and is, therefore, a
work of the U.S. Government and not subject to copyright.

Certain commercial equipment, instruments, or materials are
identified in this paper in order to adequately specify the
experimental procedure. Such identification does not imply
recommendation or endorsement by the National Bureau of Standards,
nor does it imply that the materials or equipment identified are
necessarily the best available for the purpose.

TABLE OF CONTENTS

Page

I. INTRODUCTION 1

1. WHAT THIS DOCUMENT IS ABOUT 1

2. AUDIENCE . 1

3. OVERVIEW 1

II. IMPLEMENTATION CONSIDERATIONS 3

1 . COMPUTERS 3

2. SOFTWARE 3

III. THE EXECUTION CONTROL SYSTEM TECS) 5

1. THE GENERIC CONTROLLER 5

2. STATE MACHINES 5

3. LOADING THE CONTROLLER 8

4. EXECUTING THE CONTROLLER 12

5. COMMUNICATING VIA COMMON MEMORY 12

6. THE NETWORK INTERFACE 15

7. GENERAL ERROR RECOVERY 15

8. ACCESSING THE AMRF IMDAS 15

9. ACCESSING LOCAL DATA 15

i

Page

IV. DESIGN SPECIFICS 17

1. HP DIRECTORY STRUCTURE 17

2. DESCRIPTION OF ECS MODULES 17
2.1. ecs_main and ecs_init 18
2.2. st_lib 18
2.3. mail_mgr 19
2.4. flatfile 20
2.5. errors 21
2.6. cmd_stat 21
2.7. universal 21
2.8. net_lib 2 2

3. LINKING IT ALL TOGETHER 2 2

APPENDICES 23

A. IWS DOCUMENTATION LIST 23

B. REFERENCES 2 5

C. GLOSSARY (and abbreviations) 27

READER COMMENT FORM. 29

ii

LIST OF FIGURES

Page

Figure 1. Control Levels for the IWS Generic Controller 6

Figure 2. External View of State Machine (FSM) 7

Figure 3. Communication by Common Memory (CM) 9

Figure 4. Software Components of FSM 10

Figure 5. Components of the Load File 11

Figure 6. One ECS Cycle 13

Figure 7. CM and Network Communications 14

iii

IMPLEMENTATION OF THE
EXECUTION CONTROL SYSTEM

OF THE INSPECTION WORKSTATION

I. INTRODUCTION

1. WHAT THIS DOCUMENT IS ABOUT

This document describes the benchmark (March, 1987) implementation
of the execution control system (ECS) of the Inspection
Workstation (IWS) . ECS is a program that runs on all the
controllers in the IWS and embodies the design principles of the
AMRF, as described in the IWS document Architecture and Principles
of the Inspection Workstation [A.l]. The ECS program includes the
network module, which supports local communications among the IWS
controllers and global communications between the IWS and the
AMRF. The general AMRF network software is discussed in the
document, AMRF Network Communication [B.l].

The control structure of the IWS consists of four controllers that
are networked together. The implementation of these controllers,
each of which runs under the control of ECS, are described in the
four IWS documents, Implementation of the CMM Controller [A. 3],
Implementation of the Inspection Robot Controller [A. 5],
Implementation of the SRI Controller [A. 4], and Implementation of
the Inspection Workstation Controller [A. 6].

2

.

AUDIENCE

Anyone who needs to understand the internals of the IWS software
should read this document. This includes anyone who will continue
the development of the IWS or plans to make modifications to it.

3 . OVERVIEW

The next chapter, Chapter II, discusses the computers and software
environment used in the IWS. Chapter III presents a top level
understanding of the ECS program, and Chapter IV goes into the ECS
design specifics.

The appendices contain a list of the documents in the IWS series
(Appendix A) , other references cited (Appendix B) ,

a glossary of
terms used in this document (Appendix C) , and a reader comment
form to solicit feedback.

1

IWS ECS Implementation

-

'

IWS ECS Implementation

II. IMPLEMENTATION CONSIDERATIONS

When the IWS project was started, the computers and systems
software had already been acquired. This chapter will not attempt
to rationalize those purchases, but will briefly describe the
hardware and software environment under which the IWS was
developed and is now an operational workstation in the AMRF.

Within the broad mandate of the AMRF to utilize, as much as
possible, off-the-shelf equipment from a wide variety of
manufacturers, the computer hardware and software chosen for the
IWS represent a good selection. However, please note the
disclaimer printed on the title page of this document.

1 . COMPUTERS

The computer system selected for the IWS is the 200 Series of the
Hewlett Packard (HP) desktop computers. Four computer systems are
used in the IWS, one for each controller. Each system consists
minimally of the CPU, monitor, keyboard, hard disk drive, and
floppy disk drives. The hard disk is used to store programs and
data, and the floppies are used to install systems software and to
transfer software between computer systems. Additionally, each
computer system contains the I/O boards required to interface that
computer to the equipment under its control or to other
controllers

.

2 . SOFTWARE

Pascal and BASIC were the two computer languages that were
purchased with the computers. Pascal was chosen for the IWS
software development because it is the more structured language of
the two. The extensions to the language provided by HP were used
to make the software development easier, and in fact, the design
generality desired would not be possible with standard Pascal. In
particular, separate module compilation was considered essential.
Also, heavy use was made of the relaxed type checking available in
the extension, as well as heavy use of the systems level procedure
libraries provided.

A complete software development environment, similar to UCSD
(University of California at San Diego) Pascal, was provided by HP
in support of its Pascal and was used for the IWS project. This
operating system will be referred to as the HP Pascal operating
system in this document.

3

IWS ECS Implementation

.

IWS ECS Implementation

III. THE EXECUTION CONTROL SYSTEM (ECS)

ECS is a program that runs on each controller computer and
incorporates the design principles of the AMRF . These principles
utilize hierarchical task decomposition, data-driven control,
state machines, common memory, and network communications. The
ECS program loads and executes the state machine modules required
to make the computer on which it is running operate as a specific
controller, be it the Robot, CMM, SRI, or Workstation Controller.

1. THE GENERIC CONTROLLER

When designing a specific controller, the main tasks that it will
perform should be specified and then decomposed hierarchically
into successively simpler tasks. The tasks performed at each
level of decomposition are grouped together into separate modules.

All IWS controllers have a similar decomposition (see Figure 1)

.

The top level module of the generic controller interfaces it to
its supervisor controller and implements the UVA model, defining
the start up and shut down protocols. The next level module
performs the main tasks that the controller is designed to do.
This is followed by modules that decompose the top level task into
successively simpler ones. The bottom level module interfaces the
controller to the actual equipment that it will control or to
another controller.

2 . STATE MACHINES

The modules that make up the controller described in Section 1 are
implemented as state machines (abbreviated FSM)

.
(Technically the

IWS uses state machines, not finite state machines, but the
abbreviation FSM will still be used.)

ECS is itself comprised of separate software modules, each
containing functions and/or data structures. These modules should
not be confused with the state machine modules that make up the
controller program. To avoid confusion, state machine modules
will be referred to as FSMs throughout the rest of this document.

The main business of the ECS program is to load and run these FSMs
and to provide communications among them. Consequently, it
behooves us to describe the FSMs in more detail.

Consider the FSM as a black box as shown in Figure 2. The inputs
are derived from other FSMs, from data collected or processed at
its own level (sensory data), and from the FSM's localized view of
the system (the world model) . The black box processes these
inputs and produces outputs. Since the black box is a state

5

IWS ECS Implementation

Figure 1. Control levels for the

IWS Generic Controller

world

model

IWS ECS Implementation

inputs from

other FSMs

sensory

data

outputs

Figure 2. External View of State Machine (FSM)

IWS ECS Implementation

machine, however, the outputs are dependent not only on the
inputs, but on the internal state of the FSM as well.

All FSMs communicate with other FSMs through common memory (CM)

.

Figure 3 shows a very simplified description of CM communication.
Certain variables in each FSM can be declared as CM variables.
Variables declared as outputs are transferred by the CM system to
global CM. Similarly, variables declared as inputs are
transferred by the CM system from global common memory to the
local memory of the FSM that declared them.

Figure 4 shows the major software components of a single FSM.
Each FSM contains two main procedures—one to declare all CM
variables, and one to actually perform the logic of the FSM. This
latter procedure uses three types of variables--temporary

,
state,-

and common memory.

Temporary variables are created as needed each time the FSM is
executed. The values of these variables are not needed beyond
that time. On the other hand, the values of state variables are
saved between FSM executions, and as described above, are what
characterize state machines. The third type of variables, CM
variables, are transferred to and from global CM, and provide the
means for FSMs to communicate with each other.

Finally, each FSM can access data stored in local disk files. A
generic interface to these files is provided as part of the ECS
program. (This is described further in Section 9.)

3. LOADING THE CONTROLLER

ECS works in two phases. The first phase loads the controller
program, and the second phase runs it. This section describes the
first phase.

When the ECS program is first started, it reads a data file called
the "Load File" (Figure 5) . This file designates what software
components must be loaded from disk to run a particular
controller

.

The Load File first specifies which local data files are required
and the formats for those files. ECS prepares its internal data
structures so that those local data files can be accessed during
the execution phase of the controller.

The procedure files are selected next by the Load File, and loaded
into RAM by ECS. These files contain procedures that the FSMs,
yet to be loaded, will use during the execution phase of ECS.

8

IWS ECS Implementation

Figure 3. Communication by Common Memory (CM)

IWS ECS Implementation

Figure 4. Software Components of FSM

10

IWS ECS Implementation

Structure of

Local Data Files

Procedures Required

by FSMs .

FSMs to Load

FSM Execution Sequence

Figure 5. Components of the Load File

11

IWS ECS Implementation

The Load File now selects which FSMs must be loaded to run the
particular controller desired. As each FSM is loaded, the
procedure to declare CM variables is performed. After all FSMs
are loaded, and all CM variables consequently declared, the order
in which the FSMs will be executed is then read from the Load
File

.

At this point, the loading phase of ECS is completed, and ECS may
now go into its execution phase, running the controller it has
just loaded.

4. EXECUTING THE CONTROLLER

In the execution phase, ECS goes into a loop which is executed
continuously. One cycle of this loop is shown in Figure 6.

Each FSM is run in turn, according to the sequence specified in
the Load File as discussed in Section 3. After all FSMs have been
run, common memory variables are transferred, and then network
variables are transferred. Figure 7 is a simple graphic
illustrating the data transfers for one controller.

This completes one ECS cycle, and the next one begins. This
continues indefinitely until the operator stops the program by
pressing the STOP key at the HP keyboard (unless an error crashes
the program prematurely)

.

5. COMMUNICATING VIA COMMON MEMORY

As already mentioned, FSMs communicate with one another through
common memory. Any variables that will be transferred through
common memory must be declared when the controller program is
loaded. This is done in the "Declare CM Variables" procedure
shown in Figure 4

.

For any CM variable, only one FSM is allowed to write that
variable to common memory, but any number of FSMs may read it. It
is the responsibility of the controller implementor to enforce
this rule when programming the controller.

CM variables are transferred once every ECS cycle, after the
controller FSMs execute. As shown in Figure 7, the procedure to
transfer CM variables delivers output variables from the local
memory of each FSM to global CM, and vice versa for input
variables. Because CM variables are transferred once a cycle, a

command sent from one FSM to another will not be received by the
latter until the next cycle.

12

IWS ECS Implementation

execute

FSM n

Control Functions

Communication Functions

transfer

CM variables

transfer

network variables

Figure 6. One ECS Cycle

13

IWS ECS Implementation

Figure 7. CM and Network Communications

14

IWS ECS Implementation

6. THE NETWORK INTERFACE

Referring again to Figure 7, the procedure to "transfer network
variables" transfers selected variables from global CM of
Controller 1 to the network. Similar procedures on the other
controllers connected to the network transfer variables from the
network to and from their own global CM.

The particular variables selected for each controller are
specified by a script file that is read when ECS is first started.
Once the network is established, network variables are transferred
once every ECS cycle. Details of the network implementation are
described in the document, AMRF Network Communication [B.l].

7. GENERAL ERROR RECOVERY

Most errors that may occur during controller operation are
specific to the controller executing, and the error handling must
be included in that controller's FSMs. However, the module
"errors" has been included as part of the ECS program. It may be
accessed by the controller program to either exit the program
gracefully, or to continue the ECS program from a known state
after the controller error has been handled successfully. Further
details for the errors module are presented in the next chapter.

8. ACCESSING THE AMRF IMDAS

The AMRF IMDAS (Integrated Manufacturing Data Administration
System) is not accessed directly by the ECS program. (IMDAS is
the distributed data system which provides common interfaces to
the AMRF ' s user programs and underlying databases [B.2, B.3].)
Rather, a separate FSM (the data server) is used to handle this
task. In the current IWS implementation, only the Workstation
Controller accesses the AMRF IMDAS, and consequently the data
server implementation is described in the IWS document,
Implementation of the Inspection Workstation Controller [A. 2],

9. ACCESSING LOCAL DATA

As shown in Figure 2, one of the data inputs to an FSM is the
world model. Depending on the level of task decomposition that a
particular FSM represents, the world model for that FSM should be
at a similar level of data abstraction. For example, the top
level task in the CMM Controller needs to know what part is to be
inspected and what inspection plan to use, and that information
constitutes the world model for that FSM. However, at an FSM
several levels lower, the world model consists of the specific
points on the part to inspect.

15

IWS ECS Implementation

In the current implementation, the data required is contained in
data files already residing on the local controller computer
system. All of this "world model" data should come from the AMRF
IMDAS, and a future upgrade to the IWS software will provide this.
However, since IMDAS is not dedicated to the IWS, the task level
FSM should retrieve all the data required by the controller in one
piece and transfer that data to these local data files that can be
accessed by any FSM as required in real-time.

The interface between any controller and the local data files is
composed of two parts. The first part is a set of procedures that
specifies the particular data required by the controller, and is
consequently a part of that controller (and contained in a module
called "get_data") . The second part is a data independent set of
procedures used to search and retrieve the data required, using
procedures from get_data as needed. This latter part is contained
in the module called "flatfile" of the ECS program, and is
explained in the next chapter.

16

IWS ECS Implementation

IV. DESIGN SPECIFICS

This chapter describes the modules that comprise the ECS program.
Each module contains a set of functions and/or data structures
used in ECS. Some of these modules are grouped together and
collectively referred to as a library module.

1. HP DIRECTORY STRUCTURE

The HP Pascal operating system allows multiple directories to be
created on the hard disk drives. Each directory can contain
multiple files, but the directories cannot be nested.

This directory system was used for configuration control. All
directories created that are associated with ECS or any of the IWS
controllers have names composed of two parts. The first part is a
three letter abbreviation for the directory's main name. The
second part contains the underscore character followed by a number
representing the version number of the software. For the
benchmark software, which is documented here, that version number
is 3

.

The main directory names for the four IWS controllers are wsc,
cmm, ire, and sri representing the Workstation Controller, the
Coordinate Measuring Machine Controller, the Inspection Robot
Controller, and the Surface Roughness Instrument Controller,
respectively. The ECS program and its constituent parts reside on
the directory named env. Env stands for the environment, since
each controller can be considered to run in an environment
consisting of the ECS program, and references other modules that
are best stored in this directory. The network software resides
in another directory called "net".

The normal procedure in running a controller program is to go to
the controller directory ("prefix" to the controller directory in
HP terminology) . The ECS program is then started from the
controller directory by executing the command env_3:ecs, to
execute the benchmark version of the ECS program.

2. DESCRIPTION OF ECS MODULES

The modules comprising ECS are ecs_main, ecs_init, st_lib,
mail_mgr, flatfile, errors, cmd_stat, universal, and net_lib. Of
these, st_lib, mail_mgr, universal, and net_lib are library
modules

.

17

IWS ECS Implementation

2.1. ecs_main and ecs_init

Ecs_main is the main supervisor for the ECS program. It directs
the initialization of the system, the loading of the controller,
the initialization of the network, and finally, the execution of
the FSMs

.

Ecs_init executes the procedure, init_debug_options
, and then

calls the procedure from the mail_mgr module to initialize the
common memory system.

Init_debug_options allows the user to set the debug options before
loading and running the controller. This procedure displays a
menu of options that are read from a data file named D_MENU . TEXT

,

which is stored in the directory of the controller being executed.
Thus, a different D_MENU . TEXT file may be stored in each of the
controller directories.

Options are selected by entering individual characters in a
string. A user can select various options and run the program
under different conditions, mainly for debugging purposes.

2.2. st_lib

St_lib is a library module that contains the three modules:
loadfile, st_load, and st_xqt.

The loadfile module contains procedures to allow ECS to access the
Load File. (Note: do not confuse the ’'loadfile" program module
with the "Load File" data file.) St_load uses these procedures to
read the Load File and load up the controller components from disk
(see Chapter III, Section 3) . As each FSM is loaded into memory,
its procedure to declare CM variables is located and executed.
This establishes the CM variables for each FSM.

The last thing read from the Load File is the order in which the
FSMs should be executed. As the procedure to execute each FSM is
located, a record containing the starting address for that FSM is
created and added to the single linked list of FSMs in the order
they should be executed.

Finally, st_xqt executes the controller (see Chapter III, Section
4) . The linked list described above is scanned from its
beginning, and each FSM pointed to by it is executed. After all
FSMs in the list are executed, a procedure is called from the
mail_mgr module to transfer all CM variables. The network
variables are transferred at some time during this cycle, other
than the time that the CM variables are being transferred. The

18

IWS ECS Implementation

exact time that those network variables are transferred depends on
the net_lib module and is done in background mode (under interrupt
control)

.

2.3. mail_mgr

The mail_mgr library module is responsible for handling common
memory. This module itself contains six modules— sllprims,
cms_data, alloc, cmsprims, allo_cms, and xqt_xfers.

The maii_mgr creates and manages three single linked lists of
records. The first list is the list of CM variables. Each record
in the list contains the name of the variable, its size in bytes,
and its address in the global common memory. The other two lists
specify the CM variable transfers from global common memory to an
FSM's local memory, and vice versa. A transfer from local memory
to the global common memory is called an output data transfer, and
the reverse transfer is called an input data transfer. All output
data transfers are contained in the list of output data transfers,
and all input data transfers are contained in the list of input
data transfers. The information contained in each record, for
either of these two lists, is the size of the local variable, its
address in local FSM memory, and a pointer to the record in the CM
variable list, which in turn references the variable in global
common memory. The data structures described here are contained
in the module cms_data.

The functions contained in the module sllprims manage a general
single linked list (sll)

.

Each record in this list has two
fields—the first field contains a pointer (data_ptr) to a general
data structure, and the second points to the next record in the
list. This approach permits the same functions to handle single
linked lists containing different types of data. The functions
include "addl" to add a node to the sll, "find" to locate a
particular record in the sll, "top" to go to the first record, and
"next_node" to move to the next record.

The module cmsprims contains functions used by the sllprims
functions to operate on the particular data structure pointed to
by data_ptr. These functions include creating a record of the
correct data structure type as well as matching a particular field
in that data structure—the latter used by the sllprims find
function.

The alloc module manages bytes. Initially it reserves a fixed
block of memory to be used for the global common memory. Whenever
space is required to create a new CM variable, the function,
allocate, secures that memory and returns a pointer to where it is
located.

19

IWS ECS Implementation

The only two modules that are directly accessed by ECS are
xqt_xfers and allo_cms. Alloc_cms contains the procedure
cm_declare. The FSM declare procedure contains a cm_declare
procedure for each CM variable declared by that FSM. Cm_declare
checks the CM variable list to see if this variable has been
allocated in global common memory. If it hasn’t been, then space
for it is allocated, and a record is added to the CM variable list
which references it. Next, a record is added to the input or
output data transfer list (depending on whether the variable has
been declared as an input or output) that references that local
variable

.

The module xqt_xfers contains the procedure xqt_data_transfers

.

This procedure is called by st_xqt (in the st_lib module) and
handles the common memory data transfers. First the output data
transfers list is scanned. All variables referenced in this list
are copied from their local memory location to global common
memory. Next the input data transfers list is scanned, and all
variables in this list are copied from global common memory to the
proper local variable locations.

2.4. flatfile

The flatfile module contains four procedures that are used by ECS
and the controller program to access the local data files. These
procedures are initialize_database , name_flatfiles

,
first_data,

and next_data.

ECS calls initialize_database after it reads the Load File. The
Load File specifies the formats for the flat files used by the
particular controller being executed, and initialize_database
initializes the ECS program with that structure.

The names for all local data files are composed of two parts. The
first part names the particular flat file (the relation) . A
different name is used for each relation and is specified by the
Load File. The second part, called the extension, consists of the
underscore character and three letters. The extension is the same
for all of the flat files, and names a particular set of local
data files. The extension is specified by the procedure
name_flatfiles , and is called from the controller program. The
extension, and consequently the set of local data files, may be
changed during the controller execution by calling this procedure
each time a change is required.

All the flat files aru composed of ASCII characters that are
broken up into records, each record containing one or more fields.
Records are separated by a carriage return and a line feed.
Fields are separated by one or more spaces.

20

IWS ECS Implementation

There are two types of fields—key fields and data fields. Key
fields are used to find the particular record in the data file
that is required. The data fields contain the data required. The
Load File specifies which fields are key fields and which are data
fields for each data file (relation)

.

The two functions, first_data and next_data, are used to retrieve
the actual data. First_data locates the data record using the key
fields, stores the data fields in a results array, and returns the
first of these "results'’ . Thereafter, each time next_data is
called, that function returns the next result string from the
results array. (Note that it is the responsibility of the
procedures contained in the get_data module in the controller
program to convert these result strings to the data types required
and to match them to the proper variable names.)

2.5. errors

The two procedures in the errors module, exit_program and
handle_error , implement the general error recovery discussed in
Chapter III, Section 7. The procedure, exit_program, allows the
controller implementor to exit the ECS program gracefully, either
by pressing the stop key or by sending a software stop.
Handle_error is a procedure that allows the implementor the option
of continuing the ECS program after an error, or exiting it by
calling the previous procedure, exit_program. In the former case,
the operator has the option of displaying an error message,
waiting for the user to press the ENTER key before continuing, and
to pop to a higher level of HP error handling.

2.6. cmd_stat

A task module in a controller communicates with its subordinate by
sending it a command and receiving a status report back from that
subordinate on the progress of executing that command. The data
structures and functions used in this communication are contained
in the module cmd_stat.

2.7. universal

Universal is a library module which contains the modules globdefs
and funcs. The module, globdefs, includes data structure types
that are used throughout the ECS program. It also includes the
string variable "debug" which is used to set the debug options (in
procedure, init_debug_options , in module, ecs_init) for each run.
The module, funcs, contains low level general functions that are
used throughout ECS. The data structures and functions in these
two modules are also widely used in the controller programs that
are run by ECS

.

21

IWS ECS Implementation

2.8. net_lib

Net_lib is a large library of modules that are used to operate the
IWS network and interface it to the ECS program. In large part,
the network software is not documented here, nor in any of the IWS
documentation. For a comprehensive treatment of the AMRF network
software, refer to the AMRF document, AMRF Network Communications
[B.l]

.

The procedures and functions from net_lib that are directly
referenced from ECS are nipini, copy_done, disable_nip,
enable_nip, and clkclose. The procedure nipini initializes the
network software. It is also responsible for communicating with
the network software on the other IWS controllers and the AMRF
Cell Controller to establish the network, based on a script file
located on the Workstation Controller.

The function, copy_done, is false whenever the network is
transferring bytes from the controller. The common memory
transfers are not allowed to take place at the same time that the
network is transferring its variables. To prevent this, the
procedure, disable_nip, is called to disable network data
transfers. The procedure, enable_nip, is called after the CM data
transfers to reenable the network data transfers. Finally, just
before ECS is stopped, the procedure, clkclose, is called to
disable the network interrupt clock.

3. LINKING IT ALL TOGETHER

The separate modules comprising each library module described in
Section 2 are linked together. Then, all of these together with
the other modules are linked to build the ECS program, contained
in the ecs.CODE file. The HP linker is used to accomplish this.
For ease of accomplishing this, the HP stream command is used.

To run a particular controller, the user should "prefix" to that
controller directory. Then the ECS program should be run from
that directory. The D_MENU file will be displayed, and the user
will be prompted to enter the debug string for this run. Next,
the user must enter the Load File which specifies which controller
to run and its configuration.

22

IWS ECS Implementation

APPENDICES

A. IWS DOCUMENTATION LIST

1. H. T. Moncarz, Architecture and Principles of the
Inspection Workstation , to be published as an NBSIR,
1988.

2. H. T. Moncar z, Implementation of the Execution Control
System of the Inspection Workstation , NBSIR 88-3787,
May 19, 1988.

3. H. T. Moncar z and T. H. Hopp, Implementation of the
CMM Controller , to be published as an NBSIR, 1988.

4. H. T. Moncarz and T. V. Vorburger, Implementation of
the SRI Controller , to be published as an NBSIR, 1988.

5. H. T. Moncarz and B. Borchardt, Implementation of the
Inspection Robot Controller . NBSIR 88-3772, April 21,
1988.

6. S. A. Osella, Implementation of the Workstation
Controller , to be published as an NBSIR, 1988.

7. J. Zimmerman, Inventory of Equipment in the Inspection
Workstation , to be published as an NBSIR, 1988.

8. H. T. Moncarz, S. A. Osella, B. Borchardt, and R.
Veale, Operations Manual for the Inspection
Workstation , NBSIR 88-3766, April 21, 1988.

9. J. Zimmerman, Recommended Technical Specifications for
Procurement of Commercially Available Systems for the
Inspection Workstation , NBSIR 88-3779, 1988.

23

IWS ECS Implementation

.

'-4-

24

IWS ECS Implementation

B. REFERENCES

1. R. Rybczynski, et al, AMRF Network Communications , to
be published as an NBSIR, 1988.

2. D. Libes and E. Barkmeyer, "The integrated
manufacturing data administration system (IMDAS)--an
overview", International Journal of Computer
Integrated Manufacturing, Vol. 1, No. 1, pp. 44-49.

3. C. Furlani, et al, "The Integrated Manufacturing Data
Administration System (IMDAS)

" , to be published as an
NBSIR, 1988.

25

IWS ECS Implementation

26

IWS ECS Implementation

C. GLOSSARY (and abbreviations)

benchmark software
Status of the IWS software at the benchmark date of March
26 , 1987 .

CM Abbreviation for common memory

CMM Abbreviation for the Coordinate Measuring Machine,

common memory system
Manages communications between state machines,

controller
Supervises the operation of a mechanism, another
controller, or both.

coordinate measuring machine
Machine used to measure the dimensions of a part.

data server
Software module that interfaces the controller it resides
on to the data it requires.

ECS Abbreviation for the execution control system.

execution control system
Computer program that runs on each controller computer and
implements the AMRF design principles. This program loads
and executes those modules that determine which controller
is actually being run.

FSM Abbreviation for finite state machine. Strictly speaking,
the software control modules used in the IWS are state
machines, not finite state machines. However, for
convenience, the abbreviation FSM is kept.

inspection workstation
AMRF workstation that inspects parts for dimensional
tolerance and surface finish.

IWS Abbreviation for the Inspection Workstation.

Load File
Data file that specifies what state machines ECS should
load and execute.

27

IWS ECS Implementation

network
The communication system that connects the IWS controllers
together, and connects this local network to the AMRF
network.

network variable
Common memory variable that is transferred over the network
system from one controller to another.

single linked list (sll)
List of records in which each record has a pointer to the
next record in the list.

SRI Abbreviation for the Surface Roughness Instrument,

state machine
Software control unit that produces outputs that are
dependent on its inputs and its internal state. This is
the building block for the IWS control software.

state variable
FSM variable that retains its value between executions of
that FSM. (This does not include common memory variables.)

surface roughness instrument
Machine that measures the optical scattering off the
surface of a part that can be correlated with its surface
roughness

.

UVA Protocol
Model, proposed by research group from the University of
Virginia and adopted by the AMRF, that specifies the start
up and shut down sequence for the AMRF as a whole as well
as every controller within the AMRF.

WSC Abbreviation for the Workstation Controller.

28

READER COMMENT FORM

IMPLEMENTATION OF THE EXECUTION CONTROL SYSTEM
OF THE INSPECTION WORKSTATION

This document is one in a series of publications which document
research done at the National Bureau of Standards’ Automated
Manufacturing Research Facility from 1981 through March, 1987.

You may use this form to comment on the technical content or
organization of this document or to contribute suggested editorial
changes

.

Comments

:

If you wish a reply, give your name, company, and complete mailing

address:

What is your occupation?

NOTE: This form may not be used to order additional copies of
this document or other documents in the series. Copies of AMRF
documents are available from NTIS.

Please mail your comments to: AMRF Program Manager
National Bureau of Standards
Building 220, Room B-lll
Gaithersburg, MD 20899

si B S-7 14A REV. 2-80

U.S. DEPT. OF COMM.

BIBLIOGRAPHIC DATA
SHEET (See instructions)

4 ”!TLE AND SUBTITLE

1. PUBLICATION OR
REPORT NO.

2. Performing Organ. Report No. 3. Publ ication Date

NBSIR 88-3787
. MAY 1988

"Implementation of the Execution Control System of the Inspection Workstation"

5. AUTHOR(S)

Howaru T. Moncarz
- E RFORM I NG ORGAN I ZATION (If joint or other than N BS, see in struct ion s) 7. Contract/Grant No.

NATIONAL BUREAU OF STANDARDS
DEPARTMENT OF COMMERCE
WASHINGTON, D.C. 20234

8 . Type of Report & Period Covered

9 SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street. City. State. ZIP)

10. supplementary notes

Document describes a computer program; SF-185, FlPS Software Summary, is attached.

1 1 . A BST RACT (A 200‘ word or less factual summary o f mo st significant in formation. If document includes a significant
bi bliography or literature survey, mention it here)

This document describes the implementation of the execution control system (EC3)
of the Inspection Workstation. ECS is a program that runs on each controller

computer and incorporates the design principles of the AMRF. This program loads
up ana executes the state machine modules required to make the computer on which
it is running operate as a specific controller -- be it the robot, coordinate
measuring machine, surface roughness instrument, or workstation controller.

The ECS program sits on top of the computer's operating system. In addition to

loading and running the proper modules, it provides communications between modules,
“.etwork communications to other controllers, and a common interface to data.

<trY WOR"1

: Six to twelve entries; alphabetical order
;
capi ta I i ze only proper names; and separate key words by semi colon s)

AMRF; ECS; execution control system; IWS; Inspection Workstation

13. AVAILABILITY

Uni imited

-A-

For Official Distribution. Do Not Release to NTIS

Order From Superintendent of Documents, U.S. Government Printing Office, Washington, D.C.
20402.

Order From National Technical Information Service (NTIS), Springfield, VA. 22161

14. NO. OF
PRINTED PAGES

35

15. Price

$11.95

U S COMM- D C 6043-P80

